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Robust neural network fault estimation approach for nonlinear
dynamic systems with applications to wind turbine systems

Reihane Rahimilarki, Student Member, IEEE, Zhiwei Gao, Senior Member, IEEE, Aihua Zhang, and Richard Binns

In this paper, a robust fault estimation approach is proposed
for multi-input and multi-output nonlinear dynamic systems on
the basis of back propagation neural networks. The augmented
system approach, input-to-state stability theory, linear matrix
inequality optimization, and neural network training/learning are
integrated so that a robust simultaneous estimate of system states
and actuator faults are achieved. The proposed approaches are
finally applied to a 4.8 MW wind turbine benchmark system,
and the effectiveness is well demonstrated.

Keywords—Fault estimation, robust, linear matrix inequalities,
artificial neural networks, wind turbines, input-to-state stability.

I. INTRODUCTION

Over the past few years, wind energy has received a
significant attention owing to the concerns on global warming,
environmental problems, and fossil fuels reduction. During the
past decade, numerous investments went to wind energy in-
dustries and the wind turbine installed capacity had a constant
increase, and the overall capacity of all wind turbines installed
worldwide reached 539GW by the end of 2017. However,
similar to other industries, faults may occur in wind turbines
due to age or unexpected events, which may cause breakdown
and relatively high-cost maintenance. In addition, substandard
reliability directly decreases the availability of wind power in
the grid. Based on the mentioned issues, fault diagnosis plays
an important role in increasing the reliability of wind turbines.

In recent years, fruitful results were reported in the field of
fault diagnosis, e.g [1]–[3], which can be categorized into three
main methods: model-based, signal-based, and knowledge-
based approaches following the classical survey literature [4].
In model-based methods, models of systems to be monitored
should be available to the designers [5], [6]. In [7], hid-
den Markov model based on fuzzy scalar quantisation was
proposed to solve the problem of accuracy and sensitivity
of fault diagnosis in wind turbines. Performance degradation
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was addressed in [8] and an approach based on classifier
adapting and regression model was proposed to cope with
this problem. In signal-based methods, the input-output model
is not necessary to be available. However, the measured
signals become essential and the decision on fault diagnosis
is made based on these signals and their attributes [9], [10].
In [11], fault diagnosis in wind turbine planetary gearboxes
was studied and an approach based on automatic sparse
representation was proposed for detecting weak transients.
[12] addressed multiscale filtering construction approach, to
solve fault diagnosis problem under speed varying and noisy
conditions in wind turbine gearboxes.

Alternatively, knowledge-based methods are particularly
suitable for the cases with a large amount of historical data,
and the explicit relationships of the system dynamics are
challenging to derive. From this aspect, knowledge-based fault
diagnosis is called data-driven approach [13]. Based on the
fact that it is very difficult to model fault dynamics for a
system like a wind turbine, it is very challenging to study
fault diagnosis in this complex system. Therefore, data-driven
methods can be beneficial in industrial area [14]. For instance,
[15] proposed a fault diagnosis and isolation approach in order
to handle uncertain models and noisy signals, using fuzzy
method in wind turbine systems. [16] addressed a data-driven
method in order to monitor nonlinear systems using available
measurements. Recent results in key-performance-indicator
oriented prognosis and diagnosis with a Matlab toolbox Db-kit
were reported in [17].

Artificial Neural Networks (ANN) is widely applicable in
the area of mapping nonlinear functions and complex systems.
It is worth to mention that, multi-layer neural networks as
one of the most effective computational intelligence (CI)
approaches, has gotten exceptional attention due to its ability
as universal approximator [18], in identification and modeling
of industrial systems. In [19], power curve modeling was
studied in a wind turbine benchmark and an ANN method
was studied for parameters estimation. In [20], by having
standard deviation, the previous output power, and the wind
speed average, an ANN nonlinear model of wind turbine was
developed in order to estimate the output power in future.
[21] investigated using of the experimental results to train
ANN in order to confront the problem of parameters finding
of a counter-rotation wind turbine. A data-driven method fault
diagnosis was proposed in [22] based on convolutional neural
networks to cope with the difficulty of extracting features in
new datasets of industrial systems. In [23], an ANN concept
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was studied in order to estimate the imbalance faults in a wind
turbine.

