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Real-Time Motion Generation and Control Systems
for High Wheel-Legged Robot Mobility

Akihiro Suzumura and Yasutaka Fujimoto, Senier Member, IEEE

Abstract—A wheel-legged mobile robot (WLMR) has both
leg and wheel structures. WLMRs have adaptability advantages
because they can change locomotion methods depending on
the terrain. However, the location of a WLMR ’s center of
gravity (CoG) is very high; Thus, almost all existing WLMRs
move statically. In this study, whole body motion generation and
various control systems are studied to facilitate higher WLMR
mobility. To this end, a zero moment point (ZMP) is introduced
as a stability index. In addition, WLMRs are modeled as single
point mass linear inverted pendulums. Subsequently, online CoG
pattern generation methods are proposed; one is a preview
control approach and a second is an approach that realizes the
desired ZMP pattern using a zero-phase low-pass filter. It is then
possible to generate the desired CoG patterns more easily and
faster than with a preview control approach. The CoG patterns
based on the single point model are constructed via the resolved
momentum control approach. Finally, the effectiveness of the
whole body motion pattern generated by the proposed methods
is validated by simulations and experiments.

Index Terms—Wheel-legged mobile robot, hybrid mobile robot,
zero moment point, resolved momentum control, center of gravity
pattern generation, zero-phase low pass filter

I. Introduction

IN the near future, robots will be expected to execute
a variety of tasks in diverse environments. In particular,

security, rescue, and life assist robots have attracted consid-
erable attention. To meet those expectations, wheel-legged
mobile robots (WLMRs) that have both leg and wheel struc-
tures have been developed [1]–[13]. There are many types
of WLMR mechanisms, and almost all of them have the
following favorable features: (a) stair locomotion and obstacle
avoidance via a multi-degree-of-freedom leg mechanism and
(b) a high energy efficiency wheel mechanism. From the above
features, WLMRs have the advantages of legged and wheeled
mobile robots. In addition, they have a significant mobility and
adaptability advantage because they can change locomotion
methods depending on the terrain. For these reasons, WLMRs
have many applications including as rovers on uneven terrain
and human assist robots for environmental adaptation. In our

Manuscript received October 9, 2012; revised March 16, 2013 and July 22,
2013. Accepted for publication September 4, 2013.

Copyright c⃝ 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

A. Suzumura was with the Department of Electrical and Computer Engi-
neering, Yokohama National University, Yokohama 240-8501 Japan. He is
now with the Denso Co., Ltd., Aichi 448-8661, Japan.

Y. Fujimoto is with the Department of Electrical and Computer Engi-
neering, Yokohama National University, Yokohama 240-8501 Japan (e-mail:
fujimoto@ynu.ac.jp).

study, we focus on WLMR applications for human assist pur-
poses [14]. Adaptability is one of the most important factors in
human assist robots because these robots are required to adapt
to a variety of environments. In addition, speed of motion is
also important. Because moving robots are at risk of colliding
with humans, they require sufficient agility to avoid such
collisions. Moreover, mobile robots that follow humans (e.g.,
luggage carrying robots) should be capable of keeping up with
the humans [15]. Therefore, in addition to being adaptable, it
is required that WLMRs be quick and agile.

In this study, we focus on three-dimensional (3D) WLMRs
[16] [17]. The center of gravity (CoG) of such robots is
inevitably quite high. Thus, there is a constant risk of falling
over. Therefore, almost all 3D-WLMRs move statically and
exhibit only adaptability. To obtain high mobility, the zero
moment point (ZMP), which is generally used as a stability
index for bipedal robots [18]–[20], is applied to the 3D-
WLMR. It is anticipated that the ZMP-based 3D-WLMR will
move faster and more stable than the conventional 3D-WLMR.

