
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. YY, MONTH 2022 1
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Abstract—Social media misinformation harms individuals and
societies and is potentialized by fast-growing multi-modal content
(i.e., texts and images), which accounts for higher “credibility”
than text-only news pieces. Although existing supervised misinfor-
mation detection methods have obtained acceptable performances
in key setups, they may require large amounts of labeled data
from various events, which can be time-consuming and tedious. In
turn, directly training a model by leveraging a publicly available
dataset may fail to generalize due to domain shifts between
the training data (a.k.a. source domains) and the data from
target domains. Most prior work on domain shift focuses on
a single modality (e.g., text modality) and ignores the scenario
where sufficient unlabeled target domain data may not be readily
available in an early stage. The lack of data often happens due
to the dynamic propagation trend (i.e., the number of posts
related to fake news increases slowly before catching the public
attention). We propose a novel robust domain and cross-modal
approach (RDCM) for multi-modal misinformation detection. It
reduces the domain shift by aligning the joint distribution of
textual and visual modalities through an inter-domain alignment
module and bridges the semantic gap between both modalities
through a cross-modality alignment module. We also propose a
framework that simultaneously considers application scenarios
of domain generalization (in which the target domain data is
unavailable) and domain adaptation (in which unlabeled target
domain data is available). Evaluation results on two public multi-
modal misinformation detection datasets (Pheme and Twitter
Datasets) evince the superiority of the proposed model. The
formal implementation of this paper can be found in this link1.

Index Terms—misinformation detection, domain generalization,
domain adaptation, modality alignment, social media, and
multimedia forensics.

I. INTRODUCTION

M ISINFORMATION has become a significant concern in
contemporary society, threading all aspects of individu-

als and society [1, 2], because online social media lack serious
verification processes and netizens usually cannot discriminate
between fake and real news [3]. For example, during the 2016
presidential election cycle in the United States, false news
stories claiming that Hillary Clinton ordered the murder of an
FBI agent and participated in a satanic child abuse ring in a
Washington pizza parlor were shared ostensibly through social
media [4, 5]. While expert-based (e.g., PolitiFact2, GossipCop3)
and crowd-based efforts (such as Amazon Mechanical Turk4)
for manual fact-checking tools have carried precious insights

1https://github.com/less-and-less-bugs/RDCM
2https://www.politifact.com/.
3https://www.gossipcop.com/.
4https://www.mturk.com/.

(a) Sydney Siege (b) Ottawa Shooting

Fig. 1: Examples of Sydney Siege and Ottawa Shooting
domains from Pheme Dataset. Sydney Siege was a terrorist
attack in which a gunman held hostage ten customers and
eight employees in Sydney on December 15-16, 2014. Ottawa
Shooting took place on Ottawa’s Parliament Hill, leading to
the death of a Canadian soldier on October 22, 2014.

for misinformation detection, they cannot scale with the volume
of news on social media [1].

Various methods have been proposed to perform misinforma-
tion detection based on textual features [6]–[8] and propagation
patterns [9]–[11]. As the increasing misinformation with images
disseminates more quickly and is more believable, another line
of exploration [12]–[15] exploits multi-modal features to verify
misinformation. Despite the success of these algorithms, they
typically require considerably large labeled datasets, which may
not be feasible for real-world applications as data collection
and annotation can be cumbersome and time-consuming.

Moreover, directly training with large-scale datasets may not
generalize well to unseen events on account of the domain
shift [16]–[19], as there exist discrepancies between data
distributions across different domains, such as word frequency
and image style as Fig. 1 depicts. For example, “Sydney
Siege” and “hostages” frequently occur in the Sydney Siege
event5, while “Parliament” and “Ottawa” for Ottawa Shooting6.
Additionally, the illumination conditions are dark and bright for

5https://en.wikipedia.org/wiki/Lindt Cafe siege.
6https://en.wikipedia.org/wiki/2014 shootings at Parliament Hill, Ottaw.
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these two events, caused by the different times of occurrence.
Recent studies resort to transfer learning to learn domain-

robust misinformation detector through mitigating the distribu-
tion discrepancy between the source (a.k.a., training data) and
the target domain (a.k.a., testing data) [18, 20]. However, there
still exist two main limitations. First, intuitively, during the
dissemination of a specific news event, the number of relevant
posts increases slowly at first and rapidly when catching
significant public attention [21, 22]. This indicates we cannot
obtain sufficient data for the target domain early on. Hence,
the methods above cannot be swiftly applied in this case as
they require labeled [19, 23, 24] and unlabeled target domain
data [16]–[20, 23, 24] to be available during training. Secondly,
existing methods for cross-domain misinformation detection
ignore the issue of discrepancy between visual and textual
modalities. We argue that directly performing distribution
alignment across domains without considering the gap between
different modalities may not be optimal for capturing robust
domain information for multi-modal misinformation detection.

We propose a unified, robust domain and cross-modality
framework named RDCM for multi-modal misinformation
detection that seeks to address the limitations above. The unified
framework can be applied to two application scenarios: 1) real-
time misinformation detection (i.e., when target domain data
are not accessible during training, corresponding to domain
generalization); and 2) offline misinformation detection (i.e.,
when unlabeled target domain data are available during training,
which corresponds to domain adaptation).

To align multi-modal distributions and mitigate the modality
gap between source and target domains, we propose to
leverage an inter-domain alignment module based on the
joint distribution of textual and visual features and a cross-
modality alignment module based on contrastive learning
for the multi-modal misinformation detection task. The inter-
domain alignment module measures the joint distribution of
modalities (i.e., image and text) based on the kernel mean
embedding, reproducing the kernel Hilbert space (RKHS) [25]
and then aligns the joint distribution of different domains by
minimizing the corresponding Maximum Mean Discrepancy
(MMD) [26].

We align distributions among multiple source domains for the
scenario which requires real-time applications (a.k.a. domain
generalization) and align distributions between each source
and the target domain for the scenario where misinformation
detection can be performed offline (a.k.a. domain adaptation).

Inspired by contrastive learning in self-supervised tasks [27]–
[29], the cross-modality alignment module exploits contrastive
learning to bridge the modality gap with a novel sampling
strategy tailored for multi-modal misinformation detection.
After inter-domain and cross-modal (i.e., feature alignment
across different modalities in a single domain) alignment, we
expect to extract domain-invariant textual and visual features
of multi-modal posts and concatenate them for misinformation
detection. The empirical study shows that our model yields
state-of-the-art results on two public datasets.

The key contributions of this work are:
• A unified framework that tackles the domain generalization

(target domain data is unavailable) and domain adaptation

tasks (target domain data is available). This is necessary as
obtaining sufficient unlabeled data in the target domain at
an early stage of misinformation dissemination is difficult;

• Inter-domain and cross-modality alignment modules that
reduce the domain shift and the modality gap. These mod-
ules aim at learning rich features that allow misinformation
detection. Both modules are plug-and-play and have the
potential to be applied to other multi-modal tasks.

II. RELATED WORK

This section reviews domain generalization (DG), domain
adaptation (DA), and robust domain misinformation detection.

