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Abstract— Acoustic tomography can deliver accurate 

quantitative reconstruction of the covered temperature 

distribution with low equipment cost. For the application of real-

time temperature field monitoring, both the temporal resolution 

and reconstruction speed are of great significance. In this paper, 

we developed a novel online time-resolved reconstruction (OTRR) 

methods, which can improve temporal resolution to capture 

dynamic changes and accelerate the tomographic reconstruction 

process for online real-time monitoring. Firstly, by exploiting the 

redundancy of the temporal information, a temporal 

regularisation is designed based on adaptive auto aggressive (AR) 

model to reduce the required amount of TOF data per frame. A 

sliding overlapping window is applied to further improve the 

reconstruction accuracy. Secondly, recursive reconstruction 

process performs a sliding iteration over each data segment. For 

the reconstruction of each frame, the online computation is non-

iterative. Numerical simulation and lab-scale experiment are 

performed to validate the proposed OTRR method. The 

reconstruction images are compared with the online time-resolved 

reconstruction methods based on Kalman filter. Results show that 

our method can improve the temporal resolution the 

computational time and produce acceptable results. 

Keyword: time-resolved tomography; online reconstruction; 

acoustic tomography. 

I. INTRODUCTION 

Acoustic tomography utilizes the TOF measurements along 

multiple sound propagation ray paths to reconstruct the sound 

speed distribution[1]. Based on the reconstructed sound speed 

distribution, the internal structure and properties of the medium, 

for instance, the air temperature distribution within the sensing 

area can be estimated. Owing to its non-invasive nature, fast 

imaging speed, low equipment cost and scalability for variety 

of measurement range, acoustic tomography has attracted 

considerable interest in various applications[2]. Well-

investigated applications using acoustic tomography include 

the near surface atmosphere temperature and wind velocity 

monitoring[3-5], the furnace boiler temperature field 

measurement[6, 7], medical ultrasound[8-11], and ocean 

current monitoring imaging[12]. 

Our previous study focus on the imaging of static 

temperature field[1]. However, the acoustic tomography system 

may lack a sufficient temporal resolution to reconstruct the 

dynamic features of some fast-changing temperature fields. The 

temperature changes during the measuring time of each frame, 

for example, the motion of heat source, will blur the 

tomographic image and affect the temperature reconstruction 

accuracy. Research has tended to focus on accelerating the data 

acquisition process to improve the temporal resolution, with the 

use of broadband acoustic transducers and parallel data 

collection. Unfortunately, due to hardware limitations and the 

high implemental cost of the air ultrasonic transducers, it is 

generally difficult to apply a fully parallel data acquisition of 

measuring the TOFs along all transmission ray paths 

simultaneously. Besides, the minimum data acquisition time for 

each ray path is limited by the speed of sound and the size of 

sensing area. For our lab-scale experimental setup, the 1 m2 

sensing area requires a minimum of 20 ms measuring time for 

the longest ray path to propagate. 

Besides reducing the data acquisition time, an alternative 

way is to use a smaller number of TOFs per frame and 

reconstruct an under-sampled tomographic image of the 

temperature field. Consequently, the measuring time per frame 

is largely reduced and the temporal resolution can be greatly 

improved.  

Under-sampled reconstruction with fewer TOFs can improve 

the temporal resolution, but it also brings aliasing artefacts in 

image space. Compared to the conventional fully sampled 

tomographic reconstruction, this under-sampled reconstructed 

image suffers from the lack of spatial resolution to resolve the 

temperature field distribution [13]. Fortunately, the redundancy 

of information in the temporal domain can be employed to solve 

this problem.  The temporal redundancy provides additional 

information for the tomographic reconstruction of each frame. 

Serval time-resolved image reconstruction methods were 

developed [13-18]. These time-resolved imaging algorithms 

were able to reconstruct the high-quality tomographic image 

from under-sampled data sets and resolved the dynamic 

changes which could not be recognised by the conventional 

fully-sampled tomographic reconstruction. Generally, these 

time-resolved reconstruction methods can be categorised into 

three main branches. 

In the first branch, the temporal redundancy across 

consecutive frames is used to build different regularisation term 

in the algebraic-based reconstruction. These regularisations are 

designed for a specific application, such as temporal 

smoothness regularisation for general cases, spatial-temporal 

total variation for the temporal piecewise constant data, 

temporal non-local means regularisation for the structural 

similarity between frames, and nuclear norm regularisation for 

the low-rank structure of a time series data [16, 17, 19]. These 

methods are able to reconstruct images with good quantitative 

accuracy using very few data. However, most of the methods 

require iterative reconstruction, which is more suitable for 

offline reconstruction rather than online reconstruction for real-

time monitoring. 

