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Abstract—Wireless powered cellular networks (WPCNs) are
promising solution for the future wireless communication
systems. This paper proposes a system model of WPCNs, in which
the cellular users (CUs) and the device-to-device (D2D) users har-
vest energy from the hybrid access point (HAP). Some D2D users
can help the cell-edge CU to relay its uplink/downlink transmis-
sion in exchange for the D2D communication opportunity. For
achieving green WPCNs, we formulate two energy efficiency (EE)
maximization problems for both uplink and downlink transmis-
sions, respectively. The energy beamformer of the HAP and the
time resource allocation are jointly optimized subject to the trans-
mission rate requirements and the available energy constraints of
CUs and D2D users. Based on the fractional programming the-
ory and semi-definite relaxation (SDR) method, we transform the
originally non-convex EE maximization problems into the equiv-
alent convex problems. This allow us to develop the resource
allocation algorithm toward global optimization. The optimal
solution in semi-closed form is derived based on Lagrangian
method. Extensive simulation results are provided to demonstrate
the convergence of the proposed iterative algorithm and the EE
gain of the proposed system over the other two baselines.

Index Terms—Wireless information and power transfer, coop-
eration transmission, energy efficiency.

I. INTRODUCTION

IN THE design of the future fifth-generation (5G) wireless
networks, energy harvesting is envisioned as a key tech-

nique to enable the perpetual lifetime for wireless devices and
cut the last wire [1]–[4]. Harvesting power from renewable
sources, such as solar and wind, is a viable solution to prolong
the operation lifetime of wireless devices [5]–[7]. However, the
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unstable nature of renewable energy harvesting may hinder its
deployment for various applications with strict quality of expe-
rience (QoE) requirements in the future 5G wireless networks.
On the other hand, the radio frequency (RF) signal aided wire-
less power transfer (WPT) has been envisioned as a promising
technique to provide stable and controllable energy supply for
wireless devices in the upcoming 5G era [8]–[11]. In a wire-
less powered cellular network (WPCN), the mobile devices
are capable of harvesting energy from the RF signal trans-
mitted by the hybrid access point (HAP) for powering their
own information communications [12]–[15]. Nevertheless, the
performance of the WPCN is fundamentally restricted by the
low power transmission efficiency and the short transmission
range [16]–[19].

In order to overcome these limits in the cooperative
networks, [20] proposed a harvest-then-cooperate protocol,
where a single-antenna HAP broadcast the energy to the source
and the relays, then the source and relay pair may upload
the information to the HAP by exploiting the energy har-
vested from the HAP. This model was then extended to the
multi-antenna scenario [21], where the HAP is equipped with
multiple antennas for improving the system performance. With
the aid of the relay, the coverage of the WPCN can be sub-
stantially extended. However, a pair of critical drawbacks are
observed in the literature related to the cooperative WPCN.
First, it is costly to deploy the dedicated relay station for assist-
ing the information transmission. By contrast, user cooperation
is an efficient way to improve the information transmission
performance [22]. However, mobile terminals sometimes are
reluctant to consume its own energy for forwarding other’s
information. Therefore, it is necessary to design an incen-
tive scheme for encouraging the beneficial user cooperation.
Second, most of the existing works focus on optimizing the
wireless powered uplink information transmission but ignore
the downlink scenario.

Although the optimization of spectrum efficiency becomes
the main trend in the previous studies on cooperative
WPCNs [21]–[24], the energy efficiency (EE) evaluated by
the unit of the bits-per-joule is another performance indi-
cator [25]–[27] for the future wireless networks, especially
for the WPT-based systems. Reference [28] investigates the
network energy efficiency (EE) maximization of a conven-
tional WPCN. The same group of authors further study
the user-centric EE optimization in [29]. Zhou et al. [30]
concentrate on energy-efficient power control and spectrum
resource allocation in wireless powered device to device
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(D2D) underlay networks. By exploiting stochastic geometry
method and optimization theory, Shang et al. [31] study the EE
of a wireless-powered D2D-assisted offloading network from
a system-level perspective. However, the maximum achievable
EE of the cooperative WPCN has not been investigated yet.
In particular, it is very difficult to optimize the system EE
of cooperative WPCN by jointly developing the cooperation
scheme and the resource allocation algorithm.

In order to fill this gap, this paper investigates the energy-
efficient resource scheduling in a cooperative WPCN. The
main contributions of this paper are summarized as follows.

1) User Cooperation Protocol: Different from the existing
works, we first propose the user cooperation protocols for both
the downlink and the uplink communications in the WPCN,
where the users harvest energy from the HAP, and then the
selected D2D user consumes a part of harvested power to assist
the cell-edge CU for uplink or downlink information relay so
that it can acquire additional time resources from the CU for
its own D2D communication.

2) Joint Energy Beamforming and Time Splitting
Optimization Model: The EE of the downlinks in the
cooperative WPCN and that of the uplink counterpart
can be maximized, respectively, by jointly optimizing the
beamformer of the multi-antenna assisted HAP, the resource
allocation in the time domain, and the division of the
harvested energy between CU information forwarding and
own transmission at the D2D pair, while satisfying the user
transmission rate requirement as well as the energy casuality
constraint.

3) Global Optimal Resource Allocation Strategy: By
exploiting the Dinkelbach’s algorithm and the semi-definite
relaxation (SDR) method, we transform the original non-
convex EE maximization problems into the convex ones,
which allow us to design the resource allocation algorithm
to obtain the global optimal solution. In order to get more
insights, we further derive the optimal solution in semi-closed
form by exploiting the Lagrangian method.

