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Abstract—Buildings and roads are the two most basic man-

made environments that carry and interconnect human society. 

Building and road information has important application value in 

the frontier fields of regional coordinated development, disaster 

prevention, auto-driving, etc. Mapping buildings and roads from 

very high-resolution (VHR) remote sensing images has become a 

hot research topic. However, the existing methods often extract 

buildings and roads with separate models, ignoring their strong 

spatial correlation. To fully utilize their complementary relation, 

we propose a method that simultaneously extracts buildings and 

roads from remote sensing images. The accuracy of both tasks can 

be improved using our proposed multi-task feature interaction 

and cross-scale feature interaction modules. To be specific, a 

multi-task interaction module is proposed to interact information 

across building extraction and road extraction tasks while 

preserving the unique information of each task. Furthermore, a 

cross-scale interaction module is designed to automatically learn 

the optimal reception field for buildings and roads under varied 

appearances and structures. Compared with existing methods that 

train individual models for each task separately, the proposed 

collaborative extraction method can utilize the complementary 

advantages between buildings and roads and reduce the inference 

time by half using a single model.  Experiments on a wide range of 

urban and rural scenarios show that the proposed algorithm can 

achieve building-road extraction with outstanding performance 

and efficiency. 
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I. INTRODUCTION 

uildings and roads are the two most basic man-made elements 

of our society. To be specific, buildings are basic carriers for 

social production and human life, while roads interconnect 

social network that enables goods and information 

transportation[1], [2]. The geodata of buildings and roads are 

valuable for understanding human activities and thus boost the 

sustainable development goals(SGD) including coordinated 

regional development, sustainable urban planning, public 

health, disaster risk reduction, etc.[3], [4]. Furthermore, the 

geoinformation of buildings and roads is indispensable for 

frontier applications such as smart cities and public health 

estimation[4], [5]. 

The very high-resolution (VHR) remote sensing imaging 

technique provides abundant image data sources for mapping 

buildings and roads in large areas[6]. Traditionally, these 

building and road maps are produced by visual interpreting, 

manual labeling, and surveying[7]. Despite its high accuracy, 

manually producing such geodata is time-consuming, 

especially for citywide or nationwide mapping[8]. Moreover, it 

cannot meet the requirements of up-to-date databases from 
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Fig1. Illustration of features from U-Net models that are trained individually on building extraction and road extraction tasks. 

Buildings and roads are complementary in the feature space. 
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many geodata-oriented applications such as autonomous 

driving, since regular manual updating is laborious in the long 

run[9], [10], [11]. To this end, many studies have attempted to 

design automatic methods for mapping buildings and roads 

from VHR remote sensing images. Over the past decades, 

mainstream building and road extraction algorithms have 

developed from handcrafted feature-based methods to deep 

learning-based methods[12]. The traditional handcrafted-based 

methods seek to select spatial-spectral features that can well 

distinguish objects of interest from the background[13], [14], 

[15], [16]. However, limited by expert knowledge and feature 

generalization, it is time-consuming to manually design optimal 

feature descriptors or classifiers that can be generalized to large 

areas.  

The convolution neural networks (CNN) of deep learning can 

automatically learn image descriptors and extract optimal 

features through backpropagation[17] and thus have been 

proven more effective than the handcrafted feature-based 

methods[18], [19]. Many studies have designed new CNN 

structures to improve the models’ performance on buildings or 

roads[20], [21], [22]. However, despite the pivotal role that 

buildings and roads have in human society, many prevailing 

algorithms extract buildings or roads in isolation[23], [24], and 

ignore the strong spatial correlation relation between them. In 

Fig.1, we empirically find the strong correlation between 

building and road exists in the feature space when visualizing 

the features extracted by the building extraction model (Fig.1 a) 

and road extraction models (Fig.1 b) using the U-Net 

architecture[25]. An interesting finding is that some features 

extracted by a model trained only with building labels has 

learned to localize road regions. Similarly, the road 

segmentation model has automatically learned building 

information without supervision from the building ground 

truths. This finding implies that the building extraction and road 

extraction tasks can improve the accuracy of both tasks in a 

collaborative way since high-quality building features will 

boost the performance of the road extraction task and vice versa.  

Although some existing methods have attempted to design 

unified network structures for building and road extraction, 

these models, as depicted in Fig. 2 (a), are trained on each task 

individually and cannot utilize the complementary relation 

between them[23], [24]. A question arises: can we design a 

multitask model for extracting buildings and roads 

simultaneously? An intuitive solution is to apply two classifiers 

for the two tasks and convert the model into a multi-task 

manner(Fig. 2 b) [26], [27], [28]. However, these simple 

multitask designs lead to the learning issue of the “seesaw 

phenomenon” that the accuracy of one task is often improved 

by hurting the performance of another task[29], which is also 

demonstrated in our experiment. Moreover, these methods do 

not consider the different requirements of models’ reception 

fields between different tasks, which may also deteriorate 

multitask feature representation.  