A. Domain Generalization and Domain Adaptation

Supervised machine learning algorithms assume similar train-
ing and testing distributions, but practical deployment requires
models to generalize well on unseen, out-of-distribution data.
Domain generalization (DG) and domain adaptation (DA)
address this challenge. DG learns from one or multiple source
domains, while DA requires access to target domain data during
training, making DG more difficult.

Domain generalization is widely used in computer vision and
natural language processing. A recent survey [30] classified DG
methods into three categories: data manipulation, representation
learning, and learning strategy.

Data manipulation involves generating samples through data
augmentation [31, 32] or data generation methods [33] to
increase the diversity and quantity of source domain data.

Representation learning works are inspired by the theory
that domain invariant representations are transferable to unseen
domains [34]. These works aim to learn robust domain
representation extraction functions by either aligning feature
distributions among source domains [35]–[37] or disentangling
features into different sub-spaces (domain-specific and domain-
sharing space) [38, 39]. For instance, Li et al. [35] used
adversarial autoencoders with Maximum Mean Discrepancy
(MMD) distance to align distributions across different domains
and learn a generalized latent feature representation. Ding and
Fu [38] designed domain-specific and domain-sharing networks
for the disentanglement in individual domains and across all
domains, respectively.

Finally, the learning strategy-based DG methods focus on
machine learning paradigms to enhance the generalization
performance, such as meta-learning [40], ensemble learning
[41], gradient-based DG [42], among others.

Domain adaptation methods differ from domain general-
ization in that they require access to target domain data
during the training process [43]–[45]. These methods are
categorized into two groups for single source domain visible
during adaptation (SDA). One group uses explicit discrepancy
measures, like H-divergence [46], MMD [25, 26], Wasserstein
Distance [47, 48], and second-order statistics [43], to reduce the
shift between source and target distributions. The other group
employs adversarial learning, where a domain discriminator
is confused in a min-max manner [49], to implicitly align the
source and target distributions. Additionally, early theoretical
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analysis [50, 51] demonstrated that minimizing a weighted
combination of source risks can achieve lower target error.

The above methods can also be applied when data from
multiple source domains are available during training (MDA).
Peng et al. [52] dynamically aligned moments of feature
distributions of multiple source domains and the target domain
with theoretical insights. Zhu et al. [53] proposed a two-stage
alignment framework that aligned distributions of each pair of
source and target domains and the outputs of classifiers. Despite
the progress, effectively applying DG and DA methods to
multi-modal settings with large semantic gaps among different
modalities remains unsolved.

B. Robust Domain Misinformation Detection

The widespread presence of misinformation on social media
has escalated the issue of social distrust, drawing significant
attention from both society and the research community. How-
ever, many existing misinformation detection methods [6, 7, 9]–
[14, 54] are domain-specific and may not perform effectively
on unseen domains due to the domain shift. Moreover, these
methods require extensive and diverse training data, which is
impractical given the rapid accumulation of events and news.

Robust domain methods were developed aiming at the
domain shift. Some work [19, 20, 23, 24] fall into domain
adaptation, assuming access to target domain data during
training. For instance, Mosallanezhad et al. [24] proposed
a domain adaptive detection framework using reinforcement
learning and incorporating auxiliary information. Silva et
al. [20] introduced an unsupervised technique for selecting
unlabeled news records to maximize domain coverage and
preserve domain-specific and cross-domain knowledge through
disentangle learning.

However, these methods may not accommodate the dynamic
nature of misinformation generation and propagation, where
target domain data might be unavailable during training. Lim-
ited access to timely target domain data hinders their real-time
application. Another group of works explores using powerful
search engines (e.g., Google) to retrieve background knowledge
for fact-checking [55, 56]. Yet, unverified online information
introduces noise that can negatively impact performance.

III. PROPOSED METHOD

The multi-modal multi-domain misinformation detection
framework comprises four components: Multi-modal Repre-
sentation Extraction (Text and Image Encoders), Inter-domain
Alignment, Cross-modality Alignment, and Classification. Tex-
tual and image features are extracted from a post using the
corresponding encoders. The Inter-domain Alignment module
removes domain-specific information while preserving domain-
agnostic information. The Cross-modality Alignment combines
textual and visual representations. The combined domain-robust
and modality-aligned features are then used for misinformation
detection. While designed for domain generalization (DG), the
framework can be extended to unsupervised domain adaptation
(DA) by adapting the inter-domain module to align distributions
between source and target domains.

A. Task Definition

The goal of multi-modal misinformation detection is to
determine the authenticity of a text and an associated image,
classifying the pair as fake (rumor) or real (non-rumor).
To address challenges posed by fast-emerging events and
costly annotations, researchers have explored various domain
adaptation methods [19, 20, 23, 23, 24] to learn robust domain
features and mitigate domain shifts. However, these methods
overlook the difficulty of collecting sufficient data in the target
domain during the early stages of fake news dissemination and
fail to consider the presence of multiple modalities in real-world
news pieces. To address these issues, we propose a unified
framework to handle the multi-modal misinformation detection
task, making it suitable for both domain generalization (DG)
and domain adaptation (DA) scenarios.

Formally, given DS =
{
D1

S ,D2
S , . . . ,DM

S

}
the collection

of M labeled source domains and DT the unlabeled target
domain where all domains are defined based on different
news events, our method aims to find a hypothesis in the
given hypothesis space, which minimizes the classification
error on DT . Each source domain can be represented as
Dm

S = {(tmn , vmn ), ymn }Nm

n=1 and the target domain can be
denoted as DT = {(tn, vn)}NT

n=1, where Nm (1 ≤ m ≤ M )
is the number of samples in the m-th source domain, NT is
the number of samples in the target domain, and y ∈ {0, 1}
is the gold label (1 indicates fake information for the Twitter
Dataset or the rumor for the Pheme Dataset and 0 otherwise).
Additionally, (t, v) is a text-image pair, where t is a text
sentence, and v is the corresponding image. We assume no
availability of target domain data DT in the scenario of DG.

B. Multi-modal Representation Extraction

Given an input text-image pair (t, v)7 in each domain,
following previous work [16, 18], we leverage a convolutional
neural network (i.e., TextCNN [57]) with an additional two-
layer perceptron (MLP) as the textual encoder to obtain the
representation of t as xt:

xt = Et(t;θt), (1)

where xt ∈ Rd is the final representation of t, Et represents the
textual encoder, and θt represents the parameter of TextCNN
and corresponding MLP. As large-scale pre-trained models
have excelled in natural language processing tasks, we adopt
the word embedding extracted by RoBERTa [58] as initializing
word vectors of TextCNN, following existing work [16, 59].
The reason why we do not fine-tune RoBERTa is to avoid over-
parameterization, which may harm the generalization ability
of the model.

For image representation, given an image v, following
existing methods [8, 19, 23], we use ResNet50 as the visual
backbone neural network and choose the feature of the final
pooling layer as the initial visual embedding. Then, similar to

7We omit the subscript for simplicity unless specifically stated.
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Fig. 2: Proposed robust domain and cross-modal framework. In the DG setup, we take multiple source domains as input and
extract textual and visual features through the Text Encoder and the Image Encoder. Then we align the joint distributions of
textual and visual modalities between each source domain pair by Inter-domain Alignment Module, reduce the modality gap by
Cross-modality Alignment Module, and detect misinformation of source domains through Binary Classification. The DA setup
takes multiple sources and the target domain as input. Compared with DG, it further aligns joint distributions between each
source domain and the target domain but only performs cross-modal alignment and trains the classifier on source domains.

the text modality, we also use a MLP to reduce its dimension
to d given as

xv = Ev(v;θv), (2)

where xv ∈ Rd is the final representation of the image v, Ev

represents the visual encoder, and θv represents the parameter
of ResNet50 and the visual MLP.

We use Xt and Xv to denote random variables instantiated
by xt and by xv in one domain. After extracting the textual
and visual features of each text-image pair for multiple
source domains {Dm

S }1≤m≤M and target domain DT , we
can empirically estimate the probability distribution of textual
features P(Xt) and the probability distribution of visual
features P(Xv) by drawing samples i.i.d. from variables Xt

and Xv from each domain.

C. Multi-modal Feature Alignment

Multi-modal feature alignment aims to extract robust do-
main information for misinformation detection; as such, the
trained model can be better generalized to unseen events.
However, existing cross-domain-based methods for misinfor-
mation detection can be limited as most of them only focus
on a single modality for misinformation detection. While
one can perform marginal distribution alignment on textual
features Xt and visual features Xv, separately, or perform
distribution alignment through feature concatenation or element-
wise production [19, 24, 60], the correlation property across
multiple modalities has been ignored, which may hinder robust
domain misinformation detection when having textual and
visual information as input. To tackle this limitation, we propose
to explore domain covariance information on both the event
level (i.e., domain) and sample level, corresponding to Inter-
domain Alignment and Cross-modality Alignment, respectively.

1) Inter-domain Alignment: Among various inter-domain
alignment methods based on distribution measurement, Maxi-
mum Mean Discrepancy (MMD) [26] has been proven to be
effective where the distribution of samples can be formulated
through kernel mean embedding [25] in a non-parametric
manner. One intuitive way is to align the marginal distribution
of textual and visual modality across domains through MMD,
which can be defined as

MMD(Di
S ,Dj

S) = ∥µXt,i − µXt,j∥
2
H + ∥µXv,i − µXv,j∥

2
H. (3)

We use samples from the i-th and j-th source domains as
example. µ denotes the kernel mean embedding operation in
reproducing kernel Hilbert space (RKHS) H [25], which is to
compute the mean of latent features in the RKHS as µX(P) :=
EX[ϕ(X)] =

∫
X
ϕ(x) dP(x) and ϕ denotes a kernel function.

Here µXt,i
and µXv,j

indicate the textual mean embedding for
the i-th source domain and the visual mean embedding for the
j-th source domain, respectively. However, directly performing
marginal distribution alignment may not capture the correlation
information between textual and visual modalities. We propose
to align the joint feature distribution upon textual and visual
modalities where the kernel mean embedding can be formulated
through the covariance operator ⊗ on RKHS [61] as

µ
Xt,Xv

= E[ϕt(Xt)⊗ ϕv(Xv)]. (4)

We can better capture the cross-covariance dependency between
textual and visual modalities, contributing to robust domain
multi-modal misinformation detection, and the new inter-
domain alignment MMD can be formulated as

MMD(Di
S ,D

j
S) = ∥µXt,i,Xv,i

− µXt,j ,Xv,j
∥2H. (5)
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We seek for the empirical estimate of MMD(Di
S ,D

j
S) [61]

which can be computed as

MMD(Di
S ,Dj

S) =
1

N2
i

Ni∑
p=1

Ni∑
q=1

kv(xv,i,p,xv,i,q)kt(xt,i,p,xt,i,q)

+
1

N2
j

Nj∑
p=1

Nj∑
q=1

kv(xv,j,p,xv,j,q)kt(xt,j,p,xt,j,q)

− 2

NiNj

Ni∑
p=1

Nj∑
q=1

kv(xv,i,p,xv,j,q)kt(xt,i,p,xt,j,q),

(6)
where xv,i,p denotes the latent feature of the p-th sample from
the modality v of the domain i, kt and kv are Gaussian kernel
functions to map extracted features xt and xv into RKHS,
corresponding to the textual modality and visual modality,
respectively.

Assume we have training samples from M different domains
as DS =

{
D1

S ,D2
S , . . . ,DM

S

}
, the inter-domain alignment loss

based on data collected from textual and visual modalities can
be formulated as

Linter =

(
2

M

)
M−1∑
i=1

M∑
j=i+1

MMD(Di
S ,Dj

S). (7)

When some data for testing are available during training, we can
extend the inter-domain alignment loss above by incorporating
it with target domain data DT as

Linter =

(
2

M

)
M−1∑
i=1

M∑
j=i+1

MMD(Di
S ,Dj

S)

+

(
1

M

)
M∑
i=1

MMD(Di
S ,DT ).

(8)

2) Cross-modality Alignment: Besides exploring domain-
wise correlations between the textual and visual modalities,
we are also interested in mining sample-wise correlations (i.e.,
aligning the textual and visual modalities based on a single sam-
ple). Hence, we propose a novel contrastive loss for the cross-
modality alignment module to model pairwise relations between
texts and images by pulling semantically similar pairs closer
while pushing dissimilar ones away. Though recent vision-
language contrastive learning methods have shown promising
results in learning meaningful representations [29, 62], their
sampling strategies for drawing positive and negative pairs
may not be suitable for misinformation detection. Specifically,
existing sampling methods derive positive pairs from the
original input and negative pairs via random sampling in one
minibatch. However, in our setting, cross-modal correspondence
or similarity is more likely to only exist in real news rather
than in misinformation scenarios. Besides, texts for different
misinformation examples may use the same image in a specific
event, which results in the image and text of many negative
samples being close to each other in the semantic space. The
observations above motivate us to design a metric for text-
image similarity measurement, which can be further utilized
for negative sample selection, contributing to cross-modality
alignment through contrastive learning.

To tackle the above problems, we propose a novel sampling
strategy by only taking real posts as positive samples and

filtering out negative samples with high semantic similarity on
the visual modality with a weighting function as follows:

I((xt,p, xv,p), (xt,q , xv,q)) =

{
0, if sim(hp,hq) ≥ β

β − sim(hp,hq) else,
(9)

Here p and q denote indices corresponding to the p-th
and q-th samples in a minibatch, hp and hq denote the
output of feature processing on xv,p and xv,q respectively8.

sim(hp,hq) = (
hph

⊤
q

∥hp∥∥hq∥ + 1)/2 represents the similarity
between (xt,p, xv,p) and (xt,q, xv,q), and β is a threshold to
remain semantic dissimilar pairs as negative samples. Regarding
the feature processing function, one can choose an identity
mapping for feature processing on visual modality. However,
for the problem of misinformation detection, we are more
interested in the instance-level information (i.e., object) instead
of semantic information contained in the latent features. As a
result, we take for h the output of the softmax layer of the
backbone for the visual modality (e.g., ResNet50 in our model)
which can measure the instance-level similarity between images
well [63].

