
1

Shortest Path Planning for Energy-Constrained
Mobile Platforms Navigating on Uneven Terrains

Nuwan Ganganath, Chi-Tsun Cheng, Tyrone Fernando, Herbert H. C. Iu, and and Chi K. Tse

Abstract—Finding a shortest feasible path between two given
locations is a common problem in many real-world applications.
Previous studies have shown that mobile platforms would con-
sume excessive energy when moving along shortest paths on
uneven terrains which often consist of rapid elevation changes.
Mobile platforms powered by portable energy sources may
fail to follow such paths due to the limited energy available.
This paper proposes a new heuristic search algorithm called
Constraints Satisfying A* (CSA*) to find solutions to such resource
constrained shortest path problems. When CSA* is guided by
admissible heuristics, it guarantees to find a globally optimal
solution to a given constrained search problem if such a solution
exists. When CSA* is guided by consistent heuristics, it is
optimally efficient over a class of equally informed admissible
constrained search algorithms with respect to the set of paths
expanded. Test results obtained using real terrain data verify the
applicability of the proposed algorithm in shortest path planning
for energy-constrained mobile platforms on uneven terrains.

Index Terms—CSA*, multiple resource constraints, shortest
paths, heuristic search, outdoor navigation.

I. INTRODUCTION

PATH planning is a process of finding a desired path from
a set of possible paths between two given locations such

that some predefined requirements are satisfied. It has been
a topic of interest for many decades with an early focus on
finding least cost paths between nodes in weighted graphs [1]–
[3]. Recently, path panning in outdoor environments has drawn
a significant attention with the emergence of autonomous cars
[4]–[6], mobile sensor networks [7]–[9], and planetary rovers
[10], [11]. Outdoor environments often consist of uneven
terrains on which some paths are not physically feasible for
mobile platforms due to their instability on steep slops and
motion power limitations [12]–[14]. Many existing outdoor
path planning algorithms focus either on finding shortest paths
[15]–[17] or energy-optimal paths [18]–[23].

This work is supported by the Hong Kong PhD Fellowship Scheme,
the Endeavour Research Fellowship from the Australian Government, and
the Department of Electronic and Information Engineering, the Hong Kong
Polytechnic University (Project G-YBXK).

Copyright c© 2018 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

N. Ganganath, T. Fernando, and H.H.C. Iu are with the School of
Electrical, Electronic and Computer Engineering, the University of West-
ern Australia, Crawley, WA, Australia (email: nuwan@ganganath.lk; ty-
rone.fernando@uwa.edu.au; herbert.iu@uwa.edu.au).

C.-T. Cheng and Chi K. Tse are with the Dept. of Electronic and In-
formation Engineering, the Hong Kong Polytechnic University, Hung Hom,
Koloown, Hong Kong (email: ctcheng@ieee.org; michael.tse@polyu.edu.hk).

A part of this work was conducted when N. Ganganath was with the
Dept. of Electronic and Information Engineering, the Hong Kong Polytechnic
University, Hung Hom, Koloown, Hong Kong.

A. Background

Anisotropic friction and gravity effects have to be addressed
when planning paths on uneven terrains. A physical model
which can be used to calculate energy-cost of mobile platforms
navigating under such external forces was proposed in [19].
The proposed model has also considered impermissible traver-
sal headings due to power limitations and overturn dangers. An
A* search algorithm [2] together with the energy-cost model
and polyhedral terrain models have been used to find energy-
efficient paths on uneven terrains. This energy-cost model has
later been used for finding near-optimal energy paths on the
surface of a vertical-axis ideal cone with anisotropic friction
and gravity effects [20]. It has been shown that cone surface
patches result in better terrain models and near-optimal paths
obtained on such models are not much more complex than
those on polyhedral terrain models. A terrain face weight
concept was introduced in [15] to find shortest anisotropic
paths on uneven terrains. Face weights capture some location
based parameters of the terrain such as friction and slope. A
polynomial time approximation algorithm was also proposed
in [15] for finding shortest anisotropic paths.

Increased use of battery-powered mobile platforms has
stimulated further research in energy-efficient path planning
problems. In [23], energy-efficient path planning on steep
terrains where mobile platforms can only move downhill
has been considered. Lower- and upper-bound results on the
combinatorial size of optimal paths and an approximation
algorithm for finding energy-efficient paths are proposed in
the same paper. Recently, a heuristic search algorithm called
Z* was proposed for finding energy-efficient paths on uneven
terrains [18]. It uses a heuristic function which can estimate
heuristic energy-cost on uneven terrains using zigzag-like path
patterns. It has been proven that Z* is capable of finding
energy-optimal paths on a given terrain if such paths exist.
Some other research focus on energy-efficient and shortest
path replanning in dynamic and unknown outdoor environ-
ments [12], [16], [17], [22].

On uneven terrains, shortest paths are not always energy-
efficient for mobile platforms as they have to often deal
with rapid elevation changes. On the other hand, energy-
optimal paths can be considerably longer than the shortest
paths as they tend to follow equipotential curves, thus, result
in extended journey times. Multiobjective search algorithms
have been adapted in recent research [24] to avoid this trade-
off between shortest and energy-optimal paths by finding a
set of all nondominated paths between two given locations
on uneven terrains. Finding such a set of paths, however,

The following publication Ganganath, N., Cheng, C. T., Fernando, T., Iu, H., & Chi, K. T. (2018). Shortest Path Planning for Energy-Constrained
Mobile Platforms Navigating on Uneven Terrains. IEEE Transactions on Industrial Informatics, 14(9), 4264-4272 is available at
https://dx.doi.org/10.1109/TII.2018.284437

This is the Pre-Published Version.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

2

is computationally expensive. Therefore, it is essential to in-
troduce more computationally efficient algorithms for finding
shortest feasible paths for energy-constrained mobile platforms
operating in outdoor environments.

In this work, the problem of finding energy-constrained
shortest paths is considered as a resource constrained shortest
path problem. It is a combinatorial optimization problem
which can be defined on a digraph where a feasible optimal
path between two given nodes need to be identified subjected
to some given constraints. A graph search algorithm is admis-
sible if it guarantees to find an optimal solution for any given
problem if such a solution exists [3]. The focus of this paper
is on finding such an admissible search algorithm.

B. Contributions and Organization of the Paper

This paper proposes an A*-like heuristic search algorithm,
called Constraints Satisfying A* (CSA*), to find an optimal
solution to a given constrained search problem using a best-
first search strategy. The nature of heuristics and the number
of constraints govern the behavior of the search process of
CSA* as well as the properties of its search results. Theoretical
analyses are provided on the admissibility and efficiency of
the proposed CSA*. It has been shown that CSA* finds
an optimal solution subjected to multiple constraints when
its search is guided by admissible heuristics. The search
procedure of CSA* avoids unnecessary operations by per-
forming a goal directed search. The computational efficiency
of search algorithms that operate on graphs with multiple
edge costs (edge cost vectors) are justified based on the
number of path expansions triggered [25]. When guided by
consistent heuristics, CSA* is proven to be optimally efficient
over other equally informed admissible constrained search
algorithms which use path selection and expansion as their
basic operations. Test results obtained on sections of Matheny
ridge and Anderson canyon verify the applicability of CSA* in
shortest path planning for energy-constrained mobile platforms
on uneven terrains.

The rest of the paper is organized as follows. Some pre-
liminaries and the problem definition are respectively given
in Sections II and III. The proposed CSA* algorithm is
introduced and illustrated with a worked example in Section
IV. Test results obtained using real terrain data are discussed
in Section V. Basic properties of CSA*, including its strengths
and limitations, are discussed in Section VI. Conclusions are
given in Section VII. Finally, rigorous theoretical analyses on
both the admissibility and efficiency of CSA* are provided in
appendices.

II. PRELIMINARIES

A. Dominance

Dominance can be identified as a partial order preference
relation that is used in multiobjective problems [25]. For two
real vectors ~a = [a0, a1, . . . , am] and ~b = [b0, b1, . . . , bm], the
relationship ~a dominates ~b is denoted by ~a ≺ ~b and defined as

~a ≺ ~b ⇔ ∀i ∈ [0,m] | ai ≤ bi ∧ ~a 6= ~b.

A weaker version of the above relationship, ~a dominates or
equals ~b, can be denoted by ~a � ~b and defined as

~a � ~b ⇔ ∀i ∈ [0,m] | ai ≤ bi.

A violation of the later relationship can be denoted by ~a � ~b
and defined as

~a � ~b ⇔ ∃i ∈ [0,m] | ai > bi.

For example, let ~x = [1, 5], ~y = [2, 3], and ~z = [4, 5]. Then
following relationships hold: ~x ≺ ~z, ~x � ~z, ~y ≺ ~z, ~y � ~z,
~y � ~x, and ~x � ~y.

B. Paths and Path Costs

Consider a finite digraph G = {N , E} that consists of |N |
number of nodes and |E| number of edges. A search algorithm
operating on G has to take only a finite number of decisions in
each step. Let ~c(n, n′) = [c0(n, n′), c1(n, n′), . . . , cm(n, n′)]
be a non-negative cost vector which associates with every
ordered pair of nodes (n, n′) ∈ E . A traversal between two
nodes results in (m+ 1) distinct costs.

Let node nk be accessible from node ni. A path going from
ni to nk is denoted by λnink

, which is a sequence of nodes
in N such that (nj , nj+1) ∈ E for all i ≤ j < k. A set
of all such paths from ni to nk is denoted by Λnink

, thus,
λnink

∈ Λnink
. The cost vector of λnink

can be calculated as

~c(λnink
) =

k−1∑
j=i

~c(nj , nj+1).

A scalar quantity kl(ni, nk) can be defined as

kl(ni, nk) = min
λnink

∈Λnink

cl(λnink
), 0 ≤ l ≤ m.

We have ~k(ni, nk) = [k0(ni, nk), k1(ni, nk), . . . , km(ni, nk)],
by convention.

In this work, we are mainly interested in paths that start
from a given source node s. Hence, a path that starts from the
node s and terminates at a node n is denoted by λn = 〈n0 ≡
s, n1, n2, . . . , ni, . . . , nk ≡ n〉 for notational convenience.
Any subpath of λn that starts from s and ends at ni is denoted
by λni/n = 〈s, n1, n2, . . . , ni〉.

III. PROBLEM DEFINITION

This paper considers the problem of finding energy-
constrained shortest paths as a resource constrained shortest
path problem. Let us first consider a general resource con-
strained shortest path problem as a constrained search problem
with m hard constraints. Given a locally finite digraph G
and a vector of hard constraints [ψ1, ψ2, . . . , ψm] ∈ Rm, a
constrained search problem is to find a minimum c0 cost path
λ∗t from s to t, i.e.

λ∗t = argmin
λt∈Λt

c0(λt), (1)

subjected to

cl(λ
∗
t) ≤ ψl, 1 ≤ l ≤ m. (2)

The cost vector of λ∗t can be denoted as ~c(λ∗t).

3

Let a vector ~ψ = [∞, ψ1, . . . , ψm]. Then the constraints
in (2) can be rewritten as ~c(λ∗t) � ~ψ and violation of at
least one of them can be denoted as ~c(λ∗t) � ~ψ. Let a
scalar c∗0 = c0(λ∗t). Then we can define another vector ~ψ∗ =
[c∗0, ψ1, . . . , ψm] such that ~a ∈ Rm+1, ~a � ~ψ∗ ⇒ ~a � ~ψ.
Now, we can redefine the above constrained search problem
as finding a minimum c0 cost path λ∗t subjected to ~c(λ∗t) � ~ψ∗.

IV. CSA* SEARCH ALGORITHM

Some requirements should be taken into account when
designing a constrained search algorithm. Instead of scalar
edge costs, the algorithm should be able to deal with vector
edge costs. Moreover, the algorithm should be able to operate
under more than one constraints, and when under multiple
constraints, the algorithm should minimize the primary path
cost without violating other constraints. One possible approach
is to explore a digraph G uniformly using a uniform-cost
search and try to minimize the primary path cost g0. The
node expansion process can be similar to that in Dijkstra’s
algorithm, while path cost vectors ~g can be obtained on-the-
fly. Branches that have violated one or more constraints can be
eliminated. Note that a path between s and n associated with
the minimum g0 value could have violated several constraints,
thus it is regarded as infeasible. Meanwhile, there can be an
alternative path that can fulfill all the constraints but with
a higher g0. To locate these feasible paths, the search will
need to go back and explore options that were regarded as
less desirable before. Such action can be time consuming and
cause serious impacts to the performances of a path planning
algorithm. A desirable constrained path planning algorithm
should be able to look ahead for constraints violations and
prune unpromising branches early. Nevertheless, without being
guided by heuristics, the path planning algorithm cannot ne-
glect any available options until such branch has encountered
a violation and needed to be pruned.

A. Operations of CSA*

In the proposed CSA* algorithm, path selection and ex-
pansion operations are used to avoid going back and re-
expand optional branches which is a time-consuming pro-
cess. Furthermore, intermediate search results are stored in
a directed acyclic graph, namely a search graph [25] to
ease the comparisons among paths with different properties.
To reach a point t on the map, the expected cost for the
corresponding complete path via expanding an intermediate
path λn is denoted as

~f(λn) = [f0(λn), f1(λn), . . . , fm(λn)] = ~g(λn)+~h(n). (3)

The corresponding cost vector of the intermediate path λn is
expressed as ~g(λn) = [g0(λn), g1(λn), . . . , gm(λn)], where

gl(λn) = cl(λn), 0 ≤ l ≤ m.

Here, g0 is the primary cost and gl (1 ≤ l ≤ m)
are representing the m constrained costs. In (3), ~h(n) =
[h0(n), h1(n), . . . , hm(n)] is a vector of the heuristic costs,
where h0 and hl (1 ≤ l ≤ m) respectively denote the primary
and the constrained heuristic cost estimations from n to t.

Algorithm 1: CSA* search algorithm

Step 1: If ~h(s) � ~ψ, then exit with failure.
Step 2: Record ξ(λs) = {s,~0,~h(s),NULL} on OPEN.
Step 3: If OPEN is empty, then exit with failure.
Step 4: Remove ξ(λni

) = {ni, ~g(λni
), ~f(λni

), p(λni
)} from

OPEN whose f0 cost is minimum and record it on
CLOSED. If there exsit more than one such entries,
select an entry among them such that its ~f dominates
or equals others. Select a path arbitarary if they
are nondominated to each other, but favor any path
terminating at t.

Step 5: If ni is the target node, i.e. ni = t, then exit with the
path obtained by tracing back pointers from p(λt) to
NULL.

Step 6: Otherwise, for each successor ni+1 of ni that do not
produces cycles in the search graph:
a) Calculate ~g(λni+1

) and ~f(λni+1
).

b) If ~f(λni+1) � ~ψ, then prune λni+1 and go to Step
6a.

c) If there exists a path λ′ni+1
on OPEN or CLOSED

such that ~f(λ′ni+1
) � ~f(λni+1

), then prune λni+1

and go to Step 6a.
d) If λni+1 dominates any paths from s to ni+1

which are already on OPEN, prune all such paths
and remove corresponding entries from OPEN.

e) Set p(λni+1
) = λni

and record ξ(λni+1
) =

{ni+1, ~g(λni+1
), ~f(λni+1

), p(λni+1
)} on OPEN.

Step 7: Go to Step 3.

The proposed algorithm makes better expanding decisions by
avoiding branches that is certainly not a part of the optimal
path and not giving up any subpaths that have potentials to
be included in the optimal path. While the ideas follow the
basic principles of A*, it is a nontrivial task to make the above
decisions as the process involves multiple cost estimations and
continuously checking for constraint violations.

Like ordinary A* and its successors, the proposed algorithm
records path information using CLOSED and OPEN lists.
However, their purposes are redefined. For paths that their
costs have been calculated but are not yet expanded, they are
stored in OPEN. In contrast, paths that have been expanded
and will not be expanded again are stored in CLOSED.
Therefore, for all the paths stored in OPEN, their subpaths
that originated from s should have been expanded and stored
in CLOSED. To store a path λni

= 〈s, n1, n2, . . . , ni−1, ni〉 in
these lists, its information is retained as a four element entry:
the ending node ni, two cost vectors ~g(λni) and ~f(λni), and a
pointer to its preceding path p(λni). Such an entry is denoted
as

ξ(λni) = {ni, ~g(λni),
~f(λni), p(λni)},

where p(λni) = λni−1 .
Algorithm 1 provides a summary of the proposed algorithm.