Another approach of the time-resolved reconstruction 

method is based on the Karhunen Louve transform (KLT), 

where the temporal redundancy information is extracted from 

the data [13, 20-22]. It utilises the sparse representation of 
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image series under KLT domain with the temporal basis 

functions. The temporal basis functions can be obtained from 

under-sampled reconstructed images. However, these methods 

rely on the implicit assumption that the principal basis functions 

estimated from the low-resolution data closely approximate the 

original KLT basis functions. Clearly, this approximation 

requires a sufficient number of measurements in the training 

data. Besides, it is also an offline iterative reconstruction 

method and not suitable for real-time monitoring. 

Thirdly, there is also a statistical approach of time-resolved 

reconstruction based on the Kalman filter or the unscented 

Kalman filter [23, 24]. The tomographic reconstruction 

problem is formulated as a state estimation problem and the 

temporal redundancy can be interpreted into the state transition 

model of the Kalman filter. It has the advantages of fast 

reconstruction and online reconstruction potential. However, 

there is still a problem with this approach. The Kalman filter 

reconstruction requires that the state transition error is 

Gaussian, but it is not always the case. It is necessary to find a 

whitening transform for the state transition model, which will 

significantly increase the complexity of the algorithm [19]. 

In this paper, we developed an online time-resolved 

reconstruction method, which is able to reconstruct high quality 

time-resolved images using fewer TOFs per frame. Our main 

novelties can be summarized as follow. Firstly, by exploiting 

the redundancy of information in the temporal domain, a 

temporal regularisation is designed based on adaptive auto 

aggressive (AR) model to reduce the required amount of TOF 

data per frame. A sliding overlapping window is applied to 

further improve the reconstruction accuracy. Secondly, a non-

iteration scheme is used for the time-resolved reconstruction. 

Instead of conducting iterative calculation upon each data set 

until convergence, the recursive reconstruction process 

performs a sliding iteration over each data segment. For the 

reconstruction of each frame, the online computation is non-

iterative. 

II. METHODS  

A. Fundamental of acoustic tomography  

1) Forward problem 

The forward problem of acoustic tomography establishes the 

relationship between the TOF measurements and the speed of 

sound which is dependent on temperature. Given the sound 

propagation ray paths, the temperature field distribution can be 

reconstructed from the TOF measurements. Throughout 

literature, the straight ray model has been widely used to 

approximate the true propagation ray path with a straight line 

connecting the transmitter and receiver. The modelling error for 

using the straight ray model was quantitatively investigated 

[25], which showed that the straight ray model can be applied 

for small-scale measurement setups.  

The TOFs and images for all the frames of the tomographic 

images can be stacked as columns and denoted as 𝑿 =
[𝒙1, 𝒙2, … , 𝒙𝑇] and 𝒀 = [𝒚1, 𝒚2, … , 𝒚𝑇], where T is the number 

of frames. Then the forward problem can be written as 𝒀 = 𝑨𝑿, 

where the block diagonal matrix 𝑨  is given as 𝑨 =

𝑑𝑖𝑎𝑔{𝑨1, 𝑨2, … , 𝑨𝑇} .The forward problem for frame t is 

defined as: 

 1,2,...,t Tt t ty = A x，  (1) 

where 𝒙𝒕 ∈ ℝ𝑁×𝟏  denotes the tomographic image vector 

which describes the travel speed reduction distribution and 𝑁 is 

the pixel number. Its element  𝑥𝑡,𝑗 = 1 𝑐𝐿,𝑗(𝑇𝑒𝑚𝑝)⁄  is the speed 

reduction in the j-th pixel. 𝒚𝑡 ∈ ℝ𝑀×𝟏  as the TOFs 

measurement vector and M is the measurement number for each 

frame. 𝑨𝑡 ∈ ℝ𝑀×𝑁 represents the ray length matrix for frame t 

and its element 𝑎𝑖,𝑗  is the segment length for each ray path 

across one pixel. 𝑐𝐿,𝑗(𝑇𝑒𝑚𝑝𝑗) = √𝑅𝛾𝑇𝑒𝑚𝑝𝑗  is Laplace's 

speed of sound in the j-th pixel, where 𝑇𝑒𝑚𝑝𝑗 denotes the 

temperature at j-th pixel, 𝑅 = 287 𝐽 𝑘𝑔−1 𝐾−1 is the gas 

constant and 𝛾 = 1.4  is the specific heat ratio   assuming a 

constant gas composition[1]. 