There have been several studies that focused on increasing
the speed, stability of robots such as rovers [21] and mobile
manipulators [22], [23]. In addition, An et al. investigated
ways of increasing the speed of WLMRs on the basis the
ZMP [13]. They realized the ZMP control of a WLMR
by feedforward and feedback compensation using a precise
dynamical model. This approach needs the explicit formulas
of the dynamical model. However, the number of degrees-
of-freedom (DoF) of the robot increased, complicating the
situation. Furthermore, their approach was validated for only
two-dimensional simulations, and no validation experiments
were conducted. On the contrary, we achieved whole body
motion generation and high mobility control based on the
approach similar to the case of biped robots. More specifically,
the WLMR is approximated as a single point mass linear
inverted pendulum (LIP). Then, the CoG pattern that produces
the desired ZMP pattern is generated. A preview controller is
usually used to generate the CoG pattern online [24] [25]. In
this study, we proposed two CoG pattern generation methods
for WLMR; the first is a method based on a preview control
and the other is a method based on a zero-phase low-pass
filter (ZPLPF). The ZPLPF can generate the CoG pattern more
easily and faster than the preview controller. The effectiveness
of these proposed methods is validated based on the root
mean square error (RMSE) of ZMP tracking results. Next, the
generated CoG pattern is realized by the resolved momentum
control (RMC) system [30]. The RMC approach enables a
robot to control its linear momentum and angular momentum
around the CoG. The linear momentum Jacobian used in
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RMC includes the CoG Jacobian [26] [27]. The robot’s CoG
then follows the desired CoG pattern. In addition, the angular
momentum is another important factor used to achieve high
robot mobility. There are several studies on ZMP stabilizing
control using an ankle joint [28], [29]. However, unlike
humanoid robots, WLMRs generally do not have ankle joints
and therefore cannot stabilize the ZMP using ankle joints.
Nevertheless, further enhancement of the WLMR mobility
with ZMP stabilization is expected by directly manipulating
the angular momentum [30]–[32]. As an example, the posture
of the WLMR can be controlled using the angular momentum
as a control input. The angular momentum of the robot around
the CoG can be manipulated using RMC to yield the desired
value. Then, our motion generation method was implemented
and 3D simulations and experiments conducted to prove its
effectiveness.

The content of this paper is organized as follows. In section
II, a WLMR model is developed. In section III, we propose
a CoG pattern generation method using a ZPLPF. In section
IV, a whole body motion generation scheme based on RMC is
described. In section V, the overall WLMR control system
is outlined. In section VI, our methods are validated via
simulations and experiments. Finally, the conclusions are listed
in section VII.

II. RobotModeling
This section deals with WLMR kinematic modeling. The

robot is shown in Fig. 1. A CAD view of the leg is in Fig.
2 and its link parameters are listed in Table. I. The 3D robot
model and coordinate systems are depicted in Fig. 3. Each
coordinate frame is defined as follows.
• Σw : Coordinates of the world
• ΣB : Coordinates of the base link
• Σci : Coordinates of the wheel contact point.

Then,
• xpy ∈ R3 is the position vector of the origin of Σy with

respect to Σx.
• xωy ∈ R3 and xRy ∈ R3×3 are the angular velocity and

rotation matrix of Σy with respect to Σx.
The relationship between xωy and xRy can be expressed as

xṘy = xω∧y · xRy (1)

where ∧ is an operator that transforms a 3 × 1 vector into a
3 × 3 skew symmetric matrix equivalent to the cross product.
Operator ∨ is defined as the inverse of ∧. In this way, the
cross product can be rearranged into various forms; i.e., a(∈
R3) × b(∈ R3) = −b × a = −b∧a = a∧b. Other kinematic
variables are defined as follows:
• Φ = [ϕ θ ψ]T and ϕ, θ, ψ are the roll, pitch, and yaw

angles expressed in terms of Euler angles.
• θlegi = [θ1i θ2i · · · θ(n−1)i]T are the vectors containing the

joint angles. n is the number of DoFs of the leg.
For our robot, θlegi = [θ1i θ2i θ3i θ4i]T . θ1i ∼ θ4i are the crotch
yaw, crotch roll, knee roll, and shin yaw joint rotation angle.
The wheel rotation angle is denoted as ϕi where i represents
the index of the leg and each joint angle vector is summarized
as θi = [θT

legi ϕi]T ∈ Rn.

TABLE I
Link parameters

Mass[kg] Length[m]
Base 12.0 0.70(W) × 0.35(D) × 0.40(H)

Crotch 0.700 0.150
Thigh 3.03 0.350
Calf 1.52 0.140
Shin 1.61 0.280

Wheel 1.88 0.104

Fig. 1. An overview of the experimental setup

III. Center of Gravity Trajectory Generation

A. Linear inverted pendulum / A Cart-table model

In our method, a cart-table model is adopted [24]. The
conceptual model is shown in Fig. 5, where we consider the
x-axis as the ordinal moving direction. In this model, the
relationship between the CoG and ZMP is written as

xzmp = x − zc

g
ẍ. (2)

where zc is the height of the cart’s CoG, g is the gravitational
acceleration, x is the CoG coordinate, and xzmp is the ZMP
coordinate; Eq. (2) is called the ZMP equation.

B. Preview control approach

The preview control approach was originally proposed by
Kajita et al. in [24] as a CoG trajectory generation method
for humanoid robots. In this paper, we propose the use of this
method for the CoG trajectory generation of WLMRs. Details
of this method are described as follows.

