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 Abstract—A Fuzzy Sliding Mode (FSM) tracking approach is 
proposed via Interval Type-2 (IT-2) Takagi-Sugeno Fuzzy Model 
(T-SFM) to complete Formation and Containment (F-and-C) 
tasks for Nonlinear Multi-Agent Systems (NMASs) with 
uncertainties and disturbances. Using Imperfect Premise 
Matching (IPM) approach, the IT-2 F-and-C Fuzzy Controllers 
(FCs) are designed in accordance with the IT-2 T-SFM. Different 
from the existing research, the individual tracking FC for each 
leader is proposed to complete the formation tasks and 
assignment of whole system dynamics. The stability analysis 
process is also simplified for ensuring the formation purpose. 
Benefiting from the advantage, the FSM control is conveniently 
combined into the FC design to upgrade the performance of 
leaders. For followers, the analysis methods of linear Multi-Agent 
(M-A) systems are extended to solve the containment analysis 
problem without the additional assumption by virtue of the IT-2 
T-SFM representation. To deal with the disturbance effect, the 
passive constraints are combined into the analysis process. 
Finally, the proposed F-and-C FCs design method is applied to a 
Nonlinear Multi-Ships System (NMSS) to illustrate the advantage.  
 
Index Terms—Nonlinear Multi-Agent Systems, Interval Type-2 
Takagi-Sugeno Fuzzy Model, Formation and Containment 
Control, Uncertainties and Disturbances, Sliding Mode Control. 

I. INTRODUCTION 
y the information communication, the Multi-Agent 
(M-A) control system has been developed to solve 
various control issues in a more efficient manner over 

the past decades. According to the purpose of missions, 
control problems are divided into consensus, formation, and 
containment. Owing to the broad range of applications, the 
formation control issue has been extensively discussed. To 
allocate the mission, the leader-follower structure has been 
proposed for M-A systems [1]. Generally, the more functional 
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and expensive devices are only required to be equipped on 
leaders, which efficiently reduces the application costs. As an 
extension of consensus with multiple leaders, containment 
control has been introduced [2]. Nowadays, containment 
control approach has also contributed to the situation that 
followers are required to be protected by leaders with higher 
capacity such as evacuation of crowds [3], and protection of 
important aircraft carriers with multiple armed ships. It has 
witnessed that formation or containment control possesses 
many potential applications in the military or civilian spheres. 

Notably, one of the important factors pushing forward the 
control issue of M-A systems is the successful progress of 
autonomous aerial, surface, and ground vehicles. However, 
working environments of these vehicles often exist many 
external disturbances, which may lead to the mission failure of 
Formation and Containment (F-and-C). Many researchers 
have contributed their efforts to confronting the disturbance in 
Nonlinear M-A Systems (NMASs). Extending the concept of 
passivity, the passive constraint has been developed to deal 
with disturbance effects [4-5]. The passivity theory has been 
verified as a useful tool to analyze electrical network and the 
nonlinear systems. By satisfying the condition that the storage 
energy of control systems is always smaller than the supply 
energy from outside, the system is called passive and the 
dissipative ability is possessed [6]. Moreover, the passive 
constraint, which regards disturbances as external inputs, can 
provide a general form for different performance requirements 
by the proper setting of power supply function [4-5]. 

As the increasingly sophisticated industrial systems, the 
nonlinear systems are required to be employed to describe 
their dynamic behaviors. Unfortunately, the controller design 
process also becomes complicated. Via the representation of 
Takagi-Sugeno Fuzzy Model (T-SFM), the nonlinear control 
problems can be recast to linear problems [7]. However, the 
dynamic of practical applications may not be accurately 
described and obtained by nonlinear systems [8]. The 
equipment will also have aging, wear and so on due to long-
term works. The factors which degrade control performances 
can be thought of as uncertain problems. The type-1 T-SFM 
based control approach such as [4-5] didn’t have enough 
capacity to deal with uncertainties. Therefore, the Interval 
Type-2 (IT-2) T-SFM and Fuzzy Controller (FC) have been 
developed to represent and control the uncertain nonlinear 
systems [9-10]. Via the IT-2 T-SFM, researchers have also 
successfully developed the IT-2 Membership Function (MF) 
dependent filter design for the disturbance problem [11]. 

B 
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By leveraging the advantage of being insensitive to the 
effect of uncertainties and disturbances, the Sliding Mode 
Control (SMC) still has been frequently utilized nowadays. 
With type-1 and IT-2 T-SFMs, the Fuzzy Sliding Mode (FSM) 
controller have developed for the control of nonlinear systems 
[12]. There are many researchers successfully using the SMC 
to enhance the performance of Tracking Control (TC) for 
practical applications [13]. Solving the formation problem of 
NMASs, some SMC approaches have been developed [14]. 
However, the SMC inputs consist of nonlinear form, which 
will increase the difficulties in the controller design of 
practical systems. For a single autonomous ship, some 
researchers have verified the effectiveness of FSM controller 
in the dynamic control problem [15]. However, it is limited by 
the capacity of type-1 T-SFM in describing the uncertain 
factors. With the IT-2 T-SFM, the SMC not only can be 
designed with a simpler construction but also can deal with the 
uncertainties and disturbances more completely. 

Motivated by the reasons, an IT-2 F-and-C FSM controller 
design approach is proposed for the NMASs under the effect 
of uncertainties and disturbances in this research. Based on the 
IT-2 T-SFM and Imperfect Premise Matching (IPM) concept 
[10], the IT-2 F-and-C FCs are developed, whose Membership 
Functions (MFs) can be designed with different rules and 
forms from the T-SFM. Then, Lyapunov theory is selected to 
implement the stability analysis. Due to the homogeneity, a 
simpler analysis process is proposed for the formation 
purpose. Consequently, the SMC approach is conveniently 
utilized for the IT-2 FC design to further improve the 
formation performance of leaders. Moreover, the passive 
constraint in [4-5] is extended into the IT-2 F-and-C FC 
design to solve the disturbance problem. Via the linear 
analysis methods in [16-17], the containment analysis problem 
is solved. To evidence the advantage of the designed IT-2 F-
and-C FCs with SMC, a Nonlinear Multi-Ships System 
(NMSS) is considered for the simulation. 

Compared with the related control issue in the existing 
research, the main contribution and novelty of this research 
are provided as the following table and statements. 

 
TABLE I 

COMPARISON WITH EXISTING RESEARCH 

 
(1) For most of applications using M-A system such as 
autonomous aerial and surface vehicles, their dynamics consist 
of nonlinearities. The F-and-C control for linear M-A systems  
in [18-20] may not be appropriate. 

(2) The F-and-C control approach has been developed for 
NMASs in [21]. However, the F-and-C controllers are 
designed with nonlinear forms. This feature will increase the 
difficulty in practical applications. 
(3)-(4) Including but not limited to [18-21], the additional item 
in the F-and-C controllers has been established to specify the 
dynamic of whole M-A systems. Nevertheless, there isn’t a 
systematic design process for the control gain of this item. 
Referring to Remark 2 in [19], one can know that the gain 
isn’t easy to be found for time-varying formation. Moreover, 
the additional assumption for the completion of leader’s 
formation is required in the containment analysis of [18-21].  
(5) Different from the existing F-and-C control approach, the 
formation is achieved by the individual FSM TC of each 
leader in this research. Thus, the signal transmission problems 
between leaders, which are farthest from each other in the F-
and-C problem, are efficiently avoided. The complexity of 
stability analysis process is also reduced. Developing the 
simpler and more convenient controller design approach to 
ensure the performance of leaders, which are most essential 
agents in whole system, is very beneficial. Significantly, the 
time-varying formation and the assignment of whole system 
dynamics can be achieved at the same time by the FSM TC 
approach without additional controller. 
 (6) By virtue of the IT-2 T-SFM, the controller design 
problem for NMASs can be recast to linear problem. It is 
worth noticing that the analysis method for linear M-A 
systems in [16] can be utilized to solve the containment 
problem without the additional assumption. There are still 
hardly papers discussing the control problem of NMASs with 
IT-2 T-SFM [22-23]. However, the containment problem has 
only been considered in [22-23], which set leaders as open-
loop systems. The stability of leaders is also necessary to be 
ensured in practical situations. Via the IT-2 F-and-C FCs, the 
stability and formation are both achieved for leaders. 

The organization of this research are presented as follows. In 
Section II, the IT-2 T-SFM is established for NMASs. Then, the 
IT-2 F-and-C FCs are developed by the IPM and SMC. In 
Section III, the stability analyses for the F-and-C purposes are 
proposed. In Section IV, a simulation of the NMSS is provided. 
Some conclusions and future works are given in Section V. 

II. IT-2 T-SFM AND PROBLEM STATEMENTS 
For NMASs with uncertainties and disturbances, the IT-2 T-

SFM and the IPM IT-2 F-and-C FCs are developed in this 
section. Then, the F-and-C problems are also stated. 

A. System Description 
Firstly, the following IT-2 T-SFM is presented for the 

NMASs with the problem of uncertainties and disturbances. 
 

Model Rule µ : 

If ( )1 tβϑ  is 1µΦ  and ( )2 tβϑ  is 2µΦ  and…and ( )tβϑ


 is µΦ


  

Then 
( ) ( ) ( ) ( )
( ) ( ) ( )+

x t x t u t w t
y t x t w t

β β β β
µ µ µ

β β β
µ µ

 = + +
 =

A B D
C E



          (1) 

 [18-20] [21] [22-23] This 
Research 

(1) System Linear Nonlinear Nonlinear Nonlinear 
(2) Controller Design Linear Nonlinear Linear Linear 
(3) Additional 

 Controller Required Required Unnecessary Unnecessary 

(4) Additional 
Assumption  Required Required Unnecessary Unnecessary 

(5) Communication 
Between Leaders Required Required Unnecessary Unnecessary 

(6) IT-2 T-SFM  Without Without With 
(Containment) 

With 
(Containment 

and 
Formation) 
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where ( ) qx tβ ∈ , ( ) pu tβ ∈   and ( ) my tβ ∈  are the state, 
input and output vectors, µA , µB , µC , µD  and µE  are the 

constant matrices, ( )tβ
εϑ  is the premise variable, µεΦ  is the 

IT-2 fuzzy set, 1, 2,..., , 1, 2,...,β φ φ φ φ τ= + + +  is the agent’s 
number, 1, 2,...,ε =   and 1,2,...,µ ν=  are the numbers of 

premise variable and fuzzy rule, ( ) hw tβ ∈  denotes the 
disturbance, which is selected as the Gaussian white noise in 
this research. For the IT-2 T-SFM (1), the firing strength is 
obtained as follows by referring to [9-10]. 
 

( )( ) ( )( ) ( )( ),t t tβ β β
µ µ µϑ ϑ ϑ = Φ Φ Φ ,           (2) 

where upper and lower bound MFs are denoted as  
( )( ) ( )( )1

0t tβ β
µ µε εε

ϑ ϑ
=

Φ = Φ ≥∏  ,   (3) 

( )( ) ( )( )1
0t tβ β

µ µε εε
ϑ ϑ

=
Φ = Φ ≥∏  .   (4) 

 
In (3)-(4), ( )( )tβ

µε εϑΦ  and ( )( )tβ
µε εϑΦ  are the lower and 

upper bound MFs satisfying the relationship  
( )( ) ( )( )0 1t tβ β

µε ε µε εϑ ϑ≤ Φ ≤ Φ ≤ . ( )( )tβ
µ ϑΦ  and 

( )( )tβ
µ ϑΦ  are lower and upper grades of membership with 

the relationship  ( )( ) ( )( )0 1t tβ β
µ µϑ ϑ≤ Φ ≤ Φ ≤ . As a result, 

the IT-2 T-SFM (1) is inferred into the following form. 
 

( ) ( )( ) ( ) ( ) ( ){ }
1

x t t x t u t w t
ν

β β β β β
µ µ µ µ

µ

ϑ
=

= Φ + +∑ A B D

  (5) 

( ) ( )( ) ( ) ( ){ }
1

+y t t x t w t
ν

β β β β
µ µ µ

µ

ϑ
=

= Φ∑ C E           (6) 

 
IT-2 MF in the IT-2 T-SFM (5)-(6) is obtained with (3)-(4) as 

 
( )( ) ( )( ) ( )( )t t tβ β β

µ µ µϑ ϑ ϑΦ = Ω Φ  

( )( ) ( )( )t tβ β
µ µϑ ϑ+Ω Φ .      (7) 

where ( )( )
1

1t
ν

β
µ

µ

ϑ
=

Φ =∑  , ( )( )tβ
µ ϑΩ   and ( )( )tβ

µ ϑΩ  are 

the nonlinear functions related to the uncertainties, which 
aren’t required to be known,  ( )( ) ( )( ) 1t tβ β

µ µϑ ϑΩ + Ω = , 

( )( )0 1tβ
µ ϑ≤ Ω ≤  and ( )( )0 1tβ

µ ϑ≤ Ω ≤ . 

 
With the IT-2 T-SFM (5)-(7), the IT-2 FCs can be 

developed for NMASs to achieve the requirement of F-and-C. 
For followers, the interaction relationship in the IT-2 
Containment Fuzzy Controller (CFC) is defined according to 
the graph theory in the following definition. 

 
Definition 1: Considering an undirected graph 

( )Θ , ,= ℵ C , the node set and edge set are respectively 

represented as { }1 2, ,..., φ τ+ℵ = N N N  and ⊆ ℵ×ℵC  so that 

( ),β α ∈N N C  denotes there is an edge between the nodes 

βN  and αN . The node set ( ){ }: ,α β α= ∈ℵ ∈A N N N C  is 

defined for the neighbors of node βN . Based on the definition 
of node and edge sets, the adjacency matrix 

( ) ( )φ τ φ τ
βα

+ × + = ∈  a , whose element values 1βα =a  and 

0βα =a  respectively denote the situations ( ),β α ∈N N C  and 

( ),β α ∉N N C , is constructed to describe the relationship of 

all nodes. The degree matrix ( ) ( )d φ τ φ τ
ββ

+ × + = ∈   , in which 

1
d φ τ

ββ βαα

+

=
= ∑ a  and α β≠ , is also obtained. Therefore, the 

Laplacian matrix is obtained with = −L   . 
 
Note that nodes in ℵ  and edges in C  of the graph Θ  
respectively indicate each agent and the interaction between 
agents. In the NMASs, the total number φ  of leaders, which 
are labeled from 1 to φ , is considered. Otherwise, the 
followers are labeled from 1φ +  to φ τ+  with total number 
τ . Then, the Laplacian matrix is further constructed as 
 

( ) ( )

FL FF

φ τ φ τφ φ φ τ + × +× × 
= ∈ 

 

0 0
L

L L
                   (8) 

where matrices FFL  and FLL  represent the interaction 
topology among all followers and from leaders to followers, 

φ φ×0   and φ τ×0  are the zero matrices.  

Then, the Jordan canonical of matrix FFL  is defined with 
1

FF FF
−= T L TI , in which T  is a nonsingular matrix. Besides, 

the eigenvalues in each diagonal position of FFI  is defined as 
βλ  for 1, 2,...,β φ φ φ τ= + + + . 
In this research, the IT-2 T-SFM is also established as 

follows for the target trajectory of leaders in the NMASs. 
 

( ) ( )( ) ( ){ }
1

d dx t t x t
ν

β β β
µ µ

µ

ϑ
=

= Φ∑ A

    (9) 

( ) ( )( ) ( ){ }
1

d dy t t x t
ν

β β β
µ µ

µ

ϑ
=

= Φ∑ C                (10) 

where ( )dx tβ  and ( )dy tβ  denote the target trajectory for the 
states and outputs. 

 
Dividing the IT-2 T-SFM (5)-(7), the IT-2 T-SFM of 

leaders and followers can be represented as follows. For 
leaders, the tracking model is obtained by subtracting the 
target model (9)-(10) from the IT-2 T-SFM (5)-(6). 

 

( ) ( )( ) ( ) ( ) ( ){ }
1

x t t x t u t w t
ν

β β β β β
µ µ µ µ

µ

ϑ
=

= Φ + +∑ A B D


   (11) 
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( ) ( )( ) ( ) ( ){ }
1

+y t t x t w t
ν

β β β β
µ µ µ

µ

ϑ
=

= Φ∑ C E

   (12) 

1, 2,...,for β φ=          

where ( ) ( ) ( )dx t x t x tβ β β= −  and ( ) ( ) ( )dy t y t y tβ β β= −  
denote the tracking error of states and outputs. For followers, 
the IT-2 T-SFM is also presented as follows. 
 

( ) ( )( ) ( ) ( ) ( ){ }
1

x t t x t u t w t
ν

β β β β β
µ µ µ µ

µ

ϑ
=

= Φ + +∑ A B D

  (13) 

( ) ( )( ) ( ) ( ){ }
1

+y t t x t w t
ν

β β β β
µ µ µ

µ

ϑ
=

= Φ∑ C E  (14) 

1, 2,...,for β φ φ φ τ= + + +          
Then, the IT-2 Formation Fuzzy Controller (FFC) and CFC 

can be proposed for leaders and followers of the NMASs by 
using the FSM TC approach. In the rest of research, the 
premise variables in the MFs are omitted and β

µΦ  is applied to 

replace ( )( )tβ
µ ϑΦ . For all the other MFs, the expression is 

also changed with the same manner. 

B. IT-2 F-and-C FCs 
Using the IPM design concept [10], the different fuzzy rule 

number and form of IT-2 MF can be selected for the IT-2 FC 
design. Because of this reason, the IT-2 F-and-C FCs for the 
leaders and followers are presented as follows. 

 
Leader’s FFC Rule η : 

If ( )1 tβϑ  is 1ηΨ  and ( )2 tβϑ  is 2ηΨ  and…and ( )tβϑ


 is ηΨ


  

Then ( ) ( ) ( )eq su t u t u tβ β β= +         1, 2,...,for β φ=         (15) 

where ( )equ tβ  and ( )su tβ , which are designed as follows, are 
the controller of sliding motion and the controller to force 
system dynamic to the sliding surface. 
 

( ) ( )equ t x tβ β
η= F  ,  (16) 

( ) ( )( )
1

1
su t sgn S t

ν
β β β

µ µ
µ

δ
−

=

 
= − Φ ⋅ ⋅ 

 
∑ SB ,        (17) 

in which the sliding surface is defined as 

( ) ( ) ( )( )0

t
S t x t x dβ β β= − ∫S  D s s ,  (18) 

where { }
1 1

ςν
β β
µ η µ µ η

µ η= =

= Φ Ψ +∑∑ A B FD  and β
ηΨ  will be defined 

in the latter context. 
 
Follower’s CFC Rule η : 

If ( )1 tβϑ  is 1ηΨ  and ( )2 tβϑ  is 2ηΨ  and…and ( )tβϑ


 is ηΨ


  

Then ( ) ( ) ( )( )u t x t x tβ β α
η βα

α∈

= −∑K
A

a          

1, 2,...,for β φ φ φ τ= + + +        (19) 
where ηF  and ηK  are the control gains, S  is the constant 

matrix such that the µSB  is ensured to be positive definite, δ  
is the sliding gain, 1, 2,...,η ς=  is the rule number of FC. 
Thus, the firing strength for IT-2 F-and-C FCs (15)-(19) is 
defined as follows. 

,β β β
η η η = Ψ Ψ Ψ                               (20) 

where lower and upper grades of membership are 
 

1
0

ηε

β β
η ε =

Ψ = Ψ ≥∏ 

 and 
1

0β β
η ηεε =

Ψ = Ψ ≥∏ 

.    (21) 

 
The MFs β

ηεΨ  and 
ηε

βΨ  also satisfy the condition 

0 1β β
ηε ηε≤ Ψ ≤ Ψ ≤ . Then, the inferred IT-2 F-and-C FCs are 

obtained for (15)-(19) by (21) as follows. 
 

( ) ( ) ( ){ }
1

eq su t u t u t
ς

β β β β
η

η =

= Ψ +∑   

1, 2,...,for β φ=        (22) 

( ) ( ) ( )( )
1

u t x t x t
ς

β β β α
η η βα

η α= ∈

 = Ψ − 
 

∑ ∑K

A

a  

1, 2,...,for β φ φ φ τ= + + +        (23) 

where  

1

β β β β
η η η ηβ

η ς
β β β β
κ κ κ κ

κ =

Ψ + Ψ
Ψ =

Ψ + Ψ∑

 



 

 and 
1

1
ς

β
η

η =

Ψ =∑  . In (22)-(23), 

β
η  and β

η  are predefined functions with 0 1β
η≤ ≤ , 

0 1β
η≤ ≤  and 1β β

η η+ =  .  
 
Via the IT-2 CFC (23), the containment purpose for 

followers is achieved with the interaction relationship, which 
satisfies the following assumption, among all agents. 

 
Assumption 1: There is not less than one interaction from 

each leader to followers. 
 
If Assumption 1 is satisfied for agents in the NMASs, a lemma 
is also given for the Laplacian matrix (8) as follows. 

 
Lemma 1 [22-23]: All the eigenvalues of matrix FFL  

consist of the positive real part. The sum of each row in 
1

FF FL
−−L L , whose elements are nonnegative, is equal to one. 

 
Therefore, the following closed-loop IT-2 T-SFMs are 

obtained by respectively substituting the control inputs (22)-
(23) into IT-2 T-SFMs (11)-(14). For leaders, one can obtain 
 

( ) ( )( ) ( ){
1 1

L L L
Lx t x t

ςν

µη µ µ η
µ η= =

= Λ ⊗ +∑∑ I A B F 

   

( ) ( ) ( ) ( )}L L
L s Lu t w tµ µ+ ⊗ + ⊗I B I D    (24) 

( ) ( ) ( ) ( ) ( ){ }
1

+
v

L L L L
L Ly t x t w tµ µ µ

µ =

= Φ ⊗ ⊗∑ I C I E

       (25) 
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where L L L
µη µ ηΛ = Φ Ψ   with 

1 1
1

v
L

ς

µη
µ η= =

Λ =∑∑  , LI  is the identity 

matrix whose dimension is related to leader’s number, ⊗  is 

the Kronecker product, ( ) ( ) ( ) ( ) T1 2L t t t tφ =       

and ( )L t  denotes the vectors ( )Lx t , ( )L
su t , ( )Lu t , ( )Ly t , 

( )Lw t , ( )Lx t . For followers, the following IT-2 T-SFM is 
obtained. 
 

( ) ( ) ( ){
1 1

F F F
F FFx t x t

ςν

µη µ µ η
µ η= =

= Λ ⊗ + ⊗∑∑ I A L B K

  

( ) ( ) ( ) ( )}L F
FL Fx t w tµ η µ+ ⊗ + ⊗L B K I D  (26) 

( ) ( ) ( ) ( ) ( ){ }
1

+F F F F
F Fy t x t w t

ν

µ µ µ
µ =

= Φ ⊗ ⊗∑ I C I E   (27) 

where F F F
µη µ ηΛ = Φ Ψ  , FI  is the identity matrix whose 

dimension is related to follower’s number, 

( ) ( ) ( ) ( ) T1 2F t t t tφ φ φ τ+ + + =       and ( )F t  

denotes the vectors ( )Fx t , ( )Fy t , ( )Fw t . 
 
Dealing with the disturbance in the IT-2 T-SFMs (24)-(27), 

the passive constraint in [4-5] is extended as follows. 
 

Lemma 2: The closed-loop IT-2 T-SFM (24)-(25) for 
leaders is strictly input passive if the following relationship for 
all 0pt ≥  and ( ) 0w tβ ≠  is satisfied with the given positive 

scalar Lγ  and matrix LH . 
 

( ) ( ) ( ) ( )T T

0 0
2 p pt tL Ly t w t dt w t w t dtβ β β βγ>∫ ∫H  

1, 2,...,for β φ=         (28) 
 

Lemma 3: The closed-loop IT-2 T-SFM (26)-(27) for 
followers is strictly input passive if the following relationship 
for all 0pt ≥  and ( ) 0Fw t ≠  is satisfied with the given 

positive scalar Fγ  and matrix FH . 
 

( )( ) ( ) ( ) ( )T T

0 0
2 p pt tF F F F F F

e Fy t w t dt w t w t dtγ⊗ >∫ ∫I H     (29) 

where ( )F
ey t  will be introduced in the later context. Via 

satisfying the passive constraints (28)-(29), the disturbance 
energy can be dissipated to better complete the F-and-C tasks. 
Thus, the F-and-C problems are stated as follows. 
 

Problem 1: If the stability of the tracking error ( )x tβ
  is 

guaranteed, then the formation task can be completed by 
assigning the different target trajectories for each leader. 
Referring to [16], the containment task of followers is 
completed if there exist the gain ηK  such that the upper bound 

for the peak-to-peak gain from the ( )Lu t  to the containment 

error, which is defined as ( )Fe t , is minimized. 
However, the conservative result is also caused due to the 

minimization and passive constraint even the containment 
problem in Problem 1 is solved. By considering the IT-2 FC 
design approach in [10] and the following analysis approach 
for linear M-A systems in [17], the analysis process of IT-2 
CFC design in this research can be efficiently relaxed. 

 
Lemma 4 [17]: Rearranging all the eigenvalues βλ  in 

diagonal of the matrix FFI  in accordance with the sequence 

{ } { } { }1 2 ...Re Re Reφ φ φ τλ λ λ+ + +< < < , if the condition 

{ } { }1 2 3 0Re Imϖ ϖλ λ+ + <Ο Ο Ο   for 1, 2,3, 4ϖ =  is 

satisfied, where { }Re   and { }Im   are the real part and 
imaginary part of element  , then the condition 

{ } { }1 2 3 0Re Imβ βλ λ+ + <Ο Ο Ο  for 1, 2,...,β φ φ φ τ= + + +  

is also ensured. Note that { } { }1,2 1 maxRe j Imφ βλ λ λ+= ± , 

{ } { }3,4 maxRe j Imφ τ βλ λ λ+= ±  for 1, 2,...,β φ φ φ τ= + + + , 

and 1Ο , 2Ο , 3Ο  are the real symmetric matrices. 

III. IT-2 F-AND-C FC DESIGN AND STABILITY ANALYSIS 
In accordance with the IT-2 T-SFMs (24)-(27) and passive 

constraints (28)-(29), an IT-2 F-and-C FC design approach is 
proposed for NMASs in this section. Firstly, the IT-2 FCC 
design process is presented as follows.  
 

Theorem 1: If the following condition is ensured, then the 
tracking errors of IT-2 T-SFM (24)-(25) can be forced to the 
sliding surface with the FSM TC (22). 

 

( )
1

w t
ν

β β
µ µ

µ

δ
=

> Φ ⋅∑ SD          (30) 

Referring to [5], the analysis process of Theorem 1 is provided 
in Appendix. Via Theorem 1, the tracking errors can follow 
the dynamic of sliding surface, which is controlled by the 
following theorem. 

 
Theorem 2: If there exist the matrix ηU , the positive 

definite matrices LG  and L
µηY , the symmetric matrix LZ  such 

that the following sufficient conditions are satisfied with the 
given scalars Lγ , 

1 2

L
i i iµη ρσ





, 
1 2

L
i i iµη ρσ





 and the given matrix LH , 
the IT-2 T-SFM (24)-(25) is stable in the mean square and the 
formation task in Problem 1 is completed for leaders. 
 

, 0L
L µη >G Y             (31) 

0L L
µη µη− + <Γ Y Z         for all ,µ η    (32) 

( )( 1 2 1 2 1 2
1 1

v
L L L L

i i i i i i i i i

ς

µη ρ µη µη ρ µη ρ µη
µ η

σ σ σ
= =

− −∑∑ Γ Y
  

  

           

 )1 2
0L L L

i i iµη ρσ+ − <Z Z




    for all 1 2, ,..., ,i i i ρ


 (33) 
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where 
1 2

L
i i iµη ρσ





 and 
1 2

L
i i iµη ρσ





 are the constant parameters 

depending on the upper and lower bound IT-2 MFs, which 
will be introduced in the following derivation process, 

T T T

T T

*L L
L L L L

L h

µ µ µ η η µ
µη

µ µ µ µγ
 + + +

=  − − −  

A G G A B U U B
Γ

D H C G I E H H E
, 

Lη η=U F G , 1
L L

−=G P  and * is the transport item in matrix. 
 
Proof 

It is worth noticing that the stability analysis process only 
needs to be developed for one leader because of the 
homogeneity. Therefore, the candidate Lyapunov function for 
leader 1 is firstly selected as follows. 
 

( ) ( ) ( )T1 1 1V Lt x t x t= P       (34) 
 
Then, the following differential of (34) is derived. 
 

( )1 1

1 1
V t

ςν

µη
µ η= =

= Λ∑∑   

( ) ( )T
T T T

1 1
T

*
0

L L L L

L

t tµ µ µ η η µ

µ

  + + + ×   
    

P A A P P B F F B P
X X

D P
    (35) 

where ( ) ( ) ( )T T T
1 1 1t x t w t =  X  . Then, the passive 

constraint is considered for the design of IT-2 FFC. Referring 
to (28), the following cost function is defined for leader 1. 
 

( ) ( ) ( ) ( )( )T T1 1 1 1

0
2pt L Lw t w t y t w t dtγ −∫ H        (36) 

 
From (35)-(36), the following relationship with passive 
performance can be obtained. 
 

( ) ( ) ( ) ( )( )T T1 1 1 1

0
2pt L Lw t w t y t w t dtγ −∫ H  

( ) ( ) ( ) ( ) ( )( ) ( )T T1 1 1 1

0
= 2 V Vpt L Lw t w t y t w t t dt tγ − + −∫ H   

( ) ( ) ( ) ( ) ( )T T1 1 1 1

0
2 Vpt L Lw t w t y t w t t dtγ≤ − +∫ H        (37) 

 
Then, the integrand in the right-hand side of inequality (37) is 
derived as follows. 
 

( )T1 1

1 1
t

ςν

µη
µ η= =

Λ∑∑ X   

( )
T T T

1
T T

L L L L
L L L L

L

*
tµ µ µ η η µ

µ µ µ µγ
 + + +

× − − −  

P A A P P B F F B P
X

D P H C I E H H E
  

 (38) 
To combine the information of IT-2 MF into the analysis 
process, the following definition is provided. 
 

( )( ) ( )( )1 1 1 1 1 1 1t tµη µ η µη µη µη µηψ ϑ ψ ϑΛ = Φ Ψ = Λ + Λ       (39) 

where ( )( )1 tµηψ ϑ  and ( )( )1 tµηψ ϑ  are also the functions not 

necessary to be known due to 1
µΩ  and 1

µΩ , and 
1 10 1µη µη≤ Λ ≤ Λ ≤ . Then, the MFs in (39) can be further 

constructed with the following form. 
 

( )( )
1 2

1

2 2
1 1

1 1 1 1

r
L

i i i i
i i

t
εµη ε ρ ε µη ρ

ρ ε

ϑ σ
= = = =

Λ = ∑∑ ∑∏








 X ,     (40) 

( )( )
1 2

1

2 2
1 1

1 1 1 1

r
L

i i i i
i i

t
εµη ε ρ ε µη ρ

ρ ε

ϑ σ
= = = =

Λ = ∑∑ ∑∏








 X ,     (41) 

which satisfy the situations
1 2 1 2

0 1L L
i i i i i iµη ρ µη ρσ σ≤ ≤ ≤

 

 

, 

( )( )10 1i t
εε ρ εϑ≤ ≤X , ( )( ) ( )( )1 1

1 2 1t tε ρ ε ε ρ εϑ ϑ+ =X X for all 

1 2i ,ε =  and 1 2, ,...,ε =  , where ( )( )1
gi

tε ρ εϑX  is the so-called 

cross term, which isn’t related to fuzzy rules µ  and η .The 
parameter ρ  is designed according to the r  connected sub-
state space, which is defined as ρ . The state space of interest 

is obtained with 1
r
ρ ρ==   . The detailed information can be 

referred to [10]. Then, (38) is inferred as follows with (39) by 
multiplying ( ),L hdiag G I  on both sides, where ( )diag   
denotes the diagonal matrix with the elements  . 
 