The tomographic reconstruction firstly obtains the speed of 

sound which is a function of the temperature distribution. 

Subsequently, the temperature distribution can be estimated 

from the TOF by solving a tomographic inverse problem.  

 

Figure 1: Tomographic experiment setup with 16 

transmitters (red points) and 16 receivers (blue points). 

2) TOF data acquisition 

The measurement setup of the acoustic travel-time 

tomography system is illustrated in Figure 1. 16 transmitters 

and 16 receivers are placed with uniform spacing around the 

boundary of the sensing area. They form 192 transducer pairs 

which are used to measure the TOFs. Currently, a semi-parallel 

data collection scheme is used. In the experiments, all 

transmitters are activated sequentially every 10 ms, and during 

each 10 ms repetition period, all the received waveforms at 

different receivers are measured simultaneously. The total 

measuring time for each frame is 20ms *16=320 ms. Therefore, 

the acoustic tomography system is not able to resolve dynamic 

changes within the 320 ms measuring time.  

There are two ways to improve the temporal resolution of the 

acoustic tomography system: (1) reducing the TOFs measuring 

time; and (2) reducing the number of TOFs per frame for 

reconstruction. In practical, it is very difficult to further 

reducing the TOFs measuring time and the reason is given as 

follow. Firstly, due to the transducer hardware limitation, it is 

very difficult to find an appropriate broadband ultrasound 

transmitter for fully parallel data collection to reduce the 

measuring time. Secondly, accurate TOF estimation requires 

that the repetition period should be around 20 ms. If the 

repetition period less than 20 ms, there will be considerable 



interference from the previous signal sent from another 

transmitter. Therefore, reducing the number of TOFs per frame 

is the only way to improve the temporal resolution. If a 

minimum number of 36 TOFs corresponding to three 

transmitters are used for each frame, then the temporal 

resolution can be greatly improved from 320 ms to 60 ms. 

B. OTRR method 

The temporal resolution of the acoustic tomography system 

can be greatly improved if fewer TOFs are used for the 

reconstruction per frame. However, the improvement of 

temporal resolution is at the cost of spatial resolution of the 

reconstructed image. Reconstruction with fewer TOFs will 

introduce aliasing artefacts in image space. To solve this 

problem, temporal regularization is applied in the proposed 

time-resolved tomographic reconstruction method and details is 

presented as follow. 

1) Inverse problem and objective function 

The regularized inverse problem is defined as below. 

 
2 2

1 2F 2
1

min +
T

t

 


  t
X

X Y - AX Fx R(X)  (2) 

where ‖𝑭𝒙𝒕‖𝟐 is used to enforce spatial smoothness for each 

frame, and 𝑭 is a linear differential operator [26]. 𝑹(𝑿) is used 

to enforce temporal regularity for the time series. 𝜶𝟏 and 𝜶𝟐 are 

two predefined regularization parameters.  

2) Temporal regularization 

Various temporal regularization methods have been 

developed to improve the spatial resolution for the time-

resolved tomographic reconstruction. For example, in the case 

of Electrical Resistance Tomography (ERT) where the 

consecutive frames can be well approximated by a piecewise 

constant function, the spatial-temporal Total Variation 

regularization is selected for the tomographic 

reconstruction[16]. With dynamic MRI used for medical 

imaging, where the MRI sequence can be approximated by a 

low rank matrix, nuclear norm can be used for the tomographic 

reconstruction [19]. Another case is the 4DCT, where the 

structure similarity across consecutive frames is used to build 

the non-local mean regularization for reconstruction. However, 

these regularizations are not suitable to be used here for two 

reasons: (1) the dynamic temperature field is generally smooth 

on the time domain, and they do not have the aforementioned 

features; and (2) spatial-temporal TV, nonlocal mean 

regularization and low rank regularization methods require 

iterative computation, which may not be suitable for fast online 

reconstruction. 