First, Eq. (2) is translated into a state space expression as
follows:

d
dt

xẋẍ
 =

0 1 0
0 0 1
0 0 0


xẋẍ
 +
001
 u (3)

xzmp =
[
1 0 − zc

g

] xẋẍ
 (4)
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Fig. 2. CAD view of the leg mechanism

Fig. 3. Three-dimensional robot model

where control input u is the time derivative of ẍ. Eqs. (3) and
(4) are then discretized with the sampling time ∆t, as follows:

x[k + 1] = Adx[k] + Bdu[k] (5)
xzmp[k] = Cdx[k] (6)

where

x[k] ≡
[
x(k∆t) ẋ[k∆t] ẍ(k∆t)T

]
u[k] ≡ u(k∆t)

xzmp[k] ≡ xzmp(k∆t)

Ad =

1 ∆t ∆t2

2
0 1 ∆t
0 0 1

 ,Bd =


∆t3

6
∆t2

2
∆t


Cd =

[
1 0 − zc

g

]
. (7)

Next, we aim to minimize the cost function, which is written
as follows:

J =
∞∑

k=−NL+1

(Qee[k]2 + ∆xT [k]Qx∆x[k] + R∆u[k]2) (8)

where e[k] = xre f
zmp[k]−xzmp[k] is the ZMP tracking error at step

k and xre f
zmp[k] is the ZMP reference. Qe,Qx,R are the weighing

coefficient for regulating each term of cost function. Then the

Fig. 4. Contact surface is assumed to be sufficiently stiff and flat

optimal control input u[k] that minimizes the cost function is
given by:

u[k] = Fe

k∑
j=0

e[ j] + Fxx[k] +
MR∑
j=1

FR[ j]xre f
zmp[k + j] (9)

where Fe, Fx, and FR[ j] are the feedback gains and preview
gains calculated from Qe,Qx,R and zc

g based on preview
control theory.

C. Inverse system construction using zero-phase low-pass
filter

In Eq. (2), let us define the input as the nth differential
of the CoG, p(n)

CoG(t) and the output as the nth differential of
the ZMP, p(n)

ZMP(t). Then, the transfer function and frequency
transfer function are expressed as follows:

Gp(s) =
snPZMP(s)
snPCoG(s)

(10)

= 1 − zc

g
s2 (11)

Gp( jw) = 1 +
zc

g
ω2. (12)

where PZMP(s) = L[pZMP(t)] and PCoG(s) = L[pCoG(t)]. We
now focus on the frequency transfer function of the controlled
plant. This system clearly has the characteristics of a zero-
phase high-pass filter (ZPHPF). The ZPHPF characteristics
can be canceled by a ZPLPF used as a feedforward (FF)
compensator, as described in [36]. The details of the design
of the ZPLPF in the discrete time domain are explained in
[37]. We define (12) as the controlled plant and the ZPLPF
as the FF compensator in the discrete time domain. Then, the
characteristics of the controlled plant are perfectly canceled
and the ZMP pattern p(n)

ZMP follows the reference pattern. The
ZMP reference p(n)

ZMP through the ZPLPF is equivalent to the
desired CoG pattern p(n)

CoG because the control input is defined
as the CoG pattern p(n)

CoG. An outline of the ZPLPF approach
is shown in Fig. 6. Later, we will show that the method
can generate the desired CoG trajectory by feeding the target
ZMP trajectory into the ZPLPF. Thereafter, the actual ZMP
will follow the reference ZMP. We will also show that the
ZPLPF can easily generate the CoG trajectory.
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Fig. 5. Cart-table model

Fig. 6. Outline of the ZPLPF approach

D. FIR-ZPLPF design

In this subsection, the design method of the FIR-ZPLPF is
described in detail. The general equation of the FIR-ZPLPF is
given by

GFIR[z, z−1] = α0 +

N∑
k=1

αk(zk + z−k) (13)

This filter can be divided into a causal filter G[z], and non-
causal filter G[z−1], which are described as follows:

GFIR[z, z−1] = a0 +

N∑
k=1

ak(z−k) + a0 +

N∑
k=1

ak(zk) (14)

= G[z] +G[z−1]. (15)

where the filter coefficients of G[z] and G[z−1] in (14) are
identical. Thus, only the filter coefficients of the causal filter
G[z] need be designed. The noncausal filter G[z−1] can be
realized by assuming that the input signal for the future Mth

step value is known.
Next is about the derivation of the FIR-ZPLPF coefficient.

