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Energy Efficient Sensor Data Collection Approach
for Industrial Process Monitoring

Hassan Harb and Abdallah Makhoul

Abstract—The use of wireless sensor network (WSN) for
industrial applications has attracted much attention from both
academic and industrial sectors. Sensors are typically deployed
to gather data from the industrial environment and to transmit
it periodically to the end user. In this paper, we propose and
compare three data collection mechanisms that allow each sensor
node to adjust its sampling rate to the variation of its environ-
ment, while at the same time optimizing its energy consumption.
The first one uses the analysis of data variances via statistical
tests to adapt the sampling rate, while the second one is based
on the set similarity functions, and the third one on the distance
functions. Both simulation and real experimentations on telosB
motes have been conducted where the obtained results proved
that our methods can reduce the number of acquired samples
up to 80% with respect to a traditional fixed-rate technique.

Keywords-Industrial wireless sensor networks, data collection,
adaptive sampling rate, analysis of variance, similarity functions,
distance functions, telosB mote.

LIST OF ACRONYMS

WSN Wireless Sensor Network
IWSN Industrial Wireless Sensor Network
Anova ANalysis Of Variance
EDRR Efficient Data Redundancy Reduction
BP Back-Propagation
DPCM Differential Pulse Code Modulation
FFNN Feed Forward Neural Network
PFF Prefix-Frequency Filtering
CH Cluster-Head

I. INTRODUCTION

INdustrial wireless sensor networks (IWSN) are becoming
more prevalent in most industrial companies [1]. Their ap-

plications cover the problems of air pollution, temperature, hu-
midity monitoring, structural condition monitoring, production
performance monitoring and improvement, etc. For instance,
continuous monitoring of pressures eliminates the need for
daily visits to the wellhead to manually record gauge readings.
Also, the temperature monitoring on a rotating drier to ensure
that the proper temperature is reached and maintained during
the drying process is another exciting application of IWSN [2].

Unfortunately, energy consumption remains the perfor-
mance limiting factor and the biggest constraint for IWSNs.
Currently, most industrial applications request battery life
of about five years and WSN systems are not viable in
applications that require relatively large amounts of power [3].
Thus, it is important to monitor carefully the amount of data

H. Harb and A. Makhoul are with FEMTO-ST Institute/CNRS, the DISC
department, Univ. Bourgogne Franche-Comt, Belfort, France e-mail: has-
san.moustafa harb@univ-fcomte.fr and abdallah.makhoul@univ-fcomte.fr.

Parameter Description

Mi set of measures collected during p
Similar(mi,mj) function used to test if two measures are similar

ε threshold for Similar function
T the number of total measures during p

wgt(mi) weight of the measure mi

M ′
i set of measures with their associated weights

||M ′
i || cardinality of M ′

i
Cardw(M ′

i) the weighted cardinality of M ′
i

R the application risk level
Behavior function used to adapt sensor sampling rate

L the number of periods in each round
r the round

Smax the sampling rate maximum
J ′(M ′

i ,M
′
j) Jaccard Similarity after assigning measure weights

tJ the Jaccard threshold
wgtmin(m

′
i,m

′
j) the minimum of the weights of (m′

i) and (m′
j))

Ed Euclidean distance between two sets of measures
M ′

ir
measures in the remained part of set M ′

i

TABLE I
NOTATION USED IN THE ARTICLE.

collected and sent, while preserving the quality of service
expected by the application.

Since industrial sensor readings are sent to the sink on
a periodic basis, the dynamics of the monitored condition
or process can slow down or speed up [4]. Therefore, in
order to keep the network operating for long time, adaptive
sampling approach to periodic data collection constitutes a
fundamental mechanism for energy optimization and data
reduction. In this paper, we propose three different adaptive
sampling techniques aiming to optimize the volume of data
transmitted over the network thus saving energy consumption.
The first technique searches the dependence of conditional
variance between the generated data sets based on the one-
way Anova model and the Bartlett test to adjust the sampling
rate; the second one uses the similarity functions, such as
Jaccard function, to search the similarity between data sets;
while the third approach calculates dissimilarities between sets
based on distance functions, such as Euclidean and Cosine in
order to define the environment dynamics changing. In order
to evaluate the performance of our techniques, both simulation
and real experimentations were conducted and discussed.

The remainder of this paper is organized as follows. Section
II presents the related work on data collection in sensor
networks. In Section III, an intra-node preprocessing phase is
presented. Sections V, VI, and VII present our techniques of
adaptive sampling rate based on the Anova model, the Jaccard
similarity function, and the Euclidean distance, respectively.
Section VIII exposes the simulation and experimental results.
Finally, Section IX concludes the paper and gives directions
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for future work.

II. RELATED WORK

As mentioned above, data collection is one of the fundamen-
tal operations in WSNs. Therefore, researchers have proposed
different adapting sampling techniques with the aim of saving
the energy of the sensors and enhancing the network lifetime
[5], [6].