4) Improvement of Energy Efficiency: The simulation results
demonstrate that the proposed energy-efficient resource alloca-
tion algorithms converges to the optimal solution within a few
iterations. Furthermore, the proposed EE-optimal cooperative
WPCN outperforms both the throughput-optimal counterpart
and the cooperative WPCN with single-antenna HAP, in terms
of energy efficiency.

The rest of the paper is organized as follows. Section II
presents the related work. In Section III, we introduce the
system model and explain the uplink and downlink cooperation
protocols. In Sections IV and V, we maximize the EE of the
downlink and that of the uplink in the cooperative WPCN,
respectively. Simulation results are provided in Section VI,
followed by the conclusion of Section VII.

II. SYSTEM MODEL

As shown in Fig. 1, this paper considers a typical wire-
less powered cellular network (WPCN), where a pair of D2D
transmitter (DT) and D2D receiver (DR) coexists with a cel-
lular user (CU) via spectrum overlaying [32], [33], i.e., the

(a)

(b)

(c)

Fig. 1. System model. (a) Wireless powered cellular networks. (b) Uplink
cooperation protocol. (c) Downlink cooperation protocol.

DT can transmit the information to the DR, only if the CU
finishes its transmission. The HAP is connected to the power
grid for obtaining the stable energy supply. By contrast, all
the users are equipped with rechargeable batteries and they
can charge their batteries by harvesting the energy from the
downlink signal transmitted by the HAP [12].

In this paper, we focus on a scenario that the CU is far
away from the HAP. Therefore, the direct link between the
HAP and the CU fails to satisfy the transmission require-
ment of the CU. As a result, the CU has to seek for the
assistance from the D2D pair in order to successfully trans-
mit/receive the information to/from the remote HAP. For the
sake of relaying the information, the DT consumes a certain
energy harvested from the HAP to assist the uplink/downlink
information transmission of the CU. When the communication
requirement of the CU is satisfied, the DT can use the remain-
ing duration of the time block to transmit its own information
to the DR. Clearly, the CU can benefit from the cooperation
due to the shorter communication range compared to the direct
communication with the HAP. Meanwhile, although the DT
consumes energy on helping the CU, the longer transmission
time can compensate its transmission rate loss caused by the
cooperation. This is because the gain from the cooperation
transmission reduces the CU’s transmission time and allows
the HAP to allocate more time for information transmission
instead of energy transfer.

A. Channel Model

It is assumed that the HAP is equipped with N antennas to
transmit energy and infomation signal in the downlink and
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TABLE I
SUMMARY OF KEY NOTATIONS

only a single antenna is conceived for uplink information
reception. In addition, the other terminals are equipped with
a single antenna for either the energy harvesting or the
information transmission. All channels in our system obey
the quasi-static flat-fading, where the channel state remains
constant during each time block, but possibly varying from
one time block to another [16]. The channel coefficients of
the downlinks between the HAP and the CU/DT are denoted
by the complex vectors hC ∈ C

N×1 and hD ∈ C
N×1,

respectively. Let gCH , gDH , gCD , and gDD denote the uplink
channels between the CU and the HAP, that between the DT
and the HAP, that between the CU and the DT, as well as
that between the DT and the DR, respectively. We assume
that the HAP can obtain the global channel state information
(CSI) to act as a central controller for promoting cooperation
between D2D and cellular users [20]. The key notations are
summarized in TABLE I for easy reference.

Note that in the scenario with multiple cell-edge CUs and
multiple D2D pairs, the D2D pair is prioritized to forward the
cell-edge CU’s information with larger min{|gDH |2, |gCD |2}.
Intuitively, it can achieve the transmission rate requirement
of the cell-edge CU, meanwhile without consuming excessive
energy of the D2D pair. In this paper, we focus on the energy-
efficient cooperation protocol design and resource allocation
in a WPCN with single CU and single D2D pair. The method-
ology can be directly extended to the scenario with multiple
CUs and multiple D2D pairs.

B. Uplink Cooperation Protocol

The cooperation protocol for the uplink communication is
illustrated in Fig. 1(b). Each time block is divided into four
phases, with time durations of τ1, τ2, τ3 and τ4, respectively.
Next, we will discuss the four phases of the uplink cooperation
protocol.

1) Phase One: The HAP broadcasts the deterministic
energy signal to the CU and the DT. Hence, the energy
harvested by the CU and DT are calculated as

EC = ητ1w
H
0 HCw0 (1)

and

ED = ητ1w
H
0 HDw0, (2)

respectively, where we have HC = hChHC , HD = hDhHD ,
while η ∈ (0, 1] denotes the energy conversion efficiency
assumed equal for all energy-harvesting devices, and w0 ∈
C
N×1 is the downlink beamforming vector of the HAP. In

Eqs. (1) and (2), the noise power is negligibly low, when
compared to the power of the received signal [34].

