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Abstract— The classification of very high-resolution remote sens-
ing images from urban areas is addressed by considering the fusion
of multiple classifiers which provide redundant or complementary
results. The proposed fusion approach is in two steps. In a first
step, data are processed by each classifier separately and the
algorithms provide for each pixel membership degrees for the
considered classes. Then, in a second step, a fuzzy decision rule is
used to aggregate the results provided by the algorithms according
to the classifiers’ capabilities. In this paper, a general framework
for combining information from several individual classifiers in
multiclass classification is proposed. It is based on the definition
of two measures of accuracy. The first one is a point-wise measure
which estimates for each pixel the reliability of the information
provided by each classifier. By modeling the output of a classifier
as a fuzzy set, this point-wise reliability is defined as the degree of
uncertainty of the fuzzy set. The second measure estimates theglobal
accuracy of each classifier. It is defineda priori by the user. Finally,
the results are aggregated with an adaptive fuzzy operator ruled by
these two accuracy measures. The method is tested and validated
with two classifiers on IKONOS images from urban areas. The
proposed method improves the classification results when compared
with the separate use of the different classifiers. The approach is
also compared to several other fuzzy fusion schemes.

Index Terms— Data fusion, classification, remote sensing, fuzzy
logic, fuzzy set theory, decision fusion.

I. I NTRODUCTION

V ERY HIGH-RESOLUTION commercial satellite images
from urban areas are now available. Information provided

by these images is both spectral and spatial. Several spectral
bands are currently available with very high spatial resolution
and, by using these data, it is possible to identify small structures
such as small houses or round-abouts in dense urban areas. In
order to integrate these data in urban development planning,
emergency response or Earth survey, structures present in the
scene should be classified and there is a strong need for automated
or semi-automated classification algorithms.
Several urban classification methods have been proposed in the
remote sensing literature. These methods are usually basedon
a feature extraction step followed by a classification algorithm
where feature extraction can, e.g., be band selection or band
combination in the multispectral case [1]. In the case of panchro-
matic images, the morphological profile has been used in [2]

to extract information about the size and the relative contrast
of the structures, thus providing a multi-dimensional feature
vector. In [3], textural information was used as a feature for
the classification process. Classifications algorithm based on a
statistical approach such as the maximum likelihood [1] or a
neural network have been frequently used [2], [4], [5]. In [6]
and [7], possibilistic models and fuzzy logic were used to design
a fuzzy classifier.
All these methods have their own characteristics and advantages;
none of them strictly outperforming all the others. The neural
network approach has the advantage that no prior information
about the distribution of the input data is needed. However,
if an accurate multivariate statistical model can be determined,
statistical methods should provide better classification accuracies
than neural networks. Classifiers based on possibilistic models
do not need any training and class definitions can be done with
linguistic variables [8]. Furthermore, the computation time is
usually shorter with statistical approaches than neural methods.
Usually, for a given data set, performances in terms ofglobal
and by classclassification accuracies depend on the considered
classes, i.e., on their spectral and spatial characteristics. For
instance, methods based on morphological filtering are wellsuited
to classify structures with a typical spatial shape, like man-made
constructions. On the contrary, algorithms based on spectral infor-
mation (such as statistical approaches, Gaussian mixture models
or neural networks [1]) perform better for the classification of
vegetation and soils. As a consequence, we propose to use several
approaches and try to take advantage of the strengths of each
algorithm. This concept is calleddecision fusion[9]. Decision
fusion can be defined as the process of fusing information from
several individual data sources after each data source has un-
dergone a preliminary classification. For instance, Benediktsson
and Kanellopoulos [9] proposed a multisource classifier based
on a combination of several neural/statistical classifiers. The
samples are first classified by two classifiers (a neural network
and a multisource classifier); every sample with agreeing results
is assigned to the corresponding class. Where there is a conflict
between the classifiers, a second neural network is used to classify
the remaining samples. The main limitation of this method isthe
need of large training sets to train the different classifiers. In [10],
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Jeon and Landgrebe used two decision fusion rules to classify
multitemporal Thematic Mapper data. Recently, Lisiniet al. [11]
proposed to combine sources according to their class accuracies.
In the present study, the decision fusion rule is modeled with
fuzzy data fusion rules. Fuzzy based fusion techniques have
already been applied for various decision fusion schemes. For
instance, Tupinet al. [12] combined several structure detectors to
classify SAR images using Dempster-Shafer theory. Chanussot et
al. [13] proposed several strategies to combine the output of
a line detector applied to multitemporal images. Also dealing
with multitemporal SAR images, Amiciet al. [14] investigate
the usefulness of fuzzy and neuro-fuzzy techniques to fuse the
multitemporal information for the monitoring of flooded areas.
In this paper, we propose to aggregate the results of different
classifiers. Conflicting situations, where the different classifiers
disagree, are solved by estimating the point-wise accuracyand
modeling the global reliability for each algorithm [15]. This leads
to the definition of an adaptive fusion scheme ruled by these
reliability measures. The proposed algorithm is based on fuzzy
sets and possibility theory.
The framework of the addressed problem is modeled as follows:
For a given data set,n classes are considered, andm classifiers
are assumed to be available. For an individual pixel, each algo-
rithm provides as an output a membership degree for each of the
considered classes. The set of these membership values is then
modeled as a fuzzy set and the corresponding degree of fuzziness
determines the point-wise reliability of the algorithm. The global
accuracy is manually defined for each class after a statistical study
of the results obtained with each separately used classifier. Hence,
the fusion is performed by aggregating the different fuzzy sets
provided by the different classifiers. It is adaptively ruled by the
reliability information and does not require any further training.
The decision is postponed to the end of the fusion process in order
to take advantage of each algorithm and enable more accurate
results in conflicting situations.

The paper is organized as follows. Fuzzy set theory and
measures of fuzziness are briefly presented in Section II-A.
Section II-B presents the model for each classifier’s outputin
terms of a fuzzy set. Then, the problem of information fusionis
discussed in Section III. The proposed fusion scheme is detailed
in Section IV and experimental results are presented in Section V.
Finally, conclusions are drawn.

II. FUZZY SET THEORY

Traditional mathematics assigns a membership value of 1 to
elements which are members of a set, and 0 to those which are
not, thus definingcrisp sets. On the contrary,fuzzy settheory
handles the concept of partial membership to a set, with real-
valued membership degrees ranging from 0 to 1. Fuzzy set theory
was introduced in 1965 by Zadeh [16] as a mean to model
the vagueness and ambiguity in complex systems. It is now
widely used to process unprecise or uncertain data [17], [18]. In
particular, it is an appropriate framework to handle the output of
a given classifier for further processing. The output is usually not
in a binary form and includes some ambiguity. In this section, we
first recall general definitions and properties of fuzzy sets. Then,

we detail the model used for the representation of the classifiers
output.

A. Fuzzy set theory

1) Definitions:
Definition 1 (Fuzzy subset):A fuzzy subset1 F of a reference

set U is a set of ordered pairsF = {(x, µF (x)) | x ∈ U},
where µF : U → [0, 1] is the membership function ofF in U .

Definition 2 (Normality): A fuzzy set is said to benormal if
and only if : max µF (x) = 1.

Definition 3 (Support):The support of a fuzzy setF is

Supp(F ) = {x ∈ U | µF (x) > 0}.
Definition 4 (Core): The core of a fuzzy set is the (crisp)

set containing the points with the largest membership value
(µF (x) = 1). It is empty if the set is non normal.

2) Logical operations:Classical Boolean operations extend to
fuzzy sets [16]. WithF andG two fuzzy sets, classical extensions
are defined as follows:

a) Union: The union of two fuzzy sets is defined by the
maximum of their membership functions:

∀x ∈ U, (µF ∪ µG) (x) = max {µF (x), µG(x)} . (1)

b) Intersection:The intersection of two fuzzy sets is defined
by the minimum of their membership functions:

∀x ∈ U, (µF ∩ µG) (x) = min {µF (x), µG(x)} . (2)

c) Complement:The complement of a fuzzy setF is defined
by:

∀x ∈ U, µF (x) = 1 − µF (x). (3)

3) Measures of fuzziness:Fuzziness is an intrinsic property
of fuzzy sets. To measure how fuzzy a fuzzy set is, and thus
estimate the ambiguity of the fuzzy set, several definitionshave
been proposed [19] [20]. Ebanks [21] proposed to define the
degree of fuzziness as a functionf with the following properties:

1) ∀F ⊂ U , if f(µF ) = 0 thenF is a crisp set
2) f(µF ) is maximum if and only if∀x ∈ U, µF (x) = 0.5
3) ∀(µF , µG) ∈ U2, f(µF ) ≥ f(µG) if ∀x ∈

U

{
µG(x) ≥ µF (x) if µF (x) ≥ 0.5

µG(x) ≤ µF (x) if µF (x) ≤ 0.5

4) ∀F ∈ U, f(µF ) = f(µF ). A set and its complement have
the same degree of fuzziness.