The desired filter characteristic (transfer function) is the in-
verse system of the controlled plant:

GZPLPF(s) =
1

Gp(s)
=

1
1 − T 2s2 . (16)
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Fig. 7. Impulse response of the analog filter

where T =
√

zc
g . This transfer function can be written in the

form:

GZPLPF(s) =
1
2

(
1

1 + T s
+

1
1 − T s

). (17)

Let us now compare the above equation with (15). Then, the
following transfer function is chosen as an analog prototype
filter.

G(s) =
1

1 + T s
(18)

Thus, we obtain an FIR digital filter identical to filter (16).
Next, the selected analog prototype filter G(s) is discretized
by the Tustin method with sampling time equal to ∆t.

G[z] =
1 + z−1

1 + 2T
∆t + (1 − 2T

∆t )z−1
. (19)

Subsequently, we calculate the impulse response of G[z] as

Λ = [δ0 δ1 δ2 . . . δN] (20)

where δn(n = 0, 1, 2, · · · ) is the value at time t = n∆t. The
various impulse responses of G[z] are shown in Fig. 7. Next,
we evaluate the equation below

ãk =

M∑
k=1

δnδn−k. (21)

and derive the coefficient ak using the following equation:

ak =
ãk

ã0 + 2(ã1 + ã2 + . . . + ãN)
. (22)

Following these procedures, the desired ZPLPF is calculated
from (15). Further details can be found in [36] and [37]. N is
the number of points until the impulse response has converged.

E. IIR-ZPLPF design

Here, we describe the design method of the IIR-ZPLPF. The
general equation of the IIR-ZPLPF is described as follows:

GIIR[z, z−1] =
∑N

i=0 βi(zi + z−i)

1 +
∑N

k=0 αk(zk + z−k)
(23)
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This filter can be divided into a causal filter G[z] and noncausal
filter G[z−1] as follows:

GIIR =

∑N
i=0 bi(z−i)

1 +
∑N

k=0 ak(z−k)
·
∑N

i=0 bi(zi)

1 +
∑N

k=0 ak(zk)
(24)

= G[z] ·G[z−1] (25)

where the coefficients of G[z] and G[z−1] are coincident, which
is similar to the FIR-ZPLPF case. Therefore, only the design
coefficients of the causal filter G[z] are needed. G[z−1] can
be composed using the first-in-last-out (FILO) method [38].
Hence, the structure of the IIR-ZPLPF can be described as
shown in Fig. 8 and the characteristics of the given IIR filter
are identical to (16).

Fig. 8. Implementation of IIR-ZPLPF

Next is about the derivation of the IIR-ZPLPF coefficient.
The transfer function of the desired filter is given as

GZPLPF(s) =
1

1 − T 2s2 =
1

1 + T s
· 1

1 − T s
. (26)

Let us now compare the above equation with (25). Then, the
following transfer function is chosen as an analog prototype
filter:

G(s) =
1

1 + T s
(27)

Thus, we obtain an IIR digital filter identical to filter (16).
Next, the selected analog prototype filter G(s) is discretized
by the Tustin method. Thus, we can get G[z], which is equal
to (19).

F. Comparison of CoG pattern generation methods

1) Design cost: In the preview control approach, we need
to solve the n-th order Riccati equation to calculate feedback
gains and preview gains. In contrast to the ZPLPF approach,
FIR-ZPLPF only needs to calculate the filter coefficient from
the impulse response using (20), (21), and (22). The IIR-
ZPLPF only needs to calculate the Tustin conversion of (27).
Thereby, the design cost of ZPLPF is much smaller than that
of the preview control approach.

2) Computational processing: The CoG trajectories gener-
ated by the preview control ZPLPF(FIR, IIR) are shown in
Fig. 9. Here, we generate a 5 [s] CoG trajectory for the ZMP
step reference under the condition that the sampling time is
∆t = 1[ms] and M = 1200. The average computation times
over 100 runs for each method are 40.80 [ms], 44.12 [ms], and
0.2190 [ms] (CPU : Intel Pentium Dual Core 2.4 GHz). The
computational processing involved in the preview control and
FIR-ZPLPF are almost the same. Therefore, the advantages of
the FIR-ZPLPF are the ease of theoretical development and
implementation. The tap length M of the FIR-ZPLPF is large
(e.g., in our case, the sum of the tap length of the causal
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Fig. 9. Generated CoG trajectory

and noncausal filter is 2400). In contrast, the tap length of
the IIR-ZPLPF is much smaller (the sum of the tap length of
the causal and noncausal filter is always 2). Thus, the IIR-
ZPLPF is superior to the conventional approach in terms of
computational time. However, the IIR-ZPLPF must use the
FILO method. As a result, the IIR-ZPLPF is not suitable for
sequential trajectory generation at each sampling time.