2) Phase Two and Three: After the phase of WPT, the CU
and DT cooperatively upload the CU’s information to the HAP.
Specifically, in phase two, the CU broadcasts information to
both the DT and HAP. We assume that the users may deplete
all the harvested energy for powering the information transmis-
sion [29], [35]. Let N0 denote the noise power at all receivers.
Thus, the information transmission rate of the direct CU-HAP
link is expressed as

RCH = τ2 log

(
1 +

η|gCH |2τ1wH
0 HCw0

τ2N0

)
. (3)

In the third phase, the DT decodes the information trans-
mitted by the CU and then forward the decoded information
to the HAP. According to the principle of decode-and-forward
relaying [3], the cooperative uplink rate of the CU can be
formulated as

Ru
C = min{RCH + RDH ,RCD}, (4)

where RDH and RCD denote the achievable rate of the trans-
mission from the DT to the HAP and that of the transmission
from the CU to the DT, respectively. The transmission rates
RDH and RCD can be formulated as

RDH = τ3 log

(
1 +

|gDH |2P (3)
D

N0

)
, (5)

RCD = τ2 log

(
1 +

η|gCD |2τ1wH
0 HCw0

τ2N0

)
, (6)

respectively, where P
(i)
D , i ∈ {3, 4} represents the transmis-

sion power of the DT during the i-th phase.
3) Phase Four: After the cooperation phase, the DT trans-

mit its own information to the DR. The rate achieved by the
DT in its D2D transmission can be expressed as

RDD = τ4 log

(
1 +

|gDD |2P (4)
D

N0

)
. (7)

The uplink energy efficiency is defined as the ratio of
the total information rate to the corresponding total energy
consumption of the system, which is expressed as

ηuEE =
Ru
C + RDD

τ1‖w0‖2
. (8)
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C. Downlink Cooperation Protocol

The downlink cooperation protocol is portrayed in Fig. 1(c).
Each time block is divided into three phases having the time
durations of t1, t2, and t3, respectively. In the first phase,
the HAP broadcasts the modulated signal to both the CU and
the DT. Thus, the information rate of the direct HAP-CU is
expressed as

RHC = t1 log

(
1 +

wH
1 HCw1

N0

)
, (9)

where w1 denotes the transmit beamforming vector from the
HAP to users. The DT adopts a fixed power splitting scheme
having portion ρ of the received signal for the energy har-
vesting, while having the rest of the received signal for the
information decoding. Therefore, the harvested energy and the
achievable rate of the HAP-DT link are formulated as

ED = ηρt1w
H
1 HDw1, (10)

RHD = t1 log

(
1 +

(1− ρ)wH
1 HDw1

N0

)
, (11)

respectively.
In the second phase, the DT decodes the downlink

information from the HAP and then forwards the decoded
information to the CU by exploiting the harvested energy.
As a result, the achievable rate of cooperative downlink
transmission can be obtained as

Rd
C = min{RHC + RDC ,RHD}, (12)

where RDC represent the achievable rate of the transmission
from the DT to the CU, which is expressed as

RDC = t2 log

(
1 +

|gCD |2P (2)
D

N0

)
, (13)

where P
(i)
D , i ∈ {2, 3} represents the transmission power of

the DT during the i-th phase.
After finishing the downlink transmission, the DT transmit

its own information to the DR. The rate achieved by the DT
is expressed as

RDD = t3 log

(
1 +

|gDD |2P (3)
D

N0

)
. (14)

Similar to the uplink scenario, the downlink energy efficiency
is then formulated as

ηdEE =
Rd
C + RDD

t1‖w1‖2
. (15)

Based on the proposed uplink/downlink cooperation pro-
tocol, we will discuss the uplink/downlink resource allocation
problem in the following sections. Energy efficiency is adopted
as the objective function to achieve green cooperative WPCNs.

III. UPLINK ENERGY EFFICIENCY OPTIMIZATION

In this section, we aim for maximizing the uplink energy
efficiency by jointly optimizing the beamforming vector of the
HAP, the time domain resource allocation, and the division
of the harvested energy between CU information forward-
ing and own transmissions at the D2D user, which can be
formulated as

max
τ ,w0,PD

ηuEE =
Ru
C + RDD

τ1‖w0‖2

s.t. C1:

4∑
i=1

τi ≤ T ,

C2: ‖w0‖2 ≤ PH ,max,

C3: τ3P
(3)
D + τ4P

(4)
D ≤ ED ,

C4: Ru
C ≥ rc ,RDD ≥ rdd ,

C5: τi ≥ 0, i ∈ {1, 2, 3, 4},
C6: P

(i)
D ≥ 0, i ∈ {3, 4}. (16)

In problem (16), C1 and C5 are the time constraints. C2 rep-
resents that the transmit power of the HAP should not exceed
its maximum PH ,max during the downlink WPT. C3 indi-
cates the energy causality of the DT, which indicates that the
energy used for information transmission should not exceed
the energy harvested. In C4, rc and rdd denote the minimum
transmission rate requirement of the CU and that of the DT,
respectively. C6 guarantees the positive solution for optimal
transmit power.

A. Problem Transformation and Solution

Due to the non-convexity of problem (16), it is very dif-
ficult to tackle. By relying on the variable substitution, we
equivalently transform the original problem (16) into a more
tractable form. Then, the Dinkelbach-type algorithm is adopted
for designing an iterative algorithm for solving the transformed
fractional optimization problem. Due to the rank-one con-
straint, the inner-layer optimization problem is NP-hard. The
semi-definite relaxation method is then applied to solve this
NP-hard problem.

The coupled time variables and power variables make it
challenging to solve (16) in its current form. Let us introduce
v0 =

√
τ1w0, ε(3)D = τ3P

(3)
D and ε

(4)
D = τ4P

(4)
D . Then, the

problem (16) can be reformulated as

max
τ ,v0,εD ,Ru

C

Ru
C + τ4 log

(
1 +

|gDD |2ε(4)D
τ4N0

)

‖v0‖2
s.t. C7: ‖v0‖2 ≤ τ1PH ,max,

C8: ε
(3)
D + ε

(4)
D ≤ ηvH0 HDv0,

C9: Ru
C ≤ RCH + RDH

= τ2 log

(
1 +

η|gCH |2vH0 HC v0
τ2N0

)

+ τ3 log

(
1 +

|gDH |2ε(3)D

τ3N0

)
,
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C10: Ru
C ≤ RCD = τ2 log

(
1 +

η|gCD |2vH0 HC v0
τ2N0

)
,

C1, C4− C5. (17)

Then, we exploit the fractional structure of the EE expression
to reformulate the problem (17):

max
τ ,v0,εD ,Ru

C

Ru
C + τ4 log

(
1 +

|gDD |2ε(4)D

τ4N0

)
− η∗EE‖v0‖2

s.t. C1, C4− C5, C7− C10. (18)

where η∗EE is the optimal EE of the resource allocation
problem (17). According to [26], Dinkelbach’s algorithm can
be applied to obtain global optimal η∗EE . The key of this
algorithm is to alternately solve the following optimization
problem:

max
τ ,V0,εD ,Ru

C

Ru
C + τ4 log

⎛
⎝1 +

|gDD |2ε(4)D

τ4N0

⎞
⎠− uTr(V0)

s.t. C11: Tr(V0) ≤ τ1PH ,max,

C12: ε
(3)
D + ε

(4)
D ≤ ηTr(HDV0),

C13: Ru
C ≤ RCH + RDH

= τ2 log

(
1 +

η|gCH |2Tr(HCV0)

τ2N0

)

+ τ3 log

⎛
⎝1 +

|gDH |2ε(3)D

τ3N0

⎞
⎠,

C14: Ru
C ≤ RCD = τ2 log

(
1+

η|gCD |2Tr(HCV0)

τ2N0

)
,

C15: V0 � 0,

C16: Rank(V0) = 1,

C1, C4− C5. (19)

where V0 = v0v
H
0 represents the energy transmission covari-

ance matrix, and u is an update parameter. The procedure of
the proposed uplink resource allocation algorithm is summa-
rized in Algorithm 1.

The computational complexity of the Algorithm 1 can
be divided into two parts, namely the iteration number and
the computational complexity in each iteration. According
to [26], the Dinkelbach-type algorithm exhibits a super-linear
convergence rate. At each iteration of Algorithm 1, the com-
putational complexity of solving rank-relaxation problem (19)
is O((a2b + a3)b

1
2 ) [36], where a = N 2 + 7 denotes the

decision variable and b = 8 is the constraint.
Furthermore, we discuss the application of the proposed

model and approach in a practical wireless powered cellu-
lar network. The AP first conducts channel estimation via
forward-link training or reverse-link feedback. After obtaining
the global channel state information (CSI), the AP then exe-
cutes the proposed energy-efficient resource allocation algo-
rithm for getting optimal time assignment, energy beamform-
ing design, and energy allocation between CU information
forwarding and own transmission at the D2D pair. Next, the
corresponding resource allocation parameters are broadcasted
by the AP in the downlink. Finally, the system will operate
according the optimal resource allocation parameters.

Algorithm 1: Uplink Resource Allocation Algorithm

1 Initialize: set initial EE, i.e., u(0) = 0, the error
tolerance threshold ε, and flag = 0.

2 Repeat:
3 Solve the SDR of problem (19) for a given u(n) to

obtain {τ (n),w
(n)
0 ,P

(n)
D };

4 if (Ru(n)
C + R

(n)
DD − η(n)E

(n)
tot ) ≤ ε then

5 {τ∗,w∗
0,PD

∗} = {τ (n),w
(n)
0 ,P

(n)
D };

6 ηuEE = u∗ =
R

u(n)
C +R

(n)
DD

E
(n)
tot

;

7 flag = 1;

8 else

9 u(n+1) =
R

u(n)
C +R

(n)
DD

E
(n)
tot

;

10 n = n + 1;

11 Until: flag = 1;
12 Obtain optimal resource allocation:
13 {τ∗,w∗

0,P
∗
D}.

Lemma 1: The proposed Algorithm 1 can converge to the
global optimal solution.

Proof: Before the proof, we define

G(u) = max
x

{Ru
c (x ) + RDD (x )− uEtot (x )}, (20)

where x = {τ ,V0, εD ,RC } denotes the optimization variable
set of the problem (19). According to [37], the function G(u)
has the following characterizations:

• G(u) is monotonically decreasing.
• For any x and ux =

Ru
c (x)+RDD (x)

Etot (x)
, we have

G(ux ) ≥ 0, and the equality holds when x =
argmax

x
{Ru

c (x ) + RDD (x )− uxEtot (x )}.

Given the iteration rule for u in Algorithm 1, we have

G
(
u(n)

)
=
{
Ru
c

(
x∗(n)

)
+ RDD

(
x∗(n)

)
− u(n)Etot

(
x∗(n)

)}

=
(
u(n+1) − u(n)

)
Etot

(
x∗(n)

)
≥ 0. (21)

Since Etot (x
∗(n)) > 0, it follows u(n+1) ≥ u(n). According

to the decreasing property of G(u), we have G(u(n+1)) ≤
G(u(n)). Integrating with the compactness of the feasible set,
thus, Algorithm 1 converges.

Next, we will prove that Algorithm 1 can converge to the
global optimal solution by contradiction. It is assumed that the
limit point of {u(n)} satisfies u < u∗. Then, we have G(u) >

G(u∗). For the convergence point u =
Ru

c (x)+RDD (x)
Etot (x)

, we
have x = argmax

x
{Ru

c (x )+RDD (x )−uxEtot (x )}. Therefore,

G(u) = 0. Meanwhile, we also know G(u∗) = 0, which is a
contradiction.