Temporal smoothing regularization is applied in the 

proposed OTRR method based on the assumption of similarity 

of the reconstructed frames [14]. Apart from this temporal 

smoothing regularization, no other prior knowledge is used for 

any specific target temperature field. Generally, the temporal 

regularization is designed based on the difference among 

successive frames. 
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R(X) x - x  (3) 

In the cases when the dynamic characteristics happen within 

the region of interest and the motion is hard to predict, using 

more frames instead of only adjacent time frames will 

significantly improve the reconstruction quality [14]. Here an 

adaptive AR model is applied. For a group of time series, we 

define the AR prediction for frame t 𝒙𝑡
∗as  
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where  𝒘𝑡 ∈ ℝ𝑇×1 is a normalized AR weights defined as 
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where 𝜌  is the smoothing parameter. Therefore we can 

define a penalty term based on this AR model as 
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3) Iterative reconstruction 

To solve the inverse problem, we firstly split the inverse 

problem into two sub problem based on the forward–backward 

splitting method (FBS)[27]. 
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Sub-problem 1 involved the data fidelity and spatial 

regularization term, and do not include the temporal 

regularization term. Therefore, each frame can be reconstructed 

independently.  

 
2 21/2
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It can be solved by our modified SIRT using online 

reconstruction and offline iteration method[26]. 
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𝑷  is the diagonal preconditioner: 𝑷 = diag(1/𝐿𝑃1, 1/
𝐿𝑃2, … ,1/𝐿𝑃𝑁), and W is the Normalised weight operator: W=
diag(1/𝐿𝑅1, 1/𝐿𝑅2, … , 1/𝐿𝑅𝑀), where𝐿𝑃𝑗 = ∑ 𝑎𝑖,𝑗

𝑀
𝑖=1 , 𝐿𝑅𝑖 =

∑ 𝑎𝑖,𝑗
𝑁
𝑗=1 . 𝑚 denotes the inner iteration index for sub problem 

1. 

Then we stack the images as: 
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Which can be used to solve the sub-problem 2. 

For the sub-problem 2 
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Once the image series 𝑿𝒊+1/2  is obtained, we can solve it 

using one step gradient descent. This is because that we don’t 

need to solve this sub-problem 2 very precisely for each i-th 

outer iteration. 

 
1 1/2 1/2

2 ( )i i i

t t t tx    x x Xw  (13) 

Then  

 1 1 1

1 ,...,i i i

T

     X x x  (14) 

In summary, the reconstruction process is illustrated as 

below: 

Input: 𝒀, 𝑨, IterNo, 𝑭, w, K, 𝜖 

Output: 𝑿 

Initialize: 𝑿𝟎=0 

For i=1: IterNo  

 For t=1: T 

𝒙𝒕
𝒊+1/2

= min
𝒙𝒕

‖𝒚𝑡 − 𝑨𝑡𝒙𝑡‖2
2 + 𝜶𝟏‖𝑭𝒙𝒕‖𝟐

𝟐 

 End 

𝑿𝒊+1/2 = [𝒙𝟏
𝒊+1/2

, 𝒙𝟐
𝒊+1/2

, … , 𝒙𝑻
𝒊+1/2

] 

𝑿𝒊+1 = min
𝑿

‖𝑿 − 𝑿𝒊+𝟏/𝟐‖
𝑭

𝟐
+ ∑ 𝜶𝟐{‖𝑿𝒘𝑡 − 𝒙𝑡‖𝟐

𝟐}

𝑻

𝒕=𝟏

 

 If ‖𝑿𝒊+1 − 𝑿𝒊‖
𝐹

2
≤ 𝜖 break 

End  

4) Segmentation for large group of data set 

For the reconstruction of a large number of tomographic 

images, it is necessary to divide the whole data set into smaller 

segments and the reason is twofold. Firstly, the 

abovementioned time-resolved imaging method yield iterative 

procedures considering all the TOFs are measured and stored in 

advance, which will result in large computational cost. 

Secondly, it is not necessary to use all time frames to calculate 

the temporal regularization term, since the similarity between 

frames with large temporal distance is very weak. In this paper, 

each data segment consists of 16 frames’ TOFs, and the frames 

of each segment can be reconstructed separately.  

However, with the use of AR weights for temporal 

regularization, the reconstructed images at both ends of the 

segments will have larger reconstruction error compared to the 

images in the middle. For better reconstruction accuracy, we 

need to make sure that all the frames are reconstructed when 

they are in the middle of the segments. Therefore, the 

overlapped windowing data segmentation is used instead of 

non-overlapped windowing. An example of the overlapped 

windowing data segmentation is shown in Figure 2. A sliding 

window with the length of 16) and 50% overlapping is applied 

to the TOF data sets. The 8 frames within the middle of each 

segment (i.e. the frame 5-12 for the window 1 and frame 13-20 

for the window 2) will be reconstructed since they are 

considered to have lower reconstruction error. Special cases are 

the first and last segments, where the reconstruction outputs 

will also contain the frame in the beginning and end. Due to the 

50% overlapping sliding window, most of the frames are 

reconstructed when they behave as the middle frames of 

different segments. A comparison is shown in Figure 3. By 

using the overlapping window, the reconstruction errors of the 

frames at both ends of the non-overlapping window are 

reduced.  

 

Figure 2: Data segmentation based on a sliding window.  

 

 

Figure 3: The comparison of the reconstruction error with 

non-overlapping segmentation (red) and 50%overlapping 

segmentation (blue) 

 

The overlapping percentage is adjustable. A larger 

overlapping percentage helps to improve the temporal 

smoothness and continuity for the time series images, whereas, 

it also increases the computational cost. An appropriate 

overlapping percentage should be chosen for a specific 

application.  

5) Recursive online reconstruction 

Iterative computation is conducted to solve the two sub-

problems on each data segment until convergence, which is not 

suitable for online monitoring system due to the large 

computational cost. To accelerate the reconstruction process, a 

recursive online reconstruction is applied. the general idea is to 

use the reconstruction results of the previous data segment as 

the initial guess to reconstruct the frames in the next segment. 

Higher overlapping percentages help to improve the temporal 

correlation between segments. As a result, the outer loop 

iteration number IterNo can be reduced. In this paper, the 

overlapping percentage can be set to the highest level. For the 

16 order AR model here, the overlapping percentage is 

increased to 15/16=0.9375, which enables us to cancel the outer 

loop and set the IterNo to one. Since both sub-problems are 

solved non-iteratively, the reconstruction of each data segment 



becomes non-iterative. A special case is the first segment since 

it is solved iteratively. 

6) Connection with previous works 

The dynamic tomographic reconstruction method using 

Kalman filter has been successfully applied in acoustic 

tomography, electrical tomography, dynamic MRI and etc [19, 

23, 24, 28]. Different from algebraic-based algorithm, the 

Kalman filter reconstruction is a statistical-based method, 

which formulates the tomographic inverse problem as a state 

estimation. The reconstruction of the temperature distribution 

utilize both the information from TOFs measurements and the 

prior knowledge from the temporal evolution from the state 

transfer model [28]. Similar to the OTRR methods, this method 

also has the advantage of time-resolved imaging and non-

iterative reconstruction. Generally, the state transfer and 

measurement equations are presented below. 

 
t t -1 t
x = Px + w  (15) 

 
t t t
y = A x + n  (16) 

where 𝑷  is the state transition matrix based on a spatial-

temporal AR model, which describe the relationship between 

consecutive frames [29]. For the estimation of temperature field 

is to minimize the following cost function: 
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where the measurement noise 𝑛 is considered as a Gaussian 

white noise, so its covariance matrix is set as  𝚪𝒕
𝒏 = 𝑑𝑖𝑎𝑔(𝜎1), 

and 𝜎1  is a predefined parameter. The prediction error 𝑤𝑡  is 

considered as a Gaussian white noise too, so its covariance 

matrix is set as  𝚪𝒕
𝒘 = 𝑑𝑖𝑎𝑔(𝜎2), and 𝜎2 is another predefined 

parameter. 𝑪𝒕+𝟏|𝒕 is the time update covariance matrix, which 

is updated for each frame. The reconstruction for each frame is 

completed in two steps. 

Step 1: Update in measurement 

 1

| 1 | 1( )T T

t t t t t t t t t



  K C A AC A Γ  (18) 
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Step 2: Update in prediction 
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For the initial guess of the reconstruction, we set 𝒙𝟏|𝟎 = 𝟎 

and 𝑪𝟏|𝟎 = 𝟎. 

Compared to the algebraic time-resolved reconstruction, it 

also uses a temporal smoothing regularization. The difference 

is that: (1) only adjacent frames are used to calculate the 

temporal regularization, and (2) the temporal regularization is 

weighted by the state transfer error covariance.  

However, as is illustrated in [19], the Kalman filter assume 

the prediction error 𝒘𝒕 is Gaussian, due to motions or changes 

in concentration levels. Normally, these motions or changes are 

not random Gaussian, and thus it will not meet the demands of 

Kalman filtering. Besides, the Kalman filter based 

reconstruction has a slow convergence, that the reconstruction 

error of a few frames in the beginning is large. In comparison, 

new method has the flexibility to modify the reconstruction 

process of the first segments to be iterative, which will 

significantly improve the reconstruction error at the beginning. 