5) ∀(µF , µG) ∈ U2, f(µF ∪ µG) + f(µF ∩ µG) = f(µF ) +
f(µG).

Bezdek [22] proposed a measure of fuzziness based on the
multiplicative class.

Definition 5 (Multiplicative Class):The multiplicative class is
defined as:

H∗(µF ) = K

n∑

i=1

g(µF (xi)), K ∈ R+ (4)

1For convenience, we will use the term “fuzzy set” instead of “fuzzy subset”
in the following, where a fuzzy setF is described by its membership function
µF .
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Fig. 1. Influence ofα on SαQE

whereg(µF ) is defined as:
{

g(t) = g̃(t) − min
0≤t≤1

g̃(t)

g̃(t) = h(t)h(1 − t)
(5)

andh is a concave increasing function on[0, 1]:

h : [0, 1] → R2,∀x ∈ [0, 1] h′(x) > 0 and h′′(x) < 0. (6)

The multiplicative class allows the definition of various fuzzi-
ness measures, where different choices ofg lead to different
behaviors. For instance, leth : [0, 1] → R+ be h(t) = tα, 0 <

α < 1. The functionh satisfies the required conditions for the
multiplicative class, and the function:

HαQE(µF ) =
1

n2−2α

n∑

i=1

µF (xi)
α(1 − µF (xi))

α (7)

is a measure of fuzziness, namely theα − Quadratic entropy.
Rewriting (7) as:





HαQE(µF ) =
1

n

n∑

i=1

SαQE(µF (xi))

SαQE(µF (xi)) =
µF (xi)

α(1 − µF (xi))
α

2−2α

(8)

we can analyze the influence of parameterα (see Fig. 1): The
measure becomes more and more selective asα increases from
0 to 1. With α close to 0, all the fuzzy sets have approximately
the same degree of fuzziness and the measure is not sensitiveto
changes inµF , whereas withα close to 1, the measure is highly
selective with the degree of fuzziness quickly decreasing when
the fuzzy set differs fromµF = 0.5. As a consequence, in this
paper we choseα = 0.5 as a good trade-off [22].

B. Class representation

An n-classes classification problem is considered, for whichm

different classifiers are available. For a given pixelx, the output
of classifieri is the set of numerical values:

{µ1
i (x), µ2

i (x), . . . , µj
i (x), . . . , µn

i (x)} (9)

Fig. 2. Example of two conflicting setsπ for a given pixelx

where µ
j
i (x) ∈ [0, 1] (after a normalization, if required) is the

membership degree of pixelx to classj according to classifieri.
The higher this value, the more likely it is that the pixel belongs
to classj. Depending on the classifier,µ

j
i (x) can be of a different

nature: probability, posterior probability at the output of a neural
network, membership degree at the output of a fuzzy classifier,
etc. In any case, the setπi(x) = {µj

i (x), j = 1, ..., n} can be
considered as a fuzzy set.

As a conclusion, for every pixel,m fuzzy sets are computed,
one by each classifier. They constitute the input for the fusion
process:

{π1(x), π2(x), . . . , πi(x), . . . , πm(x)}. (10)

In Fig. 2, two conflicting sets are represented. As a matter offact,
the fusion of the non conflicting results is of little interest in our
case: though it might increase our believe in the corresponding
result, it certainly won’t change the final decision, and thus won’t
increase the classification performances. On the contrary,in the
case of conflicting results, at least one classifier is wrong and the
fusion gives a chance to correct this and increase the classification
performances. Fuzzy set theory provides various combination op-
erators to aggregate these fuzzy sets. Such combination operators
are discussed in the next section.

For visual inspection, membership maps can be plotted. A
membership map represents theµ

j
i (x) for all pixels for class

i. For instance Fig. 6.a, b, c and d show the membership degrees
to the classbuildings and housesobtained for each pixel in an
IKONOS image by two different classifiers, respectively.

III. I NFORMATION FUSION

After briefly reviewing the basics of data fusion, we discussin
this section the problem of measuring the confidence of individual
classifiers. Finally, we propose an adaptive fusion operator. In the
following we denote the fuzzy seti by πi and the number of
sources bym.

