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Abstract—Generating synthetic residential load data that can
accurately represent actual electricity consumption patterns is
crucial for effective power system planning and operation. The
necessity for synthetic data is underscored by the inherent
challenges associated with using real-world load data, such as
privacy considerations and logistical complexities in large-scale
data collection. In this work, we tackle the above-mentioned
challenges by developing the Ensemble Recurrent Generative Ad-
versarial Network (ERGAN) framework to generate high-fidelity
synthetic residential load data. ERGAN leverages an ensemble of
recurrent Generative Adversarial Networks, augmented by a loss
function that concurrently takes into account adversarial loss and
differences between statistical properties. Our developed ERGAN
can capture diverse load patterns across various households,
thereby enhancing the realism and diversity of the synthetic
data generated. Comprehensive evaluations demonstrate that
our method consistently outperforms established benchmarks in
the synthetic generation of residential load data across various
performance metrics including diversity, similarity, and statistical
measures. The findings confirm the potential of ERGAN as
an effective tool for energy applications requiring synthetic
yet realistic load data. We also make the generated synthetic
residential load patterns publicly available1.

Index Terms—Residential electricity load, synthetic load gen-
eration, generative adversarial network.

I. INTRODUCTION

THE crucial role of individual user load data in power
system operation, such as distribution system operation

and home energy management, underscores the necessity of
having access to such data for effective decision-making.
Specifically, load data, which characterizes users’ electricity
demand, can be utilized for various studies, including residen-
tial load forecasting [1], load disaggregation [2]–[4], electricity
theft and anomaly detection [5], [6], and electric vehicle
and changing detection [7]–[9]. These studies are crucial for
understanding energy consumption behaviors and facilitating
subsequent applications such as renewable energy integration,
home energy management, demand response, transactive en-
ergy, distribution grid planning, and voltage control [10]. The
operational effectiveness of these applications relies largely on
accessing and utilizing such load data [11], [12].

Nevertheless, obtaining accurate and granular load data of
residential users presents unique challenges. Unlike the indus-
trial and commercial sectors with their relatively predictable
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load profiles, residential load is influenced by a myriad of
factors - weather conditions, geographical location, household
size, and diverse appliance usage patterns [10], [13]. With the
increasing adoption of residential renewable energy systems
and smart home technologies, these patterns have become even
more complex, underscoring the need for high-quality residen-
tial load data. However, accessing and collecting real-world
residential load data are often hindered by stringent privacy
concerns and formidable logistical complexities [14]. As a
result, the development of methods for generating synthetic
residential load data, which accurately mