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Abstract— The classification of very high-resolution remote sens- to extract information about the size and the relative @asttr
ing images from urban areas is addressed by considering the fusion of the structures, thus providing a multi-dimensional dieat
of multiple classifiers which provide redundant or complementary vector. In [3], textural information was used as a feature fo

results. The proposed fusion approach is in two steps. In a first the classificati Classificati lqorithm d
step, data are processed by each classifier separately and the € Classiication process. Llassilicalions algoriihm Gase a

algorithms provide for each pixel membership degrees for the Statistical approach such as the maximum likelihood [1] or a
considered classes. Then, in a second step, a fuzzy decision rule ieural network have been frequently used [2], [4], [5]. 19 [6
used to aggregate the results provided by the algorithms accordin and [7], possibilistic models and fuzzy logic were used tsigie

to the classifiers’ capabilities. In this paper, a general framework a fuzzy classifier.

for combining information from several individual classifiers in Al th thods h thei h teristi d ad
multiclass classification is proposed. It is based on the definition ese methods have their own characteristics and adgast

of two measures of accuracy. The first one is a point-wise measureNone of them strictly outperforming all the others. The réur
which estimates for each pixel the reliability of the information network approach has the advantage that no prior informatio

provided by each classifier. By modeling the output of a classifier about the distribution of the input data is needed. However,
as a fu;zy set, this point-wise reliability is defined as the degree of if an accurate multivariate statistical model can be deitezth
uncertainty of the fuzzy set. The second measure estimates th@bal - . - .
accuracy of each classifier. It is defined priori by the user. Finally, statistical methods should prQYIde better cIaSS|f|caF@ugaC|es
the results are aggregated with an adaptive fuzzy operator rule by ~than neural networks. Classifiers based on possibilistidetso
these two accuracy measures. The method is tested and validateddo not need any training and class definitions can be done witl
with two classifiers on IKONOS images from urban areas. The |inguistic variables [8]. Furthermore, the computatiomei is
proposed method improves the classification results when compate g 511y shorter with statistical approaches than neurahaus.
with the separate use of the different classmers. The approach is U v, f . dat t f in t obal
also compared to several other fuzzy fusion schemes. sually, for a g'V?_n ga Set, per. ormances in termsg "’.‘
and by classclassification accuracies depend on the considere
classes, i.e., on their spectral and spatial charactistor
instance, methods based on morphological filtering are suéid
to classify structures with a typical spatial shape, likenmaade
l. INTRODUCTION constructions. On the contrary, algorithms based on sglénfor-
ERY HIGH-RESOLUTION commercial satellite imagesmation (such as statistical approaches, Gaussian mixtooels
from urban areas are now available. Information providemt neural networks [1]) perform better for the classificatiof
by these images is both spectral and spatial. Several apectegetation and soils. As a consequence, we propose to useakev
bands are currently available with very high spatial resofu approaches and try to take advantage of the strengths of ea
and, by using these data, it is possible to identify smalicstres algorithm. This concept is calledecision fusion[9]. Decision
such as small houses or round-abouts in dense urban areagudion can be defined as the process of fusing informatiom fro
order to integrate these data in urban development plannisgveral individual data sources after each data source has u
emergency response or Earth survey, structures presetitein dergone a preliminary classification. For instance, Bekission
scene should be classified and there is a strong need for at#dmand Kanellopoulos [9] proposed a multisource classifieretas
or semi-automated classification algorithms. on a combination of several neural/statistical classififiiise
Several urban classification methods have been proposdt ingamples are first classified by two classifiers (a neural mtwo
remote sensing literature. These methods are usually basedand a multisource classifier); every sample with agreeisglte
a feature extraction step followed by a classification atgor is assigned to the corresponding class. Where there is aatonfli
where feature extraction can, e.g., be band selection od bdretween the classifiers, a second neural network is useddsiil
combination in the multispectral case [1]. In the case oftham+ the remaining samples. The main limitation of this methothes
matic images, the morphological profile has been used in [2¢ed of large training sets to train the different classfiar [10],

Index Terms— Data fusion, classification, remote sensing, fuzzy
logic, fuzzy set theory, decision fusion.