A. Introduction

Data fusion consists in combining information from several
sources in order to improve the decision [23]. Of course, the
most challenging issue is to solve conflicting situations where
the sources disagree. Numerous combination operators havebeen
proposed in the literature. They can be classified into three
different kinds, depending on their behavior [24]:
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• Conjunctive combination: This corresponds to aseverebe-
havior. The resulting fuzzy set is necessarily smaller thanthe
initial sets and the core is included in the initial cores (itcan
only decrease). The largest conjunctive operator is the fuzzy
intersection (2).T-normsare conjunctive operators, leading

to a fuzzy setπ∧(x) =

N⋂

i=1

πi(x). They are commutative,

associative, increasing and withπi(x) = 1 as a neutral
element (i.e., ifπ2(x) = 1 thenπ∧(x) = π1(x) ∩ π2(x) =
π1(x)). They satisfy the following property:

π∧(x) ≤ min
i∈[1,m]

πi(x). (11)

• Disjunctive combination: This corresponds to anindulgent
behavior. The resulting fuzzy set is necessarily larger than
the initial sets and the core contains the initial cores (it
can only increase). The smallest disjunctive operator is the
fuzzy union (1).T-conormsare disjunctive operators, leading

to a fuzzy setπ∨(x) =

N⋃

i=1

πi(x). They are commutative,

associative, increasing and withπi(x) = 0 as neutral
element. They satisfy the following property:

π∨(x) ≥ max
i∈[1,m]

πi(x). (12)

• Compromise combination: this corresponds to intermediate
cautiousbehaviors.T (a, b) is a compromise combination if
it satisfies:

min(a, b) < T (a, b) < max(a, b). (13)

For purpose of illustration, we can consider the following toy
problem. To estimate how old a person is, two estimates are
available, each one modeled by a fuzzy set. These fuzzy sets
are represented in Fig. 3.a - note that they are highly conflicting.
From these two information sources, we want to classify a person
into one of three classes: young (under 30), middle aged (between
30 and 65) or old (above 65). To illustrate the three possible
modes of combination, we aggregate the information with the
min operator (T-norm), themax operator (T-conorm) and the
three different compromise operators. Results are presented in
Fig. 3. The decision is taken by selecting the class corresponding
to the maximum membership.

Conjunctive combination:Fig. 3.b presents the result ob-
tained with themin operator, i.e., the less severe conjunctive
operator. It is a unimodal fuzzy set. This fuzzy set is sub-
normalized, but this problem could be solved usingπ′

∧(x) =
π∧(x)

supx(π∧(x)) but this would not change the shape of the result.
In this case, the decision would bemiddle aged, which is not
compatible with any of the initial sources. In this case, thesources
strongly disagree and the conjunctive fusion does not help in
the classification. As a conclusion, conjunctive operatorsare not
suited for conflicting situations.

Disjunctive combination:Fig. 3.c presents the result ob-
tained with themax operator, i.e., the less indulgent disjunctive
operator. The resulting membership function is multi-modal and
each maximum is of equal amplitude. Again, no satisfactory
decision can be made.

Compromise combination:Three different such operators
are discussed. They are all based on the measure of the conflict
between sources. The conflict may be defined as1 − C with:

C(π1, π2) = sup
x

min(π1(x), π2(x)). (14)

The first compromise combination operators were proposed byD.
Dubois and H. Prade in [25]. Bloch has classified these operators
asContextual Dependant (CD) Operators[26]. Note that the con-
text can be characterized in different ways: Knowledge regarding
the potential conflict between the sources, knowledge aboutthe
reliability of one given source or introduction of some spatial
information. These operators have been proposed in possibility
theory [27] but they can also be used in fuzzy set theory for
combining membership functions [26]. Being able to adapt to
the context, these operators are more flexible and thus provide
interesting results. The first considered operator (denoted operator
(15) in the following)

π(x) =
8

>

>

>

<

>

>

>

:

max
“

min(π1(x),π2(x))

C(π1,π2)
, min (max(π1(x), π2(x)), 1 − C(π1, π2))

”

if C(π1, π2) 6= 0

max(π1(x), π2(x))

if C(π1, π2) = 0

(15)

adapts its behavior as a function of the conflict between the
sources:

• it is conjunctive if the sources have low conflict
• it is disjunctive if the sources have high conflict
• it behaves in a compromise way in case of partial conflict

Fig. 3.d presents the obtained result using operator (15). Corre-
sponding decision (middle aged) is still not satisfactory.
In this case, some information on source reliability must be
included, and the most reliable source(s) should be privileged
in the fusion process. Different situations can be considered:

• It is possible to assign a numerical degree of reliability to
each source.

• A subset of sources is reliable, but we do not know which
one(s).