Especially, it is a good surrogate for similarity between xt,p

and xv,q when we assume xt,p and xv,p of real posts are
semantically relevant.

After performing a sample section to get the positive and
negative text-image pairs, we leverage the contrastive loss
objective in [28] and enhance it by our weighting function to
learn cross-modal semantic alignment on source domains DS ,
which can be formulated as follows:

Lintra = −log
e

x̃t,px̃⊤
v,p

τ

e
x̃t,px̃⊤

v,p
τ +

∑B
q ̸=p e

x̃t,px̃⊤
v,q

τ I((xt,p, xv,p), (xt,q , xv,q))
,

(10)
where p represents the indices of real posts in a minibatch, q
represents the indices of the other samples in this minibatch
except the p-th sample, B is the minibatch size, and τ is a
temperature hyperparameter. Additionally, we normalize xt and
xv to x̃t and x̃v based on L2 normalization to restrict the range
of similarity scores, which have been widely adopted in [27,
28, 64]. Compared with the original loss in [28], our proposed
Lintra can further push xv,q of the hard negative samples
far away from corresponding xt,p in the shared feature space
and mitigate the influence of inappropriate random sampling
for multi-modal tasks [13, 64] to perform better modality
alignment.

D. Classification

Given the textual feature xt and visual feature xv of one
post (t, v) in source domains DS , we concatenate them for the
final prediction:

ŷ = C(xt,xv;θc). (11)

Here C is a classifier consisting of a MLP followed by a
softmax activation function, θc is its parameters, and ŷ is the
predicted label. Then, the classifier is trained with cross-entropy
loss against the ground-truth label y on source domains DS

8We omit the domain index here for simplicity.
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as Lcls = −ylog(ŷ), in which label 1 represents fake posts
(rumors) while 0 means real posts (non-rumors) in our task.

In this work, we are especially concerned with the robust
domain multi-modal misinformation detection that requires
a model to simultaneously map textual and visual features
into domain-invariant and modality-aligned semantic space
to improve classification performance. As such, we combine
Linter in Eq. 7, Lintra in Eq. 10 and Lcls as the final form
of our training objective in DG situation:

L = λ1Linter + λ2Lintra + Lcls, (12)

where λ1 and λ2 are weighting parameters to balance the
importance of Linter, Lintra and Lcls. Moreover, we can easily
extend our method to the DA situation by replacing Linter in
Eq. 7 as Linter in Eq. 8 without changing our framework.

IV. EXPERIMENTS

We devise experiments to answer the following research
questions. For conciseness, RQ4 and RQ5, the elaborate
analysis of the inter-domain alignment module and cross-
modality alignment module, are explained in the Appendix.

• RQ1: Do unlabeled target domain data and multiple
modalities boost domain misinformation detection?

• RQ2: How effective is the proposed robust domain and
cross-modal detection method (RDCM) compared with
existing methods for misinformation detection?

• RQ3: How do the components of RDCM affect results?
• RQ4: How effective is the method to mitigate the domain

shift by aligning the joint distribution of text and visual
features represented by kernel mean embedding?

• RQ5: How effective is the sampling strategy for the cross-
modality alignment module?

A. Data Preparation

We adopt two benchmark datasets, Pheme [65] and Twit-
ter [66], to validate the effectiveness of the proposed misinfor-
mation detection approach RDCM.

Pheme dataset is constructed by collecting tweets related
to five breaking news events: Charlie Hebdo, Sydney Siege,
Ferguson Unrest, and Ottawa Shooting and Germanwings
Crash. As the original Pheme dataset does not include images,
we obtain relevant images through the Twitter API using the
tweet ID contained in each sample if the sample has attached
images, following [19]. In this work, we detect misinformation
by incorporating text and image information. Thus, we remove
the tweets without any text or image and finally get four
event domains. If multiple images are attached to one post, we
randomly retain one image and discard the others. The detailed
statistics are listed in Table I.

The Twitter dataset collects text content, attached im-
ages/videos, and social context information related to 11 events.
However, several events are removed from the experiments
because of only having real or fake posts. Following the data
cleaning method for the Pheme dataset, we only preserve
samples containing texts and images and obtain four event
domains, including Hurricane Sandy, the Boston Marathon
bombing, Malaysia, and Sochi Olympics. It is worth noting

that many samples have the same image in this dataset, which
challenges the generation of negative multi-modal pairs for
contrastive learning. The detailed statistics are listed in Table
II.

Regarding the criterion of labels, in the Pheme dataset, the
sample is labeled as a rumor when it is unverified9 at the
time of posting, it is labeled as non-rumor when it belongs
to the other circulating information [67, 68]. Moreover, in the
Twitter dataset, the sample is identified as fake when it shares
an image that does not represent the event it refers to (e.g.,
maliciously tampering with images and reposting previously
captured images in a different event). At the same time, they
are considered real when it shares an image that legitimately
represents the event it refers to [66]. As a result, a huge
discrepancy exists between domains from different datasets.

To further verify the generalization of the proposed approach,
we conduct Cross-dataset experiments between these two
datasets. Especially we select three source domains from either
the Pheme or Twitter dataset to train the model and evaluate
its performance on the target domain from the other dataset.
Finally, the results of four cases COF → M, CSF → A,
ABI → S and ABI → O are reported in our experiments.

TABLE I: Statistics of Pheme Dataset

Event Rumor Non-Rumor All
Charlie Hebdo (C) 181 742 923
Sydney Siege (S) 191 228 419

Ferguson Unrest (F ) 42 309 351
Ottawa Shooting (O) 146 110 256

TABLE II: Statistics of Twitter Dataset

Event Fake Real All
Hurricane Sandy (A) 5461 6841 12302

Boston Marathon bombing (B) 81 325 406
Malaysia (M) 310 191 501

Sochi Olympics (I) 274 127 398

B. Experimental Setup

1) Baselines: For comparison purposes, we adopt baselines
from four categories: uni-modality, multi-modality, domain
generalization, and domain adaptation baselines.

Uni-modality baselines comprise TextCNN-rand, TextCNN-
roberta, Bert [69], and ResNet [70]. TextCNN-rand,
TextCNN-roberta, and Bert are text modality-based models
which only exploit textual information for classification. Both
TextCNN-rand and TextCNN-roberta are based on TextCNN
framework [57]. Their difference is that the workpiece em-
bedding of TextCNN-rand uses random initialization, and
TextCNN-roberta is initialized from the RoBERTa-base10,
which is frozen during training, following [18, 23]. Bert is
a transformer-based pre-trained model, and we utilize one of
its variants11 to generate the embedding of [CLS] token for
detection. We compare the model with the visual modality

9One post is defined as unverified when there is no evidence supporting
it (e.g., logically self-consistent between the text and image) or there is no
official confirmation from authoritative sources.

10https://huggingface.co/roberta-base
11https://huggingface.co/bert-base-uncased

https://huggingface.co/roberta-base
https://huggingface.co/bert-base-uncased
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method ResNet [70], which replaces the final classification
layer as a binary classification layer for misinformation
detection.