Based on the facts that there are always unexpected faults
and disturbances in industrial systems, it is very challeng-
ing to design an observer to tackle with this problem and
guarantee the robustness of the system in conjunction with
fully estimating the occurred faults. In [24], a robust neural
network was proposed to design an unknown input observer
for the application of wind turbine to deal with unmodeled
nonlinearities. This approach was considered in discrete-time
systems. In [25], a robust H∞ observer was designed to deal
with the environmental disturbances based on ANN.

Augmented system methods achieve many advantages in
estimating states and faults simultaneously, among distinct
fault estimation approaches, and the pioneering works can be
found in [26], [27]. Recently in [28], a discrete-time robust
fault tolerant control approach is proposed based on linear
matrix inequalities (LMI) techniques and augmented system
approach in order to achieve input-to-states stability of the
system subjected to input disturbances.

In this paper, the goal is to achieve a fault estimator, which
is robust against unknown inputs. As it is obvious, unknown
inputs such as modeling defects, perturbations, disturbances
and parameters uncertainties can influence the stability of the
system. To do so, an augmented robust LMI optimization is
proposed based on back propagation neural network (BPNN).
The stability of the system is guaranteed via Lyapunov and
input-to-state stability criteria.

The rest of the paper is arranged as follows: In Section II,
some preliminaries are brought including the basic notations
and the introduction on ANN. In section III, the problem
is stated and developed in ANN fault estimation based on
robust performance index. In Section IV, the model of the
wind turbine is investigated and the related simulation results
are given.

II. PRELIMINARIES

A. Notations and Definitions

In this paper, the notations are standard. A−1 is the inverse
of matrix A. AT is the transpose of matrix A. I and 0
denote an identity matrix and a zero matrix with appropriate
dimension, respectively.

The vector x ∈ Rn can have a norm defined as

||x|| =
√
xTx,

while ||d||Tf = (
∫ Tf
0

dT (τ)d(τ)dτ)1/2. L∞ space is space of
all L∞ bounded signals that can be defined as

x(t) ∈ L∞ if ess supt|f(t)| <∞,

σ is a bounded function that is considered as:

σ(x) =
2

1 + e−2x
− 1, (1)

Derivative of sigmoid function is given as follows:

dσ(x)

dx
=

4e−2x

(1 + e−2x)2
= 1− σ2(x). (2)

The function f(x) is Lipschitz, if for all x and y, there is a
constant C, which is independent of x and y, such that

|f(x)− f(y)| ≤ C|x− y|. (3)

This definition leads to the fact that any function with a
bounded first derivative is Lipschitz [29].

The root mean square (RMS) value of estimation error
(RMSE) is defined as follows:

RMSE =

√
1

Tf − Ts

∫ Ts

Tf

(xi − x̂i)2, (4)

in which, Ts is the start time, Tf is the final time, xi is the
ith parameter, and x̂i is the estimation of the ith parameter. In
addition, the normalized RMSE (NRMSE) can be intoduced
as belows:

NRMSE =
RMSE

max(xi)−min(xi)
, (5)

in which, max(xi) is the maximum of xi and min(xi) is the
minimum of xi.

B. Back Propagation Neural Networks

System identification in gray-box modeling is very influen-
tial in understanding the behavior of the system in tackling of
the unpredicted faults. One of the capable tools in modeling
and identification of the nonlinear functions is multi-layer
perceptron (MLP) neural networks. The schematic of a fully
connected MLP is presented in Figure 1. As it can be seen in
this figure, a typical MLP contains of an input layer, which
can be the states of the system (zi : i = 1, ..., n), a hidden
layer and an output layer (ti : i = 1, ..., p), that designed
to be an approximation of the system output. The V̂ and Ŵ
are weight matrices for the hidden and output layers. This
network is called fully connected, since each neuron in hidden
and output layers is connected to every neuron in the previous
layer.

z

z

z

t

t

tp

Fig. 1. A Three-layer Fully Connected Neural Network.

One of the most widespread approaches to update the
weights in an MLP is Back Propagation Neural Networks
(BPNN) algorithm. This method is composed of three main
steps: initializing, feed-forward, and backward. The last two
steps recurred in each iteration until the error is less than a
predefined value.

In initializing, all the wights are initialized by unsupervised
approach, e.g. random quantities. In feed-forward, input vector
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Z = [z1, z2, ..., zn]T goes through the network as feed-forward
and with the previous weight matrices, the output vector T =
[t1, t2, ..., tm]T is achieved as in (6):

T = Ŵ (σ(V̂ Z)), (6)

In the last part of feed-forward step, the output of the
network is compared to the output of the system and the error
vector is obtained.