• The relative reliability of the sources are known, but with
no quantitative values. However, priorities can be defined
between the sources.

The two following adaptive operators are examples ofprioritized
fusion operator[25].

π(x) = min (π1(x),max (π2(x), 1 − C(π1, π2))) . (16)

π(x) = max (π1(x),min (π2(x), C(π1, π2))) . (17)

For both operators, whenC(π1, π2) = 0, π2 contradictsπ1 and
the only information provided byπ1 is retained. In this case,
π2 is considered as a specific piece of information whileπ1 is
viewed as a fuzzy default value. Assumingπ1 is more accurate
thanπ2, we get the result presented in Fig. 3.e and f, enabling a
satisfactory decision.

As a conclusion, conjunctive and disjunctive combination
operators are ill suited to handle conflicting situations. These
situations should be solved by CD Operators, incorporating
reliability information.
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Fig. 3. Examples of combination operator:a shows the two possibility distributions,b and c show the result of themin and themax operators, respectively.d,e
and f show the result of the three compromise operators presented in(15), (16) and (17), respectively.

B. Measure of confidence

1) point-wise accuracy:For a given pixel and a given classi-
fier, we propose to interpret the fuzziness of the fuzzy setπi(x)
defined in (9) as a point-wise measure of the accuracy of the
method. We intuitively consider that the classifier isreliable
if one class has a high membership value while all the others
have a membership value close to zero. On the contrary, when
no membership value is significantly higher than the others,the
classifier isunreliable and the results it provides should not be
taken too much into account in the final decision. In other words,
uncertain results are obtained when the fuzzy setπi(x) has a high
fuzziness degree, the highest degree being reached for uniformly
distributed membership values.
To reduce the influence of unreliable information and thus en-
hance the relative weight of reliable information, we weight each
fuzzy set by:





wi =

m∑

k=0,k 6=i

HαQE(πk)

(m − 1)

m∑

k=0

HαQE(πk)

m∑

i=0

wi = 1

(18)

whereα = 0.5, HαQE(πk) is the fuzziness degree of sourcek

andn is the number of sources. When a source has a low fuzziness
degree,wi is close to 1 and it only slightly affects corresponding
fuzzy set. Fig. 4 illustrates the effects of this normalization.

π1 π2

w1 ∗ π1 w2 ∗ π2

Fig. 4. Normalization effects. This figure shows two fuzzy sets (π1 and π2)
with different fuzziness (HαQE(π1) = 0.51, HαQE(π2) = 0.97, w1 = 0.65
andw2 = 0.35). The normalization effect is shown on the lower line. Influence
of classifier 2 is more reduced byw2 than classifier 1 is reduced byw1.

2) Global accuracy:Beyond the adaptation to the local con-
text described in the previous paragraph, we can also use prior
knowledge regarding the performances of each classifier. This
knowledge is modeled for each classifieri and for each classj
by a parameterf j

i . Such global accuracy can be determined by
a separate statistical study on each of the used classifiers.If, for
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a given classj, the user considers that the results provided by
classifieri are satisfactory, parameterf

j
i is set to one. Otherwise,

it is set to zero. Since this decision is binary, we assume foreach
class, that there is at least one method ensuring a satisfactory
global reliability.

C. Combination operator

Many combination rules have been proposed in the literature,
from simple conjunctive or disjunctive rules, such asmin or max
operators, to more elaborated CD operators, such as defined by
(16) and (17) where the relative reliability of each source is
used. However, with these operators, sources have always the
same hierarchy and the fusion scheme does not adapt to the local
context. In this paper, we propose the following extension:

µ
j
f (x) = max

(
min

(
wiµ

j
i (x), f j

i (x)
)
, i ∈ [1,m]

)
(19)

wheref
j
i is the global confidence of sourcei for classj, wi is

the normalization factor defined in (18), andµ
j
i is an element of

the fuzzy setπi defined in (9). This combination rule ensures that
only reliable sources are taken into account for each class (pre-
defined coefficientsf j

i ), and that the fusion also automatically
adapts to the local context by favoring the source that is locally
the most reliable (weighting coefficientswi).

IV. T HE FUSION SCHEME

We present here the complete proposed fusion scheme. In a
first step, each classifier is applied separately (but no decision is
taken). Then, the results provided by the different algorithms are
aggregated. The final decision is taken by selecting the class with
the largest resulting membership value.

The fusion step is organized as follows:
For each pixel :

1) Separately build fuzzy sets for the classes in each source.
2) Compute the fuzziness degree of each fuzzy set.
3) Normalize data withwi defined in (18).
4) Apply operator (19).
5) Select the class corresponding to the highest resulting

membership degree.