CSA* initializes with the calculation of the heuristic cost
vector ~h(s). Since all paths originate from s, ~g(λs) = 0 and

4

therefore, according to (3), ~f(λs) = ~h(s). At this point, any
path starting from s is expected to violate at least one of the
constraints if ~h(s) � ~ψ. On the other hand, if no violations
are expected, i.e. ~h(s) � ~ψ in Step 2, ξ(λs) is then stored
in OPEN. Note that as λs has no preceding path segment, its
pointer p(λs) = NULL. This completes the initialization of the
proposed CSA*. Steps 3-7 of the proposed algorithm are then
executed iteratively until an optimal solution is found (Step
5). If a feasible solution does not exist, it terminates without
a solution (Step 3).

The path selection mechanism in CSA* is very different
from that of NAMOA* as it selects an entry ξ(λni

) on OPEN
list that has the minimum f0 cost among all other entries on
OPEN (Step 4). This path selection procedure is comparable
to the node selection procedure in A*.

Path expansion procedure of CSA* is summarized in Step
6. For each successor ni+1 of ni, CSA* calculates costs of
extending path λni to ni+1 as

~g(λni+1
) = ~g(λni

) + ~c(n, ni+1),

~f(λni+1
) = ~g(λni+1

) + ~h(ni+1),

in Step 6a. If ~f(λni+1) � ~ψ, i.e. any constraints are expected
to be violated by the extended path λni+1 , it is pruned and
returns to ni in Step 6b to evaluate its next successor. The
early termination of CSA* given in Step 1 is a special
case of path pruning given in Step 6b. The computational
efficiency of CSA* can be considerably improved without
compromising its admissibility by path pruning with accurate
heuristic estimations. Like other heuristic search algorithms,
the performances of the proposed CSA* depend on the accu-
racy of its heuristic cost estimations. The path λni+1

can be
considered as a subpath of a potential optimal path leading
to t if ~f(λni+1) � ~ψ. CSA* sets p(λni+1) = λni and stores
ξ(λni+1) in OPEN to be expanded later (Step 6e) if λni+1 is
the only path discovered to ni+1 so far. Nevertheless, storing
ξ(λni+1

) in OPEN might be skipped if CSA* has already
discovered another path leading to ni+1. CSA* checks whether
λni+1

is dominated by λ′ni+1
if it finds a path λ′ni+1

on either
OPEN or CLOSED.

Definition 1: A path λn is said to be dominated if

∃λ′n ∈ Λn | ~f(λ′n) ≺ ~f(λn). (4)

On the contrary, λn is said to be nondominated if

@λ′n ∈ Λn | ~f(λ′n) ≺ ~f(λn). (5)

CSA* prunes λni+1
and returns to ni to evaluate its next

successor if it finds any path λ′ni+1
that dominates or equals

λni+1 , i.e. ~f(λ′ni+1
) � ~f(λni+1) (Step 6c). On the other hand,

CSA* prunes all such dominated paths if CSA* finds any path
that is already on OPEN and dominated by λni+1

(Step 6d).
Moreover, CSA* sets p(λni+1

) = λni
and stores ξ(λni+1

) in
OPEN (Step 6e).

B. An Illustrative Case Study

An illustrative case study is provided in this subsection
to ease the elaboration of the proposed CSA* algorithm. It

n1

s n2

n3 n5

n4

t

n ~h(n)

s [6, 5, 7]

n1 [5, 4, 7]

n2 [3, 2, 6]

n3 [4, 2, 7]

n4 [2, 2, 4]

n5 [1, 0, 2]

t [0, 0, 0]

(ni, nj) ~c(ni, nj)

(s, n1) [1, 2, 1]

(s, n2) [3, 3, 2]

(s, n3) [2, 3, 1]

(n1, n4) [3, 2, 3]

(n2, n1) [4, 2, 3]

(n2, n3) [3, 2, 4]

(n2, n4) [4, 0, 3]

(n2, n5) [3, 5, 3]

(n3, n2) [0, 2, 3]

(n3, n5) [4, 4, 4]

(n4, n5) [2, 1, 1]

(n4, t) [3, 5, 5]

(n5, t) [2, 2, 4]

(t, n4) [3, 2, 1]

Fig. 1. A diagraph (at top left) with its edge cost vectors (at right) and
heuristic cost vectors (at bottom left).

is based on an arbitrary digraph G shown in Fig. 1, which
G comprises 7 nodes and 14 edges connecting them. The
corresponding edge cost vectors (~c) and heuristic cost vectors
(~h) are shown in the same figure. The cost associated with a
path λt between a source node s and a target node t is having a
cost vector ~g(λt) = [g0(λt), g1(λt), g2(λt)]. If the constrained
optimization problem is relaxed into its unconstrained version
(i.e. minimizing g0 solely), it renders λt = 〈s, n1, n4, t〉 to be a
feasible solution with its ~g(λt) = [7, 9, 9]. If constraints g1 ≤ 8
and g2 ≤ 9 are imposed, i.e. ψ = [∞, 8, 9], the previous
solution is not feasible as the first constraint is violated.

The following procedural execution of the proposed CSA*
illustrates how an optimal solution is obtained under some
given constraints. The step-wise evolution of a search graph
and the changes in OPEN and CLOSED lists are given in
TABLE I. In Step 1, the proposed algorithm begins with
the evaluation of ~h(s). As ~h(s) � ψ, in Step 2, ξ(λs) =
{s, [0, 0, 0], [6, 5, 7],NULL} is stored as the first entry in OPEN
where λs = 〈s〉. Starting from Step 3, the proposed CSA*
proceeds to find the optimal solution iteratively.

In the first iteration, CSA* removes ξ(λs) from OPEN and
stored it in CLOSED (Step 4). As s 6= t in this case study,
successors of s, i.e. n1,n2, and n3, are generated in Step 6.
Here, we denote paths λn1

= 〈s, n1〉, λ′′n3
= 〈s, n3〉, and

λ′n2
= 〈s, n2〉 accordingly. Their corresponding cost vectors

are therefore obtained in Step 6a as follows.

~f(λni+1
) = (~g(λni

) + ~c(ni, ni+1)) + ~h(ni+1),

~f(λn1) = ([0, 0, 0] + [1, 2, 1]) + [5, 4, 7] = [6, 6, 8],

~f(λ′′n3
) = ([0, 0, 0] + [2, 3, 1]) + [4, 2, 7] = [6, 5, 8],

~f(λ′n2
) = ([0, 0, 0] + [3, 3, 2]) + [3, 2, 6] = [6, 5, 8].

At the moment, OPEN is empty and none of the cost vectors
violates any of the constraints, thus all three paths do not need
to undergo any pruning. Consequently, in Step 6e, OPEN is
appended with predecessors ξ(λn1

), ξ(λ′n2
), and ξ(λ′′n3

). As

5

TABLE I
ILLUSTRATIONS OF THE SEARCH GRAPH AND OPEN AND CLOSED LISTS

AFTER EACH ITERATION.

Itera. Search graph OPEN CLOSED

s0 ξ(λs)

n1

s n2

n3

1 ξ(λ′′n3
) ξ(λs)

ξ(λ′n2
)

ξ(λn1
)

n1

s n2

n3 n5

2 ξ(λ′n2
) ξ(λs)

ξ(λn1) ξ(λ′′n3
)

ξ(λ′′n5
)

n1

s n2

n3 n5

n43 ξ(λn1
) ξ(λs)

ξ(λ′′n5
) ξ(λ′′n3

)

ξ(λ′n4
) ξ(λ′n2

)

n1

s n2

n3 n5

n44 ξ(λn4
) ξ(λs)

ξ(λ′′n5
) ξ(λ′′n3

)

ξ(λ′n4
) ξ(λ′n2

)

ξ(λn1)

n1

s n2

n3 n5

n45 ξ(λn5
) ξ(λs)

ξ(λ′n4
) ξ(λ′′n3

)

ξ(λ′n2
)

ξ(λn1)

ξ(λn4
)

n1

s n2

n3 n5

n4

t

6 ξ(λt) ξ(λs)

ξ(λ′n4
) ξ(λ′n3

)

ξ(λn1
)

ξ(λn4)

ξ(λn5)

shown in TABLE I, the search graph is expended with 3 extra
nodes by the end of the first iteration. The predecessor of a
node is indicated by the arrowhead.