Jeon and Landgrebe used two decision fusion rules to cjassife detail the model used for the representation of the flessi
multitemporal Thematic Mapper data. Recently, Lisghial. [11] output.
proposed to combine sources according to their class adesra
In the present _study, the decision fusion r_ule is merIedh wikl Fuzzy set theory
fuzzy data fusion rules. Fuzzy based fusion techniques have
already been applied for various decision fusion schemes. F 1) Definitions:
instance, Tupiret al. [12] combined several structure detectors to Definition 1 (Fuzzy subset)A fuzzy subset F' of a reference
classify SAR images using Dempster-Shafer theory. Chaness SetU is a set of ordered pairst’ = {(z, ur(z)) | = € U},
al. [13] proposed several strategies to combine the output\¥here pr : U — [0,1] is the membership function of in U.
a line detector applied to multitemporal images. Also depli Definition 2 (Normality): A fuzzy set is said to baormal if
with multitemporal SAR images, Amicét al. [14] investigate and only if imax up(z) = 1.
the usefulness of fuzzy and neuro-fuzzy techniques to fose t Definition 3 (Support):The support of a fuzzy sef is
multitemporal information for the monitoring of flooded ase _ i
In this paper, we propose to aggregate the results of differe Supp(F) = {z € U | pr(z) > 0},
classifiers. Conflicting situations, where the differerdssifiers
modeing the global reiabiy for each agoritm [16] fEreade, (“%() = D) ILis empy f the setis non norma.
o the dgefiniti%n of an ada:)/tive fusion gscheme ruléd by the e2) Logical operations:Classical Boolean operations extend to
. . . ?uzzy sets [16]. WithF" andG two fuzzy sets, classical extensions
reliability measures. The proposed algorithm is based aayfu defined as follows:
sets and possibility theory. are definec ) . . )
. a) Union: The union of two fuzzy sets is defined by the
The framework of the addressed problem is modeled as fallows__ . . . "
. : . maximum of their membership functions:
For a given data set; classes are considered, amdclassifiers
are assumed to be available. For an individual pixel, eagb-al Vo € U, (ur U pg) () = max {up(z), uc(z)} . (1)
rithm provides as an output a membership degree for eacheof th
considered classes. The set of these membership valuesnis th  b) Intersection:The intersection of two fuzzy sets is defined
modeled as a fuzzy set and the corresponding degree of aszzirPy the minimum of their membership functions:
determines the point-wise reliability of the algorithm.eTglobal .
accuracy is manually defined for each class after a statistiady Vo € U, (ur N pa) (@) = min{pr (@), po(@)} @
of the results obtained with each separately used classiféerce, c) ComplementThe complement of a fuzzy sétis defined
the fusion is performed by aggregating the different fuzetss by:
provided by the different classifiers. It is adaptively diley the
reliability information and does not require any furtheaiming. Ve € U, pp(r) = 1 — pre(2). (3)
The decision is postponed to the end of the fusion processl#To  3) \jeasures of fuzzinessEuzziness is an intrinsic property
to take advantage of each algorithm and enable more accuigg;zy sets. To measure how fuzzy a fuzzy set is, and thu:
results in conflicting situations. estimate the ambiguity of the fuzzy set, several definitibage
The paper is organized as follows. Fuzzy set theory apgen proposed [19] [20]. Ebanks [21] proposed to define the

measures of fuzziness are briefly presented in Section Il-fegree of fuzziness as a functigrwith the following properties:
Section 1I-B presents the model for each classifier's output 1) VF C U, if f(ur) =0 then F'is a crisp set
’ F)—

terms of a fuzzy set. Then, the problem of information fusien 2) f(ur) is maximum if and only Ve € U, ur (z) = 0.5
discussed in Section lll. The proposed fusion scheme idlegta 3) V(MF ) e U2 f(ur) y > f ’”)F if _Vx c
in Section IV and experimental results are presented in@ebt KF bG ' HE) = Ha

Definition 4 (Core): The core of a fuzzy set is the (crisp)
set containing the points with the largest membership value

Finally, conclusions are drawn. il He(@) = pr(x) l:f pr(x) = 0.5
pe(x) <pp(x) if  pr(z) <05
4) VF e U, f(ur)= f(pg). A set and its complement have

Il. FUzzy SET THEORY the same degree of fuzziness.