In backward step, the error vector is applied to train the
weights Ŵ and V̂ using an updating rule. The main task of
each BPNN designing is to derive an equation to update the
training weights in each iteration.

III. NEURO-ROBUST FAULT ESTIMATION

Consider a nonlinear multi-input an multi-output (MIMO)
system, as follows:

ẋ(t) = f(x(t), u(t)) +Bffa(t) +Bdd(t),

y(t) = Cx(t),
(7)

in which the x ∈ Rn is the state vector of the system,
u ∈ Rm is the input signal, y ∈ Rp is the output and
f(x(t), u(t)) ∈ Rn is an unknown nonlinear function. fa(t) ∈
Rm is the occurred actuator fault and Bf is the related
fault matrix. d(t) is continuously differentiable and bounded
disturbance and Bd is the distribution matrix. In multi-layer
ANN mapping, all states of the model should be available.
Nevertheless, in some problems, like wind turbines, not all
states are measurable. State estimation in a system plays an
important role in detecting and diagnosing the faults and
monitoring the process more vividly. Based on this fact, it
would better to have an augmented system to not only estimate
the states but also identify the unanticipated faults at the same
time.

In order to obtain this aim, two assumptions are considered:
first, the nonlinear model is observable. Second, the states are
bounded in L∞ [30].

Now, by adding and subtracting the term Ax, system (7)
becomes

ẋ(t) = Ax(t) + g(x(t), u(t)) +Bffa(t) +Bdd(t),

y(t) = Cx(t),
(8)

where g(x(t), u(t)) = f(x(t), u(t))−Ax(t), A is an arbitrary
Hurwitz matrix, which has been chosen in the way that the
pair of (C,A) is observable. The main reason to decouple the
system into linear and nonlinear blocks is to be able to design
a robust observer based on the LMI for linear part while the
nonlinear block error is augmented into the disturbance vector.
This vector plays the role of exogenous input in the process
of formulating the LMI. By this approach the nonlinear ob-
servability criteria is relaxed into linear observability criteria.
More explanation will be brought in Theorem 1 later on.

As it is obvious that the dynamics of the fault is unknown,
there are some methods to deal with this problem. For instance,
in [31], it is assumed that the second-order derivative of the
occurred fault is zero. However, in this paper, this condition
will be relaxed by considering the following equation that is
correct in all situations.

ḟa = ḟa − fa + fa. (9)

It is worth to mention that fa and ḟa should be continuously
differentiable and bounded. By augmenting (9) and (8), the
model of the system can be written as:

Ẋ(t) = ĀX(t) +G+ B̄dd̄,

y = C̄X(t),
(10)

in which, Ā =

[
A Bf
0 −I

]
, X(t) = [x(t) fa]T , G =

[g(x(t), u) 0]T , B̄d =

[
Bd 0 0
0 I I

]
, d̄ = [d ḟa fa]T , and

C̄ = [C 0]. The main goal in this approach is to design a
model identification system to minimize the augmented state
error vector in (11):

X̃(t) = X(t)− X̂(t), (11)

where X̂ is the estimated state vector and X̃ is the estimation
error vector.

[30] proposed a model to design a neural network observer
(NNO) by decoupling systems into linear and nonlinear blocks.
By using this model and modifying it by adding faults and
disturbances, the NNO model can be seen in Figure 2.

Fig. 2. The Scheme of ANN Based Observer.

In this model, NNO is designed to estimate the nonlinear
block of the model, G, and a robust observer (described in
the equation (12)) is designed to cope with the disturbance
and unexpected fault, which are augmented in d̄. Moreover,
M(s) = (sI − Ā)−1 and ŷ is the estimation of y. The upper
part is the main model with its inputs, while the lower part is
the estimation system. The input and the output of the main
model are applied to the estimation system. The whole system
is not close loop since no signal from the estimation part is
entering the main model via feedback.