At the beginning of the next iteration, all entries on OPEN
are having their f0 costs equal 6. As a result, in Step 4,
the proposed algorithm will prefer entries with non-dominated
cost vector ~f over their counterparts. Certainly, both ξ(λ′n2

)
and ξ(λ′′n3

) are desirable candidates due to the fact that
~f(λ′n2

) = ~f(λ′′n3
) ≺ ~f(λn1

). Arbitrarily, suppose ξ(λ′′n3
) is

chosen to be expended over ξ(λ′n2
). Then ξ(λ′′n3

) is removed
from OPEN and stored in CLOSED in Step 4. All successors
of n3 are then generated while their cost vectors are obtained
in Step 6a as follows.

~f(λ′′n5
) = ([2, 3, 1] + [4, 4, 4]) + [1, 0, 2] = [7, 7, 7],

~f(λ′′n2
) = ([2, 3, 1] + [0, 2, 3]) + [3, 2, 6] = [5, 7, 10].

In Step 6b, λ′′n2
= 〈s, n3, n2〉 is pruned because ~f(λ′′n2

) � ψ.
So far, λ′′n5

= 〈s, n3, n5〉 is the only path that can satisfy all
constraints and reach n5. Therefore, ξ(λ′′n5

) is stored in OPEN
with p(λ′′n5

) = λ′′n3
.

OPEN holds three entries by the beginning of the third iter-
ation. They are ξ(λ′n2

), ξ(λn1
), and ξ(λ′′n5

), where f0(λ′n2
) =

f0(λn1
) < f0(λ′′n5

) and ~f(λ′n2
) ≺ ~f(λn1

). Therefore, the
entry ξ(λ′n2

) is removed from OPEN and stored in CLOSED
(Step 4). The cost vectors of n2’s successors are calculated as

~f(λ′n3
) = [6, 5, 6] + [4, 2, 7] = [10, 7, 13],

~f(λ′n4
) = [7, 3, 5] + [2, 2, 4] = [9, 5, 9],

~f(λ′n1
) = [7, 5, 5] + [5, 4, 7] = [12, 9, 12],

~f(λ′n5
) = [6, 8, 5] + [1, 0, 2] = [7, 8, 7].

Since both ~f(λ′n1
) and ~f(λ′n3

) violate the constraints, their
corresponding paths λ′n1

= 〈s, n2, n1〉 and λ′n3
= 〈s, n2, n3〉

are pruned in Step 6b. Since ~f(λ′′n5
) ≺ ~f(λ′n5

), CSA* prunes
λ′n5

= 〈s, n2, n5〉 in Step 6c. Lastly, ξ(λ′n4
) is stored in OPEN

in Step 6e as λ′n4
= 〈s, n2, n4〉 is the only remaining path of

which p(λ′n4
) = λ′n2

.
In the following iteration, node n1 is chosen to be expended

in Step 4 due to its smallest f0 among all entries on OPEN.
Afterward, ξ(λn1) is removed from OPEN and stored in
CLOSED. The cost vector of n2’s only successor is obtained
as follow.

~f(λn4) = [4, 4, 4] + [2, 2, 4] = [6, 6, 8].

Note that as λn4 and λ′n4
are non-dominated by each other,

thus ξ(λn4) of which p(λn4) = λn1 , is stored in OPEN. As
shown in Fig. 1, at the moment, n4 can be reached by either
λ′n4

= 〈s, n2, n4〉 or λn4
= 〈s, n1, n4〉. Their cost vectors are

[9, 5, 9] and [6, 6, 8], respectively.
In the fifth iteration, due to the criteria in Step 4, ξ(λn4

) is
removed from OPEN and stored in CLOSED. Cost vectors of
n4’s successors are obtained as follows.

~f(λn5
) = [6, 5, 5] + [1, 0, 2] = [7, 5, 7],

~f(λ′′′t) = [7, 9, 9] + [0, 0, 0] = [7, 9, 9].

Path λ′′′t = 〈s, n1, n4, t〉 is pruned in Step 6b due a constraint
violation. Back in the second iteration, n5 can already be
accessed via λ′′n5

with ~f = [7, 7, 7]. In the current iteration, n5

is also reachable via λn5
= 〈s, n1, n4, n5〉 with ~f = [7, 5, 7].

6

As λn5
≺ λ′′n5

, λ′′n5
is pruned in Step 6d. Subsequently, in

Step 6e, ξ(λ′′n5
) is discarded from OPEN and ξ(λn5) is stored

in OPEN with p(λn5) = λn4 .
The sixth iteration begins with having ξ(λ′n4

) and ξ(λn5)
on OPEN, with their cost vectors equal [9, 5, 9] and [7, 5, 7],
respectively. By comparing their f0 values, ξ(λn5

) is removed
from OPEN and stored in CLOSED in Step 4. The cost vector
of the path λt = 〈s, n1, n4, n5, t〉 is obtained as follow.

~f(λt) = [8, 7, 9] + [0, 0, 0] = [8, 7, 9].

Under any criteria in Step 6, λt cannot be pruned. Therefore,
ξ(λt) is stored in OPEN with p(λt) = λn5

.
At the moment, ξ(λ′n4

) and ξ(λt) are the only entries
remaining in OPEN. In the seventh iteration, ξ(λt) is re-
moved from OPEN and stored in CLOSED because f0(λt) <
f0(λ′n4

). Note that ξ(λt) satisfies the criterion in Step 5,
thus the search process terminates by CAS* reassembling the
optimal path by tracing the pointers from p(λt) to NULL. The
optimal path that satisfies all given constraints is obtained as
λ∗t = 〈s, n1, n4, n5, t〉 of which ~g(λ∗t) = ~f(λ∗t) = [8, 7, 9].

V. ENERGY-CONSTRAINED SHORTEST PATH PLANNING

The proposed CSA* is adopted for energy-constrained
shortest path planning on uneven terrains and, in this section,
its performances are compared with state-of-the-art uneven
terrain path planning algorithms.

A. Test Setup

Two tests, namely Test I and Test II, were conducted using
elevation maps of Matheny ridge and Anderson canyon in
USA. In order to facilitate the path planning process, a selected
elevation map is first transformed into a finite digraph as
proposed in [18]. Distance- and energy-costs associated with
the traversal between two nodes n and n′ are given by

cd(n, n
′) =

{
∞, if φ(n, n′) > φm,

s(n, n′), otherwise,
(6)

and

ce(n, n
′)=


∞, if φ(n, n′) > φm,

mgs(n, n′)(µ cosφ (n, n′)+sinφ(n, n′)),

if φm ≥ φ(n, n′) > φb,

0, otherwise,

(7)

respectively [24]. All tests were conducted using a simulated
model platform whose mass m = 300 kg. It can operate
at a maximum motion power of 1280 W. In (6) and (7),
s(n, n′) is the Euclidean distance between n and n′, φ(n, n′)
is the elevation angle between n and n′, φm is the critical
impermissible angle, and φb is the breaking angle. Interested
readers may refer to the computations of φm and φb given in
[24]. The rest of the parameter values are adopted from [24],
including the friction coefficient µ = 0.01 and the gravitational
field strength g = 9.81 ms−2.

Using (6) and (7), the cost vector associated with nn′ is
defined as

~c(n, n′) = [cd(n, n
′), ce(n, n

′)].

The heuristic cost vector for cost estimation from n to the
target is defined as

~h(n) = [hd(n), he(n)],

where

hd(n) = s(n, t),

and

he(n)=



mg∆(n,t)
sinφm

(µ cosφm+ sinφm),

if φ(n, t) > φm,

mgs(n, t)(µ cosφ (n, t) + sinφ(n, t)),

if φm ≥ φ(n, t) > φb,

0, otherwise.

The consistency of hd(n) and he(n) has been proven in [24].
Finally, a vector of hard constraints is defined as

~ψ = [∞, ψe],

where ψe is the maximum available energy of a mobile
platform. The values of ψe is given in TABLES III and V.