Traditional mathematics assigns a membership value of 1 to® Y(HF:#G) € U fur Una) + fur Nue) = fur) +
elements which are members of a set, and 0 to those which are fuc)-
not, thus definingecrisp sets On the contraryfuzzy settheory ~ Bezdek [22] proposed a measure of fuzziness based on tt
handles the concept of partial membership to a set, with reBultiplicative class.
valued membership degrees ranging from 0 to 1. Fuzzy setytheo Definition 5 (Multiplicative Class):The multiplicative class is
was introduced in 1965 by Zadeh [16] as a mean to modéfined as:

the vagueness and ambiguity in complex systems. It is now n
widely used to process unprecise or uncertain data [17], [©8 H.(up) =K g(ur(z:), K € RT 4)
particular, it is an appropriate framework to handle thepatiof i=1

a given classifier for further processing. The output is Ugunt
9 P 9 P W 1For convenience, we will use the term “fuzzy set” instead foz¢y subset”

in & binary form and includes some ambiguity. In this SECt® iy e following, where a fuzzy seF is described by its membership function
first recall general definitions and properties of fuzzy séten, up.
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: where i (z) € [0,1] (after a normalization, if required) is the
o1 02 05 04 08T 05 07 05 09 membership degree of pixelto classj according to classifier.
o The higher this value, the more likely it is that the pixeldreds
Fig. 1. Influence ofx on Saqp to classj. Depending on the classifigr] (z) can be of a different
nature: probability, posterior probability at the outpfitaoneural
network, membership degree at the output of a fuzzy classifie
whereg(ur) is defined as: etc In any case, the set;(z) = {u!(z),7 = 1,...,n} can be
® = 3 n () considered as a fuzzy set.
g = 9T B9 (5)  As a conclusion, for every pixetn fuzzy sets are computed,
gty = A1 -1 one by each classifier. They constitute the input for theofusi
. . : . process:
andh is a concave increasing function ¢ 1]:
{m(z),ma(x),...,m(x), ..., Tm(x)}. (10)

h:[0,1] — R*Vz € [0,1] W' (z) > 0 and h"(z) <0.  (6)
In Fig. 2, two conflicting sets are represented. As a mattéaaif
. . . the fusion of the non conflicting results is of little inter@s our
ness measures, where different ChOICngOlfaad to ilﬁerent case: though it might increase our believe in the correspgnd
behaviors. For m_stance, Ifétf 0,1 > R . be A(t) _:_t , 0< result, it certainly won't change the final decision, andstinon’t
@ <.1'. Th_e function/, satisfies th_e rfaqmred conditions for thqncrease the classification performances. On the contiratye
multiplicative class, and the function: case of conflicting results, at least one classifier is wrardjtae
1 n N N fusion gives a chance to correct this and increase the fitaggin
Haqe(ur) = n2—2a Z pr(2i)* (1 = pr (@) ) performances. Fuzzy set theory provides various comioinaip-
=1 erators to aggregate these fuzzy sets. Such combinatioatope
is a measure of fuzziness, namely the- Quadratic entropy. are discussed in the next section.

The multiplicative class allows the definition of varioug i+

Rewriting (7) as: For visual inspection, membership maps can be plotted. /
1 membership map represents thg(z) for all pixels for class
Hooe(pr) = -— ZSQQE(MF(%)) 1. For instance Fig. 6.a, b, ¢ and d show the membership degre
i N N (8) to the classbuildings and housesobtained for each pixel in an
Seop(pr(a)) = pr (i) (;_;aﬂF(wi)) IKONOS image by two different classifiers, respectively.
we can analyze the influence of paramete(see Fig. 1): The I1l. | NFORMATION EUSION

measure becomes more and more selectiva axreases from
?h(taosz.mvt\ah?ec;rcelgs; ;Ez(;’inagls;h:nfgzt?é ?ﬁ;:uar\éei:%%rtogémﬁ%is section the problem of measuring the confidence of iddal

. . T Classifiers. Finally, we propose an adaptive fusion operatdghe
changes in.p, whereas with close to 1, the measure is hlghlyfollowing we denote the fuzzy setby =, and the number of
selective with the degree of fuzziness quickly decreasihgrw sources bym '
the fuzzy set differs fromur = 0.5. As a consequence, in this '
paper we chose: = 0.5 as a good trade-off [22].