The observer model of the system (8) can be defined as
follows:

˙̂
X(t) = ĀX̂(t) + Ĝ+ L(y − C̄X̂(t)),

ŷ(t) = C̄X̂(t),
(12)

where L ∈ R(n+m)×p is selected so that the augmented system
becomes robust against the disturbance term of d̄. Moreover, Ĝ
is the output of the neural networks of NNO and the estimation
of G. As it was discussed in (6), Ĝ can be written as:

Ĝ = Ŵσ(V̂ ˆ̄X(t)), (13)

in which, ˆ̄X(t) = [X̂(t) u]T is the input of NNO.
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By substituting (13) into (12), the following observer equa-
tion can be obtained:

˙̂
X(t) = (Ā− LC̄)X̂(t) + Ŵσ(V̂ ˆ̄X(t)) + LC̄X(t),

ŷ(t) = C̄X̂(t),
(14)

Procedure 1. For achieving the goal, the following proce-
dure is applied:

i By having the idea of BPNN that was introduced in
section II, in feed-forward step after having the output of
NNO, a robust observer gain is designed via LMI in or-
der to reduce influence of the unmodeled dynamics and
disturbances. In addition, the stability of the system is
guaranteed through Lyapunov function (to be addressed
in Theorem 1). The output error is calculated at the end
of this step.

ii In the next step, the backward step of BPNN is applied
and the updating rules for the weights of the NNO
are obtained (to be presented in Theorem 2) via the
predefined cost function and the output error, which is
assessed in the earlier step.

By considering the error function of (11), the error dynamics
can be written as follows:

˙̃
X(t) =Ẋ(t)− ˙̂

X(t)

=ĀX(t)− ĀX̂(t) +G− Ŵσ(V̂ ˆ̄X(t))

− L(C̄X(t)− C̄X̂(t)) + B̄dd̄.

(15)

By substituting G̃ = G−Ŵσ(V̂ ˆ̄X(t)), which is the error of
nonlinear function estimation, equation (15) is given as below:

˙̃
X(t) = ÃX̃(t) + G̃+ B̄dd̄, (16)

in which Ã = Ā− LC̄. (16) can be further simplified as:

˙̃
X(t) = ÃX̃(t) + B̃1F̃ , (17)

in which F̃ = [G̃ d̄]T . Now, the system has the state vector
of X̃(t) and the exogenous input of F̃ .

Lemma 1 [29]: Consider f(x, u) is continuously differential
function and globally Lipschitz in (x, u). If ẋ = f(x, 0) has
a globally exponentially stable equilibrium point at the origin,
then the system ẋ = f(x, u) is input-to-state stable.

Before presenting the main result of Theorem 1, we firstly
give the definitions of the robust performance index and
associated Hamiltonian function as follows [32]:

J11 = ||X̃(t)||Tf − γ2||F̃ ||Tf < 0. (18)

The associated Hamiltonian function is defined as:

J12 =

∫ Tf

0

(
dV (X̃(t))

dt
+ X̃T (t)X̃(t)− γ2F̃T F̃ ) dt (19)

Theorem 1: There exists robust observer (14) for the
augmented system of (10), so that: (i) the estimation error
dynamics in (17) is input-to-state stable; (ii) the estimation
error satisfy the robust performance index (18), if there are a
positive definite matrix P and a matrix Q so that[

PĀ+ ĀTP −QC̄ − C̄TQT + I P B̃1

B̃T1 P −γ2I

]
< 0 (20)

in which B̃1 = [I B̄d]. Then, the observer gain is calculated
as L = P−1Q.

Proof : The proof of this theorem is divided into two parts:
(i) input-to-state stability, and (ii) robust performance index.

(i) Proof of the input-to-state stability. For any X̃1(t),
X̃2(t), F̃1, and F̃2, we can have:

|h(X̃1(t), F̃1)− h(X̃2(t), F̃2)|
= |Ã(X̃1 − X̃2) + B̃1(F̃1 − F̃2)|
≤ α|X̃1(t)− X̃2(t)|+ β|(F̃1 − F̃2)|,

(21)

where α = ||Ã||, and β = ||B̃1||. As a result, h(X̃(t), F̃ ) is
globally Lipschitz in (X̃(t), F̃ ). It is evident that h(X̃(t), F̃ )
is continuously differentiable.

Since the matrix Ã is Hurwitz, the unforced system ˙̃X(t) =
ÃX̃(t) = h(X̃(t), 0) is globally exponentially stable at the
origin. Therefore, by using Lemma 1, we can conclude that
the estimation error dynamics ˙̃X(t) = h(X̃(t), F̃ ) is input-to-
state stable.