III. NUMERICAL RESULTS AND DISCUSSION 

In this section, the performance of the proposed method is 

evaluated with a series of numerical simulations. The sensor 

array setup is illustrated in Figure 1, which consists of 16 

transmitters and 16 receivers. They form 192 transducer pairs 

to measure the TOFs. The data collection is based on the semi-

parallel scheme. 16 transmitters are activated sequentially every 

20 ms. During each 20 ms repetition period, all the received 

waveforms at different receivers are measured simultaneously. 

In this simulation, the temperature field changes are assumed to 

take place during each 60 ms repetition period. Therefore 36 

TOFs from 3 transmitters are used for the reconstruction of each 

frame. The proposed OTRR method are compared with the 

Kalman filter reconstruction.  

Although optimal parameters can be used to improve the 

reconstruction quality, all the tomographic reconstruction 

results in this paper are obtained using the same parameters. 

These empirical reconstruction parameters are given in table 1. 

The 1x1 m sensing area is segmented into 400 pixels in the 

image reconstruction process and the dimension of each pixel 

is 5x5 cm, as shown in Figure 1.  

Table 1: Reconstruction parameters used in simulation 

Parameter Method Value 

N OTRR/Kalman 400 

M OTRR/Kalman 36 
α1 OTRR/Kalman 0.01 

α2 OTRR 0.1 

T OTRR 16 
IterNo OTRR 200 

ϵ OTRR 1e-10 

σ1 Kalman 1e-12 
σ2 Kalman 1e-13 

Three representative dynamic phantoms of the temperature 

field are simulated to evaluate the reconstruction performance, 

including the temperature field of a point heat source with 

periodic rapid temperature change, diffusive expanding shape 

change and rotational position change. There are 200 frames in 

total to be reconstructed, and the repetition period of the 

dynamic changes is 32 frames (1920 ms). The first 16 frames 

of the three simulated phantoms are shown in Figure 4. 

To quantitatively evaluate the overall reconstruction quality 

using the two methods, image relative error (IE) is adopted. 

Besides the relative image error for tomographic 

reconstruction, another three metrics are used to evaluate the 

accuracy of the reconstructed temperature field.  



 

Figure 4: The three temperature phantoms of heating 

process (top) expanding (mid) and rotation (bottom) 

Dislocation (DL) calculates the ratio of the distance between 

the heat source centre of the reconstructed and original 

temperature phantoms to the size of sensing area. DL evaluates 

the performance of the time-resolved reconstruction method on 

localizing the centre of the heat source. As small DL shows that 

the reconstruction method can resolve the motion of the heat 

source.  

Peak value (PV) calculates the relative error of the 

reconstructed peak value of the temperature field to the original 

phantom. PV measures the quantitative accuracy of the 

temperature field reconstruction. As small PV shows that the 

reconstruction method can resolve the dynamic temperature 

changes.  

Widening (WD) calculates the ratio of the reconstructed 

heated area to the original heated area. The average temperature 

is used as a threshold to extract the heated area from the 

temperature field images. WD measures the consistency of 

sizes of the estimated and target heated area. A high WD shows 

that the reconstruction method can resolve the dynamic heat 

source diffusion and expanding changes. Ideally, DL, PV and 

IE should be close to 0 but WD should be close to 1. 

In this simulation, the measurement SNR is set to be 35dB, 

which is close to the measurement noise level of the lab scale 

acoustic tomography system. The mean value of the 4 

quantitative metrics is presented in table 2. The convergence 

performance with respect to the image error is shown in Figure 

5. The evolution of all the four metrics with respect to different 

measurement noise level are plotted in  

Figure 6. The reconstructed images of the first 16 frames are 

given in Figure 7 and Figure 8. 

Firstly, for reconstruction image error of all three phantoms, 

the proposed OTRR method has much better performance 

compared to the Kalman filter method. Notably, both methods 

have smaller reconstruction IE for phantom 2 than the other two 

phantoms. The reason is that the dynamic changes of the 

expanding phantom here are much smaller than the other two 

phantoms, and the temporal redundancy of this phantom 2 was 

utilized by the two time-resolved methods for a better 

reconstruction accuracy.  

Secondly, for the DL metric, the proposed OTRR method 

outperforms the Kalman filter method as well. Especially for 

phantom3, where the dynamic change is mainly the rotation of 

the heat source. The OTRR method can accurately locate the 

dynamic heat centre with 4.57% location error, which is close 

to the reconstruction spatial resolution (5%). In comparison, the 

DL of Kalman filter method is 13.72%.  

