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Abstract—Type-reduction of type-2 fuzzy sets is considered
to be a defuzzification bottleneck because of the computational
complexity involved in the process of type-reduction. In this
research, we prove that the closed-form Nie-Tan operator, which
outputs the average of the upper and lower bounds of the
footprint of uncertainty, is actually an accurate method for
defuzzifing interval type-2 fuzzy sets.

Index Terms—Interval Type-2 fuzzy sets, type-reduction, de-
fuzzification, Nie-Tan operator.

I. Introduction

TYPE-2 fuzzy sets (T2 FSs) generalize T1 FSs so that
uncertainty associated with the membership function is

taken into account [1]. Compared with a T1 FS, in which the
membership is represented by crisp numbers, the membership
of a T2 FS is represented by a FS, which is known as the
secondary membership. Defuzzification is the final stage of
a fuzzy inference system, in which a FS is converted into
a crisp number. Unfortunately, defuzzification of a T2 FS
can be so computationally complex that it has been known
as the defuzzification bottleneck [2]. Defuzzification of T2
FSs usually contains two stages [3]: a type-reduction stage, in
which the T2 FS is converted to a T1 FS, and a defuzzification
of the T1 FS stage. It is the type-reduction stage that leads to
the defuzzification bottleneck since there have been a number
of efficient methods for defuzzification of T1 FSs. One of
the most popular methods to defuzzify T1 FSs is the centroid
[4,5].

dc(µ(x)) =

∫ xmax

xmin
µ(x) · xdx∫ xmax

xmin
µ(x)dx

(1)

where µ(x) is the membership function of the T1 FS.
The difficulty in the extension of the centroid method

to T2 defuzzification lies in the fact that, according to the
representation theorem [6], a T2 FS is represented by the union
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of its embedded sets. The center of gravity (COG) of a T2 FS
is the average of the centroids of all the embedded sets. An ex-
haustive type-reduction method [7] is usually impractical, de-
pending on the scales of discretisation. The sampling method,
in which a number of randomly selected samples are used to
represent the whole union of embedded sets, is an efficient,
cut-down alternative to the exhaustive method [2,8,9]. Some
other general T2 defuzzification methods include: vertical slice
centroid type-reduction (VSCTR)[10], plane presentation [11,
22], geometric method [24] and the collapsing method [12].
There is still not an accurate type-reduction of general T2 FSs
other than the exhaustive algorithm.

Interval type-2 (IT2) FSs have received more attention in
recent years because the mathematics that is needed for IT2
FSs is much simpler than the mathematics for general type-2
FSs[13-15]. The secondary memberships of IT2 FSs can be
ignored because they are all set to one. Some operators have
been proposed for IT2 defuzzification.

The Karnik-Mendel (KM) algorithm [16], which computes
the smallest and largest centroid of embedded T1 FSs itera-
tively and then uses the average of two values as the result
of defuzzification, is the most commonly used type-reduction
method. A number of enhancements to KM algorithm have
been made in order either to reduce the computational burden
or to improve the accuracy [17-21].

Nie-Tan type-reduction operator has a simple closed-form
representation [23]. To date, it is considered to be an approx-
imation of KM algorithms, i.e. Nie-Tan operator is a first-
order Taylor series approximation of KM+defuzzification and
an improved Nie-Tan operator is a third-order approximation
of KM+defuzzification [20, 27]. We will prove that Nie-
Tan operator is equivalent to exhaustive type-reduction and is
actually an accurate type-reduction method for both concrete
and continuous IT2 FSs in this paper.

This paper is organized as follows. Section 2 introduces
some basic terms on IT2 FSs. Section 3 presents a theorem
and the proof of it. Section 4 compares three type-reduction
methods in defuzzifying four IT2 FSs. The paper is concluded
in section 5.

II. Background
Let X be a universe of discourse. A T1 FS on X is

characterised by a membership function µA : X → [0, 1],
where the membership grades are crisp numbers. A T2 FS
in X is a fuzzy set whose membership grades are themselves
fuzzy

µÃ : X → [0, 1][0,1] (2)
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It can be expressed as

Ã = {(x, µÃ(x)) | µÃ(x) ∈ P̃(U),∀x ∈ X} (3)

where X is called the primary domain and U is the secondary
domain and P̃(U) is the set of fuzzy sets in U [2]. The
membership function of a general T2 FS is three-dimensional,
where the third dimension is called secondary membership,
which may take any value from 0 to 1. For an Interval T2 FS
the secondary membership grades are all 1. Some terms used
in this paper are now defined.

The footprint of uncertainty (FOU) is the projection of the
T2 FS onto the x − u plane.