Some works, such in [7]–[9], adapt the sampling rate of
the sensors based on the correlation between sensed data. The
authors in [7] propose an energy-efficient adaptive sampling
mechanism which employs spatio-temporal correlation among
sensor nodes and their readings. The main idea is to carefully
select a dynamically changing subset of sensor nodes to
sample and transmit their data. In [8], the authors propose an
adaptive sampling approach based on the dependence of con-
ditional variance on measurement variations over time, which
allows sensor node to adapt its sampling rate to the physical
changing dynamics. An Efficient Data Redundancy Reduction
(EDRR) scheme is proposed in [9]. EDRR integrates conjuga-
tive sleep scheduler scheme and basically utilizes Differential
Pulse Code Modulation (DPCM) technique to reduce data
redundancy over the network.

Other works such as [10]–[12] reduce data collected by
the sensors using data compression techniques. In [10] the
authors propose a Sequential Lossless Entropy Compression
(S-LEC) which organizes the alphabet of integer residues
obtained from differential predictor into increased size groups.
S-LEC codeword consists of two parts: the entropy code
specifying the group and the binary code representing the
index in the group. Compared to other compression schemes,
S-LEC is characterized by its efficiency and highly robustness
for various sensor network data sets. The authors in [11]–
[12] join data compression and encryption in order to keep
secure data after compressed them. First, in [11], they used
a fuzzy approximation technique called F-transform. They
compared a F-transform based approach to the to a DWT
(discrete wavelet transform) based model and showed that
they can achieve high enough value of the compression rate
with a lower distortion. Later, in [12], the authors complete
their proposition by studying a cubic B-spline F-transform in
order to have a higher accuracy with low computational cost,
even when data are not correlated. They show also that their
approach is also suitable for data security, by integrating it
with an encryption algorithm.

In [13]–[15], adapting the sensors sampling rate was studied
based on the computation of statistical means and moments
as per the end user and application requirements. The authors
in [13] propose an adaptive sampling algorithm based on the
Kalman filter for air pollution monitoring sensor networks.
The objective of the proposed algorithm is to eliminate the
noise from the sensor measurements and adjust the sampling
interval based on the difference between present and previous
measurements. In [15], the authors propose an adaptive sam-
pling algorithm, called AdaSense, dedicated to wireless body
sensor network. Through a genetic programming algorithm,
AdaSense is able to determine the optimal sensor sampling

rates by reducing the acquisition rate required in activity event
detection and multi-activity classification.

Other works, such in [5], [16], [17], try to eliminate data
redundancy intra and inter nodes. The authors in [16] propose
a two-level sensor fusion-based event detection technique for
the WSN. In the first level, each sensor node is responsible
for deciding whether an event has been occurred, using a feed
forward neural network (FFNN) or Naı́ve Bayes classifier. In
the second level, at cluster-head or gateway, a fusion algorithm
is proposed to reach a consensus among individual detection
decisions made by sensor nodes. Recently, the authors in [5]
study new area within filtering data generated by sensors, the
Prefix-Frequency Filtering (PFF) technique. Further to a local
processing at the sensor node level, PFF uses Jaccard simi-
larity function at the aggregators level to identify similarities
between near sensor nodes and integrate their sensed data into
one record.

Although the techniques proposed in the literature have
successfully adapted the sampling rate, the most of them
are performed in a centralized way [5], [7] and are based
on organizing sensors into clusters [16], [17] that require
huge computations and communications. Indeed, few efforts
in distributed sampling algorithms [9], [13] are provided.
However, most of them are applied at the physical layer and
restricted by the type of the deployed sensors. This makes such
algorithms not suitable and applicable for a huge number of
WSN applications. In this paper specifically addressing indus-
trial periodic sensor networks, we propose and compare three
different methods for samling rate adaptation. They are applied
in a distributed manner, less complex and suitable for limited
resource sensor nodes. The proposed techniques are based on
the variance, similarity, and distance study, respectively. Their
aim is to reduce the data acquisition on sensors by adapting
their sensing rates to the varying nature of the sensed data.
Finally, simulations and real sensor network experimentations
have been realized to show the effectiveness of the proposed
methods and the results were discussed subsequently.

III. INTRA-NODE PRE-PROCESSING

In periodic applications like industrial applications, a period
p is divided into time slots. In each slot s, each sensor Si
captures a new measure mi, and forms a vector of measures
during the period p as follows: Mi = [m1,m2, . . . ,mT−1,mT ]
where T is the number of total measures captured during the
period p. Usually, sensor nodes take the same (or very similar)
measures several times especially when s is too short or when
the monitored condition varies slowly. Therefore, we define the
Similar function which allows each sensor node to eliminate
redundant collected measures from the vector Mi.

Definition 1 (Similar function): We define the Similar
function between two measurements mi and mj captured by
the same sensor node Si as:

Similar(mi,mj) =

{
1 if |mi −mj | ≤ ε,
0 otherwise.

where ε is a threshold fixed by the application and |mi−mj |
is computed based on the Equation (1):
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|mi −mj | =
{
mi −mj if mi ≥ mj ,
mj −mi otherwise.

(1)

Based on the above definition, two measures captured by a
sensor are similar if and only if the Similar function is equal
to 1.

