
Li, C, Nguyen, TT, Yang, M, Mavrovouniotis, M and Yang, S

 An Adaptive Multi-Population Framework for Locating and Tracking Multiple 
Optima

http://researchonline.ljmu.ac.uk/id/eprint/2371/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Li, C, Nguyen, TT, Yang, M, Mavrovouniotis, M and Yang, S (2015) An 
Adaptive Multi-Population Framework for Locating and Tracking Multiple 
Optima. IEEE Transactions on Evolutionary Computation, 20 (4). pp. 590-
605. ISSN 1089-778X 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


For Peer Review

 

 

 

 

 

 

An Adaptive Multi-Population Framework for Locating and 

Tracking Multiple Optima 
 

 

Journal: Transactions on Evolutionary Computation 

Manuscript ID: TEVC-00201-2015 

Manuscript Type: Regular Papers 

Date Submitted by the Author: 16-May-2015 

Complete List of Authors: Li, Changhe; China University of Geosciences(Wuhan), Hubei Key 
Laboratory of Intelligent Geo-Information Processing 
Nguyen, Trung Thanh; Liverpool John Moores University, School of 
Engineering 
Yang, Ming; China University of Geosciences, School of Computer Science 
Mavrovouniotis, Michalis; De Montfort University, School of Computer 

Science and Informatics 
Yang, Shengxiang; De Montfort University, School of Computer Science 
and Informatics;   

Keywords: 
Multi-population optimization, Dynamic optimization, Multi-modal 
optimization, Population adaptation 

  

 

 

IEEE Transactions on Evolutionary Computation



For Peer Review

1

An Adaptive Multi-Population Framework for
Locating and Tracking Multiple Optima

Changhe Li, Trung Thanh Nguyen, Ming Yang, Michalis Mavrovouniotis, Shengxiang Yang

Abstract—Multi-population methods are important tools to
solve dynamic optimization problems. However, to effectively
track multiple optima, algorithm designers need to addressa
key issue: adaptation of the number of populations. In this paper,
an adaptive multi-population framework is proposed to address
this issue. A database is designed to collect heuristic information
of algorithm behavior changes. The number of populations is
adaptively adjusted according to statistic information related to
the current evolving status in the database as well as a heuristic
value. Several other techniques are also introduced, including a
heuristic clustering method, a probabilistic prediction scheme,
a population hibernation rule, and a peak hiding method. The
particle swarm optimization and differential evolution algorithms
are implemented into the framework, respectively. A set of multi-
population based algorithms are chosen to compare with the
proposed algorithms on the moving peaks benchmark using four
different performance measures. The proposed algorithms are
also compared with two peer algorithms on a set of multi-modal
problems in static environments. Experimental results show that
the proposed algorithms outperform the other algorithms inmost
scenarios.

Index Terms—Multi-population optimization, dynamic opti-
mization, multi-modal optimization, population adaptation.

I. I NTRODUCTION

Generally speaking, multi-population methods (MPMs) use
more than one population to cooperatively search in different
local areas in the fitness landscape to locate multiple optima or
the global optimum. They are widely used to track multiple
optima/peaks in parallel for dynamic optimization problems
(DOPs) in continuous space. The motivation is that each
population covers a different peak, so that tracking the global
optimum would be easy if the global optimum moves to
the area where a population is covering. For a DOP with a
certain number of peaks, tracking the global optimum would
be inefficient if the number of populations is far less than the
number of peaks, on the other hand, the tracking would also
be inefficient if the number of populations is far more than
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the number of peaks. Therefore, to effectively solve DOPs by
MPMs, one key issue is to adapt the number of populations
[23], [30].

A good practice is to choose the number of populations in
relation to the number of optima if known [21]. Many experi-
ments have shown that an inappropriate number of populations
would negatively affect the performance of MPMs [3], [6],
[21], [23], [38]. This problem becomes more challenging for
DOPs with a changing number of optima/peaks [23], [38].
In the literature of MPMs for DOPs, many studies focus
on a fixed number of populations [6], [16], [25]. Although
algorithms based on a dynamic number of populations were
proposed [9], [20], [32], the total number of individuals
is fixed. This limitation constrains the adaptability of such
algorithms. For example, it would be out of the capability
of such algorithms to track all optima in parallel when the
number of optima is more than the total number of individuals.
To the best of our knowledge, only three versions of adaptive
MPMs [3], [23], [38] have been proposed for DOPs so far.
The difficulties in developing such algorithms lie in that: a)
the number of optima in the fitness landscape is unknown and
b) the relationship between a good choice of the number of
populations and the number of optima is also unknown even
if a priori knowledge of the number of optima is available.

To address the aforementioned issues for MPMs, this pa-
per proposes an adaptive multi-population (AMP) framework
based on an adaptive mechanism. The adaptive mechanism
learns from algorithm behavior changes by means of inter-
acting with environments and, in turn, guides the changes
of the algorithm behavior toward a promising direction. In
the framework, a probabilistic scheme is used to determine
whether to increase, decrease, or make no change to the total
number of individuals. A peak hiding method is proposed to
hide peaks that have been explored so that no more populations
would move to those peaks any more.

The most important difference between this work and exist-
ing studies [3], [23], [38] is that the adaptive behavior of this
work is obtained by a learning process based on historical data.
In contract, the adaptation in studies [3], [23], [38] is obtained
only based on the knowledge of current evolving status (see
the detailed discussions in Sect. II and Sect. III-B).

The rest of this paper is organized as follows. Sect. II
reviews related research in the literature of MPMs for DOPs.
The components of the proposed AMP and two instantiated
algorithms are introduced in detail in Sect. III. Experimental
studies are provided in Sect. IV. Finally, Sect. V concludes
the paper.
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II. RELATED WORK

One early version of MPM is the self-organizing scouts
(SOS) algorithm [9] proposed to solve the moving peaks
benchmark (MPB). SOS starts from a parent population that
explores new promising peaks. Child populations, which are
used to track peaks, are generated by splitting off from the
parent population when a certain condition (forking genera-
tions are detected) is satisfied. Based on the scout model of
SOS, several other algorithms were proposed. A multi-swarm
algorithm was developed in [4], where a part of swarms exploit
peaks that have been detected and remaining swarms keep
exploring new peaks. Another multi-swarm forking algorithm
[44] was developed to solve the MPB by applying the same
idea with SOS to PSO. A fast multi-swarm optimization
algorithm was proposed in [19] using a similar idea with
SOS to organize multiple swarms except that child swarms are
created when changes are detected. To give more computing
time to those productive swarms than those unproductive
swarms, a hibernation multi-swarm optimization (HmSO) was
proposed in [16]. A child swarm is forced to hibernate if its
radius is less than a converging threshold value and the fitness
of its best particle is less than the fitness of the global best
particle by a predefined level.

Instead of the splitting idea, many algorithms use a re-
grouping idea to create populations. A popular algorithm is
the speciation-based PSO (SPSO) [32]. As SOS, SPSO also
starts with a large size swarm. Differently, the initial swarm
is divided into a number of sub-swarms by a speciation-based
rule. A swarm is created by combining the best particle with
particles that are close to that best particle (i.e., the distance
to the best particle is less than a predefined value). Once
a swarm is constructed, its particles are removed from the
initial swarm. These procedures are repeated until the initial
swarm is empty. The construction of swarms is performed
every iteration. Based on this re-grouping idea, many improved
versions of SPSO and variants were proposed.

A mechanism to remove duplicated particles was introduced
to enhance the performance of SPSO [33]. Another improved
version of SPSO (rSPSO) was developed by integrating a least
square regression method [2]. Recently, a multi-population
harmony search algorithm was proposed [40], where a har-
mony search method [13] is used for each population to locate
peaks. The best individuals of converged populations are kept
to replace redundant ones.

In addition to the speciation-based approaches, niching
techniques are also widely used to maintain multiple pop-
ulations. An adaptive niching PSO was proposed in [1]
where niching radii can be calculated adaptively. A vector-
based PSO (VBPSO) was developed in [35], in which the
dot product of two vectors is used to identify niches. The
algorithm shows a competitive performance for multi-modal
optimization. Thereafter, VBPSO was extended in [36] for
DOPs. Recently, a cluster-based DE algorithm for niching was
proposed in [29], in which different kinds of strategies were
introduced to efficiently track multiple peaks.

A composite PSO was proposed in [24], where swarms
are constructed in a similar way with SPSO except that the

construction starts from the worst particle and all swarms
contain a fixed number of three particles. Particles are ran-
domly re-grouped into several swarms after a certain number
of iterations in [15]. A multi-nation genetic algorithm was
proposed in [42], where a hill-valley detection method was
introduced to create sub-populations (note that, this algorithm
was proposed before SPSO [32] but it has not been widely
used due to the limitation of the hill-valley detection method).

Instead of creating populations during the runtime, many
MPMs start with a fixed number of populations. One of
the most popular algorithms is the atomic swarm model [5],
where three kinds of particles with different roles are defined.
They are charged particles, quantum particles, and neutral
particles. In each swarm in the model, either changed particles
(mCPSO [6]) or quantum particles (mQSO [6]) play the role of
maintaining diversity and neutral particles are used to locate
peaks. An exclusion principle ensures that only one swarm
surrounds a single peak and an anti-convergence principle is
also introduced to explore new promising peaks.