After briefly reviewing the basics of data fusion, we discimss

A. Introduction

B. Class representation Data fusion consists in combining information from several
sources in order to improve the decision [23]. Of course, the
most challenging issue is to solve conflicting situationsereh
the sources disagree. Numerous combination operatorshiesve

‘ proposed in the literature. They can be classified into three
{pi (), g2 (), (), ()} (9) different kinds, depending on their behavior [24]:

An n-classes classification problem is considered, for which
different classifiers are available. For a given pixelthe output
of classifier: is the set of numerical values:



« Conjunctive combinatianThis corresponds to aeverebe- Compromise combinationThree different such operators
havior. The resulting fuzzy set is necessarily smaller than are discussed. They are all based on the measure of the tonfl
initial sets and the core is included in the initial corexéih between sources. The conflict may be defined asC' with:
only decrease). The largest conjunctive operator is theyfuz

intersection (2).T-normsare conjunctive operators, leading C(m1,m2) = sup min(my (), ma(z)). (14)
N

to a fuzzy setr,(z) = ﬂ mi(x). They are commutative, The first compromise combination operators were proposeal. by
. . _ =1 ) Dubois and H. Prade in [25]. Bloch has classified these operat
associative, increasing and with(z) = 1 as a neutral 3sContextual Dependant (CD) Operatd@6]. Note that the con-

element (i.e., ifry(x) = 1 thenma(z) = m(z) Nma(r) =  text can be characterized in different ways: Knowledge ndigg
m1(z)). They satisfy the following property: the potential conflict between the sources, knowledge athmut
ma(x) < min (). (11) reliability of one given source or introduction of some splat

ie[1,m] information. These operators have been proposed in pligsibi

. Disjunctive combinationThis corresponds to amdulgent heOry [27] but they can also be used in fuzzy set theory for
behavior. The resulting fuzzy set is necessarily largen th§OMPining membership functions [26]. Being able to adapt to
the initial sets and the core contains the initial cores (tilﬁe context, these opergtors arg more flexible and thus ggovi
can only increase). The smallest disjunctive operator és tInteresting results. The first considered operator (dehoperator

fuzzy union (1) T-conormsare disjunctive operators, leading(1®) in the following)
N

: (x
to a fuzzy setry(z) = U m;(xz). They are commutative, max (manmw»mmn,min (max(mi (), 72(2)), 1 — C(m,frz)))

C(my,m2)

i=1 if Cmr. 7 15
associative, increasing and with;(z) = 0 as neutral max(m1 (2), 72 (2)) 1 Olmm) #0 (13)
element. They satisfy the following property: if C(m1,m2) =0
m(z) > max m(z). (12) adapts its behavior as a function of the conflict between the
ie(1,m] sources:

» Compromise combinatiorthis corresponds to intermediate . it is conjunctive if the sources have low conflict
cautiousbehaviorsT'(a, b) is a compromise combination if .« it is disjunctive if the sources have high conflict
it satisfies: « it behaves in a compromise way in case of partial conflict

(13) Fig. 3.d presents the obtained result using operator (1&)ec
sponding decision (middle aged) is still not satisfactory.
For purpose of illustration, we can consider the following t In this case, some information on source reliability must be
problem. To estimate how old a person is, two estimates aneluded, and the most reliable source(s) should be pgeie
available, each one modeled by a fuzzy set. These fuzzy setshe fusion process. Different situations can be consitter

are represented in Fig. 3.a - note that they are highly confiic 1t js possible to assign a numerical degree of reliability to
From these two information sources, we want to classify aqrer each source.

into one of three classes: young (under 30), middle ages/@®t , A subset of sources is reliable, but we do not know which
30 and 65) or old (above 65). To illustrate the three possible qpg(s).
modes of combination, we aggregate the information with the, The relative reliability of the sources are known, but with

min operator (T-norm), themax operator (T-conorm) and the g quantitative values. However, priorities can be definec
three different compromise operators. Results are predeint between the sources.

Fig. 3. The_deC|S|on 1S taken_ by selecting the class corredipg The two following adaptive operators are examplepridritized
to the maximum membership. fusion operator[25]

Conjunctive combination:Fig. 3.b presents the result ob-

min(a,b) < T(a,b) < max(a,b).

tained with themin operator, i.e., the less severe conjunctive  7(z) = min (7 (z), max (m2(z),1 — C(71, m2))) - (16)
operator. It is a unimodal fuzzy set. This fuzzy set is sub-
norﬂn;(azllzed, but this problem could be solved using(z) = (2) = max (m1 (z), min (12 (z), C (71, 7)) (17)

m but this would not change the shape of the result.
In this case, the decision would beiddle aged which is not For both operators, whe@'(w,, ) = 0, w5 contradictsr; and
compatible with any of the initial sources. In this case,gbarces the only information provided byr, is retained. In this case,
strongly disagree and the conjunctive fusion does not help 72 is considered as a specific piece of information whileis
the classification. As a conclusion, conjunctive operatsesnot viewed as a fuzzy default value. Assuming iS more accurate
suited for conflicting situations. thanm,, we get the result presented in Fig. 3.e and f, enabling ¢
Disjunctive combination:Fig. 3.c presents the result ob-satisfactory decision.
tained with themax operator, i.e., the less indulgent disjunctive As a conclusion, conjunctive and disjunctive combination
operator. The resulting membership function is multi-maatad operators are ill suited to handle conflicting situationbede
each maximum is of equal amplitude. Again, no satisfactosjtuations should be solved by CD Operators, incorporating
decision can be made. reliability information.
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Fig. 3. Examples of combination operatarshows the two possibility distributions, and ¢ show the result of thenin and themax operators, respectivelg,e
andf show the result of the three compromise operators presentgdbjn(16) and (17), respectively.