The block diagram of the fusion process is given in Fig. 5.
Note that in Fig. 5, the range of the fuzzy sets is rescaled before
the fusion step in order to combine data with the same range.
The rescaling has to save the order relation in the classifier’s
outputs for a given pixel. This is achieved with the following
range stretching algorithm:

• for all πi(x) = {µ1
i (x), . . . , µj

i (x), . . . , µn
i (x)}, compute :

– M = max
j,x

[
µ

j
i (x)

]
,

– m = min
j,x

[
µ

j
i (x)

]
,

– for all µ
j
i (x), compute :

∗ µ
j
i (x) =

µ
j
i (x) − m

M − m
.

TABLE I

INDICES OF CONFIDENCE FOR IMAGE1

Neural Network Fuzzy Logic

Large Buildings 0 1
Houses 0 1

Large Roads 1 1
Streets 1 0

Open Areas 0 1
Shadows 0 1

V. EXPERIMENTAL RESULTS

In this section, we present the application of the proposed
general fusion scheme to the improvement of classification results
using remote sensing images from urban areas. The proposed
approach was applied to two very high-resolution IKONOS
panchromatic images from Reykjavik, Iceland. Six classes were
considered in each case, namely: Large buildings, houses, large
roads, streets, open areas and shadows. Each image consistsof a
single channel with 1m resolution.
Two classification algorithms were used : a conjugate gradient
neural network [2] and a fuzzy classifier [8]. Both are composed
of two steps. The first step is the feature extraction by morpholog-
ical filters and the second step is the actual classification,using
either a neural network or a fuzzy possibilistic model. The classi-
fication accuracies for the different classifiers were compared to
determine the global confidence in the fusion process. The inputs
for the fusion process were the posterior probabilities from the
outputs of the neural network and the membership degrees forthe
fuzzy classifier. These inputs are displayed as images in Fig. 6.

A. First test image

The first test image (976 by 640 pixels) is shown in Fig. 7.a.
Table II shows the test accuracies for the two classifiers. Inorder
to test the generalization ability of the classifiers, independent
samples were used for training and testing. The training mapand
the reference map are shown in Fig. 8.a and b, respectively.
Starting from the class classification accuracies, the global reli-
abilities were set as follows: The neural network classifiergave
higher accuracies than the fuzzy classifier for the streets and the
large roads classes. However, for the other four classes, the fuzzy
classifier outperformed the neural network in terms of accuracies.
In the fusion, we defined the indices of confidence in a binary
way according to the accuracies. For a given class, full confidence
was given to the best classifier, i.e., the one with the highest
classification accuracy. Then, if the accuracy of the other classifier
was close to the highest (by 5%), then full confidence was also
granted to that classifier. Otherwise, the index of confidence was
set to zero. The confidence values are listed in Table I.

The accuracy obtained for the final classification is given Table
II. The overall accuracy increased from 40.3% for the neural
network, and 52.1% for fuzzy the classifier, to 59.1% with the
fusion. Small houses and large houses were classified similarly
with the fuzzy classifier but the streets classification accuracy
improved form 9.8% to 55.7% with the use of the neural network
information. The classification accuracies for shadows andopen
area also increased from 83.8% and 52.1%, respectively, to 86.6%
and 60.9%, respectively. On the other hand, the classification
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Fig. 5. Block Diagram of the fusion method

TABLE II

TEST ACCURACIES IN PERCENTAGE FORIMAGE 1

Neural Network Fuzzy Logic Fusion

Large Buildings % 26.2 47.6 47.4
Houses % 33.4 67.8 67.4

Large Roads % 59.1 58.8 43.7
Streets % 55.6 9.8 55.7

Open Areas % 30.9 52.2 60.9
Shadows % 32.7 83.3 86.6

O. A. % 40.3 52.1 59.1
A. A. % 39.7 53.3 60.3

accuracy for large roads decreased from 59.1% to 43.7%. Both
the original and classified images are shown in Fig. 7.

The results of the first experiment illustrate the complementary
behaviors of the fuzzy and neural network classifiers. Even
though the global accuracy is higher with the fuzzy classifier, the
neural classifier performs better in terms of accuracies forthe
large roads and streets classes. Note that these accuracy numbers
were obtained using manual ground truth where each pixel in
the original image was labeled. Since no pre- or post-processing
was done, the accuracies should be interpreted in a relativeway
rather than in an absolute way.