Thirdly, for the PV metrics, both methods lack the accuracy 

provide quantitative reconstruction of the dynamic temperature 

change of the heat centre. Although the OTRR has a slightly 

better performance for phantom 3, where the peak value of 

temperature doesn’t change over time, its PV for other two 

phantoms are larger than 8%. The possible reason for PV 

inaccuracy is due to the over-smoothing on the temporal 

domain. Temporal regularization helps to reconstruct the 

temperature field images with fewer TOFs, but it also results in 

bias error in the reconstruction. 

For the shape metric WD, the OTRR method also has better 

performance, especially for the reconstruction result of 

phantom 2, where the dynamic characteristics of the 

temperature is mainly about the expanding shape change. The 

WD of the OTRR method is 0.95, compared to the 0.74 of the 

Kalman filter method. 

Table 2: The quantitative reconstruction metrics 

 Phantom1 Phantom2 Phantom3 

IE 

(%) 

Kalman 7.3 4.34 7.67 

OTRR 4.25 2.99 4.21 

DL 

(%) 

Kalman 3.75 3.99 13.72 

OTRR 1.46 1.05 4.57 

PV 

(%) 

Kalman 12.79 11.65 15.93 

OTRR 8.82 8.86 5.92 

WD 

(%) 

Kalman 1.17 0.74 0.89 

OTRR 1.14 0.95 1.08 

 

Figure 5 shows the convergence performance comparison of 

the two methods. Obviously, the OTRR method has a faster 

convergence compared to the Kalman filter method. This is 

because only the reconstruction of first segment is calculated 

iteratively when using the OTRR method. As a result, it is able 

to converge much faster than the Kalman filter method. The 

averaged computational time for the OTRR method is 6.51s. 

The computation time for Kalman is 0.57s for all 200 frames. 

Clearly, the Kalman filter method has much lower 

computational time compared to the OTRR method. The data 

acquisition system requires 60 ms to measure the received 

waveforms for 36 TOFs per frame. The 200 frames 

reconstruction time for OTRR is 6.51, and 32.55 ms per frame. 

This computational time per frame is less than the data 

collection time per frame. Therefore, the reconstruction can be 

conducted online without causing some computational delay. 



 

Figure 5: The reconstruction image errors of each frame for 

phantom 1 (top) phantom 2 (mid) and phantom 3 (bottom) 

 

To evaluate the noise tolerance of the two methods, 

measurements at different noise level are used in the simulation. 

The averaged metrics under different SNR condition is plotted 

in  

Figure 6. From the figure, it can be concluded the proposed 

OTRR method has a better noise tolerance than the Kalman 

filter method in terms of IE, DL and PV. For the shape metric 

WD, both methods have a good performance when the SNR is 

larger than 30 dB. 

Figure 7 and Figure 8 show the reconstruction images of the 

first 16 frames. The proposed OTRR method has much better 

performance compared to the Kalman filter method. As can be 

seen from the figure, the Kalman filter method has large 

reconstruction error in the first few frames. The artefacts were 

reduced in the following frames, but the dynamic characteristic 

details are poorly preserved, especially for the phantoms 3. 

From the reconstructed images, it is very difficult to accurately 

locate the heat centre, estimate the peak value and track the 

shape changes of the temperature field. Compared to the 

Kalman filter method, the OTRR method can resolve the 

dynamic changes for all three phantoms. The temperature peak 

value increase, the heated area expanding, and the rotational 

location change of the heat centre are clearly described in the 

reconstructed images. 

In conclusion, the simulation results show that the proposed 

OTRR method has better reconstruction accuracy, better noise 

tolerance, and faster convergence rate than the Kalman filter 

method.  

 

 

Figure 6: Quantitative metrics at different noise level 

 

 

Figure 7: Reconstruction of the first 16 frames using OTRR 

 

Figure 8: Reconstruction of the first 16 frames using 

Kalman 



IV. EXPERIMENTAL RESULTS AND DISCUSSION  

An experimental study is presented to evaluate the 

performance of the proposed OTRR method. The ultrasound 

transmitters and receivers used in the experiments are 

400ST120 and 400SR120, which operate at a resonant 

frequency of 40 kHz with 2 kHz bandwidth. The beam angle of 

the transducers is 120°, which allow each transmitter to 

simultaneously send ultrasound signals to 12 opposing 

receivers (also see Figure 1). As a result, the total number of 

TOF measurements for each frame is 192.  

A hairdryer was placed 5 cm above the sensing plane to blow 

hot air downwards into the sensing area and create a hotspot. 