B. Measure of confidence

1) point-wise accuracyfor a given pixel and a given classi- o
fier, we propose to interpret the fuzziness of the fuzzyrset) y .
defined in (9) as a point-wise measure of the accuracy of the -
method. We intuitively consider that the classifier ridiable - o
if one class has a high membership value while all the others 1
have a membership value close to zero. On the contrary, when "7 — . . . . T L T e s e
no membership value is significantly higher than the othrs,

w
S
y

. . . . . s s
classifier isunreliable and the results it provides should not be , ! , 2
taken too much into account in the final decision. In otherdsor
uncertain results are obtained when the fuzzyrsét) has a high - -
fuzziness degree, the highest degree being reached faronhyf
distributed membership values. s 0a
To reduce the influence of unreliable information and thus en = 0
hance the relative weight of reliable information, we weighch m:.:l:i
fuZZy Set by: . 1 2 E 4 £ & . 1 2 3 4 & L
w1y * T Wsg * T2
m
Z H (7r ) Fig. 4. Normalization effects. This figure shows two fuzzysset; and m2)
) aQE"k with different fuzziness B, (71) = 0.51, Hogr(m2) = 0.97, w1 = 0.65
w; = k=0,k#1 andw2 = 0.35). The normalization effect is shown on the lower line. Infloen
¢ m of classifier 2 is more reduced hy. than classifier 1 is reduced hy; .
(m—=1) " Hage(m) (18)
k=0
m
w; =1 .
Z ! 2) Global accuracy:Beyond the adaptation to the local con-

=0 text described in the previous paragraph, we can also use pri

wherea = 0.5, Hogr(m) is the fuzziness degree of sourke knowledge regarding the performances of each classifies Th
andnis the number of sources. When a source has a low fuzzingsswledge is modeled for each classifieand for each clasg
degreew; is close to 1 and it only slightly affects correspondingpy a parametey;. Such global accuracy can be determined by
fuzzy set. Fig. 4 illustrates the effects of this normalizat a separate statistical study on each of the used classifiefst



TABLE |

a given classj, the user considers that the results provided by INDICES OF CONFIDENCE FOR IMAGEL

classifieri are satisfactory, parametﬁ;i is set to one. Otherwise,

it is set to zero. Since this decision is binary, we assumedch | Neural Network | Fuzzy Logic
class, that there is at least one method ensuring a satisfact Large Buildings 0 1
global reliability. Houses 0 1
Large Roads 1 1
Streets 1 0
Open Areas 0 1
C. Combination operator Shadows 0 1

Many combination rules have been proposed in the literature
from simple conjunctive or disjunctive rules, suchrag or max V. EXPERIMENTAL RESULTS

operators, to more elaborated CD operators, such as defined qn this section, we present the application of the proposec

(16)dar|1_|d (17) whetrhe tthhe relatlvetrel|ab|l|ty of eﬁCh solurse ggneral fusion scheme to the improvement of classificatenlts
USEd. TIOWEver, Wi €se operalors, sources have aways ing remote sensing images from urban areas. The propost

same hierarc_hy and the fusion scheme does not adapt tp thle l%f)proach was applied to two very high-resolution IKONOS
context. In this paper, we propose the following extension: panchromatic images from Reykjavik, Iceland. Six classesew
; ; ; considered in each case, namely: Large buildings, houarse |
py () = max (mm (wipei (2), f} (x), i € [1’m]) (19)  roads, streets, open areas and s)rqadov?s. Each igmage cmﬂﬁsts
) single channel with 1m resolution.
where f/ is the global confidence of sourdeor classj, w; i  Two classification algorithms were used : a conjugate gradie
the normalization factor defined in (18) ap@ is an element of neural network [2] and a fuzzy classifier [8] Both are COlTﬂEbS
the fuzzy setr; defined in (9). This combination rule ensures thajf two steps. The first step is the feature extraction by n‘miq:g}
only reliable sources are taken into account for each cla®s ( jcal filters and the second step is the actual classificatising
defined coefﬁmentst) and that the fusion also automaticallyeither a neural network or a fuzzy possibilistic model. Trassi-
adapts to the local context by favoring the source that iallpc fication accuracies for the different classifiers were camegdo
the most reliable (weighting coefficients;). determine the global confidence in the fusion process. Tinatsn
for the fusion process were the posterior probabilitiesnfrine
outputs of the neural network and the membership degregldor
fuzzy classifier. These inputs are displayed as images in@-ig