B. Test Results

In Test I, the path planning task was to plan a feasible
shortest path from (210, 310, 310.6) m to (720, 880, 373.5)
m on a section of Matheny ridge. The mobile platform is
set to travel at 0.7 m/s with an additional payload of 75 kg.
According to the results given in TABLE II, the length of the
shortest path planned using Dijkstra’s algorithm is 837.715 m
and the mobile platform consumes 538.053 kJ to traverse it. If
the available energy is less than that, say 450 kJ, such a path
cannot be traversed. On the other hand, the energy-optimal
path obtained using Z* requires only 274.629 kJ. However, it
is nearly 12% longer than the shortest path. NAMOA* based
multiobjective path planner proposed in [24] is capable of
finding all nondominated paths between two given points. All
nondominated paths generated in this test and their cost values
are illustrated in Figs. 2 and 3, respectively. As expected,
two of these nondominated paths coincide with the shortest
and energy-optimal paths. Now it is possible to select the
shortest path that satisfy a given energy constraint out of
these nondominated paths. However, finding all nondominated
paths is computationally expensive, thus, not feasible in time-
critical applications. Here, NAMOA* has expanded 14712
subpaths for finding all nondominated paths. While given a
constraint, the proposed CSA* algorithm can find the shortest
path by expanding a minimum number of subpaths. As an
example given in TABLE III, when the maximum available
energy is 450kJ, CSA* has found a constraint satisfying
shortest path by expanding only 2833 subpaths. Computational
efficiency of search algorithms are measured in terms of
number of expanded subpaths. Thus, finding a constraint
satisfying path using CSA* in this particular case is over 5
times more efficient than using NAMOA*. Notably, when the
energy constraint is relaxed, i.e. ψe = ∞, CSA* finds the
globally shortest path. Under tight energy constraints such as

7

0
200

400
600

800
1000

0

200

400

600

800

1000
300

400

500

x (m)

y (m)

E
le

va
tio

n
(m

)

Start location
Goal location

Fig. 2. All nondominated paths obtained using NAMOA* in Test I.

840 850 860 870 880 890 900 910 920 930
250

300

350

400

450

500

550

Path length (m)

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Fig. 3. A Pareto frontier that represents path lengths and energy consumptions
of the nondominated paths given in Fig. 2.

TABLE II
RESULTS OF TEST I USING DIJKSTRA’S AND Z*.

Algorithm Dijkstra’s Z*

Path length (m) 837.715 937.927
Energy consumption (kJ) 538.053 274.629

TABLE III
RESULTS OF TEST I USING CSA*.

Maximum energy (kJ) 274.630 350.000 450.000 Unlimited

Path length (m) 937.927 885.820 846.326 837.715
Energy consumption (kJ) 274.629 348.661 437.040 538.053
of sub-paths explored 2446 4745 2833 2507

ψe = 274.630 kJ, CSA* finds the same energy-optimal path
as Z* does.

In Test II, the objective was to plan a feasible shortest path
from (260, 540, 5892) m to (820, 380, 5858) m on a section
of Anderson canyon. The mobile platform is set to travel at
0.6 m/s without any payloads. According to the results given
in TABLE IV, the length of the shortest path is 640.668 m
and the mobile platform consumes 106.069 kJ to traverse it.
On the other hand, the energy-optimal path obtained using Z*

0

200

400

600

800

1000 0

200

400

600

800

1000

5800

5900

y (m)x (m)

E
le

va
tio

n
(m

)

Start location
Goal location

Fig. 4. All nondominated paths obtained using NAMOA* in Test II.

641 642 643 644 645 646 647 648 649
100

101

102

103

104

105

106

107

Path length (m)

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

Fig. 5. A Pareto frontier that represents path lengths and energy consumptions
of the nondominated paths given in Fig. 4.

TABLE IV
RESULTS OF TEST I USING DIJKSTRA’S AND Z*.

Algorithm Dijkstra’s Z*

Path length (m) 640.668 649.643
Energy consumption (kJ) 106.070 100.550

TABLE V
RESULTS OF TEST II USING CSA*.

Maximum energy (kJ) 100.600 103.000 104.500 Unlimited

Path length (m) 649.643 642.227 641.729 640.668
Energy consumption (kJ) 100.550 102.955 104.081 106.070
of sub-paths explored 1523 1257 1304 1984

consumes only 100.549 kJ, but it is longer than the shortest
path. All nondominated paths generated in this test and their
cost values are illustrated in Figs. 4 and 5, respectively. In
this test, NAMOA* has expanded 57252 subpaths to find all
nondominated paths. According to the results given in TABLE
V, CSA* finds constraints satisfying paths more efficiently
compared to NAMOA*. For example, CSA* is over 45 times
more efficient than NAMOA* for finding a shortest path with
a maximum of 103 kJ of energy.

8

VI. DISCUSSION

Properties of CSA*, including its strengths, limitations, and
possible improvements, are discussed in details in this section.
Rigorous theoretical analyses on both the admissibility and
efficiency of CSA* are provided in appendices. When CSA*
is guided by admissible heuristics, it is proven to find an
optimal solution under constraints if such a solution exists.
CSA* guided by consistent heuristics, is proven to be optimal
over a class of equally informed admissible constrained search
algorithms with respect to both the number of paths and
the set of paths expanded. The search efficiency of CSA*
can be improved by using more informed heuristics. As
shown in appendices, heuristics govern both the optimality
and admissibility of CSA*.

Rather than considering CSA* as a single algorithm, it can
be considered as a family of algorithms. Its search behavior
can vary from one application to another based on the nature
of heuristics and the number of constraints. Heuristics can be
somehow interpreted as the knowledge of the problem domain.
In the absence of it, i.e. ~h = ~0, CSA* becomes a uniform-cost
search. Albeit ~h = ~0 being the least informed heuristic vector,
it is consistent. Therefore, it preserves both the optimality
and admissibility of CSA*. In many practical applications,
however, more informed heuristics can be found easily. If such
estimations cannot be found for some constrained heuristics,
those particular heuristics in a heuristic vector can be set to
zero while the rest of the vector remain non-zero. Such a
heuristic vector can still guarantee both the optimality and
admissibility of CSA* since the complete heuristic vector is
consistent.

If any component of a heuristic vector overestimates the
cost of an optimal path, i.e. ∃n ∈ N | ~h(n) � ~h∗(n), then
CSA* guided by such heuristics is no longer admissible. Nev-
ertheless, CSA* guided by such non-admissible heuristics can
sometimes find a solution faster than one guided by admissible
heuristics, by expanding a smaller number of paths. However,
because of path pruning in Steps 1 and 6b in Algorithm 1 due
to mispredicted constraint violations, CSA* guided by such
non-admissible heuristics might fail to find a solution even if
a solution exists. Therefore, the utilization of non-admissible
constrained heuristics to accelerate CSA* must be carried out
with cautions. Nevertheless, non-admissible primary heuristics
can possibly accelerate CSA* without generating such false
alarms but may return sub-optimal solutions.

VII. CONCLUSION

This paper proposed CSA* for solving constrained search
problems. CSA* is capable of accommodating multiple con-
straints. CSA* can be implemented easily and analyzed rig-
orously as ordinary A*. If there exists a solution for a
given constrained search problem, CSA* guided by admissible
heuristics guarantees to find an optimal solution that satisfy
the given constraints. If the heuristics are consistent, CSA* is
proven to be optimal with respect to the set of paths expanded
over a class of equally informed admissible constrained search
algorithms. More informed heuristics can improve the search
efficiency of CSA*. Test results provided in this paper suggest

that CSA* is suitable for shortest path planning for energy-
constrained mobile platforms on uneven terrains.

In many real-world applications, mobile agents have to re-
plan their paths due to unforeseen disruptions. Path replanning
from scratch can be computationally very expensive, thus may
interrupt the seamless operation of mobile agents if it has to be
executed regularly. Therefore, future work should investigate
on admissible and efficient algorithms for path replanning
under multiple constraints.

REFERENCES

[1] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[3] J. Pearl, Heuristics: intelligent search strategies for computer problem
solving. Addison-Wesley Pub. Co., Inc., Reading, MA, 1984, ch. Formal
properties of heuristic methods, pp. 73–85.

[4] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of au-
tonomous car – Part I: Distributed system architecture and development
process,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12,
pp. 7131–7140, 2014.

[5] L. Gomes, “When will Google’s self-driving car really be ready? It
depends on where you live and what you mean by “ready”,” IEEE
Spectrum, vol. 53, no. 5, pp. 13–14, 2016.

[6] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization
and mapping: A survey of current trends in autonomous driving,” IEEE
Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194–220, 2017.

[7] H. Mahboubi, A. G. Aghdam, and K. Sayrafian-Pour, “Toward au-
tonomous mobile sensor networks technology,” IEEE Transactions on
Industrial Informatics, vol. 12, no. 2, pp. 576–586, 2016.