IV. Whole-body motion generation: kinematic resolution

A. Non-slippage constraint for wheel-legged mechanism [8]

In general, the kinematic constraints for WLMRs are based
on the nonslippage assumption for each contact point. The
slippage of contact points are described as follows:

vsi =
wṗci − wRci

Rϕ̇i

0
0

 (28)

where vsi is the slippage of the ith leg and R is the wheel
radius. The details of wRci = [tci lci nci ] are shown in Fig. 4.
Here, nci is the contact normal vector, tci is the longitudinal
vector, and lci = nci × tci is the lateral vector. In this paper,
we assume that the ground surface is sufficiently flat and stiff.
Therefore, nci becomes [0 0 1]T . Then, tci is calculated as
follows:

tci =
zϕi × nci

|zϕi × nci |
(29)

where zϕi is the rotational wheel axis vector. Thereafter, wṗci

can be described on the basis of forward kinematics as follows:

wpci =
wpB +

wRB
Bpci (30)

wṗci =
wṗB +

wṘB
Bpci +

wRB
Bṗci . (31)

Here, wṘB can be expressed as wṘB =
wω∧B · wRB. Then,

wṘB
Bpci =

wω∧B · (wRB
Bpci ) = −(wRB

Bpci )
∧ · wωB (32)

= −(wRB
Bpci ) × wωB. (33)

Bṗci can be described as:

Bṗci =
∂Bpci

∂θlegi
θ̇legi = Jlegiθ̇legi. (34)

where Jlegi ∈ R3×4 is the Jacobian matrix, calculated as
follows:

Jlegi =
[
zθ1i × aθ1i zθ2i × aθ2i zθ3i × aθ3i zθ4i × aθ4i

]
(35)
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where zx is the rotation axis vector and ax(= Bpci − Bpx) is the
vector connecting each joint center to the corresponding leg
contact point. Thus, (28) can be rearranged as follows:

vsi =
wṗB − (wRB

Bpci ) × wωB

+ wRBJlegiθ̇legi − wRci

Rϕ̇i

0
0

 (36)

In general, vsi is set to 0 to prevent slippage. Then, to simplify
the calculation, the above equation is multiplied by wRT

B,
yielding

0 = wRT
B

wṗB − Bpci × wωB

+ Jlegiθ̇legi − BRci

Rϕ̇i

0
0

 (37)

Then, (37) can be written in matrix form as follows:

0 =
[
wRT

B −Bp∧ci

] [wṗB
wωB

]

+

Jlegi −BRci

R00


[
θ̇legi

ϕ̇i

]
(38)

= Jslip
Bi
ξB + Jslip

θ̇i
θ̇i =
[
Jslip

Bi
Jslip
θ̇i

] [ξB

θ̇i

]
(39)

Subsequently, the leg constraint equations (k = total number
of legs) are given by


0
0
...
0

 =

Jslip

B1
Jslip
θ̇1

0 · · · 0
Jslip

B2
0 Jslip

θ̇2
0

...
...

. . .

Jslip
Bk

0 0 Jslip
θ̇k





ξB

θ̇1

θ̇2
...
θ̇k


(40)

0 = Jslipq̇ (41)

where, Jslip
Bi
= [wRT

B − Bp∧ci
] ∈ R3×6, ξB = [wṗT

B
wωT

B]T ∈ R6,
Ji ∈ R3×n, Jslip ∈ R3k×(6+kn) and q ∈ Rkn.

B. Contact point constraint for ZMP-based wheeled locomo-
tion

In this subsection, the constraint for the contact point of
each leg is defined. The objective is to constrain the ZMP at
the center of the supporting polygon. To realize this, the initial
posture of the robot is set to centralize the ZMP. In addition,
the following constraint is imposed:

wṗZMP = wṗci

= wṗB − (wRB
Bpci ) × wωB

+
[
wRB

BJlegi 0
]
θ̇i

= JZMP
Bi
ξB + JZMP

θ̇i
θ̇i =
[
JZMP

Bi
JZMP
θ̇i

] [ξB

θ̇i

]
. (42)

where JZMP
Bi

= [E − wRB
Bp∧ci

] ∈ R3×6 and JZMP
θ̇i

=

[wRB
BJlegi 0] ∈ R3×n. By using this constraint, the ZMP is

always set at the center of the supporting polygon. Thereafter,
the leg constraint equations are described as follows:


wṗZMP
wṗZMP
...

wṗZMP

 =

JZMP

B1
JZMP
θ̇1

0 · · · 0
JZMP

B2
0 JZMP

θ̇2
0

...
...