B. Second test image

The second test image is 700 by 630 pixels. Table IV shows
the test accuracies for the two classifiers that were used in the
second experiment. The global reliability was defined in thesame
way than in the first experiment. The indices of confidence are
listed in Table III.

The test accuracies for the final classification is given in
Table IV. As can be seen in the table, the overall accuracy
increased from 57.0% for the neural network and 43.1% for fuzzy

TABLE III

INDICES OF CONFIDENCE FORIMAGE 2

Neural Network Fuzzy Logic

Large Buildings 1 0
Houses 0 1

Large Roads 1 1
Streets 1 0

Open Areas 1 1
Shadows 0 1

TABLE IV

TEST ACCURACIES IN PERCENTAGE FORIMAGE 2

Neural Network Fuzzy Logic Fusion

Large Buildings % 89.6 26.3 94.8
Houses % 29.9 42.8 33.8

Large Roads % 0 0 94.2
Streets % 83.6 77.4 22.7

Open Areas % 46.5 44.9 73.7
Shadows % 43.7 98.7 90.4

O. A. % 57.0 43.1 75.7
A. A. % 48.9 48.4 68.3

classifier to 75.7% after the fusion. With the fusion, classification
accuracy for open areas increased from 46.6% to 73.7%. Shadows
and large buildings classification accuracies were similarfor the
fuzzy classifier and the neural network. The biggest improvement
after the fusion was achieved in the classification of large roads,
where the classification accuracy increased from 0.0% to 94.2%.
Furthermore, the overall road classification accuracy increased
from 41.5% to 58.6%. But at the same time, the classification
accuracy for streets decreased from 83.6% to 22.7%. Both the
original and the classified images are shown in Fig. 7.
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a b

c d

e f

g h

Fig. 6. Possibility maps. Figs.a andc represent the membership maps given by the neural network respectively for thebuildingsandhousesclasses. Figs.b and
d represent the membership maps given by the fuzzy classifier for the classesbuildings and houses. Figs. e, f, g and h are the stretched version of the four above
images with the algorithm given Section IV.

C. Comparison with others combination rules

In this subsection we compare the results provided by the
proposed operators with others combination rules. When possible,

we use the accuracy measure previously defined in III-B. For
the min and max operators we compute experiments with and
without point-wise accuracy information. We do the same for
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a b

c d

Fig. 7. Test images and results;a Original IKONOS image 1,b image 1 classification results,c Original IKONOS image 2,d image 2 classification results.
Red = Large Buildings, Gray = Small Houses, Dark Blue = Streets, Blue-Gray = Large Road, Green = Open Areas and Brown = Shadows.

the operator (15). Conflict was computed for both cases. For
operators (16) and (17), the less accurate classifier was chosen
as the less important classifier based on the global test accuracy.
The obtained results are given in Table V and Table VI. As can
be seen from the Tables, our proposed method outperformed the
others combination rules in terms of accuracy. It can be seenthat
the classification accuracy for streets is still not satisfactory. No
combination rule was able to use the information provided bythe
neural network.

For the max operator, the point-wise accuracy information
improved the classification accuracy as compared to the fusion
with the max operator without point-wise accuracy informa-
tion. That was due to thenormalization effect: The unreliable
information was reduced thanks to operator (18). Conversely,
point-wise accuracy information deteriorated the classification
with the min operator. Here, unreliable information was reduced
by operator (18) and could be unfortunately selected. Adaptive
operators (15) and (17) seemed to perform better with point-
wise accuracy information, the global accuracy for operator (15)

and (17), respectively, increased from36, 7% and 39, 5% to
42, 9% and 42, 5%. No significant changes were noted for the
operator 16. From these experiments, it can be concluded that
if there is no available information on source reliability,point-
wise accuracy can be used to significantly improve the fusion.
However, knowledge about the global reliability of each classifier
seems to be more useful. Finally, to investigate the influence
of the contextual information two additional experiments were
conducted. In each experiment, we removed one type of the
contextual information types and compared the results in terms
of classification accuracies to those obtained the two typesof
contextual information are used. For the global information, if
we set its values to one for both classifiers and all classes,
operator (19) becomes the simplemax operator using point-wise
accuracy information; the experiment was already done in the
previous paragraph. For the point-wise accuracy information, all
wi were put to one and we kept only the global information.
Results are listed in Table VII. From these experiments, it is
clear that both contextual information types are needed to achieve
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TABLE V