Multi-modality baselines include Vanilla [71] and Modali-
tyGat [72], which take TextCNN and ResNet as textual and
visual encoders, respectively. Vanilla concatenates textual and
visual features to perform classification, similar to our proposed
method without Inter-domain Alignment and Cross-modality
Alignment components. On the other hand, ModalityGat
introduces a gate mechanism to fuse the information from
different modalities based on their corresponding importance.

Domain generalization baselines consist of EANN [18], IRM
[73], MLDG [40] and Fish [42], among which the first two
belong to representation learning based DG, and the last two
belong to learning strategy based DG. In detail, EANN confuses
an event domain discriminator in an adversarial manner to learn
shared features among multiple events. IRM aims to estimate
invariant and causal predictors from multiple source domains to
improve the generalization performance on the target domain.
MLDG is a meta-learning framework that simulates domain
shift by synthesizing virtual meta-train and meta-test sets in
each mini-batch. Finally, Fish matches the distribution of many
source domains by maximizing the inner product between
gradients of these domains. While there exists some work using
data augmentation to improve the robustness of misinformation
detection based on social networks [74, 75], these works are
not designed for multi-modal based misinformation detection,
and how to perform suitable data augmentation for multi-modal
data is still an open question in the research community. We
thus do not consider data augmentation in the baseline and
will leave it in our future work.

Finally, domain adaptation baselines comprise DAN [44],
DANN [45], Coral [43] and M3DA [52]. DAN and DANN
reduce domain discrepancy between the source and target
domains by minimizing MMD metric and adversarial learning
correspondingly. Coral aligns the second-order statistics of the
source and target distributions using a nonlinear transformation.
M3DA employs moment matching to align each pair of
source domains and each source domain with the target
domain. Moreover, it further aligns the conditional probability
distribution of output given input. DAN, DANN, Coral are
single-source DA (SDA) methods, while the other belongs to
multi-source DA (MDA) methods.

2) Implementation Details:

1) Model Setting. We adopt TextCNN and ResNet50 as
the backbone framework to extract text and image
features and map the features into d dimensions, using
corresponding two-layer MLPs, for all models except
Bert. Moreover, d is set to 256. TextCNN has three 1D
convolutional layers with kernel sizes 3, 4, and 5, and
the filter size of each layer is 100. While we finetune
ResNet50 for the baseline ResNet, we freeze the weights
of this visual encoder for the other models. We initialize
TextCNN word embedding in the same way as TextCNN-
roberta. As existing domain generalization and domain
adaptation methods are devised for only one input
modality, we apply these algorithms to the combined

features. We concatenate text and image features and
then use an external MLP to map them to d dimension.

2) Domain Setting. We select three events as source
domains and the remaining one as the target domain.
We combine three source domains as a source domain
for SDA baselines (i.e., DAN, DANN, and Coral)
while keeping these source domains individual for MDA
approaches (i.e., M3DA and our proposed RDCM).

3) Training Setting. The sample size of each domain is
set to 32 for each minibatch. For data preprocessing, we
first resize the image to 224× 224 and then normalize
pixel values to have a mean of [0.485, 0.456, 0.406]
and a standard deviation of [0.229, 0.224, 0.225] to
ensure compatibility with our visual backbone, ResNet50
[70]. For hyperparameters, we fix the sigma of Gaussian
kernels as [2, 4, 8, 16] for both modalities (We adopt
multi-kernel MMD in our experiments). If not otherwise
stated, we set the threshold β in Eq. 9 to 0.5 and the
temperature τ in Eq. 10 to 0.5. Moreover, we only
finetune the weights of different losses λ1 and λ2 for
our model by searching from [0.005, 0.1, 0.5, 1, 5, 10].
At last, We find that λ1 = 0.1 and λ2 = 0.5 achieve the
best performance on the Pheme dataset, while λ1 = 1
and λ2 = 1 are optimal for the Twitter dataset and Cross
dataset. We mainly finetune the loss weights for baselines
by searching from [0.01, 0.1, 1, 10, 100, 1000] to find the
best hyperparameter. We adopt Adam as the optimizer
with a learning rate 0.001 and weight decay of 0.0005.
All models are trained for 20 epochs on the Pheme and
Cross datasets and 30 epochs on the Twitter dataset.

4) Evaluation Protocol. We utilize accuracy as the evalua-
tion metric. In our work, we follow existing work in the
community of domain generalization and domain adap-
tation [35, 76] and use the standard evaluation protocol.
Especially, for each dataset, we divide each domain into
a training set (70%) and a test set (30%) via random
selection from the overall dataset and conduct a leave-
one-domain-out evaluation. In domain generalization, we
use the training split of source domains to train and select
the optimal model based on the validation results of the
testing split of source domains, while we employ the
training split of source samples and the unlabelled target
domain examples to train and also validate the model
on the testing split in domain adaptation. For testing,
we evaluate the model on the entire target domain for
DG and DA. To avoid randomness, all experiments are
repeated three times with different random seeds, and
the average result and standard deviation are reported.

C. RQ1: Effectiveness of data collected from unlabeled target
domain and multiple modalities

There are two motivations for our work. First, existing robust
domain misinformation detection methods do not consider the
dynamic propagation trend of online information. In other
words, it is necessary to cover DG and DA for our method
based on the availability of the target domain. Accordingly,
an indispensable premise is that the target domain data could
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TABLE III: Pheme dataset results of four groups of approaches.

Model COF → S (%) CSF → O(%) CSO → F (%) OFS → C(%) Avg(%)

Uni-modality

TextCNN-rand 56.41±1.9 52.43±4.2 86.74 ±2.4 79.33±1.5 68.72±2.2
TextCNN-roberta 62.38±1.4 64.24±1.0 87.95±0.2 81.95±0.3 74.13±0.3

Bert [69] 60.53±2.4 57.29±1.0 79.72±2.6 78.72±0.4 69.07±1.5
ResNet [70] 56.22±0.7 47.18±2.0 86.45±2.9 70.90±3.2 65.19±1.7

Multi-modality Vanilla [71] 65.79±1.7 64.67±2.2 87.45±0.2 81.02±0.5 74.73±0.8
ModalityGat [72] 56.09±2.3 47.48±5.0 88.03±0.0 80.32±0.2 67.98±1.3

Domain Generalization

EANN [18] 65.97±1.3 65.62±2.9 88.07±0.5 80.42±0.0 75.02±0.9
IRM [73] 65.02±0.6 64.71±1.7 87.50±1.0 81.23±0.2 74.64±0.2

MLDG [40] 64.41±2.4 64.84±0.4 88.35±0.2 81.56±0.1 74.79±0.5
Fish [42] 55.87±2.1 43.58±0.5 88.03±0.0 75.88±4.7 65.84±0.6

RDCM(DG) 67.36±1.8 66.49±2.7 88.41±0.6 81.89±0.0 76.04±0.9

Domain Adaptation

DAN [44] 67.09±0.3 62.46±1.4 86.04±2.4 80.56±0.2 74.04±0.9
DANN [45] 69.24±1.2 64.67±2.8 87.66±0.6 81.29±0.2 75.72±1.1
Coral [43] 69.66±0.7 64.19±2.4 85.60±2.5 80.70±0.0 75.04±1.0

M3DA [52] 66.75±1.7 66.63±0.6 88.20±0.4 81.06±0.3 75.66±0.6
RDCM(DA) 67.49±1.7 68.75±1.0 88.48±0.0 82.16±0.3 76.72±0.3

TABLE IV: Twitter dataset results of four groups of approaches.