[8] N. Ganganath, C.-T. Cheng, and C. K. Tse, “Distributed Anti-flocking
Algorithms for Dynamic Coverage of Mobile Sensor Networks,” IEEE
Transactions on Industrial Informatics, vol. 12, no. 5, pp. 1795–1805,
2016.

[9] N. Ganganath, W. Yuan, T. Fernando, H. H. C. Iu, and C.-T. Cheng,
“Energy-efficient anti-flocking control for mobile sensor networks on
uneven terrains,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. PP, no. 99, 2018.

[10] G. V. Levin, “The curiousness of Curiosity,” Astrobiology, vol. 15, no. 2,
pp. 101–103, 2015.

[11] M. Sutoh, M. Otsuki, S. Wakabayashi, T. Hoshino, and T. Hashimoto,
“The right path: comprehensive path planning for lunar exploration
rovers,” IEEE Robotics & Automation Magazine, vol. 22, no. 1, pp.
22–33, 2015.

[12] N. Ganganath, C.-T. Cheng, and C. K. Tse, “Rapid replanning of
energy-efficient paths for navigation on uneven terrains,” in International
Confonference on Industrial Informatics (INDIN). IEEE, 2015, pp.
408–413.

[13] W. Yuan, N. Ganganath, C.-T. Cheng, Q. Guo, and F. C. M. Lau, “A
consistent heuristic for efficient path planning on mobility maps,” in
International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM). IEEE, 2017, pp. 1–5.

[14] N. G. Marasinghe Arachchige, “Heuristic search algorithms with ap-
plications to path planning on uneven terrains,” Ph.D. dissertation, The
Hong Kong Polytechnic University, 2016.

[15] M. Lanthier, A. Maheshwari, and J.-R. Sack, “Shortest anisotropic paths
on terrains,” in Automata, Languages and Programming. Springer,
1999, pp. 524–533.

[16] N. Ganganath, C.-T. Cheng, and C. K. Tse, “Rapidly replanning A*,”
in International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC). IEEE, 2016, pp. 386–389.

[17] K.-L. Wu, T.-J. Ho, S. A. Huang, K.-H. Lin, Y.-C. Lin, and J.-S.
Liu, “Path planning and replanning for mobile robot navigation on
3Dterrain: An approach based on geodesic,” Mathematical Problems in
Engineering, vol. 2016, 2016.

[18] N. Ganganath, C.-T. Cheng, and C. K. Tse, “A constraint-aware heuristic
path planner for finding energy-efficient paths on uneven terrains,” IEEE
Transactions on Industrial Informatics, vol. 11, no. 3, pp. 601–611,
2015.

9

[19] N. C. Rowe and R. S. Ross, “Optimal grid-free path planning across
arbitrarily contoured terrain with anisotropic friction and gravity effects,”
IEEE Transactions on Robotics and Automation, vol. 6, no. 5, pp. 540–
553, 1990.

[20] N. C. Rowe and Y. Kanayama, “Near-minimum-energy paths on a
vertical-axis cone with anisotropic friction and gravity effects,” The
International Journal of Robotics Research, vol. 13, no. 5, pp. 408–
433, 1994.

[21] Q. Yuan, Q. Lu, and Z. Xi, “Optimal path selection for mobile robots
based on energy consumption assessment of different terrain surface,”
in 36th Chinese Control Conf. (CCC). IEEE, 2017, pp. 6755–6760.

[22] N. Ganganath, C.-T. Cheng, and C. K. Tse, “An improved Dynamic Z*
algorithm for rapid replanning of energy-efficient paths,” in International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC). IEEE, 2015, pp. 395–398.

[23] Z. Sun and J. H. Reif, “On finding energy-minimizing paths on terrains,”
IEEE Transactions on Robotics, vol. 21, no. 1, pp. 102–114, 2005.

[24] N. Ganganath, C.-T. Cheng, and C. K. Tse, “Multiobjective path
planning on uneven terrains based on NAMOA*,” in IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2016, pp. 1846–
1849.

[25] L. Mandow and J. L. P. De La Cruz, “Multiobjective A* search with
consistent heuristics,” Journal of the ACM (JACM), vol. 57, no. 5, p. 27,
2010.

APPENDIX A
ADMISSIBILITY OF CSA*

In this section, we prove the admissibility of CSA*
under some common assumptions. Like all other heuris-
tically guided search algorithms, admissibility of the pro-
posed CSA* algorithm depends on the properties of its
heuristics. Here we introduce a special heuristic cost vector
~h∗(n) = [h∗0(n), h∗1(n), . . . , h∗m(n)], where a heuristic func-
tion h∗l (n) = kl(n, t) for 0 ≤ l ≤ m, i.e.

~h∗(n) = ~k(n, t).

This implies that h∗0(n) ≤ c∗0 for any node n on λ∗t .
Definition 2: A heuristic cost vector ~h(n) is said to be

admissible if

~h(n) � ~h∗(n), ∀n ∈ N . (8)

Here, we assume that CSA* is always guided by admissible
heuristic cost vectors. Similar assumptions are commonly used
to prove the admissibility of other heuristic search algorithms
[2], [3], [25].

CSA* is forced for an early termination in Step 1 if ~h(s) �
~ψ. Therefore, it is essential to guarantee that such an exit
occurs only when there is no solution available for a given
problem.

Theorem 1: If there exists a solution, then ~h(n) � ~ψ∗ for
any subpath of an optimal path λ∗n/t.

Proof: Let there exists a solution. Then, for any subpath
of an optimal path λ∗n/t and for 1 ≤ l ≤ m, the heuristic
function should satisfy h∗l (n) ≤ ψl and h∗0(n) ≤ c∗0. Hence,
we have ~h∗(n) � ~ψ∗. Since all heuristic cost vectors are
admissible, ~h(n) � ~h∗(n), and therefore, ~h(n) � ~ψ∗.

Since all paths considered here origin from s, we have
~h(s) � ~ψ∗ for any λ∗s/t, and obviously, ~ψ∗ � ~ψ. Hence,
if there exists a solution for a constrained search problem, we
have ~h(s) � ~ψ which avoids any early termination in Step 1.
Furthermore, CSA* terminates in Step 3 if OPEN is empty.
Such a termination has to be avoided prior to CSA* finds an
optimal solution for a given problem.

Lemma 1: If there exists a solution, then there exists
ξ(λ∗ni/t

) on OPEN such that ~f(λ∗ni/t
) � ~ψ∗ before CSA*

terminates.
Proof: Let a solution exists, then according to Theorem

1, we have ~h(s) � ~ψ∗. Therefore, CSA* will not terminate
in Step 1. Assume that ξ(λ∗s/t) = {s,~0,~h(s),NULL} is on
OPEN. Then CSA* has not yet completed its first iteration
and ~f(λ∗s) = ~f(λ∗s/t) = ~h(s). Hence, we have

~f(λ∗s/t) � ~ψ∗,

where s ≡ ni.
Now assume that ξ(λ∗s/t) is on CLOSED. Let λ∗t =
〈s, n1, n2, . . . , ni−1, ni, . . . , t〉 and λ∗ni−1/t

be the longest
subpath of λ∗t on CLOSED. Since ni is the successor of
ni−1 on λ∗t , whenever ξ(λ∗ni−1/t

) is moved from OPEN to
CLOSED, CSA* must have recorded ξ(λ∗ni/t

) on OPEN and
computed ~g(λ∗ni/t

) = ~g(λ∗ni−1/t
)+~c(ni−1, ni) and ~f(λ∗ni/t

) =

~g(λ∗ni/t
) + ~h(ni). Using the admissibility of ~h, we have

~f(λ∗ni/t
) � ~g(λ∗ni/t

) + ~h∗(ni),

f0(λ∗ni/t
) ≤ g0(λ∗ni/t

) + h∗0(ni). (9)

We know that c∗0 = g0(λ∗t) = g0(λ∗ni/t
) + c0(λ∗nit) and

c0(λ∗nit) ≥ h
∗
0(ni). Hence, we have

g0(λ∗ni/t
) + h∗0(ni) ≤ c∗0. (10)

Combining (9) and (10) yields

f0(λ∗ni/t
) ≤ c∗0. (11)

Since λ∗ni/t
is a subpath of the optimal path, all constraints

must satisfy ~f(λ∗ni/t
) � ψ and therefore,

~f(λ∗ni/t
) � ~ψ∗.