( ) ( ) ( ){ }T1 1 1 1 1 1

1 1
t t

ςν

µη µη µη µη µη
µ η

ψ ψ
= =

Λ + Λ∑∑ X Γ X        (42) 

 
Slack matrices are also introduced with the following form. 
 

1 1 1 1

1 1
1 0L

ςν

µη µη µη µη
µ η

ψ ψ
= =

 
Λ + Λ − = 

 
∑∑ Z  

 ( )( )
1 1

1 0L
ςν

µη µη µη µη
µ η

ψ
= =

− − Λ − Λ ≥∑∑ Y                (43) 

 
Thus, the following relationship is obtained from (42)-(43). 
 

( ) ( ) ( ){ }T1 1 1 1 1 1

1 1
t t

ςν

µη µη µη µη µη
µ η

ψ ψ
= =

Λ + Λ∑∑ X Γ X   

( ) ( )( ) ( )T1 1 1 1 1 1

1 1

L L Lt t
ςν

µη µη µη µη µη µη
µ η= =

 
≤ Λ − Λ − Λ +Λ − 

 
∑∑X Γ Y Z Z X   

( ) ( )( ) ( ){ }T1 1 1 1

1 1

L Lt t
ςν

µη µη µη µη
µ η

ψ
= =

− Λ − Λ − +∑∑ X Γ Y Z X   

(44) 
Based on the representation of (40)-(41), the first item in the 
right-hand side of (44) is further expressed as follows by 
extracting cross term. 
 

( 1 2
1

2 2
1

1 1 1 1

r
L

i i i i
i i

εε ρ µη ρ µη
ρ ε

σ
= = = =

∑∑ ∑∏ Γ








 X  

( ) )1 2 1 2 1 2

L L L L L L
i i i i i i i i iµη ρ µη ρ µη µη ρσ σ σ− − + −Y Z Z

  

  

 (45) 
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According to the definition of (39)-(41) and the relationship 
(44)-(45), the negative definiteness of (42) can be ensured if 
the sufficient conditions (31)-(33) are satisfied by Theorem 2. 
The cost function (36) is also ensured to be negative because 
of the inequality (37). Consequently, the passive performance 
constraint (28) for leader 1 is achieved. Besides, the stability 
of leader 1 in the IT-2 T-SFM (24)-(25) can also be proved by 
ensuring (35) to be negative with the negative definiteness of 
(42) when the disturbance ( )1 0w t =  is set. The analysis 
method is similar to the type-1 passive FC design approach in 
[4-5] and isn’t going to provide in this research.  

Therefore, the better stability and resistance to the effect of 
uncertainties and disturbances can be ensured for the tracking 
error dynamic of leader 1 by Theorems 1 and 2. Notably, the 
stability of tracking error, passive performance and the 
convergence to sliding surface of all the other leaders can also 
be achieved by Theorems 1 and 2. If the leaders have ability to 
track the target trajectories, the formation in Problem 1 is 
obviously achieved by designing the different target 
trajectories for each leader.  

 
Remark 1: For the F-and-C control approach, the function 

of leaders is to construct a specific convex region such that all 
the followers can be contained. In other words, if the better 
control performances can be ensured for leaders, the 
performance of followers, whose dynamic behaviors heavily 
depend on leaders, are certainly ensured. Thus, a simpler and 
more convenient controller design scheme for leaders can 
provide many benefits in practical applications. Moreover, 
various performance constraints can also be easily combined 
with the proposed IT-2 FFC design approach. 

 
Theorem 3: If there exist the matrix ηJ , the positive 

definite matrices FG  and F
µηY , the symmetric matrix FZ , the 

scalar ℘  such that the following sufficient conditions are 

satisfied with the given scalars Fγ , 
1 2

F
i i i gµησ





, 
1 2

F
i i i gµησ





, ℑ  

and given matrix FH , the containment purpose in Problem 1 
is achieved for followers. 

 
, 0F

F µη >G Y             (46) 

0F Fϖ
µη µη− + <Ξ Y Z   

  for all ,µ η  and 1,2,3, 4ϖ =     (47) 

( )( 1 2 1 2 1 2
1 1

v
F F F F

i i i g i i i g i i i g

ς
ϖ

µη µη µη µη µη
µ η

σ σ σ
= =

− −∑∑ Ξ Y
  

  

 

)1 2
0F F F

i i i gµησ+ − <Z Z




 

  for all 1 2, ,..., ,i i i g


 and 1,2,3, 4ϖ =     (48) 

2 0
*

F F

q

 
> 

℘  

G G
I

 

   (49) 

{ }2min ℘    (50) 

where 
1 2

F
i i i gµησ





 and 
1 2

F
i i i gµησ





 are the IT-2 MF parameters, 

which is obtained with the similar process of (39)-(41), 

TT T T

T T

T

* *

*
0

F

F F
F F F F

L h

p

ϖ
µ µ η

ϖ
ϖ µ η µ
µη

µ µ µ µ

µ

γ

 +
 
 + + + ℑ

=  
− − − 

 − −ℑ 

A G B J

G A J B GΞ
D H C G I E H H E

B I

   

   

  





T

T , 

{ } { }
{ } { }

q q

q q

Re Im

Im Re

ϖ ϖ

ϖ

ϖ ϖ

λ λ

λ λ

 −
 =
 
 

I I

I I

 

 

T , Fη η=J K G  , 

( ),diagµ µ µ=    is defined for system matrices 

, , , , , , Fµ µ µ µ µ µ η= A B C D E K G  and 1
F F

−=G P .  
 
Proof 

To solve Problem 1 for followers, the containment error is 
defined with the interaction relationship as follows. 
 

( ) ( ) ( ) ( )1F F L
FF FL qe t x t x t−= + ⊗L L I            (51) 

 
With (51), the following error dynamic system is obtained by 
considering (24) and (26). 
 

( ) ( ) ( ) ( )1F F L
FF FL qe t x t x t−= + ⊗L L I    

( ) ( ){
1 1

F F
F FF e t

ςν

µη µ µ η
µ η= =

= Λ ⊗ + ⊗∑∑ I A L B K  

( ) ( ) ( ) ( )}1 L F
FF FL Fu t w tµ µ
−+ ⊗ + ⊗L L B I D    (52) 

It is worth noticing that the disturbance effect is dissipated by 
the IT-2 FFC designed with Theorems 1 and 2 for leaders such 
that the disturbance in the IT-2 T-SFM (24) is neglected in the 
containment analysis. However, the IT-2 FFC also results in 
the containment analysis problem of error dynamic system 
(52). Extending the result in [16], this analysis problem is also 
solved in this research as follows. Firstly, the containment 
error (51) is transferred as follows by considering Lemma 1. 

 

( ) ( ) ( )
1

e t x t x t
φ

β β α
βα

α

θ
=

= + ∑            (53) 

 
where βαθ  denotes the ( ),β α -th element of matrix 1

FF FL
−L L  

which satisfies the conditions 0βαθ− ≥  and 
1

1φ
βαα

θ
=

− =∑ . 

Then, the leader’s input signal is reconstructed as 
 

( ) ( )
1

:cu t u t
φ

β α
βα

α

θ
=

= −∑    for  1, 2,...,β φ φ φ τ= + + + .   (54) 

 
According to ( ) ( ) ( ) ( ) ( ) ( )T T T

2u t u t u t u t u t u tα α α≤ +   , the 
following relationship can be obtained. 
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( ) ( ) ( ) ( )T T

1 1
c cu t u t u t u t

φ φ
β β α

βα β
α

θ θ
= =

= ∑∑ 





 

( ) ( ) ( ) ( )( )T T

1 1

1
2

u t u t u t u t
φ φ

α α
βα β

α

θ θ
= =

≤ +∑∑  





      

2
2 2

1
u u

φ

βα
α

θ
=

 
≤ = 

 
∑                                         (55) 

where u  denotes the upper bound of leader’s input. In [16], an 
assumption has been given for ensuring the boundedness of 
leader’s input, which is also unnecessary in this research since 
the stability of leaders have already been ensured by Theorems 
1 and 2. Then, the item related to leader’s input in (52) can be 
represented as follows. 
 

( ) ( ) ( ) ( )1 L L
FF FL F cu t u tµ µ
− ⊗ = − ⊗L L B I B        (56) 

where ( ) ( ) ( ) ( ) T1 2L
c c c cu t u t u t u tφ φ φ τ+ + + =    satisfies the 

condition ( ) 2 2L
cu t uτ≤  with (55). Therefore, the error 

dynamic system (52) can be further represented into the 
following form with (56). 
 