The acoustic tomography system was then used to reconstruct 

the temperature field. During the experiment, the hair dryer was 

placed in 8 different positions. For each position, after the hair 

dryer was switched on and the temperature had stabilised, 20 

successive frames measurements were taken to test the 

repeatability of the temperature field reconstruction. For each 

frame’s measurement, all the 192 TOFs are recorded for the 

fully sampled reconstruction. The fully sampled tomographic 

images using all the 192 TOFs will be reconstructed based on 

the conventional SIRT method[1]. For the hot spot temperature, 

a thermocouple was used to provide the pointwise temperature 

measurements. For the thermocouple, type K air temperature 

probe (model Testo 0602 1793) and thermometer (model RS 

PRO 1314 Digital Thermometer) were used. The measurement 

accuracy is ±0.05 % + 0.5 °C, and the measurement resolution 

is 0.1 °C. Both the fully sampled reconstruction image and the 

point wise thermocouple measurement are used to evaluate the 

performance the OTRR and the Kalman filter method. Like the 

numerical simulations, 36 TOFs from 3 transmitters were used 

for the reconstruction of the under-sampled frame. The 

measuring time for this 36 TOFs is 60 ms, which is the target 

temporal resolution. To evaluate the performance of OTRR, the 

hot spot is assumed to change every 60 ms. 

Table 3: the temporal resolution comparison between fully 

sampled reconstruction and the OTRR method 

 Fully sampled OTRR 

Temporal resolution 640 ms 60 ms 

The comparison between the fully sampled tomographic 

reconstructions and the under-sampled reconstructions using 

both OTRR and Kalman filter method are presented in Figure 

9. Using the fully sampled reconstruction results as the ground 

truth, then the quantitative reconstruction metrics, the IE, PV, 

DL and WD can be calculated, which are shown in Table 4.  

The reconstruction results indicate that the under-sample 

images using OTRR method can resolve the position change of 

the hot spot, but the reconstructed image has large distortion 

compared to the fully sampled images. From table 3, the 

reconstruction accuracy using OTRR in terms of PV is very 

close to the fully-sampled reconstruction, which is 0.96%. 

However, the averaged WD is relatively large (3.54), which 

shows that the OTRR method does not have the accuracy to 

reconstruct the shape of the heated area. The averaged IE and 

DL are 2.39% and 3.16% respectively, which is acceptable 

considering the temporal resolution improvement compromises 

the loss of spatial resolution. On the contrary, the Kalman filter 

method cannot provide reasonable results due to its slow 

convergence nature. The reconstructed images have large 

reconstruction error and the dynamic features are poorly 

preserved.  

 

Figure 9: Fully sampled reconstruction results (top), the 

under-sampled reconstruction using OTRR (middle) and 

Kalman filter method (bottom) 

Table 4: The averaged quantitative reconstruction metrics 

of the experiment results. 

 IE (%) PV (%) DL (%) WD 

OTRR 2.39 0.96 3.16 3.54 

Kalman 13.1 9.1 75 11.28 

 

To validate the temperature reconstruction accuracy, a 

thermocouple was used to measure the temperature at the centre 

of the heated air steam. The results are showed in figure 10. The 

relative root mean square error (rRMSE) is 13.04% (with 

respect to Celsius) or 1.6% (with respect to Kelvin degree) at 

the centre of the reconstructed hotspot using 36 TOF 

measurements and the OTRR method. The Kalman filter 

method again has larger rRMSE 37.75% (with respect to 

Celsius) or 3.95% (with respect to Kelvin degree). On the other 

hand, the relative mean square error is much smaller using 192 

TOFs and SIRT method, which is 6.58% (with respect to 

Celsius) or 0.66% (with respect to Kelvin degree). 

 

Figure 10: Comparison between the thermocouple measured 

temperature and tomographic reconstructed temperature. 

V. CONCLUSION  

In this paper, we developed an online time-resolved 

reconstruction (OTRR) method for real-time monitoring 

system. The proposed OTRR method can resolve the dynamic 

changes with a reduced number of TOFs. As a result, the 

measuring time per frame is reduced from 320 ms to 60 ms. 



Based on the simulation results, OTRR has higher quantitative 

accuracy, faster convergence rate and better noise robustness 

compared to the Kalman based reconstruction method. From 

the experiments, the OTRR method provides satisfactory 

results in tracking the dynamic changes of the temperature field. 

However, the proposed OTRR method also has the 

drawbacks of over-smoothing between successive frames. The 

improvement of the temporal resolution is at the cost of spatial 

resolution. It affects the quantitative accuracy of the 

temperature field reconstruction. Future work is to consider the 

dynamic temperature field evolution property and design the 

temporal regularization for specific applications. 
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