Motivated by the atomic model [5], several similar al-
gorithms have been proposed. A multi-population dynamic
differential evolution (DynDE) [28] algorithm was proposed,
where four types of individuals, named DE, entropy DE,
quantum and Brownian, are defined. An improved version
of mQSO was proposed in [11], where two heuristic rules
are applied to further enhance the diversity when changes
occur. A fuzzy-C-means strategy was introduced to adapt the
exclusion radius in [34]. In the algorithm, all particles are
transformed to quantum particles till the next iteration when a
change is detected. Recently, a cooperative quantum PSO [41]
was proposed by using a cooperative framework introduced
in [7]. A multi-swarm algorithm, called finderCtracker multi-
swarm PSO (FTMPSO), was proposed in [48] by integrating
several schemes, including a finder scheme, a tracker scheme,
a change detection scheme, a wakening and sleeping scheme,
and a local search scheme. Thereafter, the authors proposed
a multi-swarm algorithm based on a new artificial fish swarm
algorithm (mNAFSA) [47]. In the algorithm, a mechanism of
finding and covering potential optimum peaks was proposed.

Instead of using different types of individuals in each
population, several MPMs use different search algorithms for
different populations. A collaborative evolutionary swarm op-
timization (CESO) algorithm was proposed in [25], where two
swarms, using the crowding DE [39] and PSO, respectively,
cooperate with each other using a collaborative principle to
track the global optimum. Thereafter, a new version of CESO
was proposed in [26], called evolutionary swarm cooperative
algorithm (ESCA), where another swarm using PSO was
added and the cooperation principle was also updated. A dual-
swarm PSO was proposed in [49], where the information
of the two best particles of the two swarms is transmitted
at the dimensional level with a certain probability. A multi-
environmental cooperative model [17] was introduced to deal
with DOPs that have different sub-problems or environments.

Another important kind of MPMs are clustering-based al-
gorithms. A popular example is the clustering PSO (CPSO)
[46], where a hierarchical clustering method is used to create
multiple swarms by clustering a random swarm whenever

Page 2 of 15

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

3

a change is detected. In CPSO, an overlapping detection
principle was proposed to identify whether two swarms crowd
around one single peak when they move into each other’s
search area. One of the two swarms is removed if they are
not overlapped but overcrowded (i.e., they crowd around one
single peak). Thereafter, CPSO was enhanced to a version,
called CPSOR, which does not need to detect changes. CP-
SOR introduces a principle that the population diversity is
automatically increased once the total number of individuals
is less than a threshold value. Recently, a new cluster-based
DE algorithm was proposed in [14], wherek-meansis used
to create populations whenever a change is detected. The
number of populations may vary after every certain time span
depending on the performance of the algorithm.

All methods mentioned above do not address one important
issue of MPMs for DOPs, which is how to adapt the number
of populations to dynamic environments, especially in the
situation where the number of peaks changes overtime. Several
attempts have been made to address this difficult issue. A self-
adaptive multi-swarm optimizer (SAMO) [3] was developed
based on the mQSO [6]. SAMO starts with a single free
swarm. The number of free swarms is decreased when some
of them are converging. SAMO creates a new free swarm if
there are no free swarms. Converging swarms are identified by
simply checking their radius against a predefined value. This
way, the number of populations will be adaptively adjusted.
Accordingly, the search area of each swarm is also adjusted
by a formula taking the number of populations into account.
The motivation of SAMO was adopted in a DE algorithm,
called DynPopDE [38]. A new free population is created when
one population is identified as a stagnating population. A
stagnating population will be removed if it is identified for
re-initialization due to exclusion.

Note that, in this paper a population is considered “con-
verging” if the average distance between individuals begins to
decrease. A population is considered “converged” if the aver-
age distance between individuals is less than a threshold value.
A population is considered “stagnating” if it stops improving
permanently but does not show any trend of converging [18].

Recently, an adaptive multi-swarm optimizer (AMSO) [23]
was proposed. AMSO maintains a number of populations
obtained by the clustering method used in [46]. Due to the
overlapping handling principle [46], the number of populations
will decrease after each diversity increasing point. A certain
number of individuals are introduced when the drop rate of the
number of populations over a time span is less than a small
value. The number of individuals to be adjusted depends on the
difference of the number of populations between the current
increasing point and the previous increasing point. This way,
AMSO is able to adaptively adjust the number of populations
during the runtime.

Although there are several adaptive MPMs for DOPs, the
principles to adjust the number of populations simply rely
on the current information available, e.g., no free popula-
tions in SAMO [3], appearance of stagnating populations
in DynPopDE [38], and the difference of the number of
populations at the current and previous increasing points in
AMSO [23]. Simply relying on the current information to

Algorithm 1 AMP ()
1: P← 0; D← 0; t← 0
2: Create an initial populationC with gSize individuals;
3: P← Cluster(C);
4: while stopping criteria are not satisfieddo
5: for each populationP[i] do P[i].search(); end for
6: Hibernate populations when they find new peaks;
7: Derate individuals if they fall into the attraction area of any peak;
8: Remove excluded populations;
9: if rconv

avg < θ · S then
10: Wake up hibernating populations;
11: Create a map and put it to databaseD;
12: Estimate the number of individuals for the next phase;
13: Create a random populationC′;
14: P← P ∪ Cluster(C′);
15: t← t + 1;
16: end if
17: end while⊲ P is a list to store all populations,D is a database to store

maps from the number of populations to the total number of individuals,
gSize is the initial population size,S is the search range.

adjust the number of populations may lead to mistakes due
to the complex nature of dynamic environments. In order to
address the aforementioned issues of adapting the number of
populations, we introduce the AMP framework in this paper,
which is described below.

III. A DAPTIVE MULTI -POPULATION FRAMEWORK

The work flow of the proposed AMP framework consists
of three major components: clustering, tracking and adapting.
The clustering component is used to create a number of non-
overlapped populations, which have no overlapping search
areas with each other without the need of manually setting any
parameters. The tracking component allows locating and track-
ing local optima using any population-based search algorithm.
Finally, the adapting component adjusts the total number of
populations by predicting what will be the best number of
populations.

Algorithm 1 presents the framework of the AMP. The
adaptation mechanism is triggered whenever the average radius
(rconvavg ) of non-stagnating populations is less than a small
valueθ ·S. Then, Algorithm 3 (introduced later in Sect.III-B)
is called to estimate the number of individuals for the next
phase. A random population (C′) is created and clustered into
a number of small populations, which are appended to a list
(P). The detailed description about each component is given
in the following subsections.

A. Heuristic Clustering

A single linkage hierarchical clustering method [27] is used
to create non-overlapping populations. Let:

• d(i, j) be the Euclidean distance between two individuals
i andj in the D-dimensional space.

• D(C1, C2)=mini∈C1,j∈C2
d(i, j) be the distance between

two clustersC1 andC2.
• R(C) = 1

|C|

∑

i∈C d(i, i∗) be the radius of clusterC,
wherei∗ is the average position of all individuals inC.

• dinter=
∑

C1,C2∈C
D(C1, C2) be the sum of inter-cluster

distances between each pair of clusters in a listC.
• dintra=

∑

k

∑

i,j∈Ck
d(i, j), k = 1, 2, ..., |C| be the sum

of intra-cluster distances of all clusters inC, where the
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Algorithm 2 Cluster(C′)

1: for i < |C′| do Ci ← C′[i]; end for ⊲ C′ is a population
2: Calculatedinter anddintra of C; ⊲ C=[C1, C2, ...]
3: while dintra < dinter do
4: MergeCi andCj , whereD(Ci, Cj)=mini6=j<|C| D(Ci, Cj);
5: Updatedinter anddintra;
6: end while
7: ReturnC;

intra-cluster distance of clusterCk is the sum of all the
distances between each pair of individuals inCk.

Algorithm 2 shows the work flow of the heuristic clustering
method to cluster a populationC′. It first creates a listC of
clusters with each cluster containing only a single individual.
Then, for each iteration, it merges a pair of clusters which
have the smallest distance among all pairs of clusters inC and
satisfies the conditiondintra < dinter . Whendintra is equal
to or greater thandinter , the clustering procedure terminates.
Then, all clusters inC are appended to a population listP
(see Steps 3 and 14 in Algorithm 1), which is empty initially.
The benefit of this heuristic clustering method, compared to
the existing method in [21], [23], [46] is that it does not
need users to manually set parameter such as the lower and
upper bounds for cluster size. Note that, this method cannot
guarantee that the sizes of all obtained clusters meet a required
minimum population size for an algorithm (e.g., in this paper
the minimum population size is five for the DE and two for
PSO). In this paper, such clusters do not take part in the
optimization process and their individuals are used as random
individuals when a random population (C′) is created (see Step
13 in Algorithm 1).

B. Adapting Populations

There are two main concerns regarding adapting the number
of populations to changes: a) when to make an adjustment and
b) how many populations to be adjusted.

For the first concern, many researchers consider the moment
when a change occurs as the time to make an adjustment
(e.g., increasing/introducing diversity or reusing information
learnt from the past in many studies reviewed above [6],
[8], [20], [25], [26], [33], [46]). However, this strategy has
a limitation: it may not work for changes that are hard or
impossible to detect by re-evaluating a set of points in complex
environments, such as dynamic environments where a part of
the fitness landscape changes [23], [30] or there is noise.

The adaptive MPM algorithms in [3], [23], [38] do not
use the above strategy. However, these algorithms have other
issues. In SAMO [3], the issue is that a stagnating swarm with
a large radius due to having individuals searching on different
peaks can be mistaken as a converging swarm if the total num-
ber of swarms is far less than the number of peaks. As a result,
this stagnating swarm will not be eliminated and consequently
no new swarm can be created. Althouth SAMO still works in
this case because stagnating swarms normally will transform
to converging swarms after a change occurs, but, this situation
may affect the performance of SAMO. In DynPopDE [38], this
stagnating issue is taken into account, where a population is
taken as a stagnating population if its best individual doesnot
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Fig. 1. The probability of increasing, decreasing, or making no change to the
number of individuals, where[−M,M ] is the probabilistic range,Ne

t is the
number of populations at the end of evolving phaset.

improve over two successive iterations. However, this way of
identifying stagnating populations is not very effective and it
may cause too many populations to be generated. In AMSO
[23] new populations are added if the number of populations
over a time span is dropped beyond a threshold. However, this
requires setting the correct values for the time span and drop
threshold, which may not be easy [23].

