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ABSTRACT Smart grid is recently proposed as an enhancement for the next generation power grid. To
achieve efficient status monitoring, control, and billing, a large number of smart meters are deployed and
they would produce a huge amount of data. To efficiently collect them imposes a great challenge on the
communication networks. In this paper, we study the efficient meter data collection problem by exploring
the secondary spectrummarket in cellular networks. The electricity power reserved by sending meter data via
leased secondary channels would be charged at a lower price. With the objective of reducing the overall cost
of both power and communication, we formulate a problem called cost minimization for meter data collection
(CMM) that is to find optimal solution of channel selection and transmission scheduling. The CMM problem
under a linear power pricing model is formulated as a mixed integer linear programming problem and is
then solved by a branch-and-bound algorithm. Under a nonlinear power pricing model, we formulate it as a
nonconvex mixed integer nonlinear programming problem and propose an optimal algorithm by integrating
the sequential parametric convex approximation method into the branch-and-bound framework. Extensive
simulation results show that our proposal can significantly reduce the overall cost.

INDEX TERMS Smart grid, meter data collection, spectrum, optimization.

I. INTRODUCTION
Smart grid is regarded as the next generation power grid with
a glorious future. In contrast to traditional power grid with
a tree-like hierarchical structure, it uses two-way flows of
electricity and information to create a widely distributed auto-
mated energy delivery system. In smart grid, the Advanced
Metering Infrastructure (AMI) [1], [2] is one of the most
critical components to achieve efficient status monitoring,
control and pricing by deploying a large number of smart
meters in homes, buildings and factories. Such smart meters
would produce a huge amount of data that should be effi-
ciently collected, imposing a great challenge on communi-
cation networks. Due to security and cost issues [3], [4] of
current wired communication technologies, wireless tech-
nologies have been considered more appropriate to be used in
smart grid because of its flexibility, large-coverage and low-
cost [5]–[8].

In this paper, we study the efficient meter data collec-
tion problem by exploring the secondary spectrum market in

cellular networks [9]–[13]. Although the spectrum has
become a scarce resource because of booming growth of
various wireless applications, measurement results show that
spectrum is under-utilized in many places [14]. Such an
observation motivates the design of a secondary spectrum
market, where new services, such as meter data collection
in smart grid, can access licensed channels with appropriate
payment when they are unused by their owner. Compared
with other opportunistic channel access schemes, such as
cognitive radio, the secondary spectrum market based on
contracts can provide stable communication service and easy
cost management.
All existing work on secondary spectrum market studies

problems from the perspective of communication networks
only. When it is applied in meter data collection for power
pricing problem studied in this paper, the interaction between
power and communication networks should be taken into
consideration. The power pricing model proposed in recent
literature [15], [16] show that the power price is a decreasing
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function of the amount of collected meter data attached with
power reservation information. Less power cost is incurred
if more meter data are collected. However, it requires more
channels or larger channel capacity, leading to a higher com-
munication cost. On the other hand, reducing communication
cost by leasing less channel resources may cause meter data
may loss due to congestion, such that the power cost will be
increased. This tradeoff motivates us to design an efficient
meter data collection scheme to minimize the total cost. To
the best of our knowledge, we are the first to study the benefit
of leasing secondary channels for meter data collection by
jointly considering the power and communication cost. The
main contributions of this paper are summarized as follows.

• First, we consider meter data collection based on a
two-stage power pricing model, under which power is
supplied with a lower price if it is reserved in advance.
Thus, if more meter data with the power reservation
information are collected, less power payment will be
produced, but at a higher leasing fee for more commu-
nication channels. With the objective of reducing the
total cost, we propose a problem called CMM (Cost
Minimization forMeter data collection) that is to find the
optimal scheme for channel selection and transmission
scheduling scheme.

• Second, we analyze the hardness of the CMM problem
by proving its NP-hardness. Specifically, we reduce the
well-known knapsack problem to a special case of the
CMM problem with a linear power price function, i.e.,
the power price linearly increases as the growth of power
supply.

• We solve the CMM problems under both linear and non-
linear power pricing models. The former is formulated
as a mixed integer linear programming (MILP) problem
and solved by a branch-and-bound algorithm. To deal
with the latter, we formulate it as a nonconvex mixed
integer nonlinear programming (MINLP) problem and
propose an optimal algorithm by integrating the SPCA
(Sequential Parametric Convex Approximation) method
into our branch-and-bound framework.