Then, we define the weight of a measure as follows:

Definition 2 (Weight of a measure mi, wgt(mi)): the
weight of a measure mi is defined as the number of the
subsequent occurrence of the same or similar measurements
(according to the Similar function) in the same vector.

Subsequently, we describe how the sensor node searches the
similarities between measures captured at the same period. In
the first slot at the period, the sensor node Si takes the first
measure, initializes its weight to 1 and adds it to the final set
which will be sent to the sink. Then, for each new captured
measurement mk, Si searches for similarities in previous taken
measurements in the same period. If a similar measurement is
found, it deletes the new one and increments the corresponding
weight by 1, else it adds the new measure to the set and
initializes its weight to 1.

At the end of each period, Si will transform the initial
vector of measures, Mi, to a set of measures, M ′i , associated to
their corresponding weights as follows: M ′i={(m′1, wgt(m′1)),
(m′2, wgt(m

′
2)), . . . , (m

′
k, wgt(m

′
k))}, where k ≤ T .

Based on the new set M ′i , we provide the two following
definitions:

Definition 3 (Cardinality of M ′i ): the cardinality of the set
M ′i , represented by ||M ′i ||, is the number of measures in M ′i
without their corresponding weights.

Definition 4 (Weighted Cardinality of the set M ′i , Cardw(M
′
i)):

the weighted cardinality of the set M ′i is equal to the sum of
all weights of the measures in M ′i as follows:

Cardw(M
′
i) =

∑||M ′
i ||

k=1 wgt(m′k),

where m′k ∈M ′i .

IV. ADAPTATION TO APPLICATION CRITICALITY

Since the applications have different criticality level, we
define the risk level of an application by R. This risk can
take values between 0 and 1 representing the lowest and the
highest criticality levels, respectively. This criticality level is
represented by a mathematical function y = fR(x) called
Behavior function.

Then, in order to model the Behavior function, the Bezier
curve is used which is flexible and can plot easily a wide range
of geometric curves. Therefore, the Behavior function curve
can be drawn, using the Bezier curve, through three points
P0(0, 0) (original point), P1(bx, by) (behavior point), and
P2(hx, hy) (threshold point). Thus, when varying R between
0 and 1, P1 will update its position based on the following
function [4]:

Cr(R) =

{
bx = −hx.R+ hx,
by = hy.R.

Subsequently, the Behavior function is defined based on
the Bezier curve as follows:

Behavior(X,hx, R, hy) ={
(hy−2by)

4b2x
X2 +

by
bx
X if (hx − 2bx = 0),

(hy − 2by)(∝ (X))2 + 2by ∝ (X), if (hx − 2bx 6= 0),

where

∝ (X) =
−bx+

√
bx2−2bx.X+hx.X

hx−2bx ∧

 0 ≤ bx ≤ hx,
0 ≤ X ≤ hx,
hx > 0,

and X represents a given value on the x-axis. It changes in
function of the technique selected for the adaptive sampling
(see next sections).

V. ADAPTING SAMPLING RATE USING ANOVA MODEL
AND BARTLETT TEST

Adapting the sampling rate of the sensor node according
to the dynamics of the monitored condition is an important
task in WSN that can prevent collecting redundant measures
and save energy. Therefore, studying the variance, or analysis
of variance (Anova), between measures collected by a sensor
node in several periods is useful to adapt the sampling rate
of the sensor. Anova is a statistical model that is used to
find out if the means, thus the variance, of data sets are
significantly different or if they are relatively the same. The
Anova computes a T -statistic value which is the ratio of the
variance calculated based on the collected measurements. T
can be calculated according to the appropriate statistical test.
The sets are considered duplicated if the calculated T is less
than the critical value of the T -distribution (or Tα ) for some
desired false-rejection probability (risk α).

In our previous work [4], we used the one-way Anova model
to identify the variance between measures with three different
tests: Fisher, Tukey, and Bartlett. Based on the obtained results,
we concluded that Bartlett is the best test in terms of adapting
sampling rate of the sensor and maximizing its lifetime.
Therefore, in this paper, the results of Bartlett test is compared
to those in other approaches.

A. Bartlett Test
The Bartlett test [18] is used to check if two or multiple

data sets are from populations with equal variances. Equal
variances across data sets is called homogeneity of variances.
Thus, the Bartlett test is used to test the null hypothesis that
variances of all data sets are equal against the alternative
hypothesis that at least two are different. Therefore, if there
is a round, r, of L periods with size nl and variance σ2

l for
each period then Bartlett test is applied as follows [4]:

T =
(N − L) ln(σ2

p)−
∑L
l=1(nl − 1) ln (σ2

l )

λ
, (2)

where:

N =

L∑
l=1

nl, λ = 1 +
1

3(L− 1)
(

L∑
l=1

(
1

nl − 1
)− 1

N − L
),
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and T is the Bartlett test condition. Furthermore, the pooled
variance, e.g. σ2

p, is defined in Equation (3):

σ2
p =

1

N − L

L∑
l=1

σ2
L. (3)

Thus, the decision is based on the following:
• if T > TL−1,α the variance between periods is significant

with a false-rejection probability α.
• if T ≤ TL−1,α the variance between periods is not

significant thus the measures captured in the L periods
are considered correlated.