B. Optimal Solution for Problem (19)

In this section, we concentrate on solving the problem (19)
for a given u, and derive its optimal solution via lagrangian
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duality method. By removing the rank constraint C16, the SDR
of problem (19) becomes convex, which can be solved by a
variety of convex optimization solver, such as MOSEK. Then,
we prove the tightness of the relaxation, and further obtain the
optimal solution of the problem (19) in semi-closed form by
leveraging the lagrangian method.

Theorem 1: The SDR of problem (19) is convex.
Proof: Firstly, we prove the concavity of τ4 log(1 +

|gDD |2ε(4)D
τ4N0

) over τ4 and ε
(4)
D . According to [38], if f (x) is a con-

cave function, its perspective function g(x, t) = tf (x/t) is also

concave. Obviously, log(1+
|gDD |2ε(4)D

N0
) is a concave function

of ε
(4)
D . Thus, its perspective function τ4 log(1 +

|gDD |2ε(4)D
τ4N0

)

is a concave function of τ4 and ε
(4)
D . As a result, the objec-

tive function in the problem (19) is convex. Similarly, RCH ,
RDH , RDD and RCD in the problem (19) are also concave
functions. Thus, their corresponding constraints C4, C13 and
C14 are convex. The other constraints in the SDR of problem
(19) are linear with respect to {τ ,V0, εD ,RC }. Hence, the
SDR of problem (19) is proved to be a convex optimization
problem.

Theorem 2: If the problem (19) is solvable, there exists
an optimal V∗

0 for the SDR of problem (19) such that
Rank(V∗

0) = 1.
Proof: See Appendix A.
Theorem 2 declares that the rank constraint relaxation is

tight. Therefore, the global optimal solution to the resource
allocation problem (16) can always be found by our proposed
algorithm. Since the SDR of (19) is convex and satisfies
Slater’s condition, the strong duality holds. In order to gain
more insights, the lagrangian method is applied to derive the
optimal solution of problem (19). The lagrangian of (19) is
given by

L1 = Ru
C + τ4 log

(
1 +

|gDD |2ε(D)
4

τ4N0

)
− uTr(V0)

+ a1
(
τ1PH ,max − Tr(V0)

)
+ a2

(
ηTr(HDV0)− ε

(3)
D − ε

(4)
D

)

+ a3

(
τ2 log

(
1 +

η|gCH |2Tr(HCV0)

τ2N0

)

+ τ3 log

(
1 +

|gDH |2ε(3)D

τ3N0

))

+ a4

(
τ2 log

(
1 +

η|gCD |2Tr(HCV0)

τ2N0

)
− Ru

C

)

+ a5

(
T −

4∑
i=1

τi

)
+ a6(R

u
C − rC )

+ a7

(
τ4 log

(
1 +

|gDD |2ε(4)D

N0τ4

)
− rdd

)
, (22)

where a1 − a7 are the non-negative lagrangian multipliers
associated with the inequality constraints of (19).

Theorem 3: The optimal solution (ε∗D , τ∗) of (19) is
given by

ε
(3)∗
D = τ∗3

[
a∗3

a∗2 ln 2
− N0

|gDH |2
]+

, (23)

ε
(4)∗
D = τ∗4

[
1 + a∗7
a∗2 ln 2

− N0

|gDD |2
]+

, (24)

τ∗1 =

⎧⎪⎪⎨
⎪⎪⎩

T −
4∑

i=2
τ∗i a∗5 > 0

∈
(
0,T −

4∑
i=2

τ∗i
]

a∗5 = 0

(25)

τ∗2 =
−η|gCD |2Tr(HCV∗

0

)
N0

⎛
⎝1 + 1

W
(
−exp

(
−
(

a∗5 ln 2

a∗3+a∗4
+1

)))
⎞
⎠
, (26)

τ∗3 = − |gDH |2ε(3)∗D

N0

⎛
⎝1 + 1

W
(
−exp

(
−
(

a∗5 ln 2

a∗3
+1

)))
⎞
⎠
, (27)

τ∗4 = − |gDD |2ε(4)∗D

N0

⎛
⎝1 + 1

W
(
−exp

(
−
(

a∗5 ln 2

1+a∗7
+1

)))
⎞
⎠
, (28)

where [x ]+ = max(x , 0), and W(x ) is the Lambert W func-
tion defined as the solution for W(x )exp(W(x )) = x [39].

Proof: See Appendix B.

IV. DOWNLINK ENERGY EFFICIENCY OPTIMIZATION

Besides the cooperative uplink transmission, the energy-
efficient downlink transmission design is another significiant
objective for cooperative WPCNs. In this section, we investi-
gate the optimal beamforming and time allocation in order to
maximize the system downlink EE, the optimization problem
is formulated as:

max
t ,w1,PD

ηdEE =
Rd
C + RDD

t1‖w1‖2

s.t. C1’:
3∑

i=1

ti ≤ T ,

C2’: ‖w1‖2 ≤ PH ,max,

C3’: t2P
(2)
D + t3P

(3)
D ≤ ED ,

C4’: Rd
C ≥ rc ,RDD ≥ rdd ,

C5’: ti ≥ 0, i ∈ {1, 2, 3},
C6’: P (i)

D ≥ 0, i ∈ {2, 3}, (29)

In problem (29), C1’ denotes that the total cooperative trans-
mission duration cannot exceed the time block length T. C2’
restricts the maximum transmission power PH ,max at the
HAP. C3’ represents that the consumed energy of D2D user
should be not higher than its harvested energy. C4’ guaran-
tees the target transmission rate at the CU and D2D user.
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Obviously, the problem (29) is hard non-convex. In the next,
we will convert it to an equivalient convex model.

If we use the similar variable substitution as adopted in
Section IV-A, i.e., V1 = t1w1w

H
1 , ε(2)D = t2P

(2)
D and ε

(3)
D =

t3P
(3)
D , the problem (29) can be rewritten as

max
t,V1,εD ,Rd

C

Rd
C + τ3 log

(
1 +

|gDD |2ε(3)D
t3N0

)

Tr(V1)

s.t. C7’: Tr(V1) ≤ t1PH ,max,

C8’: ε
(2)
D + ε

(3)
D ≤ ηρTr(HDV1),

C9’: Rd
C ≤ RHC + RDC

= t1 log

(
1 +

Tr(HCV1)

t1N0

)

+ t2 log

⎛
⎝1 +

|gCD |2ε(2)D

t2N0

⎞
⎠,

C10’: Rd
C ≤ RHD = t1 log

(
1 +

(1− ρ)Tr(HDV1)

t1N0

)
,

C11’: V1 � 0,

C12’: Rank(V1) = 1,

C1’, C4’ − C5’. (30)

Due to the fractional structure of the EE, the problem (30)
is still non-convex. Based on the Dinkelbach’s algorithm, we
can obtain the optimal downlink EE by alternating solving the
following problem:

max
t ,V1,εD ,Rd

C

Rd
C + t3 log

(
1 +

|gDD |2ε(3)D

t3N0

)
− uTr(V1)

s.t. C1’, C4’ − C5’, C7’ − C12’. (31)

By removing the rank-one constraint C12’, the problem (31)
is transformed to a convex optimization problem, which can be
solved by various solvers. The detailed procedure of the down-
link resource allocation algorithm is illustrated in Algorithm 2.
Problem (31) is with c = N 2 + 6 optimization variables and
d = 8 constraints such that the computational complexity is
given by O((c2d + c3)d

1
2 ). Next, we will prove the tightness

of the rank relaxation and deduce the optimal solution based
on the KKT conditions.

Theorem 4: The SDR of problem (31) is convex.
Proof: The proof is similar to Theorem 1 and is omitted.
Theorem 5: If the problem (31) is solvable, there exists

an optimal V∗ for the SDR of problem (31) such that
Rank(V∗

1) = 1.
Proof: See Appendix C.
Theorem 5 proves the tightness of the rank constraint relax-

ation. Hence, the proposed Algorithm 2 can always find
a global optimal solution. For obtaining more insights, the
Lagrangian method is used to derive the optimal solution of
(31). The Lagrangian of (31) is shown as

L2 = Rd
C + t3 log

(
1 +

|gDD |2ε(3)D

t3N0

)
− uTr(V1)

+ b1

(
T −

3∑
i=1

ti

)
+ b2

(
Rd
C − rc

)

Algorithm 2: Downlink Resource Allocation Algorithm

1 Initialize: setting initial EE, i.e., u(0) = 0, and the error
tolerance threshold ε.

2 Repeat:
3 Solve the SDR of problem (31) for a given u(n) to

obtain {t(n),V(n)
1 , ε

(n)
D ,R

d (n)
C };

4 u(n+1) =
R

d(n)
C +R

(n)
DD

E
(n)
tot

;

5 Update the iteration number n = n + 1;

6 If (Rd(n)
C + R

(n)
DD − η(n)E

(n)
tot ) ≤ ε

7 break;
8 End;
9 Obtain optimal resource allocation:

10 {t∗,w∗
1,P

∗
D}.

+ b3

(
t3 log

(
1 +

|gDD |2ε(3)D

t3N0

)
− rdd

)

+ b4
(
t1PH ,max − Tr(V1)

)
+ b5

(
ηρTr(HDV1)− ε

(2)
D − ε

(3)
D

)

+ b6

(
t1 log

(
1 +

Tr(HCV1)

t1N0

)

+ t2 log

(
1 +

|gCD |2ε(2)D

t2N0

)
− Rd

c

)

+ b7

(
t1 log

(
1 +

(1− ρ)Tr(HDV1)

t1N0

)
− Rd

c

)
, (32)

where b1 − b7 are non-negative Lagrangian multipliers.
Theorem 6: The optimal solution (ε∗D , t∗) of (31) is writ-

ten as

ε
(2)∗
D = t∗2

[
b∗6

b∗5 ln 2
− N0

|gCD |2
]+

, (33)

ε
(3)∗
D = t∗3

[
1 + b∗3
b∗5 ln 2

− N0

|gDD |2
]+

, (34)

t∗1 =

⎧⎪⎪⎨
⎪⎪⎩

T −
3∑

i=2
t∗i b∗1 > 0

∈
(
0,T −

3∑
i=2

t∗i
]

b∗1 = 0

(35)

t∗2 = − |gCD |2ε(2)∗D

N0 +
N0

W
(
−exp

(
−
(

b∗1 ln 2

b∗6
+1

))) , (36)

t∗3 = − |gDD |2ε(3)∗D

N0 +
N0

W
(
−exp

(
−
(

b∗1 ln 2

1+b∗3
+1

))) . (37)

Proof: See Appendix D.
Lemma 2: The proposed Algorithm 2 can converge to the

global optimal solution.
Proof: The proof is similar to the Lemma 1 and is

omitted.