We present here the complete proposed fusion scheme. In a
first step, each classifier is applied separately (but nosatetis A. First test image
taken). Then, the results provided by the different alon are  The first test image (976 by 640 pixels) is shown in Fig. 7.a.
aggregated. The final decision is taken by selecting theseléd  Table Il shows the test accuracies for the two classifiersrdier

IV. THE FUSION SCHEME

the largest resulting membership value. to test the generalization ability of the classifiers, inslegent

The fusion step is organized as follows: samples were used for training and testing. The training amap
For each pixel : the reference map are shown in Fig. 8.a and b, respectively.

1) Separately build fuzzy sets for the classes in each sourcdarting from the class classification accuracies, the ajlodli-

2) Compute the fuzziness degree of each fuzzy set. abilities were set as follows: The neural network classifjiave

3) Normalize data withs; defined in (18). higher accuracies than the fuzzy classifier for the stremdstlae

4) Apply operator (19). large roads classes. However, for the other four classesuitzy

5) Select the class corresponding to the highest resumﬁ@ssmer outperformed the neural network in terms of aacies.

membership degree. In the fusion, we defined the indices of confidence in a binary

way according to the accuracies. For a given class, full denfie
. ) was given to the best classifier, i.e., the one with the highes
Note th.at n F|g..5, the range of the fuzzy ser is rescaledrbef classification accuracy. Then, if the accuracy of the otlessifier
the fusion _step in order to combine data W'th _the Same rangeys close to the highest (by 5%), then full confidence was als
The rescaling has to_save the _order _relatlon_ in the cIaSS|_f|e ranted to that classifier. Otherwise, the index of confidemas
outputs for a given pixel. This is achieved with the follogin set to zero. The confidence values are listed in Table I.

range stretching algorithm: The accuracy obtained for the final classification is giveblda

The block diagram of the fusion process is given in Fig. 5.

o forall m(x) = {p}(x),...,pl(x),...,u?(x)}, compute : |I. The overall accuracy increased from 40.3% for the neural
— M = max [M?'(l_)}’ net_vvork, and 52.1% for fuzzy the classifier, to 59.1% wit_h fthe
e L7 fusion. Small houses and large houses were classified ginila
— m = min [ug (x)}, with the fuzzy classifier but the streets classification sacy
7,z

improved form 9.8% to 55.7% with the use of the neural network
A information. The classification accuracies for shadows @peh
" /ﬂ (z) = p(x) — m area also increased from 83.8% and 52.1%, respectively.698
‘ M—m and 60.9%, respectively. On the other hand, the classitati

— for all 4 (z), compute :
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Fig. 5. Block Diagram of the fusion method

TABLE I
TEST ACCURACIES IN PERCENTAGE FORMAGE 1

TABLE 1l
INDICES OF CONFIDENCE FORMAGE 2

| Neural Network | Fuzzy Logic | Fusion | Neural Network | Fuzzy Logic

Large Buildings % 26.2 47.6 47.4 Large Buildings 1 0
Houses % 33.4 67.8 67.4 Houses 0 1
Large Roads % 59.1 58.8 43.7 Large Roads 1 1
Streets % 55.6 9.8 55.7 Streets 1 0
Open Areas % 30.9 52.2 60.9 Open Areas 1 1
Shadows % 32.7 83.3 86.6 Shadows 0 1

O. A % 40.3 52.1 59.1

A A % 39.7 53.3 60.3

TABLE IV

accuracy for large roads decreased from 59.1% to 43.7%. Both TEST ACCURACIES IN PERCENTAGE FORMAGE 2
the original and classified images are shown in Fig. 7.