To address these problems, we propose a CRoss-INteraction 

(CRIN) model with a simple and effective task-shared and task-

specific feature space design. As shown in Fig. 2(c), CRIN 

separates the common feature space into task-specific and task-

shared feature spaces to realize inner-task and cross-task feature 

interaction, improving task-specific and task-shared feature 

representations. Moreover, as the optimal reception field of the 

different tasks varies, a cross-scale interaction module is 

designed to automatically learn and select the optimal reception 

field for each feature space, and thus exploit optimal feature 

representations for each specific task. The proposed CRIN 

 

Fig 2. The comparison among different architectures for building-road collaborative extraction, including (a) separate models 

trained individually for different tasks (b) multitask model that predicts building and road using multiple classifiers, and (c) 

our proposed Cross-Interaction (CRIN) architecture that embeds task-shared and task-specific feature spaces and selective 

paths. 
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model can boost the performance of both building extraction 

and road extraction tasks in a complementary way. Our main 

contributions are summarized as follows: 

1. We propose a building-road extraction network that 

improves the accuracy of both tasks in a single model. A 

multitask interaction module is proposed to take advantage of 

the complement of spatial correlation relationship between 

buildings and roads. The proposed model can achieve cross-

task interactions within the shared feature space while 

preserving the unique feature of each task under the inner-task 

interaction design. It alleviates the problem of isolated or 

unbalanced learning as proposed by the existing methods.  

2. Since task-specific building and road features may depend 

on the model’s reception field differently, a cross-scale 

interactive perception module is designed. The module 

adaptively determines the optimal receptive field for task-

specific and task-shared feature spaces through back-

propagation and thus improves the representation of task-

specific and task-shared features.  

3. Extensive experiments on a wide range of urban and rural 

scenes demonstrate the effectiveness of the method, which 

achieves the highest accuracy in building and road extraction 

tasks. In comparison to the existing structures that are trained 

separately or multitask structures that cause the ‘seesaw 

phenomenon’, the proposed CRIN model takes advantage of the 

complementary advantages between buildings and roads and 

achieves the best performance and efficiency. 

II. RELATED WORKS 

A. Building Extraction 

Extracting buildings from VHR remote sensing images has 

long been a challenging task due to the high inner-class 

variation and small inter-class variation of VHR remote sensing 

images[30]. For example, non-building features with similar 

colors, shadows from nearby objects, and heterogeneity of roofs 

are some major problems that hinder the process of 

automation[14]. To overcome the confusion from non-building 

features, early methods seek to select features that can well 

represent buildings, and design multiple criteria to discriminate 

buildings from complex backgrounds[15], [31], [32]. As these 

criteria were designed manually, they usually show limited 

generalization ability when applied to large-scale 

applications[33]. 

In recent years, some studies introduced data-driven deep-

learning techniques to the building extraction field. The 

advantage of deep learning is that it can automatically learn 

feature representation from the input image and make 

classifications in an end-to-end manner[17], [34]. Many works 

have been proposed to improve the fully convolutional 

networks(FCN) for building extraction. The main direction of 

improvements lies in building boundary refinement[35], [36], 

[37], multiscale feature fusion[38], [39], [40], and dilated 

convolution[30], [41]. There are also some studies that focused 

on applying multi-sensor images(e.g. LiDAR) [42], [43] or 

multi-source data(e.g. height information)[44], [45] for 

improved building extraction accuracy. Inspired by the 

outstanding performance of the Transformer mechanism[46], 

some recent studies have proven its efficacy in the building 

extraction field[47], [48]. Another research hotspot is the 

generalization of building vector maps. Unlike the semantic 

segmentation methods that generate pixel-level building 

prediction, building vectorization methods directly generate 

building polygons from images using post-processing[49], 

vertex prediction[50], or graph neural networks[51] methods. 

However, few studies have explored the performance gain of 

the model from learning objects with strong spatial correlation 

with buildings, such as roads. 

B. Road  Extraction 

Extracting roads from remote sensing images is also 

challenging due to diverse road materials and complex 

backgrounds[52]. Since roads are stripe-shaped objects with 

multiple intersections, spatial features such as geometric[53], 

topological[54], and texture[55] features are widely used in 

handcrafted feature-based methods. Similar to building 

extraction, the traditional handcrafted feature-based methods 

show limited performance when applied to large areas. The 

data-driven learning-based methods have shown better 

performance and generalization than traditional methods. Due 

to the distinctive shape characteristic of roads, traditional 

convolutional layers of small kernel size cannot well capture 

the shape information, and a mainstream research focus is to 

enlarge the models’ reception field to capture road 

information[52]. For example, D-LinkNet introduces multiple 

branches of dilated convolutional layers to capture features at 

different scales[56]. As roads vary in length and materials, they 

rely on different levels of model reception fields. To further 

improve the model’s reception field, transformer mechanisms 

were introduced to capture long-range dependency in 

images[57], and thus significantly improve the accuracy of road 

extraction[58], [59]. Based on the pixel-based road extraction 

results, some studies have attempted to convert the pixel-based 

road maps into polylines by designing vectorization 

approaches[60], [61]. To further improve road extraction 

accuracy, some studies also combined multi-source data such 

as vehicle trajectories[62] and SAR data[63]. However, it is still 

challenging to extract complete road map from images with 

complex background information. 

C. Building-Road Extraction 

The existing building-road extraction methods can be 

categorized into separate methods and multitask methods. The 

separate methods aim to design a unified network architecture 

by considering the characteristics of buildings and roads. The 

network, however, is trained on building extraction and road 

extraction tasks separately. For example,  Zhang and Wang 

proposed a unified network structure[24] with a large model 

reception field for building and road extraction. Ayala et al. 

introduced Res-U-Net to extract buildings and roads using 

crowdsource data as the training set[23]. Saito et al. proposed 

unified U-Net architectures embedded with recurrent neural 

networks and dense connections for building and road 

extraction[64]. These unified structures, however, do not 

consider the spatial correlation relation between buildings and 

roads. Moreover, these models are trained separately on 

different tasks, and thus double the computational burden since 
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the image should pass through the model twice to generate 

building and road predictions. To this end, some studies 

designed multitask networks to predict the building and road in 

a single network. For example, some studies transmit the binary 

classification method into the multiclass classification method 

and classify the image patches into buildings, roads, and 

backgrounds [27], [64], [65]. These patch-based methods do not 

utilize the global context information and are prone to cause 

large building misclassification and road disconnection due to 

insufficient spatial semantics[64]. Some further studies 

introduce FCN to extract buildings and roads in a single model. 

Ding et al. proposed a non-local feature search network [28] 

embedded with a self-attention module to strengthen feature 

representation. Ayala et al. [66] designed multitask strategies to 

train each category against the background before and fuse the 

predictions using post-processing.  

There are two major issues that hinder the performance of the 

building-road extraction, including 1) many existing multitask 

learning schemes simply attach several classifiers to generate 

multiple predictions, which may lead to the ‘seesaw 

phenomenon’ that features of one task become dominant and 

sacrifice the performance of the other task, and 2) The model 

reception fields for building and road extraction tasks are 

unified, ignoring the different requirements of model reception 

fields for different tasks. In this paper, we overcome these 

shortcomings by separating the common feature space into 

task-specific features and task-shared future spaces with inner-

task and cross-task feature interaction. A cross-scale interaction 

module then is designed to automatically learn and select the 

optimal reception field for both task-shared and task-specific 

feature spaces. 

 

III. METHODOLOGY 

A. Overview 

To take advantage of the correlation relationship between 

buildings and roads, we propose a CRoss-INteraction (CRIN) 

network to realize the simultaneous extraction of buildings and 

roads in a single network.  As shown in Fig. 3, CRIN takes the 

VHR remote sensing images as the input and outputs the 

prediction of building and road maps simultaneously to 

improve learning efficiency through information sharing 

between tasks. Following the encoder-decoder design, the input 

images are first fed into the encoder network for hierarchical 

feature extraction. The extracted features are then copied and 

transmitted to the decoder network to refine feature resolution 

and generate building and road extraction. In each decoder 

stage, a multitask feature interaction (MFI) module is designed 

to address the ‘seesaw phenomenon’ that deteriorates multitask 

learning, which includes the inner-task fusion stage and the 

cross-task interaction stage. MFI performs inner-task feature 

fusion to integrate useful information coming from the encoder 

network; a cross-task interaction scheme then separates the 

feature space into task-specific and task-shared feature spaces 

for better feature interaction. In the task-specific feature space, 

the features are expected to learn representations that are 

optimal for the specific task, while the features of both tasks 

interact in the shared feature space. As a result, MFI is able to 

preserve the features of each specific task and take advantage 

of the complementary between building features and road 

features. Furthermore, a cross-scale interaction (CSI) module is 

integrated after MFI to select the optimal feature scale for each 

task, since different objects of interest rely on the reception field 

differently. Finally, the model is optimized with the building 

and road ground truths to handle the practical challenges of 

joint learning. 

 

B. Multi-task interaction module 

Motivated by the strong spatial correlation relationship 

between buildings and roads, we expect to train a model that 

utilizes the complementary advantages between buildings and 

roads and outperforms the single-task model that is trained 

separately. We propose a multi-task interaction (MTI) module 

to fully utilize the complementary advantage between buildings 

and roads. As shown in Fig. 4, the proposed MFI tasks the 

output features from the last decoder stage and shallow features 

transmitted from the encoder network as the input. Deep 

features are rich in contextual semantics, but their edge details 

 
Fig 3. The flowchart of the proposed Cross-Interaction (CRIN) network, which includes a weight-sharing encoder network, a 

multitask interaction module (MFI) that enables inner-task and cross-task feature interaction, and a cross-scale interaction 

module (CSI) to select and integrate optimal feature scales. 
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are insufficient due to low spatial resolution. On the contrary, 

features extracted by shallow encoder convolutional layers 

contain rich edge details of the whole image other than the 

objects of interest. In conventional decoder design, the common 

is to concatenate the multiple features and fuse them using a 

single convolutional feature. Another convolutional layer then 

refines the features and outputs the feature to the next decoder 

stage.  However, in the multitask learning scheme, directly 

concatenating and convoluting multiple features into a unified 

representation leads to the ‘seesaw phenomenon’ in which the 

features of one task become dominant and sacrifice the 

performance of the other task[29].  

To address this problem, we aim to separate the unified 

feature space to ensure a proper learning space for each task, 

which also allows information sharing. The proposed MTI 

module includes the feature fusion stage and the feature 

interaction stage, as illustrated in Fig. 4. In the fusion stage, we 

guide the model fuse building features and road features 

separately since different tasks focus on different details 

contained in the input feature. We split the input features into 

two groups and concatenate features from each group in 

alternation. Convolution with a group size of two is performed 

to the concatenated features to generate building features and 

road features that contain rich semantic and spatial details. In 

this way, features from each feature space can focus on refining 

the spatial details of the specific task. The real-world example 

in Fig. 4 shows that the fusion result of each task can better 

locate building and road regions compared with the input 

feature. The features are then projected for cross-task 

interaction in the interaction stage. 