(i) Proof of robust performance index. One can take the
Lyapunov candidate of V (X̃) as follows:

V (X̃(t)) = X̃(t)TPX̃(t), (22)

in which P is positive definite symmetric matrix. By having
derivative of (22), one can have:

V̇ (X̃(t)) =X̃(t)TP ˙̃X(t) + ˙̃X(t)TPX̃(t)

=X̃(t)TP (ÃX̃(t) + B̃1F̃ )

+ (ÃX̃(t) + B̃1F̃ )TPX̃(t).

(23)

Therefore, by substituting (23) into (19), J12 can be ob-
tained as:

J12 =

∫ Tf

0

(X̃(t)TP (ÃX̃(t) + B̃1F̃ )

+ (ÃX̃(t) + B̃1F̃ )TPX̃(t)

+ X̃T (t)X̃(t)− γ2F̃T F̃ ) dt.

(24)

By extracting the vector block of Z = [X̃(t) F̃ ]T and
using Schur Complement, (24) can be rewritten as:

J12 =

∫ Tf

0

ZTRZ dt, (25)

in which,

R =

[
PÃ+ ÃTP + I P B̃1

B̃T1 P −γ2I

]
(26)

Consequently, for having J12 < 0, R should be negative
definite. By substituting Ã = Ā−LC̄, R < 0 is equivalent to
the following LMI:[

PĀ+ ĀTP −QC̄ − C̄TQT + I P B̃1

B̃T1 P −γ2I

]
< 0

where Q = PL. As a result, the condition (20) implies R < 0,
then J12 < 0. It is noticed that V (X̃(t)) ≥ 0, and from (19)
and J12 < 0, the robust performance index (18) can thus be
obtained. Therefore, the gain matrix of L = P−1Q can be
calculated ∴
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Now, by calculating the output error vector of ỹ = y − ŷ,
the feed-forward step of designing is finished. The next step
is to design a neural network and propose an updating rule for
weight matrices by using the output error ỹ.

As it was discussed in [33], based on the Universal Approxi-
mator theorem, a multi-layer neural network (MLP) with three
layers and updating rule of BPNN has the capability of iden-
tifying any nonlinear function. Therefore, as it was brought
earlier, for estimating nonlinear function of G, equation (13)
with the estimated weight matrices of Ŵ and V̂ is considered.
Moreover, the basic updating rules in BPNN are as follows:

˙̂
W = −η1(

∂J2

∂Ŵ
)− ρ1||ỹ||Ŵ ,

˙̂
V = −η2(

∂J2

∂V̂
)− ρ2||ỹ||V̂ ,

(27)

in which, J2 is the cost function of the system that should be
minimized. For finding an updating rule to minimize the cost
function, the following theorem is discussed.

Theorem 2: Given the nonlinear model of (7) and the
observer scheme of Figure 2 with observer equation of (14).
If the ANN weights are trained as

˙̂
W =− η1(ỹTCÃ−1)T (σ(V̂ ˆ̄X))T − ρ1||ỹ||Ŵ ,

˙̂
V =− η2(ỹTCÃ−1Ŵ (I − Λ(V̂ ˆ̄X)))T ˆ̄XT

− ρ2||ỹ||V̂ ,

(28)

where Λ(V̂ ˆ̄x) = diag
{
σ2
i (V̂i

ˆ̄X)
}

, and i = 1, 2, ...,m, then,

X̃, W̃ , Ṽ , ỹ ∈ L∞ are the estimation error, the weights
error, and the output error which are all bounded. η1 and η2
are positive learning rate and ρ1 and ρ2 are small positive
numbers.

Proof : By defining cost function J2 =
1

2
(ỹT ỹ) and using

the basic updating rule for BPNN that is introduced in (27),
it is obvious that the only terms that should be changed into

simpler terms are
∂J2

∂Ŵ
and

∂J2

∂V̂
. In order to solve this issue,

two terms are introduced as below:

netŴ = Ŵσ(V̂ ˆ̄X(t)),

netV̂ = V̂ ˆ̄X(t).
(29)

Now,
∂J2

∂Ŵ
and

∂J2

∂V̂
can be decoupled into four partial

derivatives of:

∂J2

∂Ŵ
=
∂J2
∂ỹ
× ∂ỹ

∂X̂
× ∂X̂

∂netŴ
×
∂netŴ
∂Ŵ

∂J2

∂V̂
=
∂J2
∂ỹ
× ∂ỹ

∂X̂
× ∂X̂

∂netV̂
×
∂netV̂
∂V̂

(30)

By using the cost function equation, one can get:

∂J2
∂ỹ

= ỹT . (31)

By having ỹ = C̄(X(t)− X̂(t)), it can be obtained that:

∂ỹ

∂X̂
= −C̄. (32)

For the third term of each equation in (30), by considering
(14) and (29), following equations can be achieved:

∂
˙̂
X

∂netŴ
= (Ā− LC̄)

∂X̂

∂netŴ
+ I,

∂
˙̂
X

∂netV̂
= (Ā− LC̄)

∂X̂

∂netV̂
+ ŴT ∂(σ(V̂ ˆ̄X(t)))

∂netV̂
.

(33)

By having partial derivatives of a vector on a vector, and by
considering (2), one can have:

∂(σ(V̂ ˆ̄X(t)))

∂netV̂
=
∂(σ(V̂ ˆ̄X(t)))

∂(V̂ ˆ̄X(t))

=


1− σ2(V̂1

ˆ̄X(t) 0
. . .

0 1− σ2(V̂n
ˆ̄X(t)


in which, V̂i i = 1, ..., n is the ith row of the weight matrix
V̂ . Therefore, the above equation can be written as belows:

∂(σ(V̂ ˆ̄X(t)))

∂netV̂
= 1− Λ(V̂ ˆ̄X(t)), (34)

in which, Λ(V̂ ˆ̄X(t)) = diag[σ2(V̂i
ˆ̄X(t)] i = 1, ..., n.

In (33), static approximation of the gradient can be assumed
due to the fact that the network converges relatively fast [30].

Therefore,
∂

˙̂
X

∂netŴ
= 0 and

∂
˙̂
X

∂netV̂
= 0. Based on this

assumption, (33) can be written as:

0 = (Ā− LC̄)
∂X̂

∂netŴ
+ I,

0 = (Ā− LC̄)
∂X̂

∂netV̂
+ ŴT ∂(σ(V̂ ˆ̄X(t)))

∂netV̂
.

Consequently, by using above equation and (34), following
equations can be obtained:

∂X̂

∂netŴ
= −(Ā− LC̄)−1,

∂X̂

∂netV̂
= −(Ā− LC̄)−1ŴT (1− Λ(V̂ ˆ̄X(t))),

(35)

By considering the definition of (29), the forth term of
equations of (30) are achieved:

∂netŴ
∂Ŵ

= σ(V̂ ˆ̄X(t)),

∂netV̂
∂V̂

= ˆ̄X(t).

(36)

Now, by substituting (31), (32), (35) and (36) in (30), the
following equation is obtained:

∂J2

∂Ŵ
= (ỹTCÃ−1)T (σ(V̂ ˆ̄X))T

∂J2

∂V̂
= (ỹTCÃ−1Ŵ (I − Λ(V̂ ˆ̄X)))T ˆ̄XT

(37)

By replacing (37) into the updating rule of (27), the equa-
tions of (28) can be obtained and based on the BPNN approach



6

and universal approximator theorem, the neural network whose
weight matrices are updated based on (28) is stable ∴

Procedure 2. For designing the robust neural network fault
estimator, the following procedure is noted:

i Select the matrix A so that pair of (C,A) is observable.
ii Construct the augmented system in the form of (17).

iii Solve the LMI (20) to achieve the matrices P and Q in
order to have L = P−1Q.

iv Consider a three-layer back propagation neural network
with initial random weights.

v Update the weight matrices W and V using (28).
vi Obtain the augmented state of X̂ and compare it to the

real value of X .

The flowchart of the algorithm is depicted in Figure 3. In
this flowchart, Ts is the initial time of simulation and TFinal
is the end of it.

MIMO Sys (4)
Initialize NN 

weights, W & V

Output of NN 

(10)

Design Robust Gain 

via Theorem 1

Estimate the 

States via Fig. 2

Build Augmented 

Sys (15)

Assume Matrix 

A (5)

Update W & V 

via Theorem 2

Start

Calculate the 

Errors
Ts = 0 Ts < TFinal

End

N

Y

Fig. 3. Flowchart of the Combined Algorithm.

IV. FAULT ESTIMATION FOR 4.8 MW WIND TURBINE
BENCHMARK

In this section, the proposed robust fault estimation based
on ANN in section III is simulated for wind turbine model.
First, the nonlinear model of the system is investigated and
then the method is applied to the benchmark.