The upper and lower membership functions of a T2 FS are
the T1 membership functions associated with the upper and
lower bounds of the FOU respectively. The upper and lower
membership functions are denoted by µ(x) and µ(x) in this
paper.

An embedded T1 set of a IT2 FS is a T1 FS whose
membership function, µ(x), is within the FOU. For example,
there must be µ(x) ≤ µ(x) ≤ µ(x) at any x. Based on the
concept of wavy slice [6], a IT2 FS can be considered as the
union of all its embedded T1 sets.

A random embedded set is an embedded T1 FS whose
membership function is randomly chosen, i.e. for each non-
zero x-value a random µ-value (µ ≤ µ ≤ µ) is chosen.

A representative embedded set of an IT2 FS is a T1 FS, the
centroid of which is equivalent to the COG of the IT2 FS [2].
Note that there might be unlimited number of representative
embedded sets for an IT2 FS.

In Nie-Tan method, the average of upper and lower mem-
bership functions is computed as the membership function of a
representative T1 embedded set. Let µ∗(x) be the membership
function.

µ∗(x) =
1
2
(
µ(x) + µ(x)

)
(4)

The COG of Ã is equivalent to the centroid of µ∗(x). The
advantages of Nie-Tan method include low computation cost
and closed-form solutions [27].

III. COG of an IT2 FS
The random sampling is an approximate method for IT2

type-reduction and defuzzification. It is intuitive to deduce
that, if the sample size approaches infinity, a random sampling
turns to be an accurate type-reduction and defuzzification
method. We have the following theorems.

Theorem 1: A random sampling method computes the ac-
curate COG of an IT2 FS when the number of sampling is
infinity.
Proof : Let’s first consider a discrete IT2 FS, Ã, defined in
a universe of discourse, X. Let M and L denote the number
of vertical slices along x-axis and number of horizontal slices
along µ-axis respectively. Since a T1 FS contains M vertical
slices, there are totally LM embedded T1 FSs in Ã.

Let µ(x) and µ(x) denote the upper and lower memberships
of FOU respectively. We randomly choose N embedded T1 F-
Ss of Ã. Let µi(x) be the membership function of ith embedded
set, as shown in Fig. 1.

The aggregation of N random embedded T1 FSs can be
computed by

N∑
i=1

µi(x) =
M∑
j=1

N∑
i=1

µi(x j)

Thus

lim
N→∞

1
N

N∑
i=1

µi(x) = lim
N→∞

1
N

N∑
i=1

M∑
j=1

µi(x j)

Because µi(x j) is a random value uniformly distributed within
[µ

i
(x j), µi(x j)], the right side of above equation can be trans-

formed to

lim
N→∞

1
N

N∑
i=1

M∑
j=1

µi(x j) =
1
L

L∑
k=1

M∑
j=1

µk(x j)

Thus

lim
N→∞

L
N

N∑
i=1

µi(x) =
L∑

k=1

M∑
j=1

µk(x j)) (5)

The right side of the equation is exactly the aggregation of

Fig. 1: Membership function of a random chosen embedded T1
FS, µi(x), depicted by the black dots, satisfies µ(x) ≤ µi(x) ≤
µ(x) at any x. The secondary membership grade at any vertical
slice x j is 1.

membership functions of all embedded FSs of Ã while the left
side is a random sampling with N → ∞. Note that L

N in the left
side of equation has no influence in computing the COG of Ã
because it is a constant. For example, if we replace µi(x) with
µ′i(x) = L

N µi(x) the centroid remains the same according to (1).

When Ã is a continuous IT2 FS, we can simply replace∑M
j=1 and

∑L
k=1 by

∫ xmax

xmin
and
∫ µ(x)
µ(x) respectively and we have

lim
N→∞

L
N

N∑
i=1

µi(x) =
∫ xmax

xmin

∫ µ(x)

µ(x)
µ(x)dµdx (6)

�
Theorem 2: A representative T1 embedded set of Ã has the
membership function

µ∗(x) =
1
2
(
µ(x) + µ(x)

)
(7)

and the COG of Ã can be computed by

C(Ã) =

∫ xmax

xmin
µ∗(x) · xdx∫ xmax

xmin
µ∗(x)dx

(8)
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Proof : Suppose that we randomly choose N embedded T1
FSs of a discretised IT2 FS Ã. Let µi(x) be the membership
function of ith embedded set and x j be an arbitrary vertical
slice, as shown in Fig. 1. µi(x j) can be represented by
µi(x j) = µ(x j)+ωi

(
µ(x j)−µ(x j)

)
where ωi is an random number

uniformly distributed within [0, 1]. We have
N∑

i=1

µi(x j) =
N∑

i=1

(
µ(x j) + ωi

(
µ(x j) − µ(x j)