In the interaction stage, we further project the features into 

the task-specific feature spaces, including the building feature 

space and the road feature space, and a task-shared feature 

space that enables cross-task feature interaction. In this way, 

features of both tasks can interact in the shared feature space, 

and task-specific features can be preserved in the task-specific 

feature space. 

We then explain why MFI is a lightweight and effective 

decoder design for building-road collaborative extraction. If we 

directly adopt the conventional U-Net decoder for collaborative 

extraction, one task may become dominant in the training 

process, and the features cannot be well balanced between 

different tasks[29]. However, in MFI, we separate the decoder 

into the feature fusion stage and the feature interaction stage, 

where the former is responsible for fusing the features for each 

task and the latter is capable of information interaction across 

the different tasks. Moreover, MFI can be implemented by 

successive feature splitting and group convolutions, which 

saves one-third of the computational cost as compared with the 

conventional decoders in theory. It demonstrates that MFI is an 

effective and lightweight decoder module for building-road 

collaborative segmentation. 

 

C. Cross-scale interaction module 

  MFI separates task-specific and task-shared features 

explicitly, and thus preserves the feature space of each task and 

allows cross-task feature interaction. As depicted in Fig. 5, CSI 

contains multiple branches of different large convolutional 

kernels, which refer to different scales of the reception field. 

Large kernel sizes with depthwise convolutional layers have 

been proven effective in improving the model’s reception field. 

However, since the optimal reception field for different tasks 

varied, manually selecting a scale of large kernel size may not 

be helpful in improving multitask accuracy. To address this 

problem, the input features are fed into multiple branches of 

different large convolutional kernels and introduce a selective 

kernel mechanism to determine the contribution of each scale. 

Moreover, to alleviate the heavy computational burden of 

multiple large-kernel branches, we introduce alternative row-

wise convolution and column-wise convolution, which 

effectively reduces the computational cost and improves the 

receptive field of the model.  

Specifically, CSI takes the output feature f of MTI as the 

input. f is firstly fed into a depthwise convolutional layer of 

kernel size of 5x5 to extract the initial feature finit: 

finit = DConv5x5(f)              (1) 

in which DConvixj(·)  represents a depthwise convolutional 

layer of kernel size ixj. Then finit is passed through 4 branches 

including the reception field of 7x7, 11x11, 21x21, and the 

residual branch that maintains the original reception field. 

Moreover, if we directly feed the features into convolution 

layers of kernel size kxk, the model’s parameters increase 

exponentially. For example, the parameters of a convolution 

 
Fig 4. Architecture of the multi-task interaction (MTI) module. 
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layer of 21x21 kernel size are 49 times that of the 3x3 kernels. 

Inspired by the inception module, we apply column-wise and 

row-wise convolution in success to increase the model 

reception field with less computational cost. The computation 

process of these branches is as follows. 

f7x7 = Conv1x7(Conv7x1(𝑓𝑖𝑛𝑖𝑡))      (2) 

f11x11 = Conv1x11(Conv11x1(𝑓𝑖𝑛𝑖𝑡)      (3) 

f21x21 = Conv1x21(Conv21x1(𝑓𝑖𝑛𝑖𝑡)     (4) 

fskip = 𝑓𝑖𝑛𝑖𝑡         (5) 

  Given the features of different reception fields, the next step is 

to decide the contribution of each branch, which is the key step 

in determining the optimal scale for each task. We introduce a 

scale attention module to predict the contribution of each scale. 

Features of all scales are summed pointwise, followed by a 

global average pooling module that aggregates global context 

information of all scales. A multilayer perceptual layer is 

connected to generate a vector of shape 4xC, followed by a 

softmax operation that converts the output into scale attention 

values, where 4 represents the attention value of each scale. 

This contribution value is then multiplied by the features of 

each scale along the channel axis. The final output of CSI is the 

summation of all the attention-activated features: 
𝑓𝑓𝑢𝑠𝑒 = 𝐺𝐴𝑃(f7x7) + 𝐺𝐴𝑃(f11x11) + 𝐺𝐴𝑃(f21x21) + 𝐺𝐴𝑃(f𝑖𝑛𝑖𝑡)   (6) 

𝐴𝑡𝑡𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑀𝐿𝑃(𝑓𝑓𝑢𝑠𝑒))       (7) 

𝑓𝑜𝑢𝑡 = 𝐴𝑡𝑡𝑛1 ∙ f7x7 + 𝐴𝑡𝑡𝑛2 ∙ f11x11 + 𝐴𝑡𝑡𝑛3 ∙ f21x21 + 𝐴𝑡𝑡𝑛4 ∙

finit, 𝑤ℎ𝑒𝑟𝑒 ∑ 𝐴𝑡𝑡𝑛𝑖 = 1𝑖=4
𝑖     (8) 

We then explain why CSI is capable of learning the optimal 

scale for different tasks. Since we adopted depthwise 

convolution in the multi-branch stages and the scale attention 

stage, the optimal scale for different feature layers is learned 

independently. It means that features from different tasks can 

automatically learn the contribution of each scale without 

inference from the other task. Compared with many existing 

works that design a unified framework for buildings and roads 

in ignorance of different requirements of the reception field, 

CSI can automatically determine the optimal scale of each task 

and extract features with the optimal reception field. Another 

advantage of CSI is that it is a super lightweight module that 

can effectively improve the reception field for different tasks. 

By introducing depthwise 1xn and nx1 convolutions in 

succession, the computation burden is reduced to 1/600 

compared with CSI without these improvements.  

 

D. Model Details 

The CRIN model is implemented under the deep learning 

framework of Pytorch and is optimized using the AdamW 

optimizer[67]. The learning rate is set to 0.001 initially and is 

adjusted under the ‘poly’ scheduler with power 0.9. The model 

is trained for 40k iterations with a batch size of 16. To avoid 

overfitting, we adopted a data augmentation strategy that 

randomly rotates, flips, and scales the input image and label 

patches. The loss function of CRIN includes three parts, the 

building segmentation loss, the road segmentation loss, and the 

deep supervision loss. The building segmentation loss and the 

road segmentation loss are the summations of cross entropy loss 

and dice loss between the building and road prediction 𝑦�̂� , 𝑦�̂�  

and their corresponding ground truths 𝑦𝑏  and 𝑦𝑟: 

𝐿𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 = (Dice(𝑦�̂� , 𝑦𝑏) + CE(𝑦�̂� , 𝑦𝑏))/2   (9) 

𝐿𝑟𝑜𝑎𝑑 = (Dice(𝑦�̂� , 𝑦𝑟) + CE(𝑦�̂� , 𝑦𝑟))/2     (10) 

We also introduce the deep supervision loss to guide the 

model to learn task-specific and task-shared features. Given the 

task-specific building feature 𝑓𝑏, road feature 𝑓𝑟, and the task-

shared feature 𝑓𝑠, we apply deep supervision to generate deep 

building and road predictions from these features. Specifically, 

the prediction of each task is generated by the task-specific 

feature and task-shared feature: 

𝐿𝑎𝑢𝑥 = ∑ CE(𝐶𝑜𝑛𝑣1𝑥1([𝑓𝑏
𝑖 , 𝑓𝑠

𝑖]), 𝑦𝑏) + CE(𝐶𝑜𝑛𝑣1𝑥1([𝑓𝑟
𝑖 , 𝑓𝑠

𝑖]), 𝑦𝑟)𝑛
𝑖=1

  (11) 

In this way, features from task-specific feature space are able 

to learn information that is helpful to the specific task, and the 

task-shared features are able to learn common features that are 

beneficial to both tasks. The overall loss is the weighted 

summation of the building segmentation loss, the road 

segmentation loss, and the deep supervision loss. Since the deep 

supervision loss is the auxiliary loss that guides model learning, 

we adopted a weight of 0.1 to 𝐿𝑎𝑢𝑥, and the final loss function 

is calculated as follows: 

L = 𝐿𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 + 𝐿𝑟𝑜𝑎𝑑 + 0.1 ∗ 𝐿𝑎𝑢𝑥   (12) 

 
Fig 5. The architecture of the cross-scale interaction (CSI) module. 
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After the model converges, the model’s performance is 

evaluated on the test dataset.  

 

 

IV. EXPERIMENTS 

A. Datasets 

We select two large-scale building and road datasets to 

evaluate the performance of the proposed method. 

The Massachusetts dataset[65]: The Massachusetts building 

and road dataset is a large-scale dataset that covers a wide 

variety of urban and rural regions in Massachusetts. The 

building and road labels are generated by the OpenStreetMap 

(OSM) project. Each image has an image size of 1500x1500 

with a spatial resolution of 1m. Following the data partition 

method in [64], we collect the patches that contain both building 

and road labels and clip them into 512x512 patches with a stride 

ratio of 0.5. As a result, the dataset includes 3077, 200, and 250 

patches for training, validation, and testing, respectively. 

The aerial imagery object identification dataset[68]: The 

aerial imagery object identification(AIOI) dataset is a multi-city 

dataset, which contains images and labels from 9 different cities 

including urban and suburban areas. This dataset is suitable for 

evaluating the model’s performance in large-scale and cross-

city mapping. The image resolutions range from 0.15 to 0.3 

meters; the ground truth labels are produced using OSM. The 

dataset includes images from suburban areas of 6 cities and 

urban areas from 3 cities. We randomly selected New York, 

Atlanta, and New Heaven as the test dataset and the rest as the 

training dataset. As a result, the dataset includes 9806 patches 

for training and 2840 patches for testing. The cross-city 

mapping of the AIOI dataset poses a great challenge to the 

generalization and performance of the models. 

B. Evaluation Metrics 

The models’ performance is evaluated by calculating the 

precision, recall, F1-score, and IoU between the model 

predictions and the ground truths. Precision represents the ratio 

of predicted foreground pixels that are correctly predicted; 

recall indicates the proportion of the ground truth buildings or 

roads that are correctly predicted; F1-score is the harmonic 

average between precision and recall. IoU denotes the 

intersection between prediction and ground truth over their 

union. These evaluation metrics can be calculated as follows. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (13) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (14) 

F1 Score = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (15) 

IoU =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
               (16) 

 

where TP, FP, and FN represent the number of true positive, 

false positive, and false negative pixels in the test dataset, 

respectively.  

Furthermore, the implementation speed and the 

computational cost of the model are important in large-scale 

mapping scenarios, thus we evaluated the model complexity 

using three metrics including the amount of network parameters, 

floating point operations (FLOPs), and frame per second (FPS). 

The parameter number reflects the model size; FLOPs denote 

the computational cost of the model; FPS corresponds to the 

inference speed of the model. 

C. Comparison Methods 

We compare our proposed method with seven building-road 

collaborative extraction methods. These comparison methods 

can be categorized into separate methods[23], [24], [26], [65] 

and multitask methods[27], [28], [64]. The separate methods 

are unified architectures that are trained on building and road 

extraction tasks individually; the multitask methods introduce 

multiple classifiers to generate building and road predictions in 

a single model. We give a brief introduction to these methods 

as follows. 

➢ Mnih and Volodymyr[65] proposed a patch-based 

classification network to extract buildings and roads in 

separation. The patches of 64x64 pixels are cropped from 

the image and predict the category of the central patches of 

TABLE I QUANTITATIVE COMPARISON WITH SOTA METHODS ON THE MASSACHUSETTS DATASET 

 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3383057

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 10,2024 at 13:17:44 UTC from IEEE Xplore.  Restrictions apply. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

 

8 

16x16 pixels. The models are trained and inferred 

individually with building and road extraction tasks. 

➢ Ayala et al.[23] proposed a modified version of U-Net 

using ResNet as the encoder network. This model is 

utilized to extract buildings and roads in separation. The 

predictions are merged after inferring the building and road 

predictions separately. 

➢ Abdollahi et al.[26] introduce novel mechanisms, 

including bi-directional LSTM, dense connection, and 

attention modules to improve the model performance on 

building and road extraction. The model is trained on 

building and road extraction tasks in separation. We select 

the reported best MCG-Net for comparison. 

➢ JointNet[24] is a unified and effective architecture for 

building and road extraction. The network combines atrous 

convolution with densely connected convolutions to 

enlarge the model reception field. The model is trained 

separately on building and road extraction tasks. 

➢ The non-local feature search network(NFSNet) can extract 

buildings and roads in a single model that generates 

multiple channels in the output prediction[28]. Self-

attention modules and feature refinement modules are 

designed to alleviate building misjudgment and road 

disconnection problems. 

➢ The method as proposed by Alshehhi et al. is a patch-based 

method for the simultaneous extraction of buildings and 

roads[27]. The category of the central 16x16 pixels is 

predicted from the surrounding 64x64 pixels. A post-

processing method is introduced to alleviate the 

misclassification problem using superpixels. 

➢ Saito et al. proposed a multiple-object extraction method 

for building and road extraction[64]. It is a patch-based 

method that introduced channel-wise inhibited softmax. 

The final prediction is generated patch-by-patch under 

model averaging.  

 
Fig 6. Visualization of the building-road extraction results of the comparison methods in the Massachusetts dataset. Pixels in 

green, blue, and red are correctly predicted, omitted, and misclassified, respectively. 

 

 
Fig 7. Visualization of the features in the task-specific and 

task-shared feature spaces. 
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D. Experiments on the Massachusetts dataset 

The Massachusetts building and road dataset is a large-scale 

dataset that covers a wide variety of urban and rural regions in 

Massachusetts, US. The experimental results of CRIN and the 

comparison methods are presented in Table I, with the highest 

score marked in bold and the second highest score underlined. 

From Table I we can see that our proposed CRIN achieves the 

IoU and F1-score on both building and road extraction tasks. 

Although the method proposed by Alshehhi et al. performs 

well in the precision score, the recall score is rather low, 

indicating that many foreground pixels are omitted. CRIN 

outperforms the separate networks by utilizing the spatial 

correlation between buildings and roads, thus improving the 

accuracy of both tasks. Among the multitask methods, the 

methods as proposed by Saito et al. and Alshehhi et al. are 

the patch-based methods that cannot fully utilize the spatial 

details from VHR remote sensing images, since only the 

64x64 patches are fed forward the model. The segmentation-

based NFSNet, however, cannot perform well on the 

Massachusetts dataset since it generates predictions from 

features that obtain 1/16 of the image resolution, causing 

serious omission of tiny buildings and roads. On the contrary, 

our proposed CRIN model is a multitask model that obtains 

accurate building and road extraction from remote sensing 

images. 

We visualize some examples of the building and road 

predictions in Fig. 6, where the green, blue, and red pixels 

represent the correctly predicted, the omitted, and the 

misclassified pixels. From Fig. 6 rows 1-2, we can see that NFS-

Net and the method proposed by Alshehhi et al. omitted some 

large-scale buildings nearby roads. However, CRIN can 

preserve the integrity of the predicted buildings by considering 

TABLE II ABLATION EXPERIMENTAL RESULTS ON THE MASSACHUSETTS DATASET 

 

Table III Quantitative Comparison with SOTA Methods on the AIOI dataset 
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the spatial correlation between buildings and roads. Moreover, 

as shown in Fig. 6 rows 3-4, some tiny roads are misclassified 

or omitted by all the comparison methods, but CRIN can 

correctly predict the tiny roads by adaptively selecting the 

optimal reception field for perceiving the roads. CRIN is an 

effective model for simultaneously extracting buildings and 

roads from remote sensing images. 

Furthermore, we conducted ablation experiments on the 

Massachusetts dataset to validate the effectiveness of the 

proposed modules. We selected the U-Net architecture with the 

EfficientNet backbone as the baseline. This model is trained 

and inferred separately on the building and road extraction tasks. 

From Table 2, we can see that the baseline model achieved the 

F1-score of 81.85% and 71.03% on building extraction and road 

extraction tasks. If we simply add multiple classifiers to the 

baseline and convert it into a multitask model, the accuracy of 

the road extraction task is improved by 2.14% on the F1-score. 

However, the model’s performance on building extraction is 

decreased. It demonstrates the ‘seesaw phenomenon’ of 

multitask learning where the road extraction task is improved 

with the building extraction task sacrificed. This is because the 

road extraction task becomes dominant in the training process 

and thus leads to unbalanced learning. If we improve multitask 

learning by integrating the MTI module, the accuracy of both 

tasks can be improved by fully utilizing the spatial correlation 

between buildings and roads. As a result, the F1-score of 

buildings and roads are improved by 0.6% and 2.28%, 

respectively. Furthermore, if we utilize the CSI module to learn 

the optimal reception field for different tasks, the accuracy of 

both tasks can be further improved.   

We also present the model complexity in Table 2 using 

GFlops. The baseline model has the highest complexity because 

the model is inferred twice to generate the building and road 

predictions. The complexity of a simple multitask network is 

appropriate half of the baseline model. It should be noted that 

the model complexity is obviously decreased with MTI as 

compared with the multitask model, which is because MTI 

reduces the computation cost using successive group 

convolution. Furthermore, CSI slightly increases the 

computational cost and achieves the best performance on both 

tasks. 

The intermediate features of the task-specific and task-shared 

feature space of the MTI module are presented in Fig.7. From 

Fig. 7 (a) and (b) we can see that the task-specific building and 

road features focus on localizing buildings and roads 

respectively. Meanwhile, features from the shared feature space 

focus on capturing the context information and co-location 

pattern between buildings and roads. The accuracy of buildings 

and roads can be improved by separating task-specific and task-

shared features. 

 

E. Experiments on the AIOI dataset 

We conducted experiments on another large-scale AIOI 

dataset. The AIOI dataset includes images and labels from 9 

cities that cover various urban and suburban scenes, which is 

suitable for evaluating the generalization of the proposed 

method. As the training dataset and test dataset are image 

 
Fig 8. Visualization of the building and road extraction results on the AIOI dataset. 
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patches from different cities, the models’ performance of large-

scale mapping in practical scenarios can be testified. The 

quantitative comparison as listed in Table III shows that the 

CRIN model outperformed the comparison models and 

achieved the highest accuracy in both buildings and roads. The 

patch-based methods as proposed by Saito et al. and Alshehhi 

et al. cannot perform well on large-scale mapping because 

these methods cannot fully utilize the spatial information of 

VHR remote sensing images. Meanwhile, although limited 

performance on the Massachusetts dataset, NFSNet achieves 

the second highest score on the AIOI dataset, which indicates 

the performance of NFSNet is influenced by the spatial 

resolution of images. 

The ablation experimental results as shown in Table IV 

demonstrate the effectiveness of the proposed MTI and CSI 

modules. The ‘seesaw phenomenon’ also leads to an 

accuracy drop in the building extraction task of the multitask 

method. The proposed MTI enables balanced learning and 

thus improves the model accuracy of both tasks. The CSI 

module further improves the model performance on different 

tasks by learning the optimal reception field. As a result, our 

proposed CRIN model improves the F1-score by 3.21% and 

3.38% on building and road extraction tasks respectively 

with less computational cost, demonstrating the model’s 

effectiveness in large-scale and cross-city mapping. 

We visualize the large-scale mapping results of different 

cities in Fig. 8, including Atlanta, New York, and New Heaven. 

From Fig. 8 we can see that CRIN obtains the best qualitative 

visualization results as compared to the other methods. The 

buildings and roads are seriously omitted by the patch-based 

method. Meanwhile, some buildings and roads as predicted by 

NFSNet and Res-UNet are incomplete and discontinuous. On 

the contrary, CRIN successfully depicts the buildings and roads 

by taking advantage of the complementary between buildings 

and roads. CRIN also outperforms the comparison methods by 

precisely depicting buildings and roads from suburban areas, as 

shown in Fig.8 row 3. The quantitative and qualitative 

experimental results demonstrate the generalization ability of 

the proposed CRIN method in various urban and rural areas. 

V. DISCUSSION 

In this section, we will discuss and compare the complexity 

of models, visualize, and analyze whether different tasks rely 

on the same model reception field, and discuss the limitations 

of our proposed method. 

TABLE IV ABLATION EXPERIMENTAL RESULTS ON THE AIOI DATASET 

 
 

TABLE V MODEL COMPLEXITY OF THE COMPARISON METHODS 
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A. Model Complexity 