A. Model Dynamics

For the detailed nonlinear model of the system and inter-
nal relations, one can see [34]. In addition, the state-space
benchmark can be modeled as follows [31]:

ẋ = A(x)x+Bu,

y = Cx,
(38)

where x = [ωr ωg θδ β̇ β τg]
T is the state vector

and u = [τg,r βr]
T is the control input from the internal

controller. The related matrices of the system are given in
(39) and (40):

A =



A11 A12 A13 0 0 0

A21 A22 A23 0 0 − 1

Jg

1 − 1

Ng
0 0 0 0

0 0 0 −2ζωn −ω2
n 0

0 0 0 1 0 0
0 0 0 0 0 −αgc


, (39)

B =

[
0 0 0 0 0 αgc
0 0 0 ωn 0 0

]T
,

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (40)

where A11 = −Bdt +Br
Jr

+
1

2Jrλ2
ρπR5Cq(λ, β)ωr , A12 =

Bdt
NgJr

, A13 = −Kdt

Jr
, A21 =

ndtBdt
NgJg

, A22 =

−ηdtBdt
N2
g

−Bg

Jg
,

and A23 =
ηdtKdt

NgJg
. The physical meaning of the parameters

can be found in [31]. In addition, the numerical quantity of
these parameters can be seen in [35].

B. Validating on Wind Turbine
B1. Luenbeger NN observer for WT
Before validating the proposed algorithm in wind turbine

benchmark, we test the system by an approach based on Luen-
berger observer and ANN without considering fault estimation
capability [34]. For having such observer, the model of (41)
is considered. Detailed information on the steps of designing
neural network Luenberger observer can be found in [34].

ẋ(t) = Ax+ g(x, u),

y(t) = Cx(t),
(41)

However, as the scenario in this paper is faulty system, the
input actuator faults are considered to be 20% effectiveness
loss on τg,r occurred in t = 2500s − 3500s and 20%
effectiveness loss on βr occurred in t = 3000s − 4000s. No
disturbances are considered for this problem. The expectation
is that, two faulty states of τg and β are estimated accurately.
The results of this observer can be seen in Figures 4, and 5
from which we can see the system states cannot be estimated
well. As a result, the algorithm in [34] can track the healthy
system states rather than faulty system states, while having
nothing capability to track the faulty signals.
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Fig. 4. Pitch Angle Signal and its Estimation Using Luenbeger Observer.

B2. NN fault estimator for WT
First step to validate robust neural network fault estimator

is to obtain the robust LMI gain in theorem 1. In order to get
this gain, A is assumed as:

A =


−20 3 4 2 3 0

5 −30 4 3 6 1
10 2 −20 3 4 5
3 17 2 −21 11 9
9 12 2 0 −25 4
6 20 8 1 0 −35

 ,
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Fig. 5. Generator Torque Signal and its Estimation Using Luenbeger Observer.

The important criteria in choosing A is that it should be
Hurwitz and the pair of (C,A) is observable. Bf is chosen
equal to B in equation (40) to fully cover the actuators of the
system. Therefore, Ā in (10) can be written as:

Ā =



−20 3 4 2 3 0 0 0
5 −30 4 3 6 1 0 0
10 2 −20 3 4 5 0 0
3 17 2 −21 11 9 0 ωn
9 12 2 0 −25 4 0 0
6 20 8 1 0 −35 αgc 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,

By considering Bd = [1 1 1 1 1 1]T , one can write:

B̄d =


1 1 1 1 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


T

,

Now, by considering γ = 0.1, LMI of (20) can be obtained
through LMI solver in MATLAB. Then, L can be achieved
via theorem 1 and be shown as:

L = 103 ×



51.91 −0.67 −0.67 −0.67
−2.51 43.75 −0.37 −0.36
370.24 397.04 367.59 456.04
137.05 163.01 118.87 133.62
−2.52 −0.38 43.75 −0.39
−2.54 −0.40 −0.41 43.70
304.20 318.73 318.71 573.21
−0.02 −0.02 −0.02 −0.02


As in Luenberger observer problem, the input actuator faults

are 20% reduction on τg,r occurred in t = 2500s−3500s and
20% reduction on βr occurred in t = 3000s− 4000s.