This confirms that the path λni
cannot be pruned in Step 6b in

Algorithm 1. Since λ∗ni/t
is a subpath of the optimal path, it

cannot be dominated by any other path leading to ni. However,
there can be another path leading to ni with same f -cost. If so,
that can also be considered as a subpath of the optimal path.
Therefore, one of the subpaths λ∗ni/t

will not be pruned in Step
6c. Consequently, when ξ(λ∗ni−1/t

) is recorded on CLOSED,
there will be ξ(λ∗ni/t

) on OPEN such that ~f(λ∗ni/t
) � ~ψ∗.

We also prove a corollary to Lemma 1 for later use.
Corollary 1: Any entry ξ(λn) that is selected from OPEN

for expansion, should satisfy ~f(λn) � ψ∗.
Proof: Since ξ(λn) is already on OPEN, the path λn

has not been pruned in Step 6b. Thus, ~f(λn) � ψ. Since
λn selected for expansion, its f0 cost should be the lowest
among the entries on OPEN and by the virtue of Lemma 1,
f0(λn) ≤ c∗0. Therefore, ~f(λn) � ψ∗.

Theorem 2: CSA* is admissible.
Proof: Here we use a sequence of contradictions to prove

this theorem. Given a constrained search problem which has a
solution, first assume that CSA* does not terminate. However,
any best-first search algorithm that prunes cyclic paths should
terminate on finite graphs [3]. Hence, CSA* should terminate
as well. Now assume that CSA* terminates without a solution.

10

Since it is given that there exists a solution, according to
Theorem 1, CSA* cannot terminate in Step 1. Then it can
terminate without a solution only when OPEN is empty (Step
3), which contradicts with Lemma 1. Even if CSA* terminates
with a solution, assume that CSA* terminates with a non-
optimal path λt. Thus,

f0(λt) > c∗0. (12)

CSA* check whether the target is reached in Step 5 after it has
selected a subpath for expansion. Hence, when CSA* selects
ξ(λt) for expansion, f0(λt) should be the lowest f0 value
among the entries in OPEN. However, according to Lemma
1, there should exist at least one path on OPEN before CSA*
terminates such that ~f(λ∗ni/t

) � ~ψ∗. Thus,

f0(λni/t) ≤ c
∗
0. (13)

Combining (12) and (13) yields

f0(λni/t) < f0(λt),

which contradicts with selection of ξ(λt). Therefore, CSA*
always terminates with an optimal solution. The theorem is
proved.

By the virtue of Theorem 2, we can conclude that the
admissibility of CSA* is comparable to that of A*.

APPENDIX B
PRUNING POWER OF HEURISTICS IN CSA*

In each iteration, CSA* removes an path entry from OPEN
(Step 4) and its unpruned successors are recorded on OPEN
(Step 6). CSA* becomes more efficient when it prunes more
paths since a smaller number of paths are recorded in OPEN
for expansion. Heuristics lead to two types of path pruning
in CSA*. One of them is solely driven by the constrained
heuristics and executed in Steps 1 and 6b in Algorithm 1. This
type of path pruning occurs as a result of constraint violations.
Earlier such violations are predicted, a smaller number of paths
are recorded on OPEN. Second type of path pruning is driven
by both major and constrained heuristics. This type of path
pruning occurs as a result of dominance checks in Steps 6c
and 6d in Algorithm 1. The most efficient execution of CSA*
would be to record only the subpaths of the optimal path on
OPEN. Such an execution would only be possible if CSA* is
guided by heuristics which can always estimate the remaining
cost precisely. However, such heuristic estimations are far from
reality in many applications.

First we investigate the sufficient and necessary conditions
for CSA* to select a path entry from OPEN for expansion.
Then the path selection efficiency of CSA* is compared with
different heuristics.

Definition 3: A path λn is said to be ψ∗-bounded if every
subpath λni/n satisfies

~g(λni/n) + ~h(ni) � ψ∗.

Definition 4: A path λn is said to be strictly ψ∗-bounded if
λn is ψ∗-bounded and every subpath λni/n satisfies

g0(λni/n) + h0(ni) < c∗0.

Theorem 3: A sufficient condition for CSA* to select an
entry ξ(λn) for expansion is that λn is a nondominated and
strictly ψ∗-bounded path.

Proof: We proceed by contradiction. Assume that there
exists a nondominated and strictly ψ∗-bounded path λn and
the entry ξ(λn) is not yet been selected for expansion at
the termination of CSA*. Since λn is strictly ψ∗-bounded,
~f(λs/n) � ψ∗ and therefore, CSA* cannot terminate in Step
1 in Algorithm 1. Now it can terminate only when a target
is reached (Step 5) or OPEN is empty (Step 3). Since λn
is strictly ψ∗-bounded, its subpaths λni/n are not pruned in
Step 6b. Since λn is nondominated, its subpaths λni/n are
not pruned in Steps 6c and 6d. Hence, at anytime before
the termination of CSA*, there is always an entry ξ(λni/n)
on OPEN. Therefore, OPEN cannot be empty and CSA*
can terminate only when the target is reached. CSA* checks
whether the target is reached only after it has selected an
entry on OPEN for expansion (Step 5). When CSA* selects
{t, ~g(λ′t),

~f(λ′t), p(λ
′
t)} for expansion, f0(λ′t) = c∗0 should be

the lowest f0 value among all entries on OPEN. Since λn is
strictly ψ∗-bounded,

g0(λni/n) + h0(ni) < c∗0,

f0(λni/n) < c∗0.

However, ξ(λni/n) is still on OPEN, which is a contradiction.
Therefore, ξ(λn) must be selected for expansion before CSA*
terminates.

Theorem 4: A necessary condition for CSA* to select an
entry ξ(λn) for expansion is that λn is a ψ∗-bounded path.

Proof: If CSA* selects ξ(λn) from OPEN for expansion,
from Corollary 1, we have ~f(λn) � ψ∗. Before the time λn is
on OPEN, all of its subpaths λni/n must have been on OPEN
and now they must have already been expanded. At the time
λni/n is expanded, it should have satisfied

~f(λni/n) = ~g(λni/n) + ~h(ni) � ψ∗.

Hence, the path λn is ψ∗-bounded.
Definition 5: A heuristic vector ~h is said to be more

informed than another heuristic vector ~h′ if both are admissible
and satisfy

~h′(n) � ~h(n) ∧ h′0(n) < h0(n), ∀n ∈ N \ t.

Likewise, an algorithm using ~h is said to be more informed
than that using ~h′.

According to the above definition, the major heuristic cost
of ~h must be greater than that of ~h′ for all the nodes, except for
the non-target node, for ~h to be considered as more informed
than ~h′. However, the rest of the heuristics are rather loosely
compared.

Lemma 2: Let a heuristic vector ~h be more informed than
another heuristic vector ~h′. If a path λn is ψ∗-bounded when
evaluated by CSA* with ~h, then λn is strictly ψ∗-bounded
when evaluated by CSA* with ~h′.

Proof: Since λn is ψ∗-bounded when evaluated by CSA*
with ~h, by the virtue of Definition 3, every subpath λni/n

satisfies

~g(λni/n) + ~h(ni) � ψ∗.

11

Since ~h is more informed than ~h′, from Definition 5, we have
~h′(ni) � ~h(ni) for every non-target node ni. Hence, we have

~g(λni/n) + ~h′(ni) � ψ∗, (14)

which implies that λn is ψ∗-bounded when evaluated by CSA*
with ~h′. Incidentally,

g0(λni/n) + h0(ni) ≤ c∗0,

and we also know that h′0(ni) < h0(ni) for every non-target
node ni given that ~h is more informed than ~h′. Hence, we
have,

g0(λni/n) + h′0(ni) < c∗0. (15)

Now, (14) and (15) imply that λn is strictly ψ∗-bounded when
evaluated by CSA* with ~h′.

Theorem 5: Let algorithms CSA1* and CSA2* be two
variations of CSA* which only differ in use of heuristics. If
CSA1* is more informed than CSA2*, then all nondominated
paths expanded by CSA1* are also expanded by CSA2*.

Proof: Let both algorithms CSA1* and CSA2* be guided
by admissible heuristics ~h and ~h′, respectively. Since CSA1*
is more informed than CSA2*, from Definition 5, we have that
~h′(n) � ~h(n) and h′0(n) < h0(n) for every non-target node
n. If CSA1* expands a nondominated path λn, according to
Theorem 4, the path λn should be ψ∗-bounded. However, if
λn is ψ∗-bounded when it is evaluated by CSA1*, according
to Lemma 2, λn is strictly ψ∗-bounded when it is evaluated
by CSA2*. Therefore, according to Theorem 3, λn should be
expanded by CSA2* as well.