MAO et al.: ENERGY-EFFICIENT TRANSMISSION SCHEMES FOR COOPERATIVE WPCNs 501

TABLE II
SIMULATION PARAMETERS

Fig. 2. Uplink energy efficiency v.s. transmission rate requirement at the CU.

V. PERFORMANCE EVALUATION

In this section, the performance of the proposed energy-
efficient WPCNs with cooperation transmissions is evaluated
by the simulation experiments. For comparison, another two
systems are also evaluated as the baselines. The one is the
sum-throughput maximization, while the other one is the EE
maximization with the aid of a single-antenna HAP.

The channel coefficient is represented by (
dij
d0

)−
α
2 h, where

h is the Rayleigh distributed complex channel coefficient hav-
ing a unit mean, dij is the communication distance between
nodes i and j, the reference distance d0 is 10 meters, and α
is the path-loss exponent [15]. The simulation parameters are
illustrated in Table I for the readers’ convenience.

A. System Energy Efficiency Versus CU’s Transmission Rate
Requirement

In Fig. 2, we investigate the uplink energy efficiency versus
transmission rate requirement of the CU. We observe that the
uplink energy efficiency of all the schemes decrease monoton-
ically as rc increases. This is because the fact that a higher rate
requirement results in more unreasonable energy consump-
tion. Besides, we also see that the system achieves higher
uplink energy efficiency when the HAP is equipped with
multiple antennas. This reason is that the additional anten-
nas can offer the extra degrees of freedom to conduct a more
efficient WPT. Moreover, the proposed uplink EE-optimal
scheme achieves at least a 200% higher energy efficiency than
the throughput-optimal scheme. Fig. 3 shows the downlink

Fig. 3. Downlink energy efficiency v.s. transmission rate requirement
at the CU.

Fig. 4. Uplink energy efficiency v.s. time block length.

Fig. 5. Downlink energy efficiency v.s. time block length.

energy efficiency against CU’s transmission rate requirement.
Similar to the observation in uplink scenario, the proposed
downlink EE-optimal scheme outperforms both of the base-
lines. Furthermore, we also observe from Figs. 2 and 3 that
the proposed EE-optimal scheme is able to achieve higher
EE gain than the throughput-optimal scheme, when CU’s
rate requirement is low. This is due to the fact that a larger
rate requirement implies that the proposed EE-optimal system
has to take more efforts to improve CU’s transmission rate,
which will inevitably reduce its EE gain compared to the
throughput-optimal system.

B. System Energy Efficiency Versus Time Block Length

In Figs. 4 and 5, we display the uplink/downlink energy
efficiency versus the time block length. It is shown that the
uplink/downlink energy efficiency increases as the time block
length increases. This is due to the fact that a longer time
block length stands for a lower data rate requirement, which
results in a more energy-efficient resource scheduling scheme.
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Fig. 6. Uplink energy efficiency v.s. iteration number.

Fig. 7. Downlink energy efficiency v.s. iteration number.

Similarly, the proposed EE-optimal scheme achieves a great
performance gain compared to those of the baseline schemes.
Meanwhile, the proposed EE-optimal scheme exhibits higher
EE-gain than the throughput-optimal scheme, when the time
frame is long. Another important observation is that the EE
under the downlink cooperation transmission is notably larger
than that of the uplink scenario.

C. Convergence of Proposed Algorithms

Fig. 6 plots the convergence rate of the proposed uplink
resource allocation strategy, i.e., Algorithms 1. We observe
that it has a fast convergent rate and converges typically within
5 iterations. This is because the proposed Dinkelbach-type
algorithm exhibits a super-linear convergence rate [26]. In
Fig. 7, we show the convergence of the proposed downlink
resource allocation scheme, i.e., Algorithm 2. We see that the
Algorithm 2 can achieve convergence within 7 iterations and
it converges almost simultaneously under different parameter
settings. Furthermore, the uplink resource allocation algorithm
converges faster than its downlink counterpart.

VI. CONCLUSION

This paper studied the energy-efficient resource allocation
and user cooperation protocol for wireless powered cellu-
lar networks (WPCNs). In particular, we maximized the
uplink/downlink EE by jointly optimizing beamforming vector
and the time domain resource allocation subject to the energy
causality and the transmission rate requirements of users.
Based on the fractional optimization theory and the classic
SDR method, the original non-convex optimization prob-
lems were transformed into the corresponding convex prob-
lems. Furthermore, we proposed the energy-efficient resource

allocation algorithms for the uplink and downlink transmis-
sions and derived the optimal solution in semi-closed form
by leveraging Lagrangian method. Simulation results revealed
that the proposed algorithms converge to the optimal solu-
tions within a few iterations and achieve notably higher EE
compared to those of the baseline schemes.

APPENDIX A
PROOF OF THEOREM 2

Let {τ∗, ε∗D ,R∗
C } denote the optimal solution of

problem (19). Then, we consider the following problem

max
V0

Ru∗
C + τ∗4 log

(
1 +

|gDD |2ε(4)∗D

τ∗4N0

)
− uTr(V0)

s.t. C11: Tr(V0) ≤ τ∗1PH ,max,

C12: ε
(3)∗
D + ε

(4)∗
D ≤ ηTr(HDV0),

C13: Ru∗
C ≤ RCH + RDH

= τ∗2 log

(
1 +

η|gCH |2Tr(HCV0)

τ∗2N0

)

+ τ∗3 log

(
1 +

|gDH |2ε(3)∗D

τ∗3N0

)
,

C14: Ru∗
C ≤ RCD = τ∗2 log

(
1 +

η|gCD |2Tr(HCV0)