))
(9)

= Nµ(x j) +
(
µ(x j) − µ(x j)

) N∑
i=1

ωi

There must be

lim
N→∞

N∑
i=1

ωi =
N
2

because ωi uniformly distributes within [0, 1]. Then,

lim
N→∞

1
N

N∑
i=1

µi(x j) =
1
2
(
µ(x j) + µ(x j)

)
(10)

This equation holds for all x since x j is an arbitrary vertical
slice. Thus, we have

lim
N→∞

1
N

N∑
i=1

µi(x) =
1
2
(
µ(x) + µ(x)

)
(11)

According to Theorem 1 and (1), µ∗ = 1
2
(
µ(x) + µ(x)

)
is

the membership function of a representative T1 FS and it
computes the accurate COG of Ã.

It is easy to verify that the above proof applies to a
continuous IT2 FS if we replace

∑N
i=1 in the right side of (9)

with
∫ xmax

xmin
. �

Theorem 2 shows that Nie-Tan operator, in which the
membership function of the output T1 FS is the average of
upper and lower membership functions, is equivalent to an
exhaustive type-reduction. Thus it computes the accurate COG
of an IT2 FS.

IV. Numerical examples

In this section, we compare Nie-Tan operator with KM and
the sampling methods on defuzzifying four IT2 FSs. Four
examples of IT2 FSs are considered in a number of papers,
such as [10-13]. The upper membership functions (UMF)
and lower membership functions (LMF) of four IT2 FSs are
defined by,
A. Symmetric Gaussian MFs with uncertainty deviation.

µ(x) = exp
(
− 0.5

(
(x − 5)/0.25

)2) x ∈ [0, 10]

µ(x) = exp
(
− 0.5

(
(x − 5)/1.75

)2) x ∈ [0, 10]

B. Triangular LMF and Gaussian UMF.

µ(x) =
{

0.6(x + 5)/19 if x ∈ [−5, 2.6]
0.4(14 − x)/19 if x ∈ [2.6, 14]

µ(x) =

 exp
(
− 0.5

(
(x − 2)/5

)2) if x ∈ [−5, 7.185]

exp
(
− 0.5

(
(x − 9)/1.75

)2) if x ∈ [7.185, 14]

C. Piecewise Gaussian MFs.

µ(x) = max
{
0.5exp

( − (x − 3)2/2
)
, 0.4exp

( − (x − 6)2/2
)}

x ∈ [0, 10]

µ(x) = max
{
exp
( − (x − 3)2/8

)
, 0.8exp

( − (x − 6)2/8
)}

x ∈ [0, 10]

D. Piecewise Linear MFs.

µ(x) = max


 (x − 1)/6 if 1 ≤ x ≤ 4

(7 − x)/6 if 4 < x ≤ 7
0 otherwise

 , (x − 3)/6 if 3 ≤ x ≤ 5
(8 − x)/9 if 5 < x ≤ 8
0 otherwise




µ(x) = max


 (x − 1)/2 if 1 ≤ x ≤ 3

(7 − x)/4 if 3 < x ≤ 7
0 otherwise

 , (x − 2)/5 if 2 ≤ x ≤ 6
(16 − 2x)/5 if 6 < x ≤ 8
0 otherwise




The accuracy of a sampling method depends on the number
of samples. We adopt four random sampling methods which
the number of samples are 20, 50, 100 and 1,000 respectively.
The scale of discetisation is set to be 0.01. The results of
defuzzification of four IT2 FSs are shown in Table. 1.

It shows that a random sampling method can be a close
approximation of Nie-Tan operator, even with 20 samples. The
KM method is not an accurate method although it provides the
range of uncertainty involved in an IT2 FS. The KM method
coincides with Nie-Tan operator when both UMF and LMF are
symmetric, as in example A. However, KM method deviates
from the accurate type reductions when either UMF or LMF
is asymmetric.

V. Conclusions and future works
We have proved in two theorems that Nie-Tan operator

computes accurate COGs of IT2 FSs. A closed-form type-
reduction operator has at least two advantages. First, it has
less computational complexity than any numerical methods
in defuzzifing continuous IT2 FSs. Second, it satisfies most
of the desirable properties (so-called axioms) of type-1 de-
fuzzification because of the closed-form nature, which could
be important for a given application. For example, Nie-Tan
operator satisfies the 12 properties of type-2 defuzzification
suggested in [25].

The method we used to prove theorem 2 has a close
relationship with the sampling method. The error of a random
sampling method tends to zero when the number of samples
approaches infinity. Our future research is to apply this method
to general T2 FSs type-reduction in order to generate a closed-
form operator.
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