• Finally, extensive simulations are conducted to evaluate
the proposed algorithms. The experimental results show
that our proposal can significantly reduce the power and
communication cost.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III presents the network
model and pricing model. The hardness of the CMM prob-
lem is analyzed in Section IV. Section V presents optimal
algorithms for the CMM problem under both linear and non-
linear power pricing model. Simulation results are given in
Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK
Smart metering is the most important mechanism used in
smart grid for obtaining information from end users’ devices
and applications. A Zigbee Advance Metering Infrastructure

(ZAMI) is proposed in [17] for automatic meter data
collection and energy auditing and management. In the
ZAMI, the system operates with multiple channels and
frequency hopping and coexists with potential interferers.
Garlapati et al. [18] have proposed a Hybrid Spread Spec-
trum (HSS) based advanced smart metering infrastructure
that reduces the overhead and latency in data transfer when
compared to the use of 3G/4G technologies for smart meter
data collection. Matheson et al. [19] have developed a soft-
ware system called the metering data management (MDM)
using the web service technology to support meter data col-
lection, validation, estimation, versioning and publishing at
Bonneville Power Administration. One of its key features is
the validation and estimation of themeter data based on statis-
tical models. The application of cooperative transmission for
the meter data collection in smart grid is introduced in [16].
To analyze the relay transmission strategy of the community,
the noncooperative game model is formulated, and the Nash
equilibrium is considered as the solution.
Recently, many efforts have been made to use CR (cogni-

tive radio) in smart grid [20], [21]. Sreesha et al. [22] have
proposed a multi-layered approach to provide energy and
spectrum efficient designs of cognitive radio based wireless
sensor networks at the smart grid utility. Their design pro-
vides a reliable and low-latency routing support for large-
scale cognitive smart grid networks. Qiu et al. [23] have
built a real-time CR network testbed, which can help tie
together CRs in the next-generation smart grid network. Later,
Qiu et al. [24] have systematically investigated the idea of
applying CR to smart grid on system architecture, algorithms,
and hardware testbed, and proposed a microgrid testbed sup-
porting both power flow and information flow. Furthermore,
the concept of independent component analysis in combina-
tion with the robust principal component analysis technique
is employed to recover data from the simultaneous smart
wireless transmissions in the presence of strong wideband
interference. Yu et al. [25] have proposed an unprecedented
cognitive radio based communications architecture for the
smart grid, which is mainly motivated by the explosive data
volume, diverse data traffic, and need for QoS support.

III. SYSTEM MODEL
In this section, we first introduce the network model for meter
data collection, and then present the pricing models of both
power and spectrum.

A. NETWORK MODEL
In this paper, we consider a typical three-layer wireless net-
work model for meter data collection in smart grid as shown
in Fig. 1.
Home area network (HAN): The lowest layer is HAN that con-
nects home appliances with smart meters to support demand
response, home energy management, load management, and
smart metering. Short-range or local area wireless technolo-
gies, such as ZigBee, Bluetooth, and WiFi, can be used for
HAN [26], [27].
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FIGURE 1. Network model.

Neighborhood area network (NAN): Multiple homes form a
community that is served by a data aggregator unit (DAU),
which collects meter data from HAN gateways via NAN in a
single- or multiple-hop manner.
Wide area network (WAN): WAN is at the top layer and
forwards the collected meter data at DAUs to a remote power
management system (PMS). Long-distance communication
technologies, e.g., 3G or satellite, should be used in WAN
for coverage consideration [28], [29]. In contrast to HAN and
NAN that can be easily constructed using dedicated hardware
with low cost, WAN needs the support of high-end communi-
cation technologies that are shared bymultiple services. Thus,
the communication cost cannot be neglected in WAN.

Under this model, we exploit the secondary spectrum mar-
ket in cellular networks formeter data collection. Specifically,
we consider a WAN that consists of a base station and a
set of n DAUs S = {s1, s2, . . . , sn}. There are a set of
secondary channels B = {b1, b2, . . . , bm} available in the
network, which can be rented by DAUs. Due to geographical
differences, the set of accessible channels at si ∈ S, which
is denoted by B(si), may be different at each DAU. We let
cij denote capacity of the wireless link from DAU si to the
base station under channel bj. Each DAU is equippedmultiple
antennas such that it can work on multiple channels simulta-
neously. Each channel can accommodate multiple DAUs as
long as the sum of their transmission rate does not exceed the
channel capacity.

B. PRICING MODEL
The two-stage power pricing model [15], [16] has received
an increasing attention because it provides incentives for
efficient electricity use. In such model, power supply is
charged in a period-by-period manner, where each period
may last several hours or days according to the strategy
adopted by PMS. In the first stage, users reserve power supply
from power generators before each period. For this purpose,

each DAU si collects an amount of Ri meter data, including
a total power demand Di, from its community. The collected
data at DAUs should be forwarded to PMSwithin time T over
leased cellular channels, whose capacity, unfortunately, may
not be always enough to support Ri data transmission due to
limited channel resource and communication cost considera-
tion. As a result, packets at DAU si are uniformly abandoned
such that only a portion of data is successfully delivered to
PMS, leading to only di ≤ Di power demand successfully
received by PMS in the first stage.
In the second stage, the reserved power of each community

is supplied with a lower price. If the reserved power is not
enough, additional power will be bought at a higher price. To
describe this power pricing model, we define two functions
fr (x) and fa(x), fr (x) ≤ fa(x), such that their derivatives
characterize the pricing rate of electricity use in reserved and
exceeding portion, respectively. Letting g(di, x) be the power
price to community si with actual power demand x while only
di received by PMS, we therefore have:

∂g(di, x)
∂x

=

{
f ′r (x), x ≤ di,
f ′a(x), otherwise.

After solving this differential equation, we obtain the
power price with demand Di as:

g(di,Di) = fa(Di)−
(
fa(di)− fr (di)

)
. (1)

Two typical forms of function fa/fr have been described
by a linear [16] and a nonlinear model [30]–[32]. The former
requires payment linearly proportional to the power usage,
i.e., each unit of power is charged with the same price. The
latter discourage excessive electricity use by applying a non-
linear, e.g., exponential, pricing model. It has recently been
adopted bymany electricity companies as ameasure to reduce
power usage.
Without loss of generality, we consider fa(x) = αfr (x),

α > 1 in our model. In the following, fr (x) and fa(x) in both
linear and nonlinear forms will be studied.
• Linear power price function: As shown in Fig. 2, fr (x)
is given as fr (x) = pex in a linear form [16], where
pe is unit price for reserved power. After substituting it
into (1), g(di,Di) can be expressed as:

g(di,Di) = pedi + αpe(Di − di), (2)

where the two terms in right-hand represent the payment
of reserved power di and additional portion Di − di,
respectively.

• Nonlinear power price function: In addition to the simple
linear pricing model, functions fr (x) is often modelled in
nonlinear forms [30]–[32], i.e., fr (x) = eλx − 1, λ ≥ 1
as shown in Fig. 3. According to (1), the power price
function g(di,Di) can be expressed as:

g(di,Di) = α(eλDi − 1)− (α − 1)(eλdi − 1). (3)

In addition to power cost, communication cost A is
incurred by leasing wireless channels connecting DAUs and
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FIGURE 2. Linear power pricing model.

FIGURE 3. Nonlinear power pricing model.

remote PMS. Let pcj be the payment of using channel bj during
time T . Note that a channel is the minimum trade unit in
spectrum market considered in our model, i.e., once DAUs
decide to rent a channel bj, they should pay pcj even if this
channel is not fully utilized.

The total costM in time T is calculated by summing power
and communication cost, i.e.,

M =
∑
i

g(di,Di)+ A. (4)

We observe from (2) and (3) that lower power cost
can be achieved if more power reservation data are for-
warded to PMS, however, more channels required for
such data lead to higher communication cost. Even for
forwarding a fixed amount of data, the challenge of

channel selection to minimize communication cost still
exists.
In this paper, the total cost minimization problem in meter

data collection, which is also referred to as CMM, can be
defined as follows. Given a WAN consisting a base station,
a set of DAUs, and several available channels, the CMM
problem is to select a set of channels and find a transmis-
sion scheduling of DAUs on these channels to minimize total
cost M.

IV. HARDNESS ANALYSIS
In this section, we prove the CMM problem NP-hard.
Theorem 1: The CMM problem is NP-hard.
Proof: In order to prove an optimization problem NP-

hard, we need to show the NP-completeness of its decision
form, which is formalized as follows.
The CMM_D problem
INSTANCE:Given aWAN consisting a base station, a set of n
DAUs S, and a set of available channels B, a price function
g(di,Di), a constant M.
QUESTION: Is there a channel purchase scheme and a trans-
mission scheduling such that the total cost M ≤M?
It is easy to see that the CMM_D problem is in NP class

as the objective function associated with a given channel
purchase scheme and a transmission scheduling can be eval-
uated in a polynomial time. The remaining proof is done by
reducing the well-known knapsack problem with identical
price-per-pound to the CMM_D problem.
The knapsack problem
INSTANCE: Given a set of items 8 = {φ1, φ2, . . . , φm},
where item φj ∈ 8 has value vj and size wj, a knapsack
capacity W , and a constant V .
QUESTION: Is there a subset 8′ ⊆ 8 such that

∑
φj∈8′

wj ≤ W and
∑
φj∈8′

vj ≥ V ?
We now describe the reduction from the knapsack prob-

lem to an instance of the CMM_D problem. We consider
a linear power pricing functions g(di,Di) shown in (2) in
our proof. The process of instance construction is shown as
follows.

• Step 1: for each item φj in8, we create a channel bj with
price pcj = wj, which can be accessed by all DAUs with
identical channel capacity cij = c̄j = vj, 1 ≤ i ≤ n;

• Step 2: the sum of power demand from all communities
is V , i.e.,

∑
1≤i≤n Di = V ;

• Step 3: we letM = peV +W ;
• Step 4: set the value of α to a large number such that
the power cost will exceed M if demands are not fully
delivered to PMS.

In the following, we only need to show that the knapsack
problem has a solution if and only if the resulting instance of
CMM_D problem has a channel selection and a transmission
scheduling that satisfy total cost constraint. First, we suppose
that there exists a subset 8′ ⊆ 8 such that

∑
φj∈8′

wj ≤ W
and

∑
φj∈8′

vj ≥ V . The corresponding solution of CMM_D
problem is a subset B′ ⊆ B such that the total cost is calculate

300 VOLUME 1, NO. 2, DECEMBER 2013



Li et al.: Joint Optimization of Electricity and Communication Cost

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

by:

M =
∑
1≤i≤n

g(di,Di)+ A

=

∑
1≤i≤n

[pedi + αpe(Di − di)]+
∑
bj∈B′

pcj

= αpe
∑
1≤i≤n

Di + (1− α)pe
∑
1≤i≤n

di +
∑
bj∈B′

pcj

≤ αpe
∑
1≤i≤n

Di + (1− α)pe
∑
bj∈B′

c̄j +
∑
bj∈B′

pcj

= αpeV + (1− α)pe
∑
φj∈8′

vj +
∑
bj∈B′

pcj

≤ αpeV + (1− α)peV +W

= peV +W .

Then, we suppose that the CMM_D problem has a solution
B′ ⊆ B such that M ≤ M. Due to the large α, all demand
should be delivered to PMS. Thus, in the corresponding solu-
tion 8′, we have:

∑
φj∈8′

vj =
∑
bj∈B′

c̄j =
∑
1≤i≤n

Di ≥ V . (5)

On the other hand, the communication cost should be no
greater than W , which lead to:

∑
φj∈8′

wj =
∑
bj∈B′

pcj ≤ W . (6)

Thus, the CMM_D problem in decision form is NP-
completeness and its original optimization problem CMM is
NP-hard.

V. SOLVING THE CMM PROBLEM
In this section, we solve the CMM problem under both linear
and nonlinear power pricing models.

A. LINEAR POWER PRICING MODEL
We define a variable yj for channel selection, i.e.,

yj =
{
1, if channel bj is selected,
0, otherwise.

Since each DAU is allowed to transmit on multiple chan-
nels, we define xij to denote the time fraction of DAU si
working on channel bj. By letting gi denote the power cost of
DAU si, the CMM problem using linear power price function

can be formulated as:

min
∑
1≤i≤n

gi + A, subject to

0 ≤
∑
1≤i≤n

xij ≤ yj ∀1 ≤ j ≤ m, (7)

xij = 0 ∀1 ≤ i ≤ n, bj /∈ B(si), (8)

di ≤
TDi
Ri

∑
1≤j≤m

xijcij ∀1 ≤ i ≤ n, (9)

di ≤ Di ∀1 ≤ i ≤ n, (10)

gi ≥ pedi + αpe(Di − di) ∀1 ≤ i ≤ n, (11)

A ≥
∑

1 ≤ j ≤ m

yjpbj . (12)

Multiple DAUs working on a common channel should
share this channel according to time division, which leads to
constraint (7). The power demand delivered by any DAU si is
determined by transmission rate and can not exceed Di, rep-
resented by constraints (9) and (10), respectively. Constraints
(11) and (12) represent the power and communication cost,
respectively.

The formulated CMM problem is in a form of mixed
integer linear programming (MILP) that can be solved by a
branch-and-bound algorithm shown in Algorithm 1. We use
P to denote a problem set with an upper bound U and a
lower bound L of the optimal solution that are tightest found

Algorithm 1 Solving the CMM problem
1: P = {P0},U = ∞;
2: set lP0 as the optimal solution of the relaxed problem P0;

3: while P 6= ∅ do
4: select a problem P ∈ P with the minimum lP and let

L = lP;
5: set uP as the solution of P using rounding;
6: if uP < U then
7: u∗ = uP,U = uP;
8: if L ≥ (1− ε)U then
9: return the (1− ε)-optimal solution u∗;
10: else
11: remove all problems P′ ∈ P with lP ≥ (1− ε)U ;
12: end if
13: end if
14: select the maximum unfixed variable yj from the

results of the relaxed problem P and remove P from
P;

15: construct a problem P1 with yj = 1 and solve it to
obtain lP1 .

16: if lP1 < (1− ε)U , then put P1 into P; end if
17: construct a problem P2 with yj = 0 and solve it to

obtain lP2 .
18: if lP2 < (1− ε)U , then put P2 into P; end if
19: end while
20: return the (1− ε)-optimal solution u∗;
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so far. Initially,P only includes the original problem, denoted
by P0. For any P ∈ P , the corresponding relaxed problem
can be easily solved and the optimal solution serves as an
lower bound, denoted as lP, of the solution to the original
problem. Then, the algorithm proceeds iteratively as follows.
In each round, we find a problem P ∈ P with minimum lP
and then set L = lP. While any feasible solution of P can
serve as an upper bound, the one obtained using rounding
under the satisfaction of all constraints is used and denoted by
uP. The smallest upper bound U is updated from line 6–13.
If the performance gap between L and U is less than a
predefined small number ε, a (1 − ε)-optimal solution u∗ is
returned. Otherwise, we find the maximum unfixed variable
yj from the results and create two subproblems P1 and P2 by
fixing yj to 1 and 0, respectively. If the results of relaxed P1
and P2 are less than (1 − ε)U , they are put into the problem
set P .

B. NONLINEAR POWER PRICING MODEL
Similar with the formulation under linear power pricing
model, we also define yj(1 ≤ j ≤ m) and xij(1 ≤ i ≤ n, 1 ≤
j ≤ m) for channel selection and transmission scheduling,
respectively, such that the CMM problem under nonlinear
power pricing model can be formulated as:

min
∑
1≤i≤n

gi + A, subject to

ln
(gi − α(eλDi − 1)

1− α
+ 1

)
≤ λdi ∀1 ≤ i ≤ n, (13)

(7)− (10), and (12).

We observe that above formulation is a nonconvex mixed
integer nonlinear programming (MINLP), which is difficult
to be solved, due to constraint (13), whose left side is denoted
by Hi(gi). To deal with this challenge, we explore the SPCA
(Sequential Parametric Convex Approximation) method [33]
whose basic idea is to iteratively solve the resulting linear
programming (LP) problem by replacing original noncon-
vex constraints with linear ones until a converged solution
is achieved. At each iteration, a new linear constraint is
constructed such that the corresponding line is tangent to
the curve defined by the nonconvex constraint at the point,
which is a solution obtained in the previous iteration. By
applying the SPCA technique, the relaxed CMM problem
(i.e., all integer variables are relaxed to real ones), denoted
as CMM_R, can be quickly solved. Specifically, in the k-th
iteration, we replace nonconvex constraint (13) by

z(gi − ḡ
(k−1)
i )

zḡ(k−1)i − Qi
+ ln(zḡ(k−1)i − Qi) ≤ λdi, (14)

where z = 1
1−α and Qi = zα(eλDi − 1)− 1.

We denote the left side of (14) as h(k)i (gi), in which ḡ(k−1)i
denotes the optimal solution of variable gi obtained in the
(k − 1)-th iteration. As shown in Fig. 4, after solving the cor-
responding linear programming in the k-th iteration, we con-
struct a new linear constraint h(k+1)i (gi) to approximate (14)

FIGURE 4. Illustration of the SPCA method.

in the next iteration. The algorithm to solve the CMM_R
problem is formally described in Algorithm 2, in which
CMM_R(k) and 1(k) are the problem formulation and its
optimal solution in the k-th iteration, respectively. Since the
initial value of ḡ(0)i can be set as an arbitrary positive number,
we set ḡ(0)i = eλDi − 1.

Algorithm 2 Solving the CMM_R problem

1: k = 0,1 = −∞,1(0)
= 0, ḡ(0)i = eλDi − 1(1 ≤ i ≤ n)

2: while |1(k)
−1| > ξ do

3: 1 = 1(k),
4: k = k + 1
5: obtain 1(k) as well as ḡ(k)i (1 ≤ i ≤ n) by solving the

following LP problem with relaxed variables:

CMM_R(k) : min
∑

1 ≤ i ≤ n gi + g
c

s.t. (7)− (10), (12) and (14).

6: end while

In the following theorem, we show that the solution
obtained by Algorithm 2 satisfies the Karush–Kuhn–Tucker
(KKT) conditions, i.e., the first-order necessary conditions
for a solution in nonlinear programming to be optimal [34].
Theorem 2: The solution of the CMM_R problem obtained

by Algorithm 2 satisfies the Karush–Kuhn–Tucker (KKT)
conditions.

Proof: For any feasible point (ḡ(k−1)i , h(k−1)(ḡ(k−1)i )),
we update the linear constraint for the CMM_R formulation
in Algorithm 2. As guaranteed by the analysis in [33], the
conclusion is achieved when the nonlinear function, which
is denoted by Hi(gi), and its approximated linear function
h(k)i (gi) have the same values at gi = ḡ(k−1)i for the orig-
inal and their first-order differential functions, respectively.
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These can be verified by:

h(k)i (ḡ(k−1)i ) = Hi(ḡ
(k−1)
i ) = ln(zḡ(k−1)i − Qi),

∇h(k)i (ḡm−1i ) = ∇Hi(ḡ
m−1
i ) =

z

zḡ(k−1)i − Qi
.

Note the KKT conditions are satisfied only for the relaxed
problem, referred to as CMM_R here, not for the MINLP
problem. Although Algorithm 2 returns a solution satisfying
the KKT conditions, we find out that it is always the global
optimal solution empirically through extensive numerical
experiments.

In order to solve the original CMM problem, we integrate
Algorithm 2 into the branch-and-bound framework shown in
Algorithm 1 by solving each relaxed problem in problem set
P using Algorithm 2.
To apply our proposal in practice, we first need to collect

the information from both network and power systems, such
as available channels and power price model. Then, the pro-
posed algorithm is executed in a centralized manner. After
obtaining optimization results, we negotiate with the network
service provider to lease the selected channels such that the
transmission scheduling can be applied in these channels to
achieve the minimum total cost.

VI. PERFORMANCE EVALUATION
In this section, we conduct extensive simulations to evaluate
the performance of the proposed algorithm. Simulation setup
is first introduced and then the results under different network
parameters are presented.

A. SIMULATION SETTINGS
In our simulation setting, the total power demand of each
community is distributed within range [1, 5] according to ran-
dom uniform distribution. The power price pe is set to $1. The
capacity of each channel is specified as a uniform distribution
in the range [1,5]. Since there is no existing algorithms for the
CMM problem that is first investigated in our paper, we pro-
pose three heuristic algorithms in the following to compare
against our proposal that is denoted as CMM_optimal.
• CMM_EC: all meter data are transfered to PMS regard-
less of how many channels are used.

• CMM_CC: it does not forward any data such that the
communication cost is zero.

• CMM_1/2: it sends half of the meter data to the PMS.
Our proposed optimal algorithm is referred to CMM_optimal.
Note the all results in the following are obtained by averaging
50 random network instances.

B. SIMULATION RESULTS
We first investigate the effect of number of channels on the
total cost. The values of α and λ are set to 2 and 50, respec-
tively. The channel price is a Gaussian distribution with mean
3 and variance 0.5. When the number of DAU is 30, as shown
in Fig. 5, the total cost of CMM_optimal, CMM_1/2 and

FIGURE 5. The total cost versus different number of channels.
(a) Linear power pricing model. (b) Nonlinear power pricing
model.

CMM_EC decreases as the number of channels grows from
10 to 50 under both linear and nonlinear power pricing mod-
els. For example, the total cost of CMM_optimal is 184.3 in
10-channel networks under linear power pricing models, and
when channel number increases to 50, this number decreases
to 75.5, by about 60%. Similar observation are made for
the nonlinear power pricing model. That is because more
channels provide more chances for DAUs to select cheap
channels with higher capacity. The performance of CMM_CC
shows horizontal lines under both models since it does not
affected by the number of channels in the network.
We then evaluate the total cost under different number of

DAUs by fixing the number of channels to 30. As shown
in Fig. 6(a), the total cost of all schemes grows as the
number of DAUs increases since more DAUs bring more
power demands. For example, the total cost of CMM_CC
is 59.1 when there are 10 DAUs. The corresponding per-
formance of CMM_EC and CMM_optimal is only its 65%
and 59%, respectively. When the number of DAUs grows
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FIGURE 6. The total cost versus different number of DAUs.
(a) Linear power pricing model. (b) Nonlinear power pricing
model.

to 50, the performance of CMM_EC, CMM_optimal, and
CMM_CC is 4.5, 3.8, and 5.1 times of that under 10-DAU
networks, respectively. We have similar observations under
nonlinear power pricing model and the cost growth is sharper
because of the exponential power price function.

The influence of α to the total cost is investigated by chang-
ing its value from 1.4 to 2.2. The results under 30 DAUs and
30 channels are shown in Fig. 7. In both Fig. 7(a) and 7(b), the
performance of CMM_EC shows as horizontal lines because
it forwards all meter data to PMS such that its power price is
determined only by pe. The total cost of CMM_CC increases
linearly to α under both models since all power is charged
with αpe per unit. We notice that while the total cost of
CMM_optimal shows as an increasing function of α as well,
the growth rate decreases under larger α. That is because our
algorithm will forward more data to PMS under larger α such
that the power cost will be reduced. For example, the total
cost of CMM_optimal is 33.1 and 88.2 under α = 1.4, and
exhibit a growth of 266% and 184% when α increases to 2.2,
as shown in Fig. 7(a) and 7(b), respectively.

FIGURE 7. The total cost versus different value of α. (a) Linear
power pricing model. (b) Nonlinear power pricing model.

Finally, we study the effect of channel price on the total cost
by changing its mean value from 1 to 5. As shown in Fig. 8,
the total cost of CMM_EC, CMM_1/2 and CMM_optimal
increases as the mean value grows under both linear and
nonlinear power pricing models. For example, in Fig. 8, their
total cost is 45.3 and 31.2, respectively, when mean value is 1.
When we set the mean value to 5, their total cost increases
to 188.2 and 144.3, respectively. Moreover, the performance
gap between CMM_EC and CMM_optimal becomes larger
as the growth of mean value. Since CMM_CC does not
forward any meter data, it has no communication cost such
that its performance shows as a horizontal line under different
channel prices.
To evaluate the performance of the SPCA method, we

show the distribution of iterations in Fig. 9. When the
error bound ξ is set to 0.1, the number of iterations is no
greater than 12 over 90% executions. As we reduce the value
of ξ to 0.01, this percentage decreases to 55%, but there
are about 90% executions can achieve this bound within
16 iterations.

304 VOLUME 1, NO. 2, DECEMBER 2013



Li et al.: Joint Optimization of Electricity and Communication Cost

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 8. The total cost versus different mean of channel price
distribution. (a) Linear power pricing model. (b) Nonlinear power
pricing model.
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FIGURE 9. The distribution of iterations of SPCA method.

VII. CONCLUSION
In this paper, we investigate the efficient meter data col-
lection problem in smart grid by exploring the secondary
spectrum market in cellular networks. With the objective of

reducing the total cost, we propose a problem called CMM
(Cost Minimization for Meter data collection) that is to find
the optimal scheme for channel selection and transmission
scheduling scheme. This problem is formulated based on a
three-layer network model and a two-stage pricing model,
and is proved to be NP-hard. Under linear power pricing
model, it is formulated as a mixed integer linear program-
ming problem and solved by a branch-and-bound algorithm.
Under nonlinear power pricing model, we formulate it as a
nonlinear mixed integer programming (MINLP) problem and
propose an optimal algorithm by integrating SPCAmethod in
our branch-and-bound framework. Finally, simulation results
show that the proposed algorithm can significantly reduce the
overall cost.
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