. . .

JZMP
Bk

0 0 JZMP
θ̇k





ξB

θ̇1

θ̇2
...
θ̇k


(43)

wṗZMP = JZMPq̇ (44)

where, wṗZMP = [wṗT
ZMP

wṗT
ZMP · · · wṗT

ZMP]T ∈ R3k and
JZMP ∈ R3k×kn.

C. Momentum Jacobian

In general, the whole-body motion generation of a biped
robot is achieved using an approximated LIP. The robot CoG
pattern is planned on the basis of LIP. Then, the generated
CoG pattern is distributed over the joint velocities by using
the CoG Jacobian [26] [27]. In this subsection, the linear and
angular momentum Jacobian for the 3D-WLMR are derived.
The linear momentum Jacobian includes the CoG Jacobian.
Therefore, the desired robot CoG pattern can be realized
using the linear momentum Jacobian. In addition, the angular
momentum around the CoG of robot and joint velocities can
be mapped using the angular momentum Jacobian. Thus, the
desired angular momentum can be realized using the angular
momentum Jacobian.

First, the linear and angular momentum equations are de-
rived. The linear momentum and angular momentum around
the CoG of the robot are described as follows:

P =

N∑
i=1

mi
wṗGi (45)

L =

N∑
j=1

Ii
wωi + (wpGi − pG) × (mi

wṗGi ) (46)

where N is the total number of links and wpGi is the CoG
of the ith link. Ii is the inertia of the ith link around its local
origin. Then, (45) and (46) can be described in the following
form:

P = JP(q)q̇ (47)
L = JL(q)q̇ (48)

where JP(q) and JL(q) are the linear and angular momentum
Jacobians. JP and JL can be found in various studies. Fang
used the linear momentum Jacobian JP [33] and Morita used
the angular momentum Jacobian JL [34]. Kajita et.al called
JP and JL the ”inertia matrix” [30], while Orin and Goswami
called them the ”Centroidal momentum matrix” [35]. In this
paper, it is shown that the centroidal momentum matrix AG =

[JT
P JT

L ]T is the product of a pure inertia matrix and a pure
Jacobian matrix. The derivation of JP and JL are also shown
in these papers. Thereby, we can obtain the joint velocities
which realize the desired momentum of the WLMR using (47)
and (48).
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Fig. 10. Overall control block diagram

D. Task decomposition

In this subsection, we describe the task decomposition
method and calculate the specific joint velocities that realize
the desired whole body motion. The tasks defined in this paper
are represented by (35), (40), (49) and (53). Here, the tasks
are decomposed on the basis of the following task priorities
considered in the inverse kinematics method [39]:

q̇cmd = (I − J†slipJslip)q̇1 (49)

q̇1 = J†PPre f + (I − J†PJP)q̇2 (50)

q̇2 = J†LLre f + (I − J†LJL)q̇3 (51)

q̇3 = J†ZMP
wṗre f

ZMP. (52)

where J† indicates the pseudo inverse of J(J† = (JT J)−1JT ).
Thus, the desired linear momentum is realized on the condition
that the nonslippage constraint is achieved. In addition, the
desired angular momentum and contact point constraint are
realized using the remaining DoFs.

V. Overall control system

To follow the position of the robot to the reference tra-
jectory, a contact point and the CoG are controlled by a
proportional controller described as follows:

Pre f = mtotal
wṗre f

CoG +KpM (wpre f
CoG −

wpres
CoG) (53)

where mtotal is the total mass of the robot and KpM is
the proportional controller gain. wpre f

CoG and wpres
CoG are the

command and response positions of the CoG and each leg’s
contact point, respectively.

To control the posture of the robot to enable adaptation to
uneven terrain, the reference angular momentum is generated
as follows:

Lre f = Inω
re f
B (54)

ωre f
B = TϕKpL (ϕcmd − ϕres) (55)

where ϕcmd and ϕres are the commands and responses, respec-
tively, and KpL is the proportional gain. Tϕ is the transforma-
tion matrix between ωB and ϕ̇.

With these controllers, the reference momentum around
the CoG is calculated. Thereafter, the joint velocities are
calculated by the RMC scheme and then integrated to obtain
the joint angles. Finally, the joints are controlled by the pro-
portional derivative (PD) controller and disturbance observer
(DOB) [41]. The above control system is summarized in Fig.
10.

VI. Simulation and Experimental results
In this section, the simulation and experimental results

are shown. The simulations were conducted using the 3D
dynamical simulator ROCOS [42], and the experiments were
conducted using the robot described in Fig. 1. The simulation
and experimental condition is shown in Table. II. To verify
our proposed methods, (A) posture control, (B) ZMP step
response, and (C) ZMP-based wheeled locomotion tests are
conducted. Their details are shown in the following subsec-
tions.