Note that TL−1,α is a threshold which can be searched in
the chi-square table based on L and α values.

Adapting to Anova model and Bartlett test, Behavior
function takes, based on Bezier curve, four variables as input:
the variance measures T (replaces X), the threshold TL−1,α
(replaces hx), the risk level R, and the original sampling rate
at the time of network deployment Smax (replaces hy). Then,
it returns the instantaneous sampling rate, St, calculated after
each round.

Algorithm 2 describes the adaptive sampling rate algorithm
at the sensor node based on the variance study (Anova
model and Bartlett test). For each round, every node decides
to increase or decrease its sampling rate according to the
variance condition and the application risk. As long as the
energy is positive, each node calculates the parameters T and
TL−1,α then it uses the Behavior function in order to find
its new sampling rate.

Algorithm 1 Adaptive Sampling Rate Algorithm Based on
Anova model and Bartlett Test.
Require: L (1 round = L periods), R, Smax (maximum

sampling speed), α.
Ensure: St (instantaneous sampling speed).

1: St ← Smax
2: while Energy > 0 (the node is still alive.) do
3: for i = 1→ L do
4: takes measures at St speed
5: end for
6: for each round do
7: compute T
8: find TL−1,α
9: if T ≤ TL−1,α then

10: St ← Behavior(T, T(L−1,α), R, Smax)
11: else
12: St ← Smax
13: end if
14: end for
15: end while

VI. ADAPTING SAMPLING RATE USING JACCARD
FUNCTION

Another technique for adapting sampling rate of a sensor
node is by using similarity functions. These functions were

used in various domains and applications in order to iden-
tify near duplicate records. Therefore, a variety of similarity
functions have been proposed in the literature such as Overlap
coefficient, Jaccard similarity, and Dice similarity [19]–[22]. In
this work, we propose to use the Jaccard similarity function
for several reasons: it is one of the most popular and used
functions; it can be converted to many other functions; the
condition of similarity is the hardest to be satisfied [20]. In
this section, the sensor node uses the Jaccard function to search
similarity between its data collected among successive periods
then to adapt its sampling rate depending from the result of
similarity.

The Jaccard similarity function returns a value in [0, 1]
where a higher value indicates that the sets are more similar.
Thus, pairs of sets with high Jaccard similarity value are
considered as near duplicates. The Jaccard similarity function,
represented by J(Mi,Mj), between two vectors of measures
Mi and Mj , (before applying Algorithm 1), is defined as the
size of the intersection divided by the union of the two sets
as follows:

J(Mi,Mj) =
||Mi ∩Mj ||
||Mi ∪Mj ||

≥ tJ , (4)

where tJ is the Jaccard threshold defined by the application
itself.

To take into account the weights assigned to measures in
Section III, we redefine the Jaccard similarity function between
two sets of measures M ′i and M ′j as follows: (the proof is
similar to that of Equation (1) in [22])

J ′(M ′i ,M
′
j) ≥ tJ ⇔

Cardw(M
′
i ∩sM ′j) ≥ β =

2.tJ .Cardw(M
′
i)

1 + tJ
, (5)

where Cardw(M
′
i) is the sum of the frequencies of the

measures in the set M ′i , and ”∩s” (similarity overlap) is
defined as follows:

Definition 5: Consider two sets of measurements M ′i and
M ′j , then we define the overlap, ∩s, between them as:

M ′i ∩sM ′j = {(m′i,m′j) ∈M ′i ×M ′j with weight

wgtmin(m
′
i,m

′
j)/Similar(m

′
i,m

′
j) = 1},

where wgtmin(m
′
i,m

′
j) = min(wgt(m′i), wgt(m

′
j)), the

minimum value of the weights of m′i and m′j .

Fig.1 shows an example of Jaccard calculation between two
sets M ′i and M ′j . The letters indicate the measures while the
numbers represent their weights. There are four elements in
their overlap, M ′i ∩s M ′j = {A : 5, B : 3, C : 2, D : 2}.
Therefore, Cardw(M ′i ∩s M ′j) = 5 + 3 + 2 + 2 = 12. In
addition, Cardw(M ′i ∪M ′j) = Cardw(M

′
i) +Cardw(M

′
j)−

Cardw(M
′
i ∩sM ′j) = 15 + 15 − 12 = 18, thus, J ′(M ′i ,M

′
j)

= 12/18.
Similarly to the technique presented in Section V, we

exploit the Behavior function in order to adapt the sampling
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M’
i M’

j

A:5, B:3, C:3, 

D:2, G:2

A:6, B:3, C:2, 

D:2, E:1, F:1

Fig. 1. Two sets with Jaccard similarity 12/18.

rate (Algorithm 3). We consider a round r equals to two
periods, e.g. r= L periods= 2 periods. Indeed, the input of
the Behavior function changes according to the similarity
function study. Here, the Behavior takes the Jaccard similar-
ity computed between the data sets (i.e. Cardw(M ′i ∩s M ′j)
in line 2 in Algorithm 3) and the Jaccard threshold (tJ ) to
adapt the sampling rate only if the sets are similar (line 3 in
Algorithm 2).