Theorem 5 unleashes the pruning power of heuristics used
in CSA* up to a certain extent. CSA* with more informed
heuristics prunes more paths and as a result, it expands a
smaller number of them. This is quite understandable as
more informed heuristics can help in predicting violations
of constraints earlier. Unfortunately, it cannot verify that
every path selected by CSA* for expansion are nondominated
under the assumption of admissible heuristics. Therefore, the
above theorem is unable to demonstrate the pruning power of
heuristics over all paths selected by CSA* for expansion.

APPENDIX C
OPTIMALITY OF CSA* WITH CONSISTENT HEURISTICS

In this section, we further analyze the efficiency of proposed
CSA* algorithm with respect to the set of paths expanded. The
number of path expansions of CSA* can be minimized by
selecting only nondominated paths in Step 4, but admissible
heuristics are unable to guarantee that. Hence, we introduce
the concept of consistent heuristic vectors as an extension to
its scalar counterpart given in [3].

Definition 6: A heuristic vector ~h is said to be consistent if
it satisfies

~h(n) � ~k(n, n′) + ~h(n′), ∀n, n′ ∈ N . (16)

Theorem 6: All consistent heuristic vectors are admissible.
Proof: Any consistent heuristic vector ~h satisfies (16). By

replacing n′ with t, we have

~h(n) � ~k(n, t) + ~h(t), ∀n ∈ N .

We already know that ~h∗(n) = ~k(n, t) and ~h(t) = ~0.
Incidentally,

~h(n) � ~h∗(n), ∀n ∈ N .

Therefore, ~h(n) is admissible.
Now with consistent heuristics, we revisit Theorem 4 which

established a neccessary condition for CSA* to select a path
entry for expansion.

Theorem 7: If the heuristics are consistent, a necessary
condition for CSA* to select an entry ξ(λn) for expansion
is that λn is nondominated.

Proof: We proceed by contradiction. Assume that CSA*
is guided by consistent heuristics and it expands a dominated
path λn which is on OPEN. However, if ξ(λn) is on OPEN,
λn cannot be dominated by the already expanded paths to node
n. Hence, there must be another path λ′n which is yet to be
discovered such that

~f(λ′n) ≺ ~f(λn),

~g(λ′n) + ~h(n) ≺ ~g(λn) + ~h(n),

~g(λ′n) ≺ ~g(λn). (17)

Since λ′n is nondominated, its subpaths cannot be pruned
by CSA*. Therefore, by the time that CSA* expands λn, a
subpath λ′ni/n

must be on OPEN. We can decompose the cost
of the nondominated path λ′n as

~g(λ′n) = ~g(λ′ni/n
) + ~c(λ′nin). (18)

Obviously, ~k(ni, n) � ~c(λ′nin). Therefore, using (16), we can
obtain

~h(ni) � ~c(λ′nin) + ~h(n),

in which ~c(λ′nin) can be replaced using (18) such that

~g(λ′ni/n
) + ~h(ni) � ~g(λ′n) + ~h(n). (19)

Combining (17) and (19) yields that

~g(λ′ni/n
) + ~h(ni) ≺ ~g(λn) + ~h(n),

~f(λ′ni/n
) ≺ ~f(λn), (20)

f0(λ′ni/n
) ≤ f0(λn). (21)

In accordance with Step 4 in Algorithm 1, (20) and (21) verify
that λ′ni/n

must be expanded before expanding λn. This is
valid for all the subpaths of λ′n. By the time ξ(λ′n) is recorded
on OPEN, ξ(λn) has to be removed from OPEN as λn is
dominated by λ′n. Hence, λn cannot be expanded before CSA*
terminates. This contradicts with our initial assumption, thus,
the proof is completed.

The above theorem draws an important inference that all
path entries selected by CSA* for expansion are nondominated
when it is guided by consistent heuristics. Hence, once a path
is recorded on CLOSED (Step 4), it cannot be dominated by
any other path leading to the same node.

Definition 7: An algorithm CSA1 is said to dominate an
algorithm CSA2 if every path expanded by CSA1 is also
expanded by CSA2. CSA1 is said to strictly dominate CSA2 if
CSA1 dominates CSA2 and CSA2 does not dominate CSA1.

12

Theorem 8: Let algorithms CSA1* and CSA2* be two vari-
ations of CSA* guided by a consistent heuristic vector ~h and
an admissible heuristic vector ~h′ (not necessarily consistent),
respectively. If CSA1* is more informed than CSA2*, then
CSA1* dominates CSA2*.

Proof: Since CSA1* is more informed than CSA2*,
according to Theorem 5, all nondominated paths expanded by
CSA1* are also expanded by CSA2*. Since CSA1* is guided
by a consistent heuristic function, according to Theorem 7, all
paths expanded by CSA1* are nondominated. Hence, all the
paths expanded by CSA1* should also be expanded by CSA2*
and according to definition 7, CSA1* dominates CSA2*.

Corollary 2: Let algorithms CSA1* and CSA2* be two
variations of CSA* guided by consistent heuristics ~h and ~h′,
respectively. If CSA1* is more informed than CSA2*, then
CSA1* dominates CSA2*.

Proof: According to Theorem 6, all consistent heuristic
vectors are admissible. The proof of Theorem 8 does not
require ~h′ to be consistent, but admissible. Therefore, this
corollary trivially follows from Theorem 8.

Definition 8: An algorithm is said to be optimal over a class
of algorithms if it dominates all algorithms in that class [3].

Theorem 9: Let CSA* be guided by consistent heuristics
and Ca be a class of admissible constrained search algorithms
which are no more informed than CSA*. Then CSA* is
optimal over Ca.

Proof: If CSA* is optimal over Ca, it should dominate any
algorithm, say CSA, in Ca. Assume the contrary. Then CSA
finds an optimal path from a source node s to a target node t on
a given digraph G without exploring all paths that are explored
by CSA* to find an optimal solution. Let λn be one such path
of which ~f(λn) = [f0(λn), f1(λn), . . . , fi(λn), . . . , fm(λn)].
Since λn is explored by CSA*, by Theorem 4, ~f(λn) � ~ψ∗.
Hence, we have

f0(λn) ≤ c∗0.

Since CSA is no more informed than CSA*, it cannot identify
possible violations of constraints prior to CSA* does. Hence,
the only possible scenario for CSA not to explore λn is that

there should be another path λ′n to n such that

g0(λ′n) < g0(λn), (22)

which satisfies all the constraints. Now let ~f(λ′n) =
[f0(λ′n), f1(λ′n), . . . , fi(λ

′
n), . . . , fm(λ′n)]. CSA* is guided by

consistent heuristics, thus by the virtue of Theorem 7, λn must
be a nondominated path to a node n. From (22), we have
f0(λ′n) < f0(λn). Therefore, for λn to be nondominated, there
exists an i ∈ [1,m] such that

fi(λn) < fi(λ
′
n).

Since CSA is admissible, it must be able to find an
optimal solution for any given problem from a class of
constrained search problems that have solutions. Now assume
that there is another constrained search problem which is
identical to the previously considered one, but with different

constraints. The new constraint vector is given by ~̃
ψ
∗

=

[c̃0
∗, ψ̃1, . . . , ψ̃i, . . . , ψ̃m] such that c̃0

∗ > c∗0, ~f(λn) � ~̃
ψ
∗
,

and fi(λn) < ψ̃i < fi(λ
′
n). Now assume that the only optimal

path form s to t goes through n. Since s and t remain un-
changed on G, path costs and heuristic costs remain unchanged
as well. This lets CSA* and CSA to behave similar to as they
did in the previous search problem. Hence, CSA* should be
able to find the new optimal path by expanding λn which
satisfies the constraints. Since CSA skips expanding λn, it
cannot find the optimal path for this particular problem which
actually has a solution. Thus CSA violates its admissibility,
which is contrary to our assumption. Therefore, the theorem
is proven.

According to Theorem 9, any constrained search algorithm,
which is no more informed than CSA*, cannot skip any path
selected by CSA* with consistent heuristics in a search of
an optimal solution without compromising its admissibility.
Hence, CSA*, when guided by consistent heuristics, is optimal
with respect to the set of paths expanded over a class of no
more informed admissible constrained search algorithms.