Based on the above considerations, we aim to find a simple
yet effective way to identify the moment when populations
are converging. To this aim, the average radius (rconvavg ) of
non-stagnating populations is monitored. Population adjust-
ments are triggered whenrconvavg is less than a threshold value
θ · S (S denotes the range of the solution space). Stagnating
populations should be excluded because they can seriously
affect the judgement of whether non-stagnating populations
are converging if they have large search radii. In this paper,
a populationC is regarded as a stagnating population if all
the three conditions below are met: a) its radius does not
shrink after a certain number of successive iterations, which
is equal to its size|C| [45]; b) its radius is greater than the
average radius of all populations inP; c) its radius is greater
than θ · S. Note that, this method does not guarantee that
a population, which satisfies the three conditions, is a real
stagnating population. However, a real stagnating population
will satisfy the three conditions.

The second concern is very difficult to address directly due
to the two difficulties mentioned in Sect. I, namely the lack
of knowledge on the number of optima and on the correlation
between the number of optima and the number of populations.
However, we may still be able to indirectly address this
concern by observing changes of algorithm behaviours. For
example, it can be easily inferred that in an MPM algorithm,
the number of survived populations (i.e., populations thatfind
new, unexplored peaks – these populations will survive the
exclusion procedure in MPMs) is proportional with the number
of peaks in the fitness landscape. If the number of peaks
increases, so does the number of survived populations, and
vice versa. Therefore, we can use this heuristic relationship
between the number of survived populations and the number
of peaks to predict the number of populations to be adjusted.

Given this heuristic, we can address the second concern
by following a two-step process. The first step is to decide
whether to increase, decrease, or make no change to the
total number of individuals. To make a choice from the three
actions, a probabilistic prediction scheme, as illustrated in
Fig. 1, is introduced, whereNe

t is the number of populations
at the end of evolving phaset.
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Algorithm 3 Adjust( )

1: ratio← |Nt −Nt−1|/M ;
2: if ratio >= 1 then f ← 1;
3: else if ratio = 0 then f ← 0;
4: else
5: p←rand(); ⊲ p is a random number within [0,1];
6: if p < ratio then f ← 1;
7: elsef ← 0;
8: end if
9: end if

10: Ibt+1
← N(Dµ[Ne

t ],Dσ [Ne
t ]) + 5f · (Ne

t −Ne
t−1

);

In this scheme, one of the three actions is taken depending
on the value ofNe

t -Ne
t−1 and a probability, which is related

to |Ne
t -Ne

t−1|/M . The value ofM >0 determines the prob-
abilistic range (the scheme is deterministic ifM is one). As
illustrated in Fig. 1, the larger the difference betweenNe

t and
Ne

t−1, the larger the probability of increasing/decreasing the
number of individuals. Algorithm 3 presents the pseudo-code
of this probabilistic scheme. Note that, this scheme cannot
guarantee that an action made by it is always right. However,
it is expected that this scheme will improve the adaptation of
algorithms in adjusting the number of individuals.

The second step is to estimate how many individuals should
be set in the near future. Different from the existing methods
[3], [23], [38], where the number of populations changes based
on the current evolving status, in this paper the adaptationis
achieved based on historical data and a heuristic adjustment.
To achieve this objective, we first create a map from the
current number of populations (Ne

t ) to the total number of
individuals at the beginning of the current phase (Ibt ) whenever
a new adjustment is triggered. Note that, for the first map
an over large initial population (far larger than needed, e.g,
500 individuals for the MPB with ten peaks) would affect the
estimation if we useIb0 (the initial population size) to create
it. To address this issue, we useIe0 for the first map instead of
Ib0 . Then, the map is added into a databaseD, which records
all maps created since the start of the run. To estimate the
number of individuals, we average the number of individuals
of all maps which have the same number of populations as
the current map. Then, the number of individuals for the next
evolving phase is estimated by the formula below:

I
b
t+1 ← N(Dµ[N

e
t ],Dσ[N

e
t ]) + 5f · (Ne

t −N
e
t−1), (1)

whereN(a, b) is a normally distributed random number with
the meana and the standard variationb, Dµ[N

e
t ] andDσ[N

e
t ]

are the mean and standard deviation, respectively, of individ-
uals with maps that haveNe

t populations,f ∈ {0, 1} denotes
if to take the corresponding action into account.

Finally, a random populationC′ is created with the size of
Ibt+1-Iet (see Step 13 in Algorithm 1). Note that,Ibt+1 will
need to repair in the case ofIbt+1 <= Iet , whereC′ is created
with ten individuals to guarantee that the diversity is increased
when all non-stagnating populations are converging. In this
situation, the size ofC′ should be small as many over-crowing
populations would be created if a large value is used. Although
the exclusion scheme (introduced in Sect.III-C later) is able
to remove over-crowding populations, such populations still
waste computing resources. Preliminary experimental results
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Fig. 2. The adaptation mechanism of the proposed AMP.

show that the value of ten is a reasonable choice.
Fig. 2 shows an example of the estimation process from

the databaseD with five maps. In Fig. 2, the number of
populations at the current adjustment point is nine and the
current map is (9,52). Then, the number of individuals for the
next evolving phase (Ib5) can be obtained by Eq. (1), which
is 66. As shown in the bottom right graph in Fig. 2, the
adaptation of the AMP is a feedback loop. The number of
populations changes over time by interacting with the problem.
For example, if increasing the number of population makes the
AMP find new peaks, the AMP will keep doing so until no new
peaks can be found. On the other hand, if the number of peaks
decreases, the number of populations will be likely to decrease
accordingly. The databaseD keeps receiving feedback of the
algorithm behavior changes, in turn, it further guides the
changes of the algorithm behavior. Therefore, the AMP is a
self-regulating framework.

Note that, the constant value 5 in Eq. (1) is a step size.
Its value should be small and roughly equal to the average
population size. This way, the number of populations for the
next evolving phase would be close to the expected value.
A too large/small value will cause too many/few populations
generated. Considering the average population size for all
instances tested in this paper (4.687) and the minimum popu-
lation size for the DE (5) and PSO (2), a value of 5 is chosen
for this constant.

C. Population Exclusion

Over-crowding populations, which are multiple populations
that surround the same peak, are not allowed in the AMP. In
this paper, two populations are detected as over-crowding if
both have at least one individual in each other’s search areas.
Then, the population with the worse best individual is removed
from P (see Step 8 in Algorithm 1). Note that, this method
cannot guarantee that two populations, which are detected as
over-crowding, really search on a same peak.

D. Avoidance of Explored Peaks

Exploring peaks that have already been explored wastes
computational resources and hence deteriorates an algorithm’s
performance. This is an important issue for EAs [31]. To
address this issue, we propose a peak hiding technique in this
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Fig. 3. Illustration of the peak hiding method.

paper. All peaks that have been explored are kept. A peak is
assumed to be explored when there exists a population where
the distance between its best individual and the peak is less
than a value (ǫs) and the difference between the objective value
of the best individual and the peak height is also less than a
small value (ǫo) in the case that the peak location is known.
Otherwise, a peak is regarded as an explored peak only if a
population’s radius shrinks to a small value of 1E-9, and the
location where the population converges is assumed to be the
location of the peak.

To avoid populations re-searching peaks that have been
explored, an idea is to remove the attraction of those explored
peaks. The idea works as follows. For each explored peak, a
set of vectors from the peak location to the boundary of its
basion of attraction will be created as necessary. Initially, the
set is empty. For an individuali, we find the closest explored
peakp. In the vector set with peakp, if there does not exit
a vectorv′ that makes its angle to~xi − ~xp less than three
degrees, then a new vectorv is created fromp in the direction
of ~xi−~xp. The length ofv gradually increases by a small step
(0.1ǫs) until a turning or a boundary point is found. Thenv
is added to the vector set ofp. The fitness value ofi is set to
the fitness of the worst solution found so far if|~xi − ~xp| is
less than|v| or |v′|, depending on whether the condition above
is met. Note that, it is possible to set the values of the angle
threshold and the step to be smaller than the default values so
that the vectorv can be more precise but in such a case more
evaluations will be needed. Our experimental studies show
that the two default values are small enough for all the test
problems in this paper.

Fig. 3 illustrates the procedures of finding such vectors (v1
andv2) for an explored peakp in a 1-D problemf(x). In the
figure, the triangle point is a turning point with peakp and
the star point is a boundary point. The fitness of individual 2
does not change as|x2−xp| is greater than|v2|. However, the
fitness of individual 1 will be set to the fitness of the worst
individual found so far as|x1−xp| is less than|v1|. This way,
all individuals fall in the basin of the attraction of peakp will
not move forward top any more since they will get the worst
fitness by doing so, that is, peakp seems to have disappeared
for such individuals.

E. Population Hibernation and Wakening

To save function evaluations, inspired by [16] a population
will hibernate once it finds a peak and will wake up when
the diversity adjustment is performed. Hibernating populations

will not evolve until they wake up. Note that, waking up
hibernating populations (Step 10 in Algorithm 1) is necessary
when the AMP is running in dynamic environments. This is
because when a change occurs, those hibernating populations
are holding outdated memories and they must wake up in time
to re-locate peaks that have moved. In the AMP, we choose
the diversity adjustment point as the time point to wake up
hibernating populations.

F. Movements for the Best Individual

For a non-stagnating populationC, in order to quickly track
a moving peak or a better peak within its search area but not
covered by any population, the best individual~xbest performs
a Brownian movement [28] within the search area ofC at
each iteration as follows:

~x′
best = N(~xbest, R(C)) (2)

and it will be replaced if a better solution~x′
best is found.

However, if C is a stagnating population, it may not
benefit from the Brownian movement. Jumping out its search
area could help it transform to a converging population. To
achieve this, we allow its best individual to perform a Cauchy
movement at each iteration as follows:

~x′
best = Q(~xbest, S/2) (3)

whereQ(a, b) is a random number of Cauchy distribution with
location parametera and scale parameterb.

G. Instantiation of the AMP Framework

In the framework, any population-based algorithm can be
used to search for optima. In this paper, it will be instantiated
with a PSO algorithm and a DE algorithm, respectively.

1) AMP with PSO :The PSO with an inertia weight [37]
is used in this paper. The velocity and position of particlei
are updated as below:

~v′i = ω~vi + η1~r1(~xpi
− ~xi) + η2~r2(~xg − ~xi) (4)

~x′
i = ~xi + ~v′i, (5)

where~x′
i and~xi represent the current and previous positions

of particle i, respectively;~v′i and ~vi are the current and
previous velocities of particlei, respectively;~xpi

and ~xg

are the best positions found by particlei so far and found
by the whole swarm so far, respectively;ω = 0.7298 and
η1 = η2 = 1.496 are constant parameters, whose values were
suggested by [43];~r1 and~r2 are vectors of random numbers
uniformly generated within[0.0, 1.0] for each dimension. Note
that, the maximum velocity of each particle is set to the initial
search radius of its swarm in the AMP. Algorithm 4 presents
the framework of the PSO.

2) AMP with DE: The DE withDE/best/2/bin mutation
strategy is used in this paper. Algorithm 5 shows the proce-
dures of the algorithm. The parametersF andCR are set to
0.5 and 0.6, respectively, which were suggested by [28].
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Algorithm 4 PSO
1: for each particlei do
2: Update particlei according to Eqs. (4) and (5);
3: if f(~xi) < f(~xpbesti

) then
4: ~xpbesti

:= ~xi;
5: if f(~xi) < f(~xgbest) then ~xgbest := ~xi; end if
6: end if
7: end for

Algorithm 5 DE
1: for each individuali do
2: Generate a donor vector~v by: ~v := ~xbest + F · (~xr1 − ~xr2) + F ·

(~xr3 − ~xr4); ⊲ F is mutation factor in [0,2] and~xr1, ~xr2, ~xr3,
and~xr4 are randomly selected individuals (indices ofi, r1, r2, r3, and
r4 are distinct)

3: Generate a trial vector~u as follows:

ud :=

{

vd, if r <= CR or d = Irand

xd, if r > CR andd! = Irand
whereCR is a probability constant andIrand is a random integer within
[1,D].

4: if f(~u) < f(~xi) then ~xi := ~u; end if
5: end for

IV. EXPERIMENTAL STUDIES

To investigate the performance of the AMP, two groups
of experiments are carried out in dynamic and static envi-
ronments, respectively. For the first group, ten peer MPMs
are selected for DOPs. They are mQSO [6], SAMO [3],
SPSO [33], AMSO [23], CPSO [46], CPSOR [21], FTMPSO
[48], DynDE [28], DynPopDE [38], and mNAFSA [47]. The
two proposed algorithms are named AMP/PSO and AMP/DE,
respectively. Among these algorithms, AMP/PSO, AMP/DE,
SAMO, DynPopDE, and AMSO are adaptive algorithms in
terms of the number of populations used in the run time.
Comparison in this group is conducted based on the MPB
problem [8]. For the second group in static environments, two
popular multi-modal optimization algorithms: CRDE [39] and
DE/nrand/1 [12], which are baseline models in [22], are chosen
and the comparison is performed on ten multi-modal problems.

A. Problem Description

1) The Moving Peaks Benchmark:The MPB problem [8]
is constructed by a number of peaks, which change in the
location, height, and width. For theD-dimensional landscape,
the problem is defined as follows:

F (~x, t) = max
i=1,...,P

Hi(t)

1 +Wi(t)
∑D

j=1
(xj(t)−Xij(t))2

, (6)

whereWi(t) and Hi(t) are the height and width of peaki
at time t, respectively, andXij(t) is the j-th element of the
location of peaki at time t. The P independently specified
peaks are blended together by themax function. The position
of each peak is shifted in a random direction by a vector~vi of a
distances (s is also called the shift length, which determines
the severity of the problem dynamics), and the move of a
single peak can be described as follows:

~vi(t) =
s

|~r + ~vi(t− 1)|
((1− λ)~r + λ~vi(t− 1)), (7)

where the shift vector~vi(t) is a linear combination of a
random vector~r and the previous shift vector~vi(t − 1) and

TABLE I
DEFAULT SETTINGS FOR THEMPB, WHERE THE TERM“ CHANGE

FREQUENCY(u)” MEANS THAT THE ENVIRONMENT CHANGES EVERYu
FITNESS EVALUATIONS,S DENOTES THE RANGE OF ALLELE VALUES,

cPeaks DENOTES THE PERCENTAGE OF CHANGING PEAKS, AND I ,H ,W
DENOTE THE INITIAL HEIGHT, HEIGHT RANGE, AND WIDTH RANGE,

RESPECTIVELY, FOR ALL PEAKS.

Parameter Value Parameter Value
number of peaks (P ) 10 number of dimensions (D) 5
change frequency (u) 5000 correlation coefficient (λ) 0

height severity [1,10] number of peaks change no
width severity [0.1,1.0] S [0, 100]

peak shape cone H [30, 70]
basic function no W [1, 12]
shift length (s) 1.0 I 50.0

is normalized to the shift lengths. The correlated parameter
λ is set to 0, which implies that the peak movements are
uncorrelated. A change of a single peak can be described as
follows:

Hi(t) = Hi(t− 1) + height severityi ∗ σ (8)

Wi(t) = Wi(t− 1) + width severityi ∗ σ (9)

~Xi(t) = ~Xi(t)(t − 1) + ~vi(t), (10)

whereσ is a normal distributed random number with mean 0
and variation 1.

In this paper, a new feature, the change in the number
of peaks introduced in [23], is used to test an algorithm’s
performance in terms of the adaptation of the number of
populations. If this feature is enabled, the number of peaks
changes using one of the following formulas:

V ar1 : P = P + sign · 2, (11a)

V ar2 : P = P + sign · r(1, 5), (11b)

V ar3 : P = r(10, 100), (11c)

wheresign = 1 if P <= 10, sign = −1 if P >= 100, and
the initial value ofsign is one;r(a, b) returns a random value
in [a, b].

2) Multi-modal Functions:In this paper, ten multi-modal
functions are chosen. Table II gives a description of these
functions, where the major properties are as follows.

• The Waves function (F1) is asymmetric and has ten peaks
(one global optimum and nine local optima), which are
irregular disposed. Some of the peaks are difficult to find
as they lie on the border or on flat hills.

• The Vincent function (F2) has6D global optima and
no local optima. The global optima have vastly different
spacing between them. A part of the optima are very
difficult to find as they take a very narrow space in the
fitness landscape.

• The Six-hump Camel Back function (F3) has six optima,
which are disposed in a smooth landscape and two of the
optima are global optima.

• The Shubert function (F4) containsD3D global optima
unevenly disposed. These global optima are divided into
3D groups, with each group havingD global optima
being close to each other. F2 also contains many other
local optima, which are between the global optima.

Page 7 of 15

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

8

TABLE II
DESCRIPTION OF TEN MULTI-MODAL FUNCTIONS, WHERED IS THE NUMBER OF DIMENSIONS

Name D Function # of global/local Opt.

Waves 2
F1(~x) = (0.3x1)3 + 3.5x1x3

2
− 4.7cos(3x1 − x2

2
(2 + x1))sin(2.5πx1) 1/9−0.9 ≤ x1 ≤ 1.2,−1.2 ≤ x2 ≤ 1.2

Vincent D
F2(~x) = (

∑D
i=1

sin(10logxi))/D 6D /0
0.25 ≤ xi ≤ 10

Six-hump Camel Back 2
F3(~x) = (4 − 2.1x2

1
+ x4

1
/3)x2

1
+ x1x2 + (−4 + 4x2

2
)x2

2
)

2/4−1.9 ≤ x1 ≤ 1.9,−1.1 ≤ x2 ≤ 1.1

Shubert D F4(~x) = ΠD
j=1

(
∑

5
i=1

icos((i+ 1)xj + i))
D3D /many−10 ≤ xi ≤ 10

Modified Shekel D F5(~x) =
∑8

i=1(
∑D

j=1(xj − aij )
2 + cj)

−1

1/7
0 ≤ xi ≤ 11

IBA 2
F6(~x) = (x2

1
+ x2

2
)/(1 + x2

1
+ x2

2
) + k(14(x2

1
+ x2

2
) + (x2

1
+ x2

2
)2χ2 − 2

√
14(x3

1
− 3x1x2

2
)χ)/(14(1 + x2

1
+ x2

2
)2)

3/1−4 ≤ xi ≤ 4

Himmenblau 2
F7(~x) = (x2

1
+ x2 − 11)2 + (x2

2
+ x1 − 7)2 + 0.1((x1 − 3)2 + (x2 − 2)2)

1/3−6 ≤ xi ≤ 6

Five hills 2 F8(~x) = sin(2.2πx1 + 0.5π)(2 − |x2|)/2(3 − |x1|)/2 + sin(0.5πx2 + 0.5π)(2 − |x2|)/2(2 − |x1|)/2 1/4−2.5 ≤ x1 ≤ 3,−2 ≤ x2 ≤ 2

Center peak 2
F9(~x) = 3sin(0.5πx1 + 0.5π)(2 −

√

x2
1
+ x2

2
)/4

1/4
−2 ≤ xi ≤ 2

BraninRCOS 2
F10(~x) = (x2 − 5.1 ∗ x2

1
/(4π2) + 5 ∗ x1/π − 6)2 + 10(1 − 1/(8π))cosx1 + 10

3/0−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15

• The Modified Shekel function (F5) has eight optima, one
of which is the global optimum. Most of the optima
are separated from each other by wide flat valleys. The
parametersaij andcj are given by

aij =

























4 4 6.3 4 4
1 1 8.5 1 1
6 6 9.1 6 6
3.5 7.5 4 9 4
5 5 3 3 9
9.1 8.2 2 3 9
1.5 9.3 7.4 3 9
7.8 2.2 5.3 9 3

























,

cj =
(

0.10.20.40.150.60.20.060.18
)

.

The location of the global optimum is given by vector
row a7j , j ∈ [1, D], and the other seven local optima are
determined by other vector rows of the matrix||a||.

• The IBA function (F6) has three global optima and one
local optimum. In the function,k = −0.95 and χ =
−1.26 is used.

• The Himmenblau function (F7) has one global optimum
and three local optima with different objective values.

• The Five hills function (F8) and the Center peak function
(F9) have each one global optimum and four local optima.
F8 has five very close hills with lines of valleys between
them. The four local optima in F9 are on the edge of the
intervals and the global optimum is in the middle.

• The BraninRCOS function (F10) has three global op-
timum, which are distributed within an irregular and
asymmetric landscape. In addition, the function has no
local optima.

B. Experimental Setup

1) Performance Evaluation:To evaluate an algorithm’s
performance in tracking the global optimum, the offline error
(EO) [10] and the best-before-change error (EBBC ) are used.
The offline error used in this paper is the average of the

TABLE III
THRESHOLD VALUES OFǫs AND ǫo FOR IDENTIFYING OPTIMA, WHERE
GO IS THE OBJECTIVE VALUE OF THE GLOBAL OPTIMA(THE SETUP OF

FUNCTIONSF2-F4,AND F7 IS REFERRED TO[22]).

MPB F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
ǫs - 0.15 0.2 0.1 0.5 0.2 0.08 0.5 0.2 0.2 1.0
ǫo 0.1 1E-3 1E-4 1E-4 1E-3 1E-3 1E-6 1E-4 1E-4 1E-5 1E-5

GO(D=2) - 7.307 1 -1.0316 186.731 16.832 -8.016E-3 2 2.5 1.5 0.397887

best error found every two objective evaluations and the best-
before-change error is the average of the best error achieved
at the fitness evaluation just before a change occurs.

In addition, to evaluate an algorithm’s performance in
tracking multi-optima, the ratio of of peaks that are traced
(PR) and the success rate of tracking all peaks (SR) are used.
A peak is assumed to be traced if the difference of objective
value between any individual and the peak is less thanǫo and
the Euclidian distance between the individual and the peak is
less thanǫs (see Table III for the values ofǫo and ǫs for all
problems tested in this paper). For the value ofǫs for the MPB,
it is set tomin(mini6=j≤P d(Xi(t), Xj(t))/2, 0.1) at time t.

A two-tailedt-test with 58 degrees of freedom at a 0.05 level
of significance was conducted for each pair of algorithms on
EO and EBBC . The t-test results are given with the letters
“w”, “l”, or “t”, which denote that the performance of an
algorithm is significantly better than, significantly worsethan,
or statistically equivalent to its peer algorithms, respectively.

2) Algorithm Configurations:For the AMP, there are three
parameters to be investigated (see Sect. IV-C later). They are
the initial population size (gSize), the convergence threshold
(θ), and the probabilistic rangeM , whose default values are
set to 100,0.005 × S, and 3, respectively. For parameters
of all the peer algorithms, default values suggested in their
proposals are used if the algorithms show their best results.
For example, the equations of setting the exclusion radius for
each population suggested by Blackwell [6], [3] work well in
our test. Therefore, we also use the default setting regarding
this parameter for mQSO [6], SAMO [3], SPSO [33], DynDE
[28], mNAFSA [47], and DynPopDE [38] as their authors
used. However, for mNAFSA [47]try number=2 andN=10
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Fig. 4. The results of AMP/PSO with different initial sizes (gSize) on the
MPB with different numbers of peaks.

are used instead oftry number=4 andN=2 suggested in the
original paper [47]. The stopping criterion is 200 changes for
the MPB problem and 2.0E+5 function evaluations or finding
all peaks for multi-modal problems in static environments.
All the results reported in the paper are averaged over 30
independent runs.

3) Open Framework of Evolutionary Computation:The
open framework of evolutionary computation (OFEC) is a
template library written in C++ based on the Boost library.
It supports any population based EC methods running in
parallel on CPU ( a new feature of parallel running on
GPU will be available in the next release). OFEC has so far
collected a number of algorithms from PSO, GA, DE, and
several other domains for global optimization problems, multi-
modal optimization problems, dynamic optimization problems,
multi-objective problems, and travelling salesman problems.
Common algorithm performance evaluation measurements are
also available. The source code of the AMP will be available
in OFEC. The OFEC-v0.3.0 has been released on github at
https://github.com/Changhe160/OFEC.

C. Experimental Investigation of the AMP

In this section, the AMP is investigated regarding its key
parameters and mechanisms, based on AMP/PSO.

1) Sensitivity Analysis of ParametergSize: To test the
effect of varying the initial population size,gSize was chosen
from the range of 10 to 500. Fig. 4 presents the results of
EO, EBBC , PR, andSR of AMP/PSO with different values
of gSize on the MPB with different numbers of peaks.

Fig. 4 shows that varying the value ofgSize in all MPB
cases does not affect the results too much. This indicates
that AMP/PSO has a very stable performance regardless of
the initial population size. We would attribute the stable
performance of AMP/PSO to its adaptation mechanism. The
continuous adjustment to historical data (see Eq. (1)) would
enable AMP/PSO to adjust the number of populations to an
appropriate level (see evidences in Figs. 6, 8 and 9 later).
Therefore, different choices ofgSize do not affect the perfor-
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Fig. 5. The results of AMP/PSO with different converging thresholds on the
MPB with different numbers of peaks.

mance of AMP/PSO, andgSize = 100 is used for both AMP
algorithms in this paper.

2) Sensitivity Analysis of Parameterθ: For the convergence
threshold (θ), the smaller it is, the more time will be spent on
exploiting local optima. The larger the value ofθ, in contrast,
the more time will be spent on exploring new optima. To
investigate the effect of this parameter on the performanceof
AMP/PSO, we conduct an experiment with different values of
θ. Fig. 5 presents the results of AMP/PSO with different values
of θ on the MPB with different numbers of peaks, where the
darker the shade is, the better the results are.

Fig. 5 shows that varying the value ofθ does affect the
performance of AMP/PSO. ForEO, EBBC , SR, in most cases
the results get better asθ increases from 1E-4 to 5E-3 but then
get worse asθ further increases. However, forPR, the smallest
value of θ helps AMP/PSO obtain the best performance and
the results ofPR get worse asθ increases. This is because
the measurementPR focuses more on exploitation of local
optima than exploration of the global optima. AMP/PSO will
spend the largest amount of time on exploiting local optima
with the smallest value ofθ and hence, the largest number of
peaks is tracked. To take a trade-off between exploring new
optima and exploiting local optima,θ was set to 5E-3 for the
AMP in all the other experiments in this paper.

3) Effect of the Adaptive Adjustment Mechanism:Fig. 6
shows the distribution of the number of populations of
AMP/PSO and SAMO over 1,000 changes. For both algo-
rithms, we take one sample when the number of populations
changes. Therefore, the samples of AMP/PSO are the same
data as in the databaseD. Both algorithms are able to maintain
a good correlation between the number of populations and
the number of peaks. In problems where the number of
peaks remain unchanged, each distribution curve has a very
narrow shape. However, the performance of AMP/PSO is
better than that of SAMO at least on problems with a small
number of peaks (e.g.,P=10 and 20), where the numbers
of populations of AMP/PSO at the curve peaks are equal
to the actual numbers of peaks. However, the corresponding
numbers obtained by SAMO are larger than the actual numbers
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and SAMO over 1,000 changes.

TABLE IV
EFFECT OF VARYING THE PROBABILISTIC RANGEM ON THE MPB WITH

DIFFERENT NUMBERS OF PEAKS, WHEREWAR IS A WRONG ACTION

RATE AND NR IS THE NUMBER OF MAPS CREATED IN THE DATABASED.

P
WAR/NR

M=1 M=2 M=3 M=4 M=5
10 0.295/3720 0.188/3864 0.126/4027 0.097/4189 0.069/4239
20 0.320/2689 0.214/2904 0.128/2977 0.114/2985 0.091/2995
30 0.327/2000 0.224/2176 0.153/2310 0.114/2371 0.103/2292

of peaks. For problems with a large number of peaks, the
numbers of populations at the curve peaks for both algorithms
are smaller than the actual numbers of peaks. However, the
numbers for AMP/PSO are closer to the actual numbers of
peaks.

In problems with a varying number of peaks by a certain
pattern (Var1 and Var2), for both algorithms the distribution
curves now have a large band with multiple spikes, corre-
sponding to the variation in the number of peaks of these
problems. However, both algorithms do not show such a
behavior in Var3 where the number of peaks changes without a
pattern (further comparison of detailed changes of the number
of populations can be seen later in Figs. 8 and 9).

4) Effect of the Probabilistic Prediction Scheme:To show
the effect of using the probabilistic prediction scheme, an
experiment was carried out to calculate the average wrong
action rate for AMP/PSO with the probabilistic rangeM in
[1,5] on the MPB problem withu=10,000. According to the
results in Fig. 6, for problems withP ≤ 30, we assume that
the optimal number of populations is equal to the number of
peaks. Hence, a wrong action is an action to increase/decrease
the total number of individuals when the number of peaks is
less/greater than the current number of populations. TableIV
presents the wrong action rate (WAR) and the number of
maps created in the databaseD. The results show that using
the probabilistic schemeM > 1 does help AMP/PSO greatly
decrease the probability of taking a wrong action.

To further investigate the effect of using the probabilistic
prediction scheme, an experiment was carried out on the ten
static problems. Table V presents the results, whereRE is the
ratio of the number of evaluations (eval) to the largesteval
of each test group. Table V shows that AMP/PSO fails to find

TABLE V
PERFORMANCE COMPARISON OFAMP/PSOWITH DIFFERENT VALUES OF

M ON MULTI MODAL FUNCTIONS, WHERERE IS THE RATIO OFeval TO

THE LARGESTeval OF EACH PROBLEM, NR IS THE NUMBER OF MAPS
CREATED IN THE DATABASED.

Error F(Opt.) M=1 M=2 M=3 M=4 M=5 F(Opt.) M=1 M=2 M=3 M=4 M=5
SR

F1(10)
1 1 1 1 1

F2(36)
0.967 1 1 1 1

RE 0.981 1 1 0.962 0.98 0.996 1 0.936 0.9350.884
NR 33 47 26 6 23 194 132 66 99 44
SR

F3(6)
1 1 1 1 1

F4(18)
1 1 1 1 1

RE 0.945 0.9410.9380.977 1 0.945 0.9330.835 1 0.835
NR 27 22 21 18 10 51 67 56 88 60
SR

F5(8)
1 1 1 1 1

F6(4)
1 1 1 1 1

RE 0.939 0.8790.8740.931 1 1 0.961 0.92 0.985 0.95
NR 61 38 26 46 83 40 25 34 29 29
SR

F7(4)
1 1 1 1 1

F8(5)
1 1 1 1 1

RE 1 0.972 0.9650.9560.966 1 0.96 0.976 0.967 0.965
NR 3 3 3 3 3 39 23 11 18 18
SR

F9(5)
1 1 1 1 1

F10(3)
1 1 1 1 1

RE 0.997 1 0.9980.9780.981 1 0.999 0.9520.9320.936
NR 13 11 14 3 8 4 3 4 4 6

TABLE VI
COMPARISON OFSR AND PR OF AMP/PSOWITH AND WITHOUT THE

PEAK HIDING SCHEME ON FUNCTIONSF2 AND F4, WHEREeval∗ IS THE
NUMBER OF EVALUATIONS USED BY THE PEAK HIDING SCHEME ANDeval

IS THE TOTAL NUMBER OF EVALUATIONS.

Function Algorithm SR PR eval eval∗

Vincent(F2,D=2)
AMP/PSO* 0.1 0.95 191937 0
AMP/PSO 1 1 140139 102871

Shubert(F4,D=2)
AMP/PSO* 0.9 0.99 82437 0
AMP/PSO 1 1 39144 11138

all the global optima of F2 withM=1. For most problems
AMP/PSO withM=1 generates the largest number of maps in
the databaseD, and correspondingly, it also spends a relatively
large number of evaluations. Although less maps are generated
with M > 1 than that withM=1, they enable AMP/PSO to
spend less time to find all the optimal peaks than that with
M=1. That is, the probabilistic prediction scheme makes the
learning more efficient than that without it. In this paper,M=3
is used for all the experiments as AMP/PSO withM=3 shows
the best performance on most problems.

5) Effect of the Peak Hiding Scheme:The peak hid-
ing scheme encourages individuals to explore un-discovered
peaks. Table VI presents the comparison of AMP/PSO with
the peak hiding scheme and without the peak hiding scheme
(AMP/PSO*) on the Vincent (F2) and Shubert (F4) function
in two-dimensional space. F2 and F4 contain 36 and 18 global
optima, respectively. Table VI shows that AMP/PSO finds all
peaks on the two functions for all runs. However, the results
of SR and PR of AMP/PSO get worse when the peak hiding
scheme is disabled. The only disadvantage of the peak hiding
scheme is that extra evaluations are needed. However, the
total function evaluations are still less than that of AMP/PSO
without the scheme. Moreover, the peak hiding scheme greatly
improves the performance of AMP/PSO. The peak hiding
scheme is rarely triggered for the MPB problem as there is
not enough time for populations to converge before changes
occur. Therefore, the peak hiding scheme has little effect on
the MPB problem.

D. Comparison with Peer Algorithms on the MPB Problem
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TABLE VII
COMPARISON OF ERRORS OFEO AND EBBC ON THE MPB PROBLEM WITH DIFFERENT NUMBERS OF PEAKS

P error AMP/PSO AMP/DE SAMO DynPopDE SPSO mQSO CPSOR CPSO FTMPSO DynDE AMSO mNAFSA

10

EO 0.69±0.03 0.9±0.1 2.4±0.3 4.8±1 4.4±0.5 1.9±0.3 5±0.3 5.2±0.3 2.6±0.2 2.1±0.3 2.5±0.5 3.4±0.5
w,t,l 11,0,0 10,0,1 6,1,4 0,2,9 3,0,8 9,0,2 1,1,9 0,1,10 5,1,5 8,0,3 5,2,4 4,0,7

EBBC 0.016±0.01 0.069±0.1 1.2±0.3 3.5±1 3.1±0.5 0.8±0.3 0.96±0.3 1±0.3 1.2±0.3 1.2±0.3 1.1±0.6 1.7±0.5
w,t,l 11,0,0 10,0,1 3,3,5 0,1,10 0,1,10 9,0,2 6,2,3 4,4,3 3,4,4 3,4,4 3,5,3 2,0,9

20

EO 1.1±0.09 1.4±0.1 2.3±0.08 5.1±1 7.2±0.9 3.3±0.4 4±0.2 4.9±0.2 3.2±0.2 2.6±0.3 2.8±0.8 4.8±0.6
w,t,l 11,0,0 10,0,1 9,0,2 1,2,8 0,0,11 5,1,5 4,0,7 1,2,8 5,1,5 7,1,3 7,1,3 1,2,8

EBBC 0.28±0.1 0.52±0.2 1.3±0.1 3.7±1 6.4±1 2.5±0.4 1.2±0.2 2±0.2 2.3±0.2 1.9±0.3 1.5±0.9 3.6±0.6
w,t,l 11,0,0 10,0,1 7,1,3 1,1,9 0,0,11 3,0,8 9,0,2 5,1,5 4,0,7 5,1,5 7,1,3 1,1,9

30

EO 1.1±0.05 1.3±0.06 2±0.04 4.6±1 4.9±1 2.3±0.2 3.2±0.2 3.8±0.2 2.8±0.09 2.3±0.3 2.2±0.4 3.3±0.3
w,t,l 11,0,0 10,0,1 9,0,2 0,1,10 0,1,10 6,2,3 3,1,7 2,0,9 5,0,6 6,2,3 6,2,3 3,1,7

EBBC 0.38±0.04 0.49±0.05 1.1±0.04 3.2±1 3.9±1 1.6±0.2 0.97±0.1 1.2±0.2 2±0.1 1.7±0.3 1±0.4 2±0.2
w,t,l 11,0,0 10,0,1 7,1,3 1,0,10 0,0,11 4,1,6 8,1,2 6,0,5 2,1,8 4,1,6 7,2,2 2,1,8

50

EO 1.2±0.05 1.4±0.05 1.9±0.04 4.5±1 4.2±0.8 3.2±0.4 2.7±0.1 3.3±0.1 2.7±0.08 2.7±0.3 2.1±0.4 3.4±0.3
w,t,l 11,0,0 10,0,1 9,0,2 0,1,10 0,1,10 2,2,7 5,2,4 3,1,7 5,2,4 5,2,4 8,0,3 2,1,8

EBBC 0.61±0.05 0.71±0.06 1.2±0.04 2.9±1 3.5±0.8 2.6±0.4 0.93±0.07 1.2±0.09 2±0.06 2.2±0.3 1.1±0.4 2.2±0.2
w,t,l 11,0,0 10,0,1 6,0,5 1,1,9 0,0,11 1,1,9 8,1,2 7,1,3 5,0,6 3,1,7 7,2,2 3,1,7

100

EO 1.4±0.05 1.7±0.08 2.1±0.06 4.3±0.8 5.4±1 3.3±0.4 2.4±0.07 3.2±0.1 3.2±0.1 3.5±0.6 2.2±0.4 4±0.2
w,t,l 11,0,0 10,0,1 8,1,2 1,1,9 0,0,11 3,2,6 7,0,4 5,1,5 4,2,5 3,1,7 8,1,2 1,1,9

EBBC 0.77±0.04 0.9±0.07 1.4±0.06 2.7±0.6 4.5±1 2.6±0.4 1±0.06 1.4±0.08 2.5±0.1 2.9±0.6 1.1±0.5 2.7±0.2
w,t,l 11,0,0 10,0,1 6,0,5 1,4,6 0,0,11 1,4,6 8,1,2 7,0,4 3,2,6 1,3,7 8,1,2 1,3,7

200

EO 1.8±0.04 2±0.04 2.5±0.05 4.6±0.7 6.2±0.9 4.3±0.4 2.5±0.08 3.1±0.07 3.6±0.1 4.4±0.4 2.5±0.3 4.2±0.2
w,t,l 11,0,0 10,0,1 8,1,2 1,1,9 0,0,11 2,2,7 7,1,3 6,0,5 5,0,6 1,2,8 7,2,2 3,1,7

EBBC 1±0.05 1.2±0.04 1.7±0.04 2.8±0.5 5.4±0.9 3.5±0.4 1.2±0.07 1.4±0.06 2.8±0.1 3.8±0.4 1.3±0.3 2.8±0.2
w,t,l 11,0,0 9,1,1 6,0,5 3,2,6 0,0,11 2,0,9 9,1,1 7,1,3 3,2,6 1,0,10 7,1,3 3,2,6

w-l 132 107 44 -95 -123 -23 29 -14 -19 -20 48 -66
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Fig. 7. Comparison of the peak ratio (PR) and success rate (SR) on the
MPB with different numbers of peaks.

1) Effect of Varying the Number of Peaks:Table VII
presents the offline errors and the best-before-change errors for
all algorithms on the MPB with different numbers of peaks.
Fig. 7 presents the comparison of the results ofSR andPR
for all peer algorithms. Fig. 8 plots the changes in the number
of populations against time for AMP/PSO, SAMO, AMSO,
and DynPopDE.

From Table VII, it can be seen that the results of AMP/PSO
are significantly better than those of the other algorithms in
all cases. Following with AMP/PSO, AMP/DE achieves the
second best performance. The performance of the four adap-
tive algorithms (AMP/PSO, AMP/DE, SAMO, and AMSO)
are better than that of those non-adaptive algorithms. Due to
a large number of populations generated with DynPopDE, the
algorithm achieves very poor performance compared with the
other algorithms. Given the manually configured number of
individuals, CPSOR also achieves a good performance.

Regarding the performance of tracking multiple peaks (see
Fig. 7), AMP/PSO and AMP/DE achieve the best success rate

(SR) in all cases. However, for the peak ratio, AMSO performs
better than AMP/PSO and AMP/DE in the cases with many
peaks. This is because many populations of the AMP have
not converged yet when changes occur. The number of peaks
traced will be increased if we give more time for the AMP to
evolve before changes occur (see Fig. 10 in Sect. IV-D3 later).

Fig. 8 shows that all the four adaptive algorithms exhibit
adaptive behaviors, where the number of populations at the
end of the run increases as the number of peaks increases.
For problems with a large number of peaks, AMP/PSO,
DynPopDE, and SAMO shows similar behaviors where the
number of populations gradually increases as the search goes
on. Different from the above three algorithms, the number of
populations obtained by AMSO quickly converges at a certain
level in most cases. Among the four adaptive algorithms,
DynPopDE generated the largest number of populations in all
cases, followed by AMP/PSO, SAMO, and AMSO.

2) Comparison on Problems with a Varying Number of
Peaks:Problems with a fixed number of peaks may be easy to
solve. However, problems with a varying number of peaks will
challenge an algorithm’s adaptability. Table VIII and Fig.9
present the errors ofEO andEBBC , SR andPR, respectively,
on problems with a varying number of peaks.

From Table VIII, AMP/PSO and AMP/DE achieve signifi-
cantly better performance than all the other algorithms in all
the cases. The adaptive algorithms SAMO and AMSO also
achieves relatively good results in comparison with the other
non-adaptive algorithms. Among the non-adaptive algorithms,
the number of populations in CPSOR is configured according
to the number of peaks, which makes it behave as an adaptive
algorithm. Therefore, CPSOR performs as well as AMSO.

The four adaptive algorithms again show adaptive behaviors
to the changing number of peaks, where the number of popu-
lations is basically synchronous with the change of the number
of peaks in the cases ofV ar1 andV ar2 (they also show such
adaptive behavior in the case ofV ar3 if we observe the curves
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Fig. 8. Changes in the number of populations against time forfour adaptive algorithms on the MPB with different numbers of peaks.

TABLE VIII
COMPARISON OF ERRORS OFEO AND EBBC ON THE MPB PROBLEM WITH A VARYING NUMBER OF PEAKS

P error AMP/PSO AMP/DE SAMO DynPopDE SPSO mQSO CPSOR CPSO FTMPSO DynDE AMSO mNAFSA

Var1

EO 1.8±0.1 2±0.07 2.8±0.2 6.3±0.9 6±0.9 3.8±0.4 3.7±0.2 5.1±0.2 4.1±0.2 3.4±0.3 3±0.3 6.6±0.3
w,t,l 11,0,0 10,0,1 9,0,2 0,2,9 1,1,9 5,0,6 6,0,5 3,0,8 4,0,7 7,0,4 8,0,3 0,1,10

EBBC 0.99±0.1 0.99±0.08 1.8±0.2 4.3±0.6 4.7±0.9 2.9±0.4 1.5±0.2 2.3±0.2 3.1±0.3 2.7±0.3 1.5±0.4 4.8±0.3
w,t,l 10,1,0 10,1,0 7,0,4 2,0,9 0,1,10 4,0,7 8,1,2 6,0,5 3,0,8 5,0,6 8,1,2 0,1,10

Var2

EO 1.4±0.08 1.6±0.09 2.2±0.1 5.7±1 6.2±0.6 3.3±0.5 3.1±0.1 3.9±0.2 3.1±0.2 3.1±0.3 3.2±2 5.6±0.4
w,t,l 11,0,0 10,0,1 9,0,2 1,1,9 0,0,11 4,2,5 5,3,3 3,0,8 5,3,3 4,4,3 4,4,3 1,1,9

EBBC 0.74±0.08 0.86±0.1 1.4±0.1 4±1 5.2±0.7 2.6±0.5 1.2±0.08 1.5±0.2 2.5±0.2 2.4±0.3 2±2 3.8±0.4
w,t,l 11,0,0 10,0,1 6,2,3 1,1,9 0,0,11 3,3,5 9,0,2 6,2,3 3,3,5 3,3,5 3,5,3 1,1,9

Var3

EO 1.9±0.2 2.2±0.2 2.9±0.1 10±1 4.5±0.7 3.3±0.2 4.1±0.2 4.6±0.2 4±0.1 3.3±0.2 3.3±0.5 6.9±0.6
w,t,l 11,0,0 10,0,1 9,0,2 0,0,11 2,1,8 6,2,3 4,0,7 2,1,8 5,0,6 6,2,3 6,2,3 1,0,10

EBBC 1.2±0.2 1.4±0.2 2±0.1 6.6±0.8 3.5±0.7 2.5±0.2 1.8±0.1 1.9±0.2 3.7±0.3 2.6±0.2 1.9±0.4 4.9±0.6
w,t,l 11,0,0 10,0,1 6,2,3 0,0,11 2,1,8 4,1,6 9,0,2 6,2,3 2,1,8 4,1,6 6,2,3 1,0,10

w-l 65 55 30 -54 -52 -6 20 -9 -15 2 18 -54
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Fig. 9. Changes in number of populations against time for four adaptive algorithms on the MPB with a varying number of peaks.

with V ar3 closely). Among these four algorithms, AMP/PSO
and SAMO show the most similar behavior and they also show
the best synchronization, which almost perfectly matches the
changes of the number of peaks. DynPopDE again generates
the largest number of populations, which makes it perform
very poorly. Although all the adaptive algorithms show similar
behaviors to AMP/PSO in terms of populations adaptation,
they perform much worse than AMP/PSO regarding the errors
EO andEBBC .

3) Effect of Varying the Change Frequency:Fig. 10 and Ta-
ble IX present the results ofSR andPR, and the errors ofEO

andEBBC , respectively, for all the involved algorithms. From
Table IX, it can be seen that AMP/PSO achieves the best re-
sults in all cases, followed by AMP/DE. Although AMP/PSO
and AMP/DE do not achieve the best results regarding the PR,
they show the best results regarding the SR. AMSO shows
very competitive performance regarding the PR. Increasing
the change frequency means that algorithms will have more
evaluations to locate and track optima before changes occur.
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Fig. 10. Comparison of the peak ratio (PR) and success rate (SR) on the MPB with different change frequencies.

TABLE IX
COMPARISON OF ERRORS OFEO AND EBBC ON THE 200-PEAK MPB PROBLEM WITH DIFFERENT CHANGE FREQUENCIES

u error AMP/PSO AMP/DE SAMO DynPopDE SPSO mQSO CPSOR CPSO FTMPSO DynDE AMSO mNAFSA

1000

EO 3.6±0.1 4.1±0.1 4.3±0.1 10±1 7.4±1 6.7±0.9 7.2±0.2 9.7±0.3 8±0.7 5.8±0.6 5.3±0.2 7.3±0.6
w,t,l 11,0,0 10,0,1 9,0,2 0,1,10 3,2,6 6,0,5 3,2,6 0,1,10 2,0,9 7,0,4 8,0,3 3,2,6

EBBC 2.3±0.1 2.7±0.09 2.9±0.08 7.3±2 6.6±1 5.8±0.9 3.4±0.1 3.9±0.09 7±1 4.7±0.6 2.7±0.1 4.7±0.5
w,t,l 11,0,0 9,1,1 8,0,3 0,2,9 0,2,9 3,0,8 7,0,4 6,0,5 0,2,9 4,1,69,1,1 4,1,6

2000

EO 2.7±0.07 3±0.08 3.3±0.06 7.7±2 6.6±0.9 4.8±0.4 4.4±0.2 5.7±0.1 5.4±0.3 5±0.4 3.6±0.2 5.7±0.3
w,t,l 11,0,0 10,0,1 9,0,2 0,0,11 1,0,10 5,1,5 7,0,4 2,1,8 4,0,7 5,1,5 8,0,3 2,1,8

EBBC 1.7±0.06 1.9±0.08 2.3±0.04 5.1±2 5.9±0.9 4±0.4 2.1±0.1 2.7±0.08 4.2±0.3 4.1±0.4 2±0.2 3.6±0.3
w,t,l 11,0,0 9,1,1 7,0,4 1,0,10 0,0,11 3,1,7 8,0,3 6,0,5 2,1,8 2,2,7 9,1,1 5,0,6

3000

EO 2.2±0.06 2.5±0.08 2.9±0.07 6.3±1 6.3±0.8 4.4±0.4 3.4±0.09 4.2±0.09 4.4±0.2 4.7±0.4 3±0.3 4.8±0.3
w,t,l 11,0,0 10,0,1 9,0,2 0,1,10 0,1,10 4,1,6 7,0,4 6,0,5 4,1,6 2,1,8 8,0,3 2,1,8

EBBC 1.4±0.06 1.5±0.07 2±0.06 4±1 5.5±0.9 3.6±0.4 1.6±0.07 2±0.07 3.5±0.1 4±0.4 1.7±0.3 3.1±0.2
w,t,l 11,0,0 10,0,1 6,1,4 1,2,8 0,0,11 2,2,7 8,1,2 6,1,4 3,1,7 1,1,9 8,1,2 5,0,6

5000

EO 1.8±0.04 2±0.04 2.5±0.05 4.6±0.7 6.2±0.9 4.3±0.4 2.5±0.08 3.1±0.07 3.6±0.1 4.4±0.4 2.5±0.3 4.2±0.2
w,t,l 11,0,0 10,0,1 8,1,2 1,1,9 0,0,11 2,2,7 7,1,3 6,0,5 5,0,6 1,2,8 7,2,2 3,1,7

EBBC 1±0.05 1.2±0.04 1.7±0.04 2.8±0.5 5.4±0.9 3.5±0.4 1.2±0.07 1.4±0.06 2.8±0.1 3.8±0.4 1.3±0.3 2.8±0.2
w,t,l 11,0,0 9,1,1 6,0,5 3,2,6 0,0,11 2,0,9 9,1,1 7,1,3 3,2,6 1,0,10 7,1,3 3,2,6

7000

EO 1.6±0.04 1.8±0.05 2.2±0.04 4.2±0.5 6.1±1 4±0.5 2.3±0.09 2.6±0.07 3.2±0.07 4.2±0.4 2.2±0.4 3.9±0.2
w,t,l 11,0,0 10,0,1 8,1,2 1,2,8 0,0,11 2,2,7 7,1,3 6,0,5 5,0,6 1,1,9 7,2,2 3,1,7

EBBC 0.86±0.04 0.99±0.04 1.5±0.04 2.6±0.4 5.3±1 3.3±0.4 1.1±0.07 1.2±0.08 2.5±0.1 3.7±0.4 1.2±0.4 2.6±0.1
w,t,l 11,0,0 10,0,1 6,0,5 3,2,6 0,0,11 2,0,9 9,0,2 7,1,3 4,1,6 1,0,10 7,1,3 3,1,7

10000

EO 1.3±0.03 1.5±0.04 2±0.03 3.7±0.3 6.2±1 3.7±0.4 2±0.09 2.2±0.07 2.8±0.07 4±0.4 2±0.3 3.5±0.1
w,t,l 11,0,0 10,0,1 7,2,2 2,1,8 0,0,11 2,1,8 7,2,2 6,0,5 5,0,6 1,0,10 7,2,2 4,0,7

EBBC 0.68±0.03 0.8±0.04 1.3±0.04 2.3±0.2 5.4±1 3.1±0.4 0.93±0.06 1.1±0.06 2.2±0.06 3.6±0.4 1.1±0.3 2.4±0.1
w,t,l 11,0,0 10,0,1 6,0,5 4,0,7 0,0,11 2,0,9 9,0,2 7,1,3 5,0,6 1,0,10 7,1,3 3,0,8

w-l 132 105 51 -86 -119 -52 52 4 -40 -69 64 -42

Therefore, the performance of all the algorithms improves as
the change frequency increases. It is interesting to see that
AMP/PSO achieves the greatest improvement in PR among
all the algorithms (Fig. 10), especially whenu > 5000. This
indicates that the AMP is able to make full use of the available
evaluations to explore as many peaks as possible by adaptively
adjusting the number of populations.

E. Comparison on Multi-modal Problems

In order to test the performance of the AMP in locating
multiple peaks, an experimental comparison is carried out on
ten multi-modal problems. In this paper, we do not choose the
best and latest algorithms for the comparison since the moti-
vation of this paper is for DOPs. To compare the performance
of the AMP in static environments, two popular algorithms,
DE/nrand/1 and CRDE proposed for multi-modal problems,
were chosen. Table X presents the results ofSR, PR, and the
total number of evaluations spent (eval).

From Table X, AMP/DE and AMP/PSO outperform the
other two algorithms on most problems. AMP/PSO success-
fully finds all peaks for every run on all problems. AMP/DE
also obtains such good results as AMP/PSO except on F2,
where one peak is not found for all runs. DE/nrand/1 also

TABLE X
PERFORMANCE COMPARISON ON MULTI-MODAL FUNCTIONS IN TWO

DIMENSIONS, WHEREeval IS THE TOTAL NUMBER OF FUNCTION

EVALUATIONS .

Problem Error AMP/PSO AMP/DE DE/nrand/1 CRDE

F1
PR/SR 1/1 1/1 0.61/0 0.163/0
eval 1.53e+004 1.72e+004 2e+005 2e+005

F2
PR/SR 1/1 0.999/0.967 0.416/0 0.195/0
eval 1.4e+005 1.7e+005 2e+005 2e+005

F3
PR/SR 1/1 1/1 0.667/0 0.317/0
eval 2e+004 1.94e+004 2e+005 2e+005

F4
PR/SR 1/1 1/1 1/1 0.628/0.2
eval 3.91e+004 6.29e+004 3.2e+004 1.68e+005

F5
PR/SR 1/1 1/1 0.9/0.367 0.188/0
eval 5.19e+004 6.73e+004 1.32e+005 2e+005

F6
PR/SR 1/1 1/1 0.808/0.233 0.592/0.0333
eval 8.7e+004 9.13e+004 1.56e+005 1.94e+005

F7
PR/SR 1/1 1/1 1/1 0.25/0
eval 1.03e+004 6.92e+003 1.38e+004 2e+005

F8
PR/SR 1/1 1/1 0.6/0.0333 0.207/0
eval 1.7e+004 1.03e+004 1.94e+005 2e+005

F9
PR/SR 1/1 1/1 0.987/0.933 0.2/0
eval 6.76e+003 5.48e+003 1.9e+004 2e+005

F10
PR/SR 1/1 1/1 1/1 0.622/0.167
eval 4.98e+003 3.85e+003 1.03e+004 1.68e+005

finds all peaks for all runs on F4, F7, and F10. However, it
spends a much larger number of evaluations than AMP/PSO
and AMP/DE on most problems. For the two AMP algorithms,
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Fig. 11. Comparison of the progress of the number of peaks traced by the four algorithms on three multi-modal problems.

TABLE XI
THE PR AND SR OF AMP/PSOAND AMP/DE ON THE 3D AND 4D
V INCENT FUNCTION, WHEREm eval IS THE MAXIMUM NUMBER OF

FUNCTION EVALUATIONS.

F(D,# of Opt.) Algorithm PR SR m eval F(D,# of Opt.) PR SR m eval

F2(3,216)
AMP/PSO 1 1 5.0E+06

F2(4,1296)
0.95 0 1.0E+07

AMP/DE 0.9998 0.997 5.0E+06 0.78 0 1.0E+07

F4(3,81)
AMP/PSO 1 1 5.0E+06

F4(4,324)
0.828 0 1.0E+07

AMP/DE 0.986 0.433 5.0E+06 0.705 0 1.0E+07

although they perform the same in SR and PR on nine out of
ten problems, AMP/DE spends slightly less evaluations than
AMP/PSO on most problems.

Fig. 11 presents the comparison of the progress of the
number of peaks located by the four algorithms on three
problems. From the results, it can be seen that AMP/PSO and
AMP/DE are the quickest in locating multiple peaks.

In order to test the capability of locating many peaks of the
AMP, AMP/DE and AMP/PSO are tested on the Vincent and
Shubert function in 3D and 4D space with the corresponding
maximum number of function evaluations of 5.0E+06 and
1.0E+07. Table XI shows the results ofPR andSR of the
two algorithms. For the 3D-Vincent function with 216 global
optima, AMP/PSO successfully finds all peaks under the given
maximum number of evaluations and AMP/DE misses only
one peak in one run. For the 4D-Vincent function with 1296
global optima, although both algorithms fail to find all peaks
under the given maximum number of evaluations, the peak
ratio is 0.78 for AMP/DE and 0.95 for AMP/PSO, respectively.
For the 3D-Shubert function with 81 global optima, AMP/PSO
finds all the peaks for all runs and AMP/DE achieves a PR of
0.98 and a SR of 0.43. For the 4-D shubert function with 324
global optima, AMP/PSO and AMP/DE have no successful
runs but they achieve the PR of 0.82 and 0.70, respectively.

V. CONCLUSIONS

Identifying the correct number of populations is a key issue
to apply MPMs to solving DOPs. In order to address this issue,
this paper proposes an adaptive multi-population framework. A
database is used to record important information for guiding
the adjustment of the total number of populations. Multiple
populations are created by a heuristic clustering method with-
out any manual inputs. Learning from historical data makes
the AMP robust to solve problems, and continuously giving
feedback to the database helps the AMP produce precise
solutions.

From the experimental results of the two implemented
algorithms with the AMP, several conclusions can be drawn.
Firstly, the AMP is able to adaptively adjust the number of
populations according to the number of peaks in the fitness
landscape. Secondly, the AMP achieves the best performance
among all the peer algorithms in most test cases, especially
with regards to the capability of tracking multiple peaks.
Thirdly, the AMP is also good at tracking multiple peaks in
static environments.

Several interesting topics will be addressed for the future
work. Firstly, the investigation on performance differences be-
tween AMP/PSO and AMP/DE on different problems should
be performed. This would help to understand what kinds of
EAs are good at solving what kinds of problems. Secondly,
how to reduce the number of evaluations spent by the peak
hiding method would also be interesting, especially in a high
dimensional space. Thirdly, it is also interesting to make the
peak hiding method work efficiently on problems with noise
or with rugged fitness landscape. Finally, the application of
the AMP to real-world problems is also important.
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