Model ABI → M (%) BMI → A(%) AMI → B (%) ABM → I(%) Avg(%)

Uni-modality

TextCNN-rand 45.95±3.0 53.12±1.2 59.82±4.6 46.80±2.5 51.42±0.9
TextCNN-roberta 46.31±0.7 56.12±0.4 69.76±1.1 40.01±1.0 53.05±0.5

Bert [69] 58.44±2.9 54.55±0.7 75.27±2.1 55.51±3.6 60.94±1.3
ResNet [70] 76.89±4.6 54.73±3.1 83.40±0.3 36.71±2.6 62.93±2.1

Multi-modality Vanilla [71] 81.44±1.0 61.11±4.8 79.31±1.5 40.12±2.3 65.50±1.1
ModalityGat [72] 86.32±0.3 59.55±0.3 80.62±0.2 34.61±3.1 65.28±0.6

Domain Generalization

EANN [18] 88.42±3.5 56.61±0.2 71.57±4.3 57.25±2.9 68.46±1.9
IRM [73] 71.88±2.7 53.13±0.2 80.24±0.3 58.36±0.4 65.90±1.0

MLDG [40] 86.25±6.5 56.23±0.7 78.94±0.2 51.20±8.7 68.16±3.6
Fish [42] 71.86±5.3 55.61±0.0 79.56±0.5 45.11±6.6 63.03±3.8

RDCM(DG) 88.49±0.7 58.15±1.9 81.32±1.8 52.48±2.3 70.11±0.6

Domain Adaptation

DAN [44] 89.37±1.0 58.29±0.7 77.80±1.6 44.21±4.7 67.42±2.5
DANN [45] 89.49±1.0 60.01±0.2 78.27±1.8 49.62±3.3 69.35±2.1
Coral [43] 89.91±0.3 60.38±1.7 78.41±1.5 47.52±5.8 69.05±2.8

M3DA [52] 89.99±3.2 55.94±0.7 79.35±0.8 55.53±2.0 70.20±1.3
RDCM(DA) 90.11±0.6 60.78±1.4 79.47±1.9 55.50±3.1 71.47±0.7

TABLE V: Cross-dataset results of four groups of approaches.

Model COF → M (%) CSF → A(%) ABI → S (%) ABI → O(%) Avg(%)

Uni-modality TextCNN-roberta 49.74±0.4 56.11±0.1 53.84±1.3 52.28±1.2 52.99±1.6
ResNet [70] 53.67±0.4 58.32±0.9 58.02±1.1 49.87±0.3 54.97±0.3

Multi-modality Vanilla [71] 48.66±2.8 57.28±0.3 59.40±1.0 48.52±1.5 53.47±1.3
ModalityGat [72] 38.46±0.5 55.86±0.2 56.14±0.4 52.08±1.8 50.64±0.6

Domain Generalization

EANN [18] 52.23±4.4 57.01±0.2 58.34±1.6 52.98±2.8 55.14±1.9
IRM [73] 52.93±3.7 56.11±0.6 57.16±0.9 53.03±0.0 54.81±1.9

MLDG [40] 53.30±0.6 55.28±0.1 56.64±1.0 52.82±0.6 54.51±0.5
Fish [42] 47.78±1.5 51.23±4.6 53.49±2.3 48.00±3.4 50.12±2.6

RDCM(DG) 53.41±1.7 57.40±0.2 59.90±2.0 53.17±0.5 55.97±1.2

Domain Adaptation

DAN [44] 53.29±0.8 57.26±0.2 59.12±2.0 51.57±1.8 55.31±0.5
DANN [45] 54.66±6.7 57.03±0.8 55.10±0.5 51.08±1.3 54.47±2.2
Coral [43] 54.20±3.1 58.01±1.0 56.36±1.5 51.48±2.4 55.01±1.2

M3DA [52] 53.61±1.8 58.36±0.3 58.84±1.0 51.34±1.2 55.54±1.0
RDCM(DA) 55.27±2.6 58.49±0.5 60.33±0.6 52.00±2.5 56.52±1.0

TABLE VI: A-distance of four cases for Pheme and Twitter
datasets in DG and DA settings.

Pheme Dataset
Model Metric S O F C

RDCM(DG) Acc(%) 67.36 66.49 88.41 81.89
A-distance 1.79 1.78 1.73 1.76

RDCM(DA) Acc(%) 67.49 68.75 88.48 82.16
A-distance 1.75 1.76 1.64 1.73

Twitter Dataset
Model Metric M A B I

RDCM(DG) Acc(%) 88.49 58.15 81.32 52.48
A-distance 1.69 1.62 1.64 1.90

RDCM(DA) Acc(%) 90.11 60.78 79.47 55.50
A-distance 1.64 1.68 1.61 1.89

further boost the detection performance compared with DG.
On the other hand, fewer recent approaches concentrate on
the importance of the semantic gap between textual and visual
modalities. However, a foundation of this motivation is that
multi-modal methods could have advantages over uni-modal
ones. As a result, we conduct comprehensive experiments and
report the accuracy and standard error in Table III and Table
IV, aiming to prove the validity of both motivations.

1) Importance of the Target Domain: We show the impact
of unlabeled target domain data for improving the performance
of misinformation detection. Some theoretical analyses [46,
50, 51] bound the target error in terms of the source error,
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the divergence between the distributions of the source domain
and the target domain, and other components. In other words,
when reducing the discrepancy among source domains, we
could improve the classification accuracy in the target domain
by concurrently reducing the discrepancy between the target
domain and source domains. In turn, we conduct two-sided
Wilcoxon rank-sum statistic12 for the average accuracy of DG
and DA baselines on two datasets. The p-values of our tests
(0.25 for the Pheme dataset and 0.12 for the Twitter Dataset)
are more than 0.05.

2) Effectiveness of Multi-modal Methods: We illustrate the
superiority of exploiting both modalities by analyzing the
experimental results of unimodal and multi-modal methods.
On the Pheme dataset, Vanilla, combining textual and visual
features surpasses TextCNN-roberta with 0.60% improvement
and Resnet with 9.54%. When on the Twitter dataset, this
multi-modal method also brings 2.57% improvement compared
with ResNet.

ResNet shows the opposite trend. It is possibly due to
differences between two datasets, such as data collection ways
and label protocols, which is a common case for practical
applications. Especially, advisable multi-modal models could
have the potential to combine complementary information from
multiple modalities by filtering noise and resolving conflicts
based on comprehending correlations between these modalities,
which justifies the advantage of exploiting both texts and images
for our task. We adopt Vanilla as the backbone for subsequent
experiments.