Algorithm 2 Adaptive Sampling Rate Algorithm Based on
Jaccard Similarity Function.
Require: round r =L =2 periods, the two sets of measures

collected in r: M ′i and M ′j , R, Smax (maximum sampling
speed), tJ .

Ensure: St (instantaneous sampling speed).
- Replace lines 7-13 in Algorithm 1 with

1) search similar measures between M ′i and M ′j , i.e.
M ′i ∩sM ′j

2) compute I = Cardw(M
′
i ∩sM ′j)

3) if I ≥ β then
St ← Behavior(I, tJ , R, Smax)

4) else
St ← Smax

5) end if

VII. ADAPTING SAMPLING RATE USING EUCLIDEAN
DISTANCE

In this section, we study the utility of the distance functions
in adapting the sensors sampling rate. Distance functions have
been considered as important way of finding duplicated data
sets by searching dissimilarity between these data. Hence, a
great number of distance functions have been proposed in the
literature [23]. In this paper, we are interested in the Euclidean
distance1 that is widely used in different domains, such as
computer vision and face recognition applications [24], and
that is already used in WSN during the deployment phase
in terms of nodes localization [25] and inter-sensors distance
estimations [26].

In mathematics, the Euclidean distance is the ordinary
distance, e.g. straight line distance, between two points, sets or
objects. Let us consider two data sets M ′i and M ′j , generated
by the sensor node Si in two successive periods. Therefore,
M ′i and M ′j are considered redundant if the Euclidean distance
(Ed) between them is less than a threshold (td) as follows:

Ed(M
′
i ,M

′
j) =

√∑
(m′i −m′j)2 ≤ td, (6)

1Cosine distance has been also tested but the obtained results were less
important compared to those obtained with Euclidean distance.

where m′i ∈M ′i and m′j ∈M ′j .

However, the weights of the measures used in our technique
provide two challenges when using distance functions: 1)
calculating the distance between two data sets with different
cardinality, and 2) integrating the weights in the calculation
of the distance. To face these challenges, ε-threshold is used
which is introduced in the Similar function, in computing
the distance between the sets.

Then, in order to find the distance between two sets M ′i
and M ′j , the first step consists in dividing each set on two
parts: overlap and remained. The overlap part of the set M ′i
(respectively M ′j) contains measures that are similar to those
in M ′j (respectively M ′i ) while the remained part contains the
remaining measures of M ′i (respectively M ′j). Subsequently,
the overlap part between two sets is already defined in Defi-
nition 5, i.e. M ′i ∩s M ′j , while the remained part in each set
is defined as follows:

Definition 6 (Remained part of M ′i , M
′
ir

): Consider two
sets of sensor measures M ′i and M ′j . We define the remained
part M ′ir (respectively M ′jr ) as all the measures in M ′i
(respectively M ′j) minus the measures in the overlap part of
M ′i (respectively M ′j) as shown in Equation (7):


M ′ir = M ′i 	 (M ′i ∩sM ′j)

and
M ′jr = M ′j 	 (M ′i ∩sM ′j)

(7)

where 	 is a new operator defined as:

Definition 7 (Minus Operator, 	): We define the minus
operator, M ′i 	M ′j , between two sets M ′i and M ′j as all the
measures in M ′i and not in M ′j as follows:

M ′i 	 M ′j = {m′i ∈ M ′i , with wgt(m′i) = wgt(m′i) −
wgt(m′j) for all m′j ∈ M ′i ∩s M ′j and Similar(m′i,m

′
j) =

1}.
In order to compute the distance between M ′i and M ′j , we

must transform M ′ir (respectively M ′jr ) to a vector as follows:

vM ′ir =
[
m′i1 , . . . ,m

′
i1︸ ︷︷ ︸

wgt(m′
i1

) times

,m′i2 , . . . ,m
′
i2︸ ︷︷ ︸

wgt(m′
i2

) times

, . . . ,m′iki
, . . . ,m′iki︸ ︷︷ ︸

wgt(m′
iki

) times

]
.

Then, we order the measures in vM ′ir (respectively vM ′jr )
by increasing order of their values to ensure a logical compar-
ison when calculating the distance between them. Based on
the following proposition, the Euclidean distance between M ′i
and M ′j is calculated.

Proposition 1: The Euclidean distance between M ′i and M ′j
is calculated as follows:

Ed(M
′
i ,M

′
j) =

√√√√√|M ′
ir
|∑

k=1

(m′ik −m
′
jk
)2, (8)

where m′ik ∈M
′
ir

and m′jk ∈M
′
jr

.
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Proof: Consider two sets of data M ′i and M ′j . Then:

Ed(M
′
i ,M

′
j) =

√
(M ′i −M ′j)2

=

√(
(M ′i ∩sM ′j +M ′ir )− (M ′i ∩sM ′j +M ′jr )

)2
=

√(
(M ′i ∩sM ′j −M ′i ∩sM ′j) + (M ′ir −M

′
jr
)
)2

=
√
(M ′ir −M

′
jr
)2

=

√∑|M ′
ir
|

k=1 (m′ik −m
′
jk
)2 where m′ik ∈M

′
ir

and m′jk ∈M
′
jr

In the above, we consider that the Euclidean distance
between the measures in the overlap part is equal to zero
because they are redundant. Therefore, the Euclidean distance
between two sets is only equal to the distance between
measures in the remained parts of M ′i and M ′j , i.e. M ′ir and
M ′jr , respectively (Algorithm 4).