Apart from model accuracy and generalization ability, the 

complexity of models also matters in practical applications. In 

particular, the number of parameters and flops reflects the 

computational cost of the model in the inference stage; the 

frame per second (FPS) index indicates the time used for 

inference. Table V shows the number of parameters, flops, and 

FPS of each model testified on a single RTX 3090 GPU. In 

general, the separate models infer slower than the multitask 

model with higher Flops and lower FPS since these models are 

trained separately on roads and buildings, and need to be 

inferred twice to obtain buildings and roads prediction. As a 

result, the number of flops and parameters is doubled as 

compared to the single model. The Flops of Joint-Net and 

MCG-UNet are rather high since these methods maintain high 

feature resolution with multiple channels in the model, which 

leads to high computational costs. Among the multitask 

methods, the proposed CRIN obtains the lowest flops and the 

second highest FPS, which indicates the low computational cost 

and high inferring speed of our proposed methods. In 

comparison, the methods proposed by Saito et al. and Alshehhi 

et al. are much slower by approximately inferring a single 

512x512 image per second. The reason is twofold. These patch-

based methods receive 64x64 image patches as the input, and 

clipping these image patches with a stride of 16x16 leads to 

multiple inferring times as compared with the FCN-based 

methods. Moreover, to capture context information, these 

patch-based methods require input patches that are 4-time 

larger than the output prediction, resulting in redundant 

computation in the inference stage. In comparison, the FCN-

based CRIN and NFS-Net are faster than not only the separate 

methods but also the patch-based methods. However, despite 

high FPS, NFSNet is prone to omit small buildings and slim 

roads since the predictions are generated from very low-

resolution features (16 times lower than the input image). CRIN, 

on the contrary, can balance computation cost, inference speed, 

and accuracy.  

 

B. Scale contribution 

In the proposed CSI module, multiple branches are designed 

to extract features by different reception fields, including skip 

connection, 7x7, 11x11, and 21x21; a scale attention module 

then determines the contribution of each scale and fuses the 

features based on the attention value. The CSI module can 

determine the optimal reception field for the task-shared and 

task-specific feature spaces by applying the argmax operation 

to each channel in the features. Moreover, the CSI module is 

integrated into different stages of the decoder module and can 

determine the optimal reception field at different feature 

resolutions. A question arises: do task-specific building and 

road features rely differently on the reception field and how? 

In Fig. 9, we visualize the optimal receptive field of the task-

specific feature spaces on different resolutions and datasets. 

From Fig. (a), we can see that the optimal reception field for 

buildings and roads is similar, with most features remaining the 

original reception filed by skip connection, and some features 

select large convolution kernels such as 11x11 and 21x21 as the 

optimal reception fields. It indicates that the high-level feature 

presentations for buildings and roads rely similarly on the 

model reception field. However, as the feature resolution 

increases, the optimal feature reception field for different tasks 

differs. More specifically, the building extraction task relies 

more on smaller reception fields such as skip connection, and 

7X7; the road extraction task relies heavier on large reception 

fields such as 21x21 and 11x11 than the building extraction task. 

This is probably because roads are objects of linear shapes and 

depend on the consistency of shape and position. As a result, 

fusing shallow features from the encoder network plays an 

important role in recovering spatial information[24] and thus 

the optimal reception field of the road extraction task is larger 

to perceive and recover spatial information from high-

 
Fig 9. The contribution of different scales on different feature resolutions and datasets. 
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resolution features. From Fig.9 (b) we can see that the optimal 

receptive field 21x21 for road extraction appears in the 4x 

resolution scale, which is 2 times lower than the Massachusetts 

dataset. Considering that the spatial resolution of the 

Massachusetts dataset is approximately 3 times lower than the 

AIOI dataset, we suppose that the optimal reception field of 

different tasks is related not only to the depth of the decoder 

network but also to the image spatial resolution. Designing (or 

searching) the optimal network architecture for different feature 

scales or resolutions is an interesting and open question to 

investigate in the future.  

C. Limitation and Future Work 

Although our proposed method achieves better accuracy than 

the comparison methods, the model also exhibits some 

limitations and can be further improved from the following 

aspects. Deep learning approaches rely heavily on a large 

amount of high-quality annotations. However, many existing 

datasets are developed from crowdsource data such as OSM. 

The ground truth labels are usually not strictly aligned with the 

image and contain label noise[69], which affects model learning. 

Exploring noisy label learning to achieve more robust building-

road collaborative extraction is one of the future directions. 

Moreover, generating fine-grained and up-to-date building and 

road databases from historical[9] or coarse-resolution 

datasets[70] is worth exploring. Meanwhile,  applying transfer 

learning approaches such as unsupervised domain adaption can 

improve the model’s performance in large-scale mapping[71], 

[72].  

VI. CONCLUSION 

Buildings are the basic carrier of social production and 

human life; roads are the links that interconnect social networks. 

The geodata of buildings and roads are valuable for various 

frontier applications. However, many existing extraction 

methods ignore the strong spatial correlation between roads and 

buildings and extract buildings and roads from remote sensing 

images in isolation. Meanwhile, some multitask methods cause 

the “seesaw phenomenon” where the accuracy of one task is 

improved by hurting the performance of another task, which is 

demonstrated in our experiments. To tackle these problems, we 

propose a building-road collaborative extraction method by 

introducing inner-task, cross-task, and cross-scale feature 

interaction. The features are projected into task-specific and 

task-shared feature spaces and thus promote cross-task 

interaction while preserving the information from each task. 

Furthermore, a cross-scale interaction module is proposed to 

automatically learn and select the optimal reception field for 

each feature space, and thus exploit optimal feature 

representations for each specific task. As compared with the 

existing methods, our proposed collaborative extraction method 

can output both the building and road prediction results, 

improve the inference speed, and enhance the multi-task 

recognition accuracy through the proposed cross-task and 

cross-scale feature interaction.  Experimental results on two 

large-scale datasets show that our proposed algorithm can 

achieve robust and rapid building-road collaborative extraction 

with strong generalization performance and high extraction 

accuracy, showing great potential in large-scale mapping.  
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