Answer to RQ1: Target domain and multi-modal inputs
effectively aid robust domain misinformation detection.

D. RQ2: Effectiveness of Our Method

Given the news propagation dynamics, it would be beneficial
for robust domain approaches to cover domain adaptation
and domain generalization simultaneously. To verify the
effectiveness and versatility of our method for both settings, we
compare RDCM with Vanilla, DG baselines, and DA baselines.
Table III, Table IV and Table V show such results.

We first discuss the comparisons with Vanilla. On the Pheme
dataset, the DG and DA versions of RDCM outperform Vanilla
by 1%. And the superiority is more significant for the Twitter
and Cross datasets. It evinces that inter-domain alignment
and cross-modality alignment modules positively influence
discriminating the misinformation.

Regarding DG baselines, RDCM consistently outperforms
most of them by a clear margin and simultaneously achieves
over 1% improvement compared with SOTA EANN on Pheme
and Twitter datasets. Similarly, our proposed method also
outperforms all DA baselines on three datasets. We suggest two
possible reasons. First, we employ the kernel mean embedding
to represent the joint distribution of textual and visual variables
to perform domain alignment, which can capture the correlation

12https://data.library.virginia.edu/the-wilcoxon-rank-sum-test/. The
Wilcoxon Rank Sum Test is the non-parametric version of the two-sample
t-test, which works when our samples are small.

between variables [25, 35] to reduce incorrect classification.
Second, we further mitigate the semantic gap between text and
image modalities based on contrastive learning to enable cross-
modal misinformation detection compared to other baselines.
We also observe that multi-source DA methods (e.g., M3DA
and RDCM) perform better than single-source DA methods
(e.g., DAN, DANN, and Coral). Hence, we devise our inter-
domain alignment component in the multi-source DA version.

Additionally, it is worth noting that the performance of the
proposed method and the baselines significantly differ among
the four target domains. For instance, we observe that our model
performs better on cases CSO → F and OFS → C than it
does on COF → S and CSF → O. We suggest two possible
causes for this phenomenon: 1) The domain gap between
source and target domains for cases with poor generalization
performance may be larger than those cases where models can
generalize well. That is because the generalization performance
largely depends on domain discrepancies between source
domains and the target domain [46, 77]. To validate this
conjecture, we exploit A-distance13, presented by Ben-David et
al. [46], to measure domain discrepancies for different cases of
Pheme and Twitter datasets in Tabel VI. The results show that
models can learn more domain-invariant features in component
cases than problematic ones to prove our conjectures. 2) In
bad cases, the target domains may be more challenging and
complex. For instance, the tweets labeled as rumors in S and
O have more diversified styles and patterns [78]. As a result,
it is difficult for models trained on source domains to learn
beneficial invariance capable of covering the distribution of
the intractable target domain.

Answer to RQ2: The proposed methods generally out-
perform different backbone networks, as well as all DG
and DA baseline models based on two different settings,
which evinces the effectiveness of our proposed RDCM.

E. RQ3: Analysis of Different Components

In this subsection, we conduct an ablation study to understand
the impact of Inter-domain and Cross-modality Alignment
modules of our proposed method. For brevity, we only report
detection accuracy in DG.

We consider three variants, including removing the inter-
domain alignment component (denoted as w/o inter), removing
the cross-modality alignment component (denoted as w/o cross),
and removing both components (denoted as w/o both). The
results in Table VII are telling. Despite the performance drop in
certain cases (e.g., M and A in the Twitter dataset) compared
to other baselines, our model generally performs best when
leveraging all these components. It suggests that our model
benefits from both alignment modules. Moreover, Ours may
overfit to cross-modality alignment loss for M and overfit
to both inter-domain alignment and cross-modality alignment

13A-distance is defined as d̂A = 2(1 − ϵ) where ϵ is the generalization
error of a two-sample classifier (kernel SVM in our case, following [44])
trained on the binary problem to distinguish input samples between the source
and target domains.

https://data.library.virginia.edu/the-wilcoxon-rank-sum-test/
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TABLE VII: Experimental results of ablation study in domain
generalization.

Pheme Dataset
S(%) O(%) F (%) C(%) Avg(%)

Ours(DG) 67.36 66.49 88.41 81.89 76.04
w/o inter 66.61 66.17 88.30 81.47 75.64
w/o cross 67.33 65.41 88.19 81.98 75.73
w/o both 65.78 64.67 87.45 81.02 74.73

Twitter Dataset
M(%) A(%) B(%) I(%) Avg(%)

Ours(DG) 88.49 58.15 81.32 52.48 70.11
w/o inter 82.63 56.00 75.23 51.48 66.34
w/o cross 91.08 57.81 80.85 45.10 68.71
w/o both 81.44 61.11 79.31 40.12 65.50

(a) COF → S (b) BMI → A

Fig. 3: The examples of Sydney Siege from COF → S in
the Pheme Dataset and Hurricane Sandy from BMI → A
in the Twitter Dataset. These samples are wrongly classified
by Vanilla but can be identified correctly by our proposed
RDCM (DG). Sydney Siege was a terrorist attack that a
gunman held hostage ten customers and eight employees in
Sydney on December 15-16, 2014. Moreover, Hurricane Sandy
was extremely destructive and strong, affecting 24 states in the
United States.

losses for A, which can be mitigated by adjusting weights
of different loss (λ1 and λ2). In turn, removing inter-domain
alignment leads to a greater performance drop than cross-
domain alignment, especially in the Twitter dataset. However,
it is difficult to determine which is more important because of
the comparable performance on the Pheme dataset.

Answer to RQ3: Each component of RDCM contributes
positively to multi-modal misinformation detection task.
Both components are important and could be assisted by
each other.

F. Case Study

To further justify the effectiveness of our proposed model
RDCM (DG), we provide case studies on samples that are
misclassified by Vanilla [71] but are detected accurately by

our proposed model, which incorporates domain alignment and
cross-modal alignment modules.

As depicted in Fig. 3, RDCM excels at understanding
semantic correspondences and contradictions between texts
and images and learns more transferable implicit patterns for
multimodal misinformation detection compared to Vanilla.
For instance, identifying non-rumor and real samples may
imply that our model can comprehend that “Australian PM
Tony Abbott” and “turn off the lights” align with the person
and the dark background in the attached images, respectively.
Additionally, identifying the rumor sample in Fig. 3a depends
on spotting the cross-modal irrelevance. We suggest the
success of these samples may stem from our cross-modal
alignment component that effectively reduces the modality gap
through contrastive learning. Moreover, our model may learn
contributive domain-invariant features better, such as the races
of artificial synthesis as shown in the fake sample in Fig. 3b,
owing to the inter-domain alignment module aligning the joint
distribution of both modalities conditioned on their correlation
information.

V. CONCLUSIONS & FUTURE WORK

In this paper, we tackled the problem of robust domain
misinformation detection. We presented a robust domain and
modality-alignment framework based on inter-domain and
cross-modality alignment modules.

The kernel mean embedding underpins inter-domain align-
ment to represent the joint distribution of textual and visual
modalities. It reduces the domain shift by minimizing the
Maximum Mean Discrepancy between the joint distributions.