τ∗2N0

)
,

C15: V0 � 0. (38)

Since u > 0, the problem (38) is equivalent to

min
V0

Tr(V0)

s.t. C16: Tr(V0) ≤ τ∗1PH ,max,

C17: ε
(3)∗
D + ε

(4)∗
D ≤ ηTr(HDV0),

C18: Tr(HCV0) ≥ γ,

C19: V0 � 0. (39)

where γ = min{ τ∗2N0(2

Ru∗
C −τ∗3 log(1+

|gDH |2ε(3)∗
D

τ∗3N0
)

τ∗2 −1)
η|gCH |2 ,

τ∗2N0(2

Ru∗
C
τ∗2 −1)

η|gCD |2 }.
Assuming that the problem (39) has an optimal solution V∗

0,
according to [40], we have

Rank2(V∗
0) ≤ 3. (40)

Since Rank(V∗
0) �= 0, thus, Rank(V∗

0) = 1. We construct a
quintuple {τ∗, ε∗D ,V∗

0,R
∗
C } which satisfies all the constraints

of problem (19) and achieves the maximum optimal value for
problem (19). This ends the proof.

APPENDIX B
PROOF OF THEOREM 3

The partial KKT conditions are written as

∂L1

∂ε
(3)
D

=
α∗
3τ

∗
3 |gDH |2

ln 2
(
τ∗3N0 + |gDH |2ε(3)∗D

) − a∗2 = 0 (41)

∂L1

∂ε
(4)
D

=
(1 + a∗7 )τ∗4 |gDD |2

ln 2
(
τ∗4N0 + |gDD |2ε(4)∗D

) − a∗2 = 0 (42)
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∂L1

∂τ2
=
(
a∗3 + a∗4

)
log

(
1 +

η|gCD |2Tr(HCV∗
0)

τ∗2N0

)

− (a∗3 + a∗4
) η|gCD |2Tr(HCV∗

0)
τ∗
2 N0

ln 2

(
1 +

η|gCD |2Tr(HCV∗
0)

τ∗
2 N0

)

− a∗5 = 0 (43)

∂L1

∂τ3
= a∗3 log

⎛
⎝1 +

|gDH |2ε(3)∗D

τ∗3N0

⎞
⎠

− a∗3

|gDH |2ε(3)∗D
τ∗
3 N0

ln 2

(
1 +

|gDH |2ε(3)∗D
τ∗
3 N0

)

− a∗5 = 0 (44)

∂L1

∂τ4
=
(
1 + a∗7

)
log

⎛
⎝1 +

|gDD |2ε(4)∗D

N0τ
∗
4

⎞
⎠

− (1 + a∗7
) |gDD |2ε(4)∗D

N0τ∗
4

ln 2

(
|gDD |2ε(4)∗D

N0τ∗
4

) − a∗5 = 0 (45)

a∗5

(
T −

4∑
i=1

τi

)
= 0, a∗5 ≥ 0,

4∑
i=1

τi ≤ T . (46)

After rearranging the Equations (41)-(46), we write the optimal
solution (ε∗D , τ∗) of (19) as given in Theorem 3.

APPENDIX C
PROOF OF THEOREM 5

For the given {t∗, ε∗D ,Rd∗
C }, the problem (31) is equiva-

lent to

min
V1

Tr(V1)

s.t. C13’: Tr(V1) ≤ t∗1PH ,max,

C14’: Tr(HDV1) ≥ β1,

C15’: Tr(HCV1) ≥ β2,

C16’: V1 � 0, (47)

where β1 = min{ ε
(2)∗
D +ε

(3)∗
D

ηρ ,
t∗1N0(2

Rd∗
c
t∗1 −1)

1−ρ } and β2 =

t∗1N0(2

Rd∗
C −t∗2 log(1+

|gCD |2ε(2)
D

t∗2N0
)

t∗1 − 1). According to [40], we
have

Rank2(V∗
1) ≤ 3. (48)

Since V∗
1 �= 0, hence, Rank(V∗

1) = 1.

APPENDIX D
PROOF OF THEOREM 6

The partial KKT conditions of problem (31) can be
expressed as

∂L2

∂ε
(2)
D

= −b∗5 +
b∗6 |gCD |2t∗2

ln 2
(
t∗2N0 + |gCD |2ε(2)∗D

) = 0, (49)

∂L2

∂ε
(3)
D

= −b∗5 +
(1 + b∗3 )|gDD |2t∗3

ln 2
(
t∗3N0 + |gDD |2ε(3)∗D

) = 0, (50)

∂L2

∂t2
= −b∗1 + b∗6 log

⎛
⎝1 +

|gCD |2ε(2)∗D

t∗2N0

⎞
⎠

− b∗6
ln 2

|gCD |2ε(2)∗D
t∗2N0

1 +
|gCD |2ε(2)∗D

t∗2N0

= 0, (51)

∂L2

∂t3
= −b∗1 +

(
1 + b∗3

)
log

⎛
⎝1 +

|gDD |2ε(3)∗D

t∗3N0

⎞
⎠

− (1 + b∗3 )
ln 2

|gDD |2ε(3)∗D
t∗3N0

1 +
|gDD |2ε(3)∗D

t∗3N0

= 0, (52)

b∗1

(
T −

3∑
i=1

ti

)
= 0, b1 ≥ 0,

3∑
i=1

ti ≤ T . (53)

On rearranging the Equations (49)-(53), we deduce the optimal
solution (ε∗D , t∗) as shown in Theorem 6.
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