A. Results of posture control
First, the posture controller is validated by simulations and

experiments. The results are shown in Figs. 11(a)-(h). Figs.
11(a)-(f) show the simulation results of the roll, pitch, and
yaw angle tracking. In this simulation, the robot posture is
controlled to track the desired trajectory shown in the figures.
The results show that our system can control the robot posture.

Figs. 11(g) and (h) show the simulation and experimental
results of the pitching control for car-like wheeled locomotion.
Car-like wheeled locomotion means that the distance between
the contact point of each leg and the origin of ΣB is constant.
The robot CoG is controlled to track the reference trajectory. In
this case, the reference trajectory is given by a cosine function
such that the robot moves 1 m in the simulation and 0.6 m in
the experiments during 1.5 s. The results show that the robot
pitch angle is suppressed by the posture controller. Thus, the
effectiveness of our posture controller for wheeled locomotion
is validated.

B. Step response of ZMP
In this subsection, we describe the simulation and experi-

mental results of the ZMP step response. In the simulations
and experiments, the control sampling time is 1 [ms], the CoG
height of the cart is 0.464 [m], and M = 1200. The reference
CoG trajectory generated by the preview control and ZPLPF is
employed, and the CoG is controlled using the RMC scheme.
Each contact point is fixed to the initial position. Here, the
ZMP is calculated using the ZMP equation of a multilink
model [40].

The simulation results are shown in Figs. 12(a)-(b) and
the root mean square error of the ZMP tracking is shown in
Table III. The results show that some overshoots are present,
but that the actual ZMP follows the reference ZMP. Thus,
when the CoG trajectory generated by the cart-table model
approximated as a single point mass model is used, the actual
ZMP follows the reference ZMP quite well.

Figs. 12(c) and (d) show the experimental results of the
ZMP step response with the proposed methods. In this figure,
the actual ZMP follows the reference ZMP. Thus, the CoG
trajectory generated by the proposed methods is the desired
trajectory. The RMSE of the ZMP tracking result is shown in
Table III. Here, experiments were conducted 5 times, and an
average of their RMSE is shown. The result is almost the same
as that of the proposed methods. Thus, we can confirm the
effectiveness of the control system based on the RMC scheme
and the tracking performance of the proposed methods in the
experiment.
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Fig. 11. posture control results

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.5  1  1.5  2  2.5  3

x[
m

]

time[s]

ZMP ref
CoG ref

ZMP
CoG

(a)Simulation
(Preview control)

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.5  1  1.5  2  2.5  3

x[
m

]

time[s]

ZMP ref
CoG ref

ZMP
CoG

(b)Simulation
(ZPLPF)

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  0.5  1  1.5  2  2.5  3  3.5  4

x[
m

]

time[s]

ZMP ref
CoG ref

ZMP
CoG

(c)Experiment
(Preview control)

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  0.5  1  1.5  2  2.5  3  3.5  4

x[
m

]

time[s]

ZMP ref
CoG ref

ZMP
CoG

(d)Experiment
(ZPLPF)

Fig. 12. Results of ZMP step response

C. ZMP-based wheeled locomotion

1) Without ZMP compensation: First, we show that the
ZMP inverse response occurs when the robot moves like a car.
The simulation and experimental results are shown in Figs.
15(a) and (b). In this case, the conditions of the simulation
and experiment are the same as those for the pitching control
shown in Figs. 11(g) and (h). From these results, we can
confirm that the ZMP inverse response occurs and that the
ZMP moves near the edge of the supporting polygon in both
the simulation and experiment. In addition, the ZMP inverse
response on y component of ZMP is confirmed, as shown as
Figs. 16 (a) and (b). Here, the x component of the ZMP is
controlled to track a constant value (0.6 m/s). The y component
of the reference ZMP trajectory are given using the cosine
function. The ZMP inverse response destabilizes the robot.
Thus, to realize high mobility, this effect must be suppressed.

2) With ZMP compensation: Here, the result of the control
for wheeled locomotion is shown. The simulation and experi-
mental environment of wheeled locomotion is shown in Figs.

13 and 14, respectively. In this control scheme, the robot CoG
is controlled to follow the reference CoG generated by the
preview control or ZPLPF by using (53). Each contact point
is constrained to centralize the ZMP inside the supporting
polygon. Figs. 17(a) and 18(a) show the ZMP response of the
wheeled locomotion evaluated with the proposed methods. The
reference ZMP trajectory is given by a cosine function such
that the robot moves 0.6m during 1.25 s. In general, the inverse
response of the ZMP occurs at the high position of the CoG.
However, in this case, this is prevented by our control system.
From the figures, we can conclude that the proposed methods
are also effective for fast-wheeled locomotion.