( ) ( ) ( ){
1 1

F F F
F FFe t e t

ςν

µη µ µ η
µ η= =

= Λ ⊗ + ⊗∑∑ I A L B K

  

( ) ( ) ( ) ( )}L F
F c Fu t w tµ µ− ⊗ + ⊗I B I D             (57) 

 
Then, the output of IT-2 T-SFM (27) is also extended for the 
containment error as follows. 
 

( ) ( ) ( ) ( ) ( ){ }
1

+F F F F
e F Fy t e t w t

ν

µ µ µ
µ =

= Φ ⊗ ⊗∑ I C I E    (58) 

Applying the nonsingular matrix T , the Jordan canonical 
form of (57)-(58) is obtained as follows. 
 

( ) ( ) ( ){
1 1

F F F
F FFe t e t

ςν

µη µ µ η
µ η= =

= Λ ⊗ + ⊗∑∑ I A B K 

 I  

( ) ( ) ( ) ( )}L F
F c Fu t w tµ µ− ⊗ + ⊗I B I D               (59) 

( ) ( ) ( ) ( ) ( ){ }
1

+F F F F
e F Fy t e t w t

ν

µ µ µ
µ =

= Φ ⊗ ⊗∑ I C I E

      (60) 

where ( ) ( ) ( )-1=F F
qe t e t⊗T I , ( ) ( ) ( )-1=F F

dw t w t⊗T I , 

( ) ( ) ( )-1=F F
e h ey t y t⊗T I  and ( ) ( ) ( )-1L L

c q cu t u t= ⊗T I . Then, 

the IT-2 T-SFM (59)-(60) is further expressed as follows. 
 

( ) ( ) ( ){
1 1

e t e t
ςν

β β β β
µη µ µ η

µ η= =

= Λ +∑∑ A B K

    

 T  

( ) ( )}cu t w tβ β
µ µ− +B D  

                    (61) 

( ) ( ) ( ){ }
1

+ey t e t w t
ν

β β β β
µ µ µ

µ =

= Φ∑ C E   

                        (62) 

where ( ) ( ){ } ( ){ } T
T Tt Re t Im tβ β β =  



  

   , ( )tβ


  denotes 

the vectors ( )e tβ


 , ( )w tβ


 , ( )ey tβ


  and ( )cu tβ


  in (61)-(62) and 

{ } { }
{ } { }

q q

q q

Re Im

Im Re

β β

β

β β

λ λ

λ λ

 −
 =
 
 

I I

I I
T . To solve Problem 1, the 

following Lyapunov function is defined. 
 

( ) ( ) ( )T
VF

Ft e t e tβ β= P 

         (63) 

where ( ),F F Fdiag=P P P . Referring to [16], the following 
ellipsoid is also defined for the error dynamic. 
 

( ) ( ) ( ){ }T 2: | Fe t e t e t uβ β β= ≤P  

                 (64) 

 
Then, if the following inequality is satisfied, then the ellipsoid 
(64) is ensured to be an attractive invariant set. 

 

( )V 0F t <

                                   (65) 

where ( ) ( ) ( ) ( ) ( )( )T
V V + VF F F

c ct t t u t u tβ β= ℑ −

  

   , ℑ  is a 

positive scalar. However, the error dynamic system (61)-(62) 
is also affected by the disturbance, which makes the 
containment purpose difficult to be achieved well. To deal 
with the disturbance effect by the passive constraint in Lemma 
3, the following cost function is also selected. 
 

( ) ( ) ( ) ( )( )T T

0
2pt F Fw t w t y t w t dtβ β β βγ −∫ H   

             (66) 

 
From the condition (65) and cost function (66), the following 
inequality can be established. 
 

( ) ( ) ( ) ( )( )T T

0
2pt F Fw t w t y t w t dtβ β β βγ −∫ H   

      

( ) ( ) ( ) ( ) ( )( ) ( )T T

0
2 V Vpt F F F F

pw t w t y t w t t dt tβ β β βγ= − + −∫ H 

     

    

    

( ) ( ) ( ) ( ) ( )T T

0
2 Vpt F F Fw t w t y t w t t dtβ β β βγ≤ − +∫ H 

    

            

      (67) 
Then, the integrand of the right-hand side of (67) is presented 
into the following form. 
 

( ) ( ) ( ){ }T

1 1

F F F F t t
ςν

β β β
µη µη µη µη µη

µ η

ψ ψ
= =

Λ + Λ∑∑ X X 

 

      (68) 

where ( ) ( ) ( ) ( )T T T T T

ct e t w t u tβ β β β =  X   

    and 

( )
( )

T

T T

T

* *

*
0

F

F F

F F F F
F h

F p

β
µ µ η

β
β µ µ η
µη

µ µ µ µ

µ

γ

 + 
 + + + ℑ =
 − − − 

− −ℑ  

A B K P

P A B K P

D P H C I E H H E
B P I

   

   



      



 

T

T . 
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Via the same process of (39)-(41), the IT-2 MF dependent 
parameter 

1 2

F
i i i gµησ





 and 
1 2

F
i i i gµησ





 can be obtained and the sub 

state space g can be selected different from the leaders.  
Then, F

µηY  and FZ  are combined into the analysis process 
with the same form of (43). It is not difficult to find that if the 
conditions (46)-(48) are satisfied by Theorem 3, the cost 
function (66) can be ensured to be negative definite by 
referring to the analysis process (36)-(45) and Lemma 4. 
Considering the situation ( ) 0w tβ =

 , the condition (65) also 
can be satisfied with (46)-(48) such that the stability of error 
dynamic is also guaranteed to be in the attractive invariant set 
(64). Consequently, the conditions (49)-(50) can be derived as 
follows to solve the minimization problem in Problem 1 for 
containment purpose. Multiplying FG on both side and 
applying Schur complement to (49), the following inequality 
is obtained with 2 0F q

−−℘ >P I  and (64). 
 

( ) ( ) ( )( ) ( )T T2 2
F qu e t e t e t e tβ β β β−≥ > ℘P I   

             (69) 

where  ( )
2 2 2e t uβ <℘

 . If 2℘  is minimized with the 

condition (50) in Theorem 3, the dynamic of containment 
error also can be minimized based on (69). Therefore, the 
containment problem in Problem 1 is solved for followers. 

Finally, the passive constraint (29) is required to be proved 
with the cost function (66). Using the definition of signals in 
(61)-(62) and defining the maximum and minimization of 
eigen values for # 1− −T T  as 1T

λ −  and 1T
λ − , where #  denotes 

the conjugate transpose, the following inequality can be 
obtained from (66). 
 

( )( ) ( )1

T

T 0
2pt F F F

Fy t w t dtλ − ⊗∫ I H                           

( ) ( )1

T

T 0

ptF F Fw t w t dtλ γ−> ∫             (70) 

 
From the relationships from (70), it is obvious that the passive 
constraint (29) in Lemma 3 can also be satisfied by ensuring 
the negative definiteness of (66) if the parameter 

( )1 1T T
=F Fγ λ λ γ− −  in Theorem 3 is set. Accordingly, the 

proof is accomplished for Theorem 3. 
 
Remark 2: In the existing papers [18-21], the containment 

analysis is required to be implemented with the additional 
assumption for the completion of leader’s formation, which is 
unnecessary in Theorem 3. Although this assumption can 
fulfill the IT-2 CFC design, the collision of followers may be 
caused in practical applications because the containment is 
unable to be ensured until the formation is completed. 

 
 Via Theorem 1 to Theorem 3, a simulation of NMSS is 

given to illustrate the advantage of the proposed IT-2 F-and-C 
FC design approach in the next section. 

 IV. SIMULATION OF NMSS 
Referring to parameters in [24], the nonlinear ship dynamic 

systems can be extended to the following NMSS with 
uncertainties and disturbances. 