Algorithm 4 Euclidean Distance Algorithm.

Require: two sets of measures: M ′i and M ′j .
Ensure: Ed(M ′i ,M ′j).

1: find M ′ir and M ′jr
2: Ed = 0
3: for k ← 1 to ||M ′ir || do
4: Ed = Ed +

√
(m′i[k]−m′j [k])2; where m′i[k] ∈ M ′ir

and m′j [k] ∈M ′jr
5: end for
6: return Ed

Finally, Algorithm 5 describes how the sensor can adapt its
sampling rate based on the Euclidean distance. We consider a
round r consists of two periods, e.g. r= L periods= 2 periods.
Instead of T and TJ−1,α used in Bartlett test (Algorithm 2),
Behavior function takes the Euclidean distance calculated
between the sets in a round and the distance threshold in
order to calculate the new sampling rate of the sensor in the
case that the sets are redundant (Algorithm 5).

Algorithm 5 Adaptive Sampling Rate Algorithm Based on
Euclidean Distance.

Require: round r=2 periods, two sets of measures collected
in r: M ′i and M ′j , R, Smax (maximum sampling speed), td.

Ensure: St (instantaneous sampling speed).
- Replace lines 7-13 in Algorithm 2 with

1) Ed ← Euclidean Distance(M ′i , M
′
j)

2) if Ed ≤ td then
St ← Behavior(Ed, td, R, Smax)

3) else
St ← Smax

4) end if

VIII. PERFORMANCE EVALUATION

To show the effectiveness of our proposal both simulations
and real experimentations were conducted. The obtained re-
sults are compared to recent data reduction and data compres-
sion existing techniques.

A. Simulations Results
In this section we present a set of tests conducted on

multiple series of simulations using a custom Java simulator.
Our simulations used the real world data set provided by the
Intel Berkeley Research Lab [27]. In this dataset, every 31
seconds, 54 Mica2Dot sensors with weather boards collect
humidity, temperature, light, and voltage values.

In the remainder and for the sake of simplicity we are only
interested in the humidity2 field. We assume that all nodes send
their data to a common cluster-head (CH) placed at the center
of the Lab. The objective of these simulations is to compare,
first, the three proposed methods for adapting the sampling
rate of the sensors under different parameters values. Second,
the effectiveness of these methods is tested and compared to
a data reduction technique proposed recently, (PFF) technique
in [5] and a data compression technique (S-LEC) proposed in
[10]. Table II shows the parameters used in the simulations.

Parameter Description Value

ε Similar function threshold 0.03, 0.05, 0.07
T number of measures taken during one period 50, 100, 200

Smax maximum sensor sampling rate 20, 40, 80
r round 2 periods
R application criticality level 0.3, 0.9
tJ Jaccard similarity threshold 0.75
td distance threshold 0.35, 0.4, 0.45, 0.5
α false-rejection probability in Anova model 0.05

TABLE II
SIMULATION ENVIRONMENT.

1) Number of transmitted Measures: In this section, we
show how our proposal is efficient in reducing the size of
data collected and transmitted in the network. Fig. 2 shows
the number of measures sent by each sensor after applying
Similar function over the collected measures, and using one
of the three adapting methods. The results in function of td,
ε and T are depicted in Fig. 2( a, b, and c, respectively),
where R is fixed to 0.3. Then, in Fig. 2(d, e, and f), R is
changed to 0.9 (high application risk) with the same values of
parameters as in Fig. 2( a, b, and c). The obtained results show
that the proposed methods can reduce at least 17% and 31%
the measures sent to the CH, compared to PFF and S-LEC
methods. Therefore, these techniques can successfully elimi-
nate redundant collected measures and reduces the amount of
data sent to the CH. We can also notice that Bartlett test is the
best method in terms of minimizing the amount of the data
sent. It can reduce up to 30%, 32%, 50%, and 69% of sent
measures compared to Euclidean distance, Jaccard function,
PFF, and S-LEC, respectively. The reason is that the Bartlett
test searches for the means and variance inter and intra the data
sets while the other methods calculate the differences between
the sets.

2the other fields can be processed in the same manner.
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(e) R = 0.9, T = 100, td = 0.4
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(f) R = 0.9, ε = 0.05, td = 0.4

Fig. 2. Number of measures sent by each sensor node.

Based on these results (Fig. 2) we can notice that:

• The sensor node sends less number of measures to the
CH when td increases (Fig. 2(a or d)). This is because,
the dissimilarity beween the data sets is more allowed
when td increases.