TEST ACCURACIES IN PERCENTAGE FOR DIFFERENT COMBINATION RULES

WITHOUT THE POINT-WISE ACCURACY MEASURE OFIMAGE 1

Max Min Operator (15) Operator (16) Operator (17)

Large Buildings % 31.6 42.8 32.7 47.8 39.6
Houses % 68.2 67.2 65.1 67.6 64.3

Large Roads % 66.4 68.0 66.4 59.4 69.6
Streets % 2.1 5.9 2.1 7.2 4.2

Open Areas % 9.1 9.1 9.1 8.3 13.1
Shadows % 52.8 81.1 52.8 84.4 53.5

O. A. % 37.0 43.0 36.7 42.6 39.5
A. A. % 38.4 45.7 38.0 46.1 40.7

TABLE VI

CLASSIFICATION ACCURACIES IN PERCENTAGE FOR DIFFERENT

COMBINATION RULES WITH THE POINT-WISE ACCURACY MEASURE OF

IMAGE 1

Max Min Operator (15) Operator (16) Operator (17)

Large Buildings % 48.4 40.8 48.4 47.8 47.6
Houses % 70.2 55.6 70.2 67.8 67.3

Large Roads % 59.7 71.6 59.7 59.4 59.7
Streets % 6.1 7.2 6.1 7.2 6.8

Open Areas % 8.1 9.7 8.1 8.3 8.4
Shadows % 84.2 70.9 84.2 84.3 84.1

O. A. % 42.9 40.5 42.9 42.7 42.5
A. A. % 46.1 42.6 46.1 46.2 45.7

TABLE VII

CLASSIFICATION ACCURACIES IN PERCENTAGE FOR OPERATOR(19) WITH

DIFFERENT TYPES OF THE CONTEXTUAL INFORMATION

Point-wise accuracy Global accuracy Both accuracies

Large Buildings % 48.4 42.9 47.7
Houses % 70.2 67.2 67.4

Large Roads % 59.7 64.5 43.7
Streets % 6.1 4.9 55.7

Open Areas % 8.1 37.0 60.9
Shadows % 84.2 92.8 86.6

O. A. % 42.9 49.5 59.1
A. A. % 46.1 51.5 60.3

a good classification in terms of accuracies.
The results of these additional experiments demonstrate the

need to control the fusion process. Without information about
conflict, accuracy and confidence, the accuracies are generally
worse than before the fusion. While the point-wise accuracy is
easy to compute and is independent of the classifiers, global
accuracy is a critical problem of the method. More developments
are needed to automate their definition.

VI. CONCLUSIONS

The fusion of several classifiers has been considered in classi-
fication of panchromatic remote sensing data from urban areas.
Starting from a complementary use of different classifiers,the
proposed method is based on a fuzzy combination rule. Two
measures of accuracy are used in the combination rule: The first
one, based on prior knowledge, defines global reliabilities, both
for each classifier and each class. The second one automatically
estimates the point-wise reliability of the results provided by each
classifier and, thus, enables the adaptation of the fusion rule to the
local context. The proposed approach does not need any training

a

b

Fig. 8. a Training map.b All available reference samples for the image 1.

and only requires about 1 minute of computation time for each
image using a Pentium 4 PC. Furthermore, no prior assumptions
are needed regarding the modeling of the data (e.g, Bayes theory,
possibility theory,etc) before the data are fused.
The obtained experimental results show that the complementary
use of different classifiers leads to a significant improvement of
the global classification accuracies. The overall accuracywas
improved by about 7% in the first experiment and 18% in the
second experiment.
A key point the presented framework lies in its generality for
decision level fusion. Though only two classifiers were used in the
paper, additional algorithms could easily be added to the process.
For instance, specialized algorithms such as street detectors could
be used without increasing errors in building detection. This
generalization also holds for the inclusion of multi-source data
such as multispectral or multitemporal images. One algorithm
could be used on each image and, then, the fusion could be done
with the results computed on each image.
In this paper, theα-Quadratic entropy was chosen for the fuzzi-
ness evaluation because the sensitivity of that measure canbe
modified with the value ofα. Several other measures could be
used, e.g., thefuzzy entropy[19].
One limitation of the proposed approach is the use of binary
values for the global confidence. With fuzzy confidence, the
combination rule could be rewritten withT-conormandT-norm,
both of which are less indulgent and less severe thanmax and
min. Moreover, the use of theT-conormandT-normwould allow
a finer definition of global accuracy.
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Our current research is now oriented toward fusion of spectral
and spatial classification results. That way, we can integrate much
complementary information for the final classification process.
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