. > : | K i i
The results of the first experiment illustrate the completaign | Neural Network | Fuzzy Logic | Fusion

. i Large Buildings % 89.6 26.3 94.8
behaviors of the fuzzy an.d neural r_1etwork cIaSS|f|er§. Even Houses % 29.9 128 338
though the global accuracy is higher with the fuzzy classiffe Large Roads % 0 0 94.2
neural classifier performs better in terms of accuraciestter Streets % 83.6 774 227
lar road nd street [ Note that th Open Areas % 46.5 44.9 73.7
arge roads and streets classes. Note that these accurmt;e_rm _ Shadows % 43.7 98.7 904
were obtained using manual ground truth where each pixel in 0. A % 57.0 231 75.7
the original image was labeled. Since no pre- or post-psicgs A A % 48.9 48.4 68.3

was done, the accuracies should be interpreted in a relatye
rather than in an absolute way.

) classifier to 75.7% after the fusion. With the fusion, clisation
B. Second test image accuracy for open areas increased from 46.6% to 73.7%. Sisado
The second test image is 700 by 630 pixels. Table IV showsd large buildings classification accuracies were sinfidathe
the test accuracies for the two classifiers that were usetien fuzzy classifier and the neural network. The biggest impmoesat
second experiment. The global reliability was defined instaime after the fusion was achieved in the classification of laggs,
way than in the first experiment. The indices of confidence andhere the classification accuracy increased from 0.0% t2%94.
listed in Table III. Furthermore, the overall road classification accuracyeiased
The test accuracies for the final classification is given ifinom 41.5% to 58.6%. But at the same time, the classification
Table IV. As can be seen in the table, the overall accuraagcuracy for streets decreased from 83.6% to 22.7%. Both th
increased from 57.0% for the neural network and 43.1% faryfuzoriginal and the classified images are shown in Fig. 7.



Fig. 6. Possibility maps. Fige and c represent the membership maps given by the neural networkctesbe for the buildings and housesclasses. Figsh and
d represent the membership maps given by the fuzzy classifiehéoclasseduildings and houses Figs. e, f, g and h are the stretched version of the four above
images with the algorithm given Section IV.

C. Comparison with others combination rules we use the accuracy measure previously defined in 1lI-B. Fol

In this subsection we compare the results provided by tfé min and max operators we compute experiments with and
proposed operators with others combination rules. Wheritgess without point-wise accuracy information. We do the same for



c d

Fig. 7. Test images and results;Original IKONOS image 1b image 1 classification results, Original IKONOS image 2d image 2 classification results.
Red = Large Buildings, Gray = Small Houses, Dark Blue = Stre®lise-Gray = Large Road, Green = Open Areas and Brown = Shadow

the operator (15). Conflict was computed for both cases. Famd (17), respectively, increased frod6,7% and 39,5% to
operators (16) and (17), the less accurate classifier waseoho42,9% and 42,5%. No significant changes were noted for the
as the less important classifier based on the global testamcu operator 16. From these experiments, it can be concluddd th:
The obtained results are given in Table V and Table VI. As cdinthere is no available information on source reliabilipgint-
be seen from the Tables, our proposed method outperforneed wise accuracy can be used to significantly improve the fusion
others combination rules in terms of accuracy. It can be Hemn However, knowledge about the global reliability of eachssléier
the classification accuracy for streets is still not satisfiy. No seems to be more useful. Finally, to investigate the inflaenc
combination rule was able to use the information providedhay of the contextual information two additional experimentsrav
neural network. conducted. In each experiment, we removed one type of th
For the max operator, the point-wise accuracy informatiogontextual information types and compared the results rimge
improved the classification accuracy as compared to therfusiof classification accuracies to those obtained the two tyfes
with the max operator without point-wise accuracy informacontextual information are used. For the global informatid
tion. That was due to theormalization effect The unreliable We set its values to one for both classifiers and all classes
information was reduced thanks to operator (18). Conwgrsedperator (19) becomes the simpiex operator using point-wise
point-wise accuracy information deteriorated the clasaifon accuracy information; the experiment was already done é th
with the min operator. Here, unreliable information was reduce@revious paragraph. For the point-wise accuracy inforonatall
by operator (18) and could be unfortunately selected. Adaptw; Were put to one and we kept only the global information.
operators (15) and (17) seemed to perform better with poiftesults are listed in Table VII. From these experimentssit i
wise accuracy information, the global accuracy for operéits) clear that both contextual information types are neededtiese
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TABLE V
TEST ACCURACIES IN PERCENTAGE FOR DIFFERENT COMBINATION RUES
WITHOUT THE POINT-WISE ACCURACY MEASURE OFIMAGE 1

| Max | Min | Operator (15)| Operator (16)| Operator (17)