 
( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )1 3 4 3 5x t cos x t t x t sin x t t x tβ β β β β= + ∆ − + ∆  

(71) 
( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )2 3 4 3 5x t sin x t t x t cos x t t x tβ β β β β= + ∆ + + ∆  

(72) 
( ) ( )( ) ( )3 61x t t x tβ β= + ∆                       (73) 

( ) ( ) ( ) ( )4 4 10 0318 0 8870 0 1x t . x t . u t . w tβ β β β= − + +    (74) 

( ) ( ) ( ) ( )5 5 6 20 0628 0 0030 0 5415x t . x t . x t . u tβ β β β= − − +  

( ) ( )30 3152 0 1. u t . w tβ β+ +                  (75) 

( ) ( ) ( ) ( )6 5 6 20 0045 0 2427 0 3152x t . x t . x t . u tβ β β β= − − +  

( ) ( )38 0082 0 1. u t . w tβ β+ +                  (76) 

( ) ( ) ( )1 3y t x t w tβ β β= +                      (77) 

where ( )1x tβ , ( )2x tβ , ( )3x tβ  are the earth-fixed X position, Y 

position, yaw angle, and ( )4x tβ , ( )5x tβ , ( )6x tβ  are the ship’s 
body-fixed surge, sway, yaw angular velocity respectively, 

( )1u tβ , ( )2u tβ , ( )3u tβ  are the force and moment produced by 
the thrusters. Note that the uncertainties and disturbances are 
selected as ( ) ( )0 1t . sin t∆ =  and ( )w tβ  with the density 

1=W . Then, the following IT-2 T-SFM is constructed. 
 

( ) ( ) ( ) ( ){ }
3

1
x t x t u t w tβ β β β β

µ µ µ µ
µ =

= Φ + +∑ A B D

    (78) 

( ) ( ) ( ){ }
3

1
+y t x t w tβ β β β

µ µ µ
µ =

= Φ∑ C E            (79) 

where model matrices and IT-2 MF of IT-2 T-SFM (78)-(79) 
are given in Appendix.  

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120 LDR1 LDR2

LDR3 LDR4

FLR5 FLR6

FLR7 FLR8

FLR9 FLR10

FLR11

 
Fig. 1. F-and-C control problems of NMSS. 
 

Dividing the NMSS into four leaders and seven followers, 
the F-and-C control problems can be stated in Fig. 1. Note that 
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LDR denotes the leader ship and FLR denotes the follower 
ship. In this simulation, the four LDRs are required to be 
placed at vertices such that the square region can be formed. 
Then, all the FLRs are necessary to be contained in the region. 

With (9)-(10), the IT-2 T-SFM of target trajectory is also 
constructed via the same IT-2 MFs of (78)-(79). According to 
the ship positions in Fig. 1, Laplacian matrix is obtained for 
the containment purpose in Appendix. Then, the following IT-
2 F-and-C FCs are designed for LDRs and FLRs. 

 

( ) ( ) ( ){ }
2

1
eq su t u t u tβ β β β

η
η =

= Ψ +∑    1, 2,3, 4for β =        (80) 

( ) ( ) ( )( )
2

1
u t x t x tβ β β α

η η βα
η α= ∈

 = Ψ − 
 

∑ ∑K

A

a  

5,6,...,11for β =       (81) 
where the design of IT-2 MF for F-and-C FCs is also 
presented in Appendix. 
 

In this simulation, the norm of disturbance is assumed 
within 11. Thus, the sliding gain 10δ =  and the matrix 

{ } { }0,0,0 5,5,5diag diag=   S  are selected such that Theorem 
1 is satisfied and µSB  is the positive definite matrix.  

Then, dividing the state space with 30ρ =  and solving 

Theorem 2 with MATLAB according to 0.1Lγ = , 1L =H  and 
the IT-2 MFs in Appendix, the following gains are obtained 
for LDRs. 

 

1

30.8975 5.7778 1.5009 77.1708 14.9090 0.4183
7.3556 60.3299 1.7714 18.0812 160.0127 1.6802

0.2902 2.4320 6.1071 0.7079 6.4465 2.2626

− − − − 
 = − − − − 
 − − 

F  

      (82) 

2

25.8501 6.0774 1.3988 65.8357 15.7362 0.2274
7.3022 51.4029 2.1355 17.9898 136.3137 1.5656
0.2451 2.0857 5.8603 0.6067 5.5284 2.1521

− − − − − − 
 = − − 
 − − − − 

F  

     (83) 
Solving Theorem 3 with the setting of 0.1Fγ = , 1F =H , 

20g = , the parameter 0.01ℑ =  and the IT-2 MFs in 
Appendix, the following control gains are obtained for FLRs. 

 

3
1

2.8920 0.6187 0.0105 4.3293 0.9178 0.0022
10 0.7593 6.7497 0.2040 1.1251 10.0611 0.0165

0.0276 0.2537 1.2718 0.0409 0.3782 0.1888

− − 
 = × − − 
 − − − − 

K  

      (84) 

3
2

2.7946 0.3501 0.0173 4.1840 0.5184 0.0027
10 0.8628 6.6115 0.1229 1.2790 9.8550 0.0047

0.0336 0.2533 1.2675 0.0499 0.3775 0.1882

− − 
 = × − − 
 − − − − 

K  

 (85) 
Based on the initial condition of all LDRs and FLRs in 

Appendix, the responses of the NMSS (71)-(77) are obtained 
by the IT-2 F-and-C FCs (80)-(81) with the gains of (82)-(85) 
in Figs. 2-8. 

 
Fig. 2. Responses of X position of NMSS. 
 

 
Fig. 3. Responses of Y position of NMSS. 
 

Obviously, the desired dynamics of target trajectories are 
successfully tracked by the states of LDRs in Figs. 2 and 3. 
Even under the effect of disturbances, the state responses of all 
FLRs still can be forced into the interval between LDRs.  
 

 
Fig. 4. Responses of yaw angle of NMSS. 
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Fig. 5. Responses of surge motion of NMSS. 

 
Fig. 6. Responses of sway motion of NMSS. 

 
Fig. 7. Responses of yaw velocity of NMSS. 
 

According to Fig. 8, one can see that the time-varying target 
trajectories are all successfully tracked by LDRs with the IT-2 
FSM tracking controller (80). The formation is also achieved 
by the design of these trajectories. Significantly, it is 
witnessed that the problem of time varying formation and the 
assignment for the whole system dynamics can be solved by 
the IT-2 FSM TC approach without the additional item. 

 
Fig. 8. Trajectory of all ships in NMSS. 

 
Via the setting of target trajectories in Fig. 8, the F-and-C 

tasks with the situation that exists obstacles between the 
starting point and the destination can be efficiently completed. 
Moreover, the FLRs are all forced into the formation of LDRs 
almost in the first black dashed-square because of the IT-2 
CFC designed with Theorem 3. Then, all the FLRs are 
continuously maintained in the leader’s formation until to the 
destination. In the results of Figs. 2-7, the effect of 
uncertainties and disturbances is greatly reduced by the 
combination of SMC and passive constraint. Thus, the 
tracking performances are enhanced for the better formation 
by the simpler IT-2 FFC design process of leaders. 

Based on Remark 2, the simulation results of comparison 
are provided as follows. Note that the containment control 
problem based on (52) can be reduced to a typical problem for 
the following error dynamic system with the assumption. 

 

( ) ( ) ( ){ ( ) ( )}
1 1

F F F F
F FF Fe t e t w t

ςν

µη µ µ η µ
µ η= =

= Λ ⊗ + ⊗ + ⊗∑∑ I A L B K I D



 

  (86) 
Using the typical containment analysis method for (86), which 
can be referred to many existing papers, with the IT-2 FC 
design approach and the passive constraint (29), the following 
control gains are obtained with the same setting of (84)-(85). 
 

1

70.9705 2.0875 2.3714 292.9315 8.7239 0.8099
1.6494 74.3279 8.6324 6.6814 318.2871 6.1594

0.0436 2.8196 9.7772 0.1751 12.0744 7.4309

− − 
 = − − − − 
 − − 

K  

      (87) 

2

70.8147 2.5066 2.6904 292.2947 10.6723 1.0334
0.9486 74.7384 8.6047 3.5593 320.0415 6.1711
0.1657 2.8501 9.7526 0.6702 12.2047 7.4147

− − − − 
 = − − 
 − − − − 

K  

 (88) 
To make the comparison clearer, the point tracking problem 

is considered for Fig. 1. With the same initial and destination, 
the different trajectories can be obtained in Figs. 9 and 10 by 
the same IT-2 FFC (80) with gains (82)-(83) and the IT-2 CFC 
(81) respectively with (84)-(85) and (87)-(88). Note that the 
figure of ship’s trajectories is only presented to save the space. 
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Fig. 9. Point Tracking of all ships with assumption. 
 