Figs. 17(b) and 18(b) show the experimental ZMP response.
The reference ZMP trajectory is such that the robot moves
0.6 m during 1.25 s. Moreover, Figs. 19 and 20 show the
validity of our methods for controlling the y component of
ZMP. Here, the x component of ZMP are controlled to track
a constant value (0.6 m/s). The y component of the reference
ZMP trajectory are given using the cosine function. These
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Fig. 13. Simulation environment (ZMP based wheeled locomotion)

Fig. 14. Experimental environemnt (ZMP based wheeled locomotion)
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Fig. 15. Wheeled locomotion (w/o compensation: car-like)
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(b) Experimental result
Fig. 16. Gyrating wheeled locomotion (w/o compensation: car-like)

figures show that the ZMP response of the robot can also
be experimentally suppressed by the proposed methods. The
RMSE of the ZMP tracking result is shown in Table III. Here,
experiments were conducted 5 times and an average of their
RMSE is shown.

VII. Conclusion

In this paper, we proposed a ZMP-based whole body motion
generation and control system to produce high mobility for a
3D-WLMR. Our contributions are as follows:
• Application of inverted pendulum model for WLMR
• CoG trajectory generation based on preview control
• CoG trajectory generation based on ZPLPF (zero-phase

low-pass filter)
• Whole body motion generation based on RMC (resolved

momentum control)
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(b) Experimental result
Fig. 17. Wheeled locomotion (w/ compensation: Preview control)
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(b) Experimental result
Fig. 18. Wheeled locomotion (w/ compensation: ZPLPF)

First, the 3D-WLMR was approximated as a single point mass
LIP. Then, two control approaches were proposed: the preview
control approach and a new CoG pattern generation method
that realizes the desired ZMP using the ZPLPF. The ZPLPF
approach can generate CoG patterns more easily than the
preview control approach. The simplicity of the theory and
implementation were verified by the design methods in Section
III. In addition, the computational procedures were validated
by performing a CoG pattern generation test. From this test,
we conclude that the IIR-ZPLPF can generate the CoG pattern
faster than the preview control approach. Next, the generated
CoG pattern was realized by the linear momentum Jacobian,
which includes the CoG Jacobian. In addition, the angular
momentum Jacobian was introduced to further increase the
mobility of the WLMRs. In this paper, the posture of the
WLMR is controlled using the angular momentum as a control
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(b) Experimental result
Fig. 19. Gyrating wheeled locomotion (w/ compensation: Preview control)
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Fig. 20. Gyrating wheeled locomotion (w/ compensation: ZPLPF)

TABLE II
Simulation and Experimental Condition

Contents Simulation Experiment
(ROCOS)

Sampling time[ms] Ts 1.000 1.000
ZPLPF tap length M 1200 1200
Previewing period NL 1200 1200

Qe 1.000×106 1.000×106

Qx 1.000 1.000
R 1.000 1.000

Height of CoG zc[m] 0.464 0.464
Total mass mtotal 47.0 47.0

KpM diag{10.0, 10.0, 10.0} diag{10.0, 10.0, 10.0}
KpL diag{10.0, 10.0, 10.0} diag{10.0, 10.0, 10.0}

Observer gains [rad/sec]
-Crotch yaw 100.0 100.0
-Crotch roll 100.0 100.0
-Knee roll 100.0 100.0
-Shin yaw 100.0 100.0

-Wheel 100.0 100.0
PD gains for

joints control (Kp, Kd)
-Crotch yaw (5.0, 1.0) (5.0, 3.0)
-Crotch roll (350.0, 50.0) (25.0, 5.0)
-Knee roll (200.0, 80.0) (20.0, 5.0)
-Shin yaw (10.0, 5.0) (50.0, 5.0)

-Wheel (10.0, 5.0) (15.0, 5.0)

input. Finally, the generated CoG pattern and whole body
motion generation scheme are validated by the ZMP step
response and wheeled locomotion based on the ZMP. Further-
more, a ZMP-based wheeled locomotion method was proposed
by manipulating the 3D-WLMR CoG and was validated. The
proposed CoG pattern generation methods were validated via
the above tests using the RMSE as an accuracy gauge. As a
result, the ZMP errors of the proposed methods agree well in
both simulation and experiment. Therefore, we can say that the
ZPLPF approach is superior to the preview control approach
in terms of implementation and computational processing.
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