• The number of the sent measures decreases, in the three
proposed methods, when ε increases (Fig. 2(b or e))
or T decreases (Fig. 2(c or f)). According to Similar
function, the collected data will be more redundant, in
each period and among the successive periods, when ε
or T increases. Furthermore, the three proposed methods
give much better results, compared to PFF and S-LEC,
in terms of minimizing measures sent to the CH when ε
or T decreases.

• The three proposed adaptive methods increase the amount
of the sensed data when R increases. This supports our
objective of sending more data in applications with high
risk level.

2) Lifetime Estimation: In this section, our objective is to
show the effectiveness of our approach in terms of maximiz-
ing the lifetime of the sensor node. We assume that each
sensor has an energy level fixed to 40mJ . To evaluate the
energy consumption of our approach we used the same radio
model as discussed in [27]. In this model, a radio dissipates
Eelec = 50nJ/bit to run the transmitter or receiver circuitry
and βamp = 100pJ/bit/m2 for the transmitter amplifier. The
equation used to calculate transmission costs for an m-bits

message and for a distance d, e.g. distance between the sensor
and its CH, is shown as follows:

ETX(m, d) = Eelec ∗m+ βamp ∗m ∗ d2. (9)

To collect a measure constituted of m-bits a sensor
needs [28]:

ECX(m, d) = ETX(m, d)/7. (10)

Fig. 3 shows the lifetime of a sensor node in terms of the
number of periods when varying td, R, T , and ε. Indeed, we
can find many definitions of the network lifetime in the liter-
ature [29]. The most frequently used is that consider that the
network dead when the first node fails [29]. Therefore, in this
work, we define the network lifetime as the time until the first
sensor node in the network runs out of energy. The obtained
results show that, our adaptive methods can improve, when
R = 0.3, the lifetime of the sensor up to 78% and 200% using
Euclidean distance, up to 135% and 272% using Bartlett test,
and up to 67% and 193% using Jaccard function, compared
to the lifetime of the sensor when using the PFF technique
and S-LEC, respectively. Otherwise, e.g. when R = 0.9, the
sensor node can extend its lifetime, using Euclidean distance,
Bartlett test, and Jaccard function, up to 72%, 100%, and
56% compared to PFF and up to 185%, 230%, and 182%
compared to S-LEC. These results are obtained due to the
fact that our methods have minimized significantly the energy
consumption during the collection/transmission of data (see
results of Fig. 2). Therefore, our methods can be effectively
used to increase the sensor network lifetime for both high and
low risk level applications, while still keeping the quality of
the collected data high.

B. Real-world experimental results

In this section, we describe the experiments conducted on
real sensors deployed in our laboratory in order to evaluate
our adapting sampling sensor methods. The hardware platform
used for data collection was Crossbow telosB motes. Five
motes were deployed geographically close in order to monitor
temperature and humidity data for four successive days. In
the first two days, motes were placed inside the laboratory.
They were then placed outdoor during the last two days in
order to vary the monitored condition. Data collected by the
motes were sent to a specified sink node called SG1000 [30]
placed in the center room near about 10 meters from the
sensors. The period size is set to 50 measures where each
mote takes a new measure of temperature and humidity every
30 seconds, (p = 25 minutes). However, due to the limited
bandwidth telosB mote, data collected for temperature and
humidity fields were sent in two separated packets at the end of
each period, after applying our methods. The SG1000 gateway
assigned the ID 0 represents the sink node. The three proposed
methods (Euclidean distance, Bartlett test, Jaccard function)
are implemented on motes with IDs 1, 2, and 3, respectively.
Whilst, the naive approach and S-LEC data compression are
implemented on motes with ids 4 and 5. Finally, we fixed
the parameters to the following values: td = 0.4, R = 0.3,
α = 0.05, tJ = 0.75, and r = 2.
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Fig. 3. Lifetime of a sensor node.

1) Sampling Rate Adaptation: The main goal of this section
is to show how our methods were able to adapt the sampling
rate of the three deployed motes. Fig. 4 shows the instanta-
neous sampling rate results for the three motes. Based on the
obtained results, we can notice that Euclidean distance, Bartlett
test, and Jaccard function successfully adapt the sampling rate
of both temperature and humidity sensors in each mote dy-
namically after each round. Results also confirm the reduction
of the amount of collected data compared to the mote with
ID=4 operating on Smax = 50 all time. We can also observe
that: 1) the sampling rates of temperature and humidity vary
differently over time and the collected humidity measures are
are more numerous than the temperature measures. This means
that humidity condition has varied rapidly compared to the
temperature condition. 2) the mote with ID=2 has adapted its
sampling rate more than the other motes. This is due to the
flexibility of the variance condition calculated in Bartlett test
compared to distance and similarity conditions calculated in
motes ID=1 and ID=3.