The cross-modality alignment module leverages a specific
sample strategy to construct positive and negative samples
and mitigate the modality gap based on contrastive learning.
Experimental results show the effectiveness of the proposed
method for robust domain misinformation detection.

For future work, extending the framework to handle multiple
images and long-paragraph texts represents a key step forward.
We also suggest exploring various multi-modality scenarios
containing video and audio information to enrich the current
text- and image-based representations.

VI. LIMITATIONS

While the proposed approach (RDCM) demonstrates ver-
satility and effectiveness for the multimodal misinformation
detection task in both domain generalization and domain
adaptation scenarios, it is important to acknowledge two
possible limitations. Firstly, RDCM employs Maximum Mean
Discrepancy (MMD) as a metric to measure the domain
discrepancy upon the joint distribution of textual and visual
modalities. Although MMD offers theoretical merits, it does
have certain deficiencies such as the sensitivity to kernel choices
and computationally expensive calculations for large high-
dimensional datasets (i.e., the computational complexity is
O(n2) where n represents the sample size) [26, 46]. Despite
these drawbacks, our proposed method outperforms existing
approaches in two publicly available datasets when the sigma of
Gaussian kernels is fixed for both modalities and each domain
contains a limited number of samples, because of the synergy
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(a) Joint (b) Text

Fig. 4: t-SNE visualization of combined features belonging
to three source domains (C, S and O) and one target domain
(F) for Pheme dataset. The features of domains C and F are
mainly distributed in the two clusters on the left bottom of
Fig. 4b while the features of these two domains scatter more
evenly in Fig. 4a.

TABLE VIII: Comparison results of inter-domain alignment
on different modalities in domain generalization.

Pheme Dataset
Model S(%) O(%) F (%) C(%) Avg(%)
Fusion 66.72 65.28 88.07 82.10 75.54
Vision 66.64 65.36 88.00 82.18 75.55
Text 64.89 64.84 88.00 81.94 74.92
Joint 67.33 65.41 88.19 81.98 75.73

Twitter Dataset
Model M(%) A(%) B(%) I(%) Avg(%)
Fusion 89.35 56.62 77.23 45.03 67.06
Vision 78.78 56.19 73.18 49.85 64.50
Text 85.98 60.07 80.41 49.15 68.90
Joint 91.08 57.81 81.25 44.70 68.71

of inter-domain alignment and intra-domain alignment modules.
Secondly, our method specifically focuses on debunking
fake image-text pairs. Nevertheless, the intricate nature of
multimodal inputs permitted by social media platforms, such
as short videos and emojis, further harms the deployment of
our method in the real world. Therefore, we intend to address
these two limitations in our future endeavors.

VII. APPENDIX

A. RQ4: Analysis of Inter-domain Alignment

In Inter-domain Alignment, we assume the domain shift
exists in the joint distribution of multiple modalities instead of
the marginal distribution of any individual modality. Further-
more, unlike simple fusion (e.g., concatenation), we employ the
kernel mean embedding to represent the joint distribution. To
show the superiority of this module, we conduct experiments
on four models. The first model, Fusion, involves aligning the
joint distribution of both modalities obtained by concatenation,
described as MMD(Di

S ,D
j
S) = ∥µXt,v,i

− µXt,v,j
∥2H where

Xt,v represents the random variable of the concatenation
of textual and visual features. The second, Vision, aligns
the marginal distribution upon visual features, described as
MMD(Di

S ,D
j
S) = ∥µXv,i − µXv,j∥2H. The third one, Text,

aligns marginal distribution upon textual features, described as
MMD(Di

S ,D
j
S) = ∥µXt,i

− µXt,j
∥2H. Finally, the fourth one,

TABLE IX: Comparison results of different contrastive learning
methods in domain generalization.

Pheme Dataset
Model S(%) O(%) F (%) C(%) Avg(%)

Regular [64] 58.74 45.23 88.03 80.37 68.09
TextCon 65.66 65.36 88.06 81.47 75.21

ThresCon 64.76 65.41 88.00 80.63 74.70
Ours 66.61 66.17 88.30 81.47 75.64

Twitter Dataset
Model M(%) A(%) B(%) I(%) Avg(%)

Regular [64] 56.78 60.42 70.74 44.53 58.12
TextCon 77.18 56.21 73.48 50.90 64.44

ThresCon 73.76 56.03 70.85 49.57 62.55
Ours 82.63 56.00 75.23 51.48 66.34

Joint, aligns the joint distribution of both modalities obtained
by our proposed kernel mean embedding in Eq. 4, described
as MMD(Di

S ,D
j
S) = ∥µXt,i,Xv,i

− µXt,j ,Xv,j
∥2H.

From Table VIII, we observe that Joint and Fusion usually
have higher accuracy than Text and Image, which illustrates
the effectiveness of aligning the joint distribution. It may be
because deciding which modality mainly accommodates the
domain shift is impractical. We further visualize the combined
features of different domains extracted by Joint and Text using
t-SNE embeddings in Fig. 4a and Fig. 4b, respectively. The
figures show that the features are less discriminative when
generated by Joint, especially for features of the target domain.
It also suggests that the adaptation of joint distributions is more
powerful than marginal distributions for our task. Besides, the
boost of Joint is more significant than Fusion. Such empirical
results and theoretical guarantees in Eq. 4 imply that the
kernel mean embedding is more effective in modeling the
joint distribution for our task.

Answer to RQ4: Aligning the joint distribution of textual
and visual modalities achieves better performance than
aligning their marginal distributions. Moreover, the mean
kernel embedding is more advantageous for modeling the
joint distribution compared with fusion through feature
concatenation .

B. RQ5: Analysis of Cross-modality Alignment

In Cross-modality Alignment, we exclude positive and
negative samples of low quality by only taking real posts
as positive samples and the negative samples selected by
our weighting function in Eq. 9 based on image similarity,
respectively. To show the usefulness of this strategy (denoted
as Ours), we compare it with three other kinds of contrastive
learning methods. The first one, Regular, uses a common
contrastive loss [64] based on random sampling. The second,
TextCon, includes the weighting function but employs text
modality-based similar scores instead. Finally, ThresCon
removes the weighting function term and only considers real
posts as positive samples.

As Table IX shows, Regular is dominated by the other
three methods by a large margin, highlighting the importance
of filtering out non-relevant samples. Moreover, our method
outperforms TextCon and ThresCon, which demonstrates the
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(a) Pheme Dataset (b) Twitter Dataset

Fig. 5: Performance of our cross-modality alignment module
with different thresholds in domain generalization.

effectiveness of our proposed indicator function term in Eq.
9 that excludes low-quality artificial negative samples based
on semantic similarity on the visual modality. In addition, we
conduct experiments with different thresholds (i.e., β in Eq. 9)
as Fig. 5 depicts. The increase in the threshold brings more
noise. This figure shows that the performance first increases
and then drops along the threshold increase. Thus, we advocate
a tradeoff between sample number and sample noise.

Answer to RQ5: Our model benefits from the proposed
sample strategy that can filter non-relevant samples.
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