Large Buildings % | 31.6 | 42.8 32.7 47.8 39.6

Houses % 68.2 | 67.2 65.1 67.6 64.3

Large Roads % | 66.4 | 68.0 66.4 59.4 69.6

Streets % 21 5.9 21 7.2 4.2

Open Areas % 9.1 9.1 9.1 8.3 13.1

Shadows % 52.8 | 81.1 52.8 84.4 53.5

O. A % 37.0 | 43.0 36.7 42.6 39.5

A A % 384 | 457 38.0 46.1 40.7
TABLE VI

CLASSIFICATION ACCURACIES IN PERCENTAGE FOR DIFFERENT
COMBINATION RULES WITH THE POINFWISE ACCURACY MEASURE OF
IMAGE 1

| Max | Min | Operator (15)| Operator (16)| Operator (17)

Large Buildings % | 48.4 | 40.8 48.4 47.8 47.6
Houses % 70.2 | 55.6 70.2 67.8 67.3
Large Roads % 59.7 | 71.6 59.7 59.4 59.7
Streets % 6.1 7.2 6.1 7.2 6.8
Open Areas % 8.1 9.7 8.1 8.3 8.4
Shadows % 84.2 | 70.9 84.2 84.3 84.1
O. A % 429 | 40.5 42.9 42.7 425
A A % 46.1 | 42.6 46.1 46.2 45.7
TABLE VII
CLASSIFICATION ACCURACIES IN PERCENTAGE FOR OPERATORLY) WITH b

DIFFERENT TYPES OF THE CONTEXTUAL INFORMATION Fig. 8. a Training map.b All available reference samples for the image 1.

Point-wise accuracy| Global accuracy[ Both accuracies

Large Buildings % 48.4 42.9 47.7
] HOUZES 3/0 o ;(9)3 2471; 2;-‘7" and only requires about 1 minute of computation time for eact
arge rRoads 7 . . . . . . . .
Streets % 61 49 55.7 image using a Peqtlum 4 PC. Fgrthermore, Nno prior assungotion
Open Areas % 8.1 37.0 60.9 are needed regarding the modeling of the data (e.g, Bayesjthe
Shadows % 84.2 92.8 86.6 possibility theory,etd before the data are fused.
O. A % 42.9 49.5 59.1 H :
A A% 461 o 0.3 The obtained experimental results show that the compleanent

use of different classifiers leads to a significant improvenod
the global classification accuracies. The overall accunaeg
improved by about 7% in the first experiment and 18% in the

a good classification in terms of accuracies. ‘
gecond experiment.

The results of these additional experiments demonstrate K it th df K lies in | litv f
need to control the fusion process. Without information uabo’> K€Y Point the presented framework lies in its generality fo

conflict, accuracy and confidence, the accuracies are gsﬂergecision level fusioriThough only two classifiers were used in the
worse than before the fusion. While the point-wise accuracy Raper, additional a_lgquthms CO_U|d easily be added to theqss.
Qr instance, specialized algorithms such as street desecbuld

be used without increasing errors in building detectionisTh
generalization also holds for the inclusion of multi-seudata
such as multispectral or multitemporal images. One algoarit
could be used on each image and, then, the fusion could be dor
with the results computed on each image.

The fusion of several classifiers has been considered isiclasn this paper, thex-Quadratic entropy was chosen for the fuzzi-
fication of panchromatic remote sensing data from urbansareaess evaluation because the sensitivity of that measurebean
Starting from a complementary use of different classifithe, modified with the value ofv. Several other measures could be
proposed method is based on a fuzzy combination rule. Tweed, e.g., théuzzy entropy19].
measures of accuracy are used in the combination rule: Téte f®ne limitation of the proposed approach is the use of binary
one, based on prior knowledge, defines global reliabiliteth values for the global confidence. With fuzzy confidence, the
for each classifier and each class. The second one autollyaticeombination rule could be rewritten wiffirconormand T-norm,
estimates the point-wise reliability of the results pr@ddy each both of which are less indulgent and less severe tinax and
classifier and, thus, enables the adaptation of the fusiertaihe min. Moreover, the use of th&conormand T-normwould allow
local context. The proposed approach does not need anyngaira finer definition of global accuracy.

accuracy is a critical problem of the method. More develapxm
are needed to automate their definition.

VI. CONCLUSIONS



Our current research is now oriented toward fusion of spect(22]
and spatial classification results. That way, we can integraich -
complementary information for the final classification @ss. [23]
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