2) Number of Measures Received at the Sink: In this
section, we show the number of temperature and humidity
measures sent by each mote by applying our methods, naı̈ve,
and S-LEC (Fig. 5). The obtained results show that the mote
ID 2 with Bartlett test sent the minimum number of measures
compared to other motes. Subsequently, the motes IDs 1, 2,
and 3 have respectively reduced 27%, 44%, and 25% the
temperature measures and 20%, 38%, and 16% the humidity
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Fig. 4. Sampling rate adaptation.

measures sent to SG1000 gateway, compared to the S-LEC
method implemented on mote ID 5. On the other hand, S-
LEC method can reduce 56% of temperature measures and
24% of humidity measures sent to the sink compared to
naı̈ve approach. Furthermore, after comparing the humidity
results obtained in Fig. 5 to those obtained in Fig. 2, we can
observe that: 1) Bartlett test is the best method in terms of
minimizing data collection followed by Euclidean distance and
Jaccard function methods, respectively. This confirms the good
behavior of our methods in both simulations and experiments
environments. 2) Humidity data collected were more reduced
using our methods in the simulations environment (Euclidean:
77%, Bartlett: 83%, Jaccard: 76%), compared to naı̈ve method.
This means that the humidity condition in Intel Lab varies
slower than that in our laboratory.
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Fig. 5. Total number of measures received at the sink node.

3) Energy Consumption in each Sensor: In this section,
we evaluate the performance of our methods in terms of
energy consumption in the five motes. There is no model in
nesC programming provided by tinyOS in order to measure
the energy consumed in telosB [31]. In our experiments, the
energy consumption is calculated based on the radio model
proposed in [27] as the most used model to evaluate the
energy consumption in WSNs. In such model, the energy
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consumption in each mote is defined as the total energy
dissipation during the collection and the transmission of data.
Fig. 6 shows the energy consumption in each mote after four
days of deployment, and compares our methods to the naı̈ve
approach. Since our adaptive approach reduces the amount
of collected/transmitted data in the motes (Fig. 5), energy
consumption will be also reduced. These results are shown
clearly in Fig. 6 where our methods conserved the energy of
the motes IDs 1, 2, and 3 by 29%, 47%, and 25%, respectively,
compared to energy consumed in the fifth mote with S-LEC
method.
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Fig. 6. Energy consumed in each sensor.

4) Data Accuracy: An important factor in WSNs is data
accuracy which represents the measure ”loss rate”. In our
experiments, we evaluated the data accuracy by searching
periodically the lost measures after adapting the sampling rate
of each mote based on our methods. A measure is considered
as a lost one if it is captured by the mote ID 4, i.e. naı̈ve
method, during a period p and is not collected (similar values)
by the other motes in the same period. Then, the global
data loss is calculated at the end of the experimentations by
considering the number of lost measures in each mote over the
number of measures collected by the naı̈ve mote, i.e. mote ID
equal to 4. Fig. 7 shows the results of data accuracy for the
motes implemented based on our methods and S-LEC. We
observe that Jaccard function gives the best results for data
accuracy, 3.2% in the worst case, compared to the Euclidean
distance (up to 4.6%), Bartlett test (up to 7%), and S-LEC
(up to 6.4%). The reason for this is that the Jaccard function
is a strong constraint regarding the loss measures compared
to distance and variance constraints which are more flexible.
Such amounts of loss data are negligible compared to the
amount sent to the sink thus, the amount of loss data does
not affect the user decision making based on the received
data. Therefore we can consider that our methods decrease
the amount of collected data forwarded to the sink while
conserving the integrity of the information.

C. Further Discussion

In this section, we give further consideration to our proposed
methods. We give some directions as to which method should
be chosen, under which conditions and in which circumstances
of the application.

From the energy preserving point of view, the three pro-
posed methods significantly reduce the energy consumption
in sensor node and extends its lifetime (Figs. 3 and 6). In
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addition, we observe that the method based on Bartlett test
conserves more energy compared to the methods based on
Euclidean distance and Jaccard function. Therefore, in the
applications where we need to conserve the energy of the
network as long as possible, the Bartlett test method is more
suitable.

From the data accuracy point of view, the method based on
the Jaccard function and S-LEC can save the integrity of the
collected data more than those in other methods. Whilst, the
Bartlett test gives the worst results in terms of data accuracy.
Hence, if the application does not permit flexibility regarding
data accuracy, the Jaccard function method and S-LEC are
more suitable; else, Euclidean distance method can be used
as a compromise between energy saving and data accuracy
flexibility.

IX. CONCLUSION

This paper proposed three different adaptive sampling rate
techniques for IWSNs, which can dynamically estimate the
sampling frequency of the collected data. The first one uses
the analysis of data variances via statistical tests to adapt
the sampling rate, while the second one is based on the
sets of similarity functions, and the third one on the dis-
tance functions. These techniques were originally conceived
to reduce the energy consumption and the data transmissions
of sensor networks for process-monitoring applications. We
showed via both simulations and real experiments on telosB
motes that our approach can be effectively used to increase
the sensor network lifetime, while preserving the quality of
service expected by the application.

As a future work, we have two major directions. In the
first one, we seek to adapt our proposed approach to take into
account the correlation between neighboring nodes. As the
sensor nodes send their data at the same time (at the end of
each period), collisions between packets are likely to happen
repeatedly. Then it is essential for sensor nodes to be able
to detect this repeated collision and introduce a phase shift
between the two transmission sequences in order to avoid
further collisions. In the second direction, we plan to allow
our approach to adjust the sampling rate on the basis of the
available energy beside the redundancies between measures
collected in different periods.
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