 
Fig. 10. Point Tracking of all ships with Theorem 3. 

 
Comparing Figs. 9 and 10, the containment task of 

followers is completed almost at the end in Fig. 9 since the 
additional assumption. This reason will possibly lead to the 
collision between the obstacles, FLR 11 and FLR 5. Via the 
IT-2 CFC designed with Theorem 3, the followers are forced 
into the region between leaders faster. It is also verified that 
the assumption isn’t proper for the containment analysis. 

V. CONCLUSION 
An IT-2 FSM tracking approach is proposed for NMASs to 

solve the F-and-C control problem with uncertainties and 
disturbances in this research. Different from the existing 
papers, the formation is completed without the communication 
between leaders such that the signal transmission problems are 
efficiently avoided. Applying the IPM method and extending 
the results of linear M-A systems, a flexible design process 
can be provided for the IT-2 F-and-C FCs. Because a simpler 
analysis IT-2 FFC design process is provided, the SMC 
approach is conveniently combined to further enhance the 
formation performance. Moreover, the passive constraints are 
also combined to dissipate the disturbance energy for both 
leaders and followers. In the simulation, the proposed IT-2 
FSM controller achieves the good tracking performance and 

smooth trajectories for the requirement of F-and-C. Notably, 
the leaders play a critical role in the F-and-C problems. 
Because of this reason, how to apply a less-complicated or 
more convenient controller design process to achieve the 
better control performances for leaders is also an important 
issue. In the future, many requirements such as actuator fault 
and saturation can be considered for NMASs by using the IT-2 
F-and-C FC design scheme in this research.  

APPENDIX 

A. Stability Analysis of Theorem 1 
Firstly, the following Lyapunov function is selected based 

on sliding surface (18). 
 

( ) ( ) ( ) ( )T1 1 1V 1 2s t S t S t=          (89) 
 
Then, the derivative of (89) is obtained as follows. 
 

( ) ( ) ( )T1 1 1Vs t S t S t=    (90) 
where 

( ) ( ) ( ) ( ){ }1 1 1 1 1

1
S t x t u t w t

ν

µ µ µ µ
µ =


= Φ + +


∑S A B D


  

{ } ( )1 1 1

1 1
x t

ςν

µ η µ µ η
µ η= =


− Φ Ψ + 


∑∑ A B F

   (91) 

 
Substituting the IT-2 FFC (22) into (91), one can obtain 
 

( ) ( )( ) ( )1 1 1 1

1
S t sgn S t w t

ν

µ µ
µ

δ
=

= − ⋅ + Φ∑ SD
        (92) 

 
Based on (92), (90) can be derived as follows. 

 

( ) ( ) ( )( ) ( )T1 1 1 1 1

1
Vs t S t sgn S t w t

ν

µ µ
µ

δ
=

 
= − ⋅ + Φ 

 
∑ SD   

( ) ( ) ( )T1 1 1 1

1
S t S t w t

ν

µ µ
µ

δ
=

 
= − + Φ 

 
∑ SD  

( ) ( )1 1 1

1
w t S t

ν

µ µ
µ

δ
=

  
= − + Φ ⋅ ⋅     

∑ SD               (93) 

 
Obviously, if the condition (30) is satisfied by Theorem 1, the 
negative definite of (90) can be ensured from (93). Therefore, 
the convergence of tracking error dynamic to the sliding 
surface is also achieved. 

B. Model Matrices of IT-2 T-SFM for NMSS 
Selecting three operating points ( ) ( ) o

3 1 90opx tβ = , 

( ) ( ) o
3 2 0opx tβ =  and ( ) ( ) o

3 3 90opx tβ = − , the corresponding model 

matrices of IT-2 T-SFM (78)-(79) can be obtained for the 
NMSS (71)-(77) by the fuzzy modelling method as follows. 
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1

1

1

0 0 0 1 0
0 0 0 1 0
0 0 0 0 0 1
0 0 0 0.0318 0 0
0 0 0 0 0.0628 0.0030
0 0 0 0 0.0045 0.2427

θ
θ
− 

 
 
 

=  
− 

 − −
 

− −  

A , 

2

2

2

0 0 0 1 0
0 0 0 1 0
0 0 0 0 0 1
0 0 0 0.0318 0 0
0 0 0 0 0.0628 0.0030
0 0 0 0 0.0045 0.2427

θ
θ

− 
 
 
 

=  
− 

 − −
 

− −  

A , 

3

3

3

0 0 0 1 0
0 0 0 1 0
0 0 0 0 0 1
0 0 0 0.0318 0 0
0 0 0 0 0.0628 0.0030
0 0 0 0 0.0045 0.2427

θ
θ

 
 − 
 

=  
− 

 − −
 

− −  

A , 

T

1 2 3

0 0 0 0.8870 0 0
0 0 0 0 0.5415 0.3152
0 0 0 0 0.3152 8.0082

 
 = = =  
  

B B B , 

[ ]1 2 3 0 0 1 0 0 0= = =C C C , , 

[ ]T
1 2 3 0 0 0 0.1 0.1 0.1= = =D D D , 1 2 3 1= = =E E E , 

where ( )o
1 88cosθ = , ( )o

2 2sinθ =  and ( )o
3 88cosθ = − . 

C. IT-2 MF of T-SFM and FC for NMSS 
To cover the effect of uncertainties in the NMSS (71)-(77), 

the IT-2 MF is designed in the following figure by extending 
the type-1 MF in [15]. 
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Fig. 11. IT-2 MF of T-SFM. 
 

Then, the IT-2 MF of F-and-C FCs (80)-(81) is also 
designed for dealing with the effect of uncertainties as follows. 
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Fig. 12. IT-2 MF of F-and-C FCs. 

 
Based on the design of IT-2 MFs in Figs. 11 and 12, the 

control gains of (82)-(85) and (87)-(88) can be obtained with 
the mentioned setting. 

D. Interaction Relationship of NMSS 
Considering the position of all LDRs and FLRs in the F-

and-C problem of Fig. 1, the interaction relationship among all 
ships can be presented with the Laplacian matrix as follows. 

 
2 1 0 0 0 0 0
1 2 1 0 0 0 0

0 1 2 1 0 0 0
0 0 1 3 1 0 0
0 0 0 1 2 1 0
0 0 0 0 1 3 1
0 0 0 0 0 1 2

FF

− 
 − − 
 − −
 = − − 
 − −
 

− − 
 − 

L , 

and 

1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

FL

− 
 
 
 
 = − 
 
 

− 
 − 

L .   (94) 

E. Initial Condition and Destination of LDRs and FLRs 
For the F-and-C control problem in Fig. 1, the initial 

conditions of all ships are presented. Besides, the destination 
for four LDRs is also provided as follows. 
 

( ) [ ]T1 0 112 32 0 0 0 0x = , 

( ) [ ]T2 0 104 64 0 0 0 0x = , 

( ) [ ]T3 0 72 84 0 0 0 0x = , 

( ) [ ]T4 0 32 88 0 0 0 0x = , 
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( ) [ ]T5 0 120 20 0 0 0 0x = , 

( ) [ ]T6 0 128 40 0 0 0 0x = , 

( ) [ ]T7 0 128 52 0 0 0 0x = , 

( ) [ ]T8 0 104 72 0 0 0 0x = , 

( ) [ ]T9 0 88 88 0 0 0 0x = , 

( ) [ ]T10 0 56 80 0 0 0 0x = , 

and ( ) [ ]T11 0 40 104 0 0 0 0x = .         (95) 
 

The final positions for the destination of LDRs are set as 
 

T1 16 / 2 0 0 0 0 0desx  =   , 
T2 32 / 2 16 / 2 0 0 0 0desx  =   , 
T3 16 / 2 32 / 2 0 0 0 0desx  =   , 

and 
T4 0 16 / 2 0 0 0 0desx  =   .           (96) 
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