For the next step, ANN should be set with updating rule
of (28). The ANN training data comes from the benchmark
introduced in section IV-Part A. The input of model, which
is u = [τg,r βr]

T goes directly to ANN model, However,
only the error vector of the output of the system is applied
to ANN for learning process. By choosing 20 neurons in
hidden layers, η1 = 500 and η2 = 500, the results in Figures
6, 7, 8, and 9 can be compared. In these four diagrams, four
measurable states of wind turbine model, e.g. ωr, ωg , β and
τg are depicted (the red solid line) in comparison to the
related output of robust neural network state estimator (the

blue dash line). As it can be vividly seen, the estimations
getting from the robust ANN algorithm can follow the outputs
of the main system accurately. The estimation errors converge
to zero in all outputs. In addition, in Figure 10 and 11, the
two unmeasured states, e.g. θδ , and β̇, are exhibited. The
comparison of the red solid line (which is the output of the
system) and the blue dash line (which is the estimation) can
be vividly explained the effectiveness of the robust neural
network algorithm in estimating the unmeasured states.

Now, by considering faults as described earlier on two
inputs of the main system, τg,r, and βr, the influence of fault
on βr can not be easily seen in the state β (Figure 8). The
healthy signal, which is green dash line is not so different
with the red solid line, which is faulty signal. However, by
comparing the healthy signal and faulty one in Figure 9, the
effect of fault on τg,r is completely recognizable on the state
τg . By the way, without considering that it is recognizable
in the output or not, the robust neural network algorithm
can precisely estimate the occurred faults. The results are
also well-illustrated in Figures 12 and 13. In addition, one
can see the RMS value of the estimation errors (RMSE) and
normalized estimation error (NRMSE) in Table I, which is
calculated based on (4) and (5). As one can see, the RMSE and
NRMSE for each states and faults are very small, relatively.

TABLE I
RMSE VALUE OF EACH STATES AND FAULTS.

States Range RMSE NRMSE (%)

ωr 0 : 1.82 rad/s 0.0176 0.98

ωg 0 : 180 rad/s 1.1782 0.65

β -3.85 : 30.50 rad 0.1982 0.57

τg 0 : 32600 Nm 1.71 0.0052

θδ 0 : 0.0017 0.000041 2.14

β̇ -183.7 : 132.5 rad/s 1.4 0.44

Faults on τg,r -6526 : 0 Nm 42.87 0.65

Faults on βr -10.60 : 0.2 Nm 0.067 0.62

B3. Some discussions on the proposed algorithm
It is well-illustrated in the literature that neural networks are

powerful in estimating complex nonlinear models. However,
there are some difficulties related to the simulation. The very
challenging point is that due to the big value of the signals,
great matrices, and computational cost, the training process is
quite time-consuming. The other important issue is the solver
steps in Matlab. By increasing the step size of the solver, one
can get faster training results. However, it influences directly
on the accuracy of the estimation performance. Having a
trade-off between these items, an acceptable accuracy with
satisfactory speed can be achieved.

V. CONCLUSION

In this paper, a robust fault estimation approach has been
proposed based on artificial neural networks. The first dif-
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Fig. 6. Rotor Speed Signal and its Estimation.

Fig. 7. Generator Speed Signal and its Estimation.

Fig. 8. Pitch Angle Signal and its Estimation.

Fig. 9. Generator Torque Signal and its Estimation.

Fig. 10. Torsion Angle and its Estimation.

Fig. 11. Pitch Angular Velocity and its Estimation.
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Fig. 12. 20% Faults on Reference of Generator Torque Actuator and its
Estimation.

Fig. 13. 20% Faults on Reference of Pitch Angle Actuator and its Estimation.

ficulty to confront in this paper is the unmeasurable states
in MIMO systems such as wind turbines. To cope with this
problem, the dynamical model is decoupled into linear and
nonlinear block. For the nonlinear one, a fully connected ANN
is developed to identify the nonlinearities. For relaxing the
conditions on fault modeling, a model is proposed and a robust
LMI is studied to deal with unmodeled faults and disturbances
using input-to-state stability lemma. The approach is validated
on a 4.8 MW wind turbine benchmark. A case study is
investigated for 20% loss of actuators on each actuator. The
results validate the effectiveness of the proposed algorithm.
The faults are estimated successfully and the outputs of the
observer converge the real output, simultaneously.

In the future, it would be encouraging to develop neural
network based fault tolerant control algorithms for nonlinear
dynamic systems. Moreover, another interesting research topic
is to develop prognostics algorithms for wind turbine systems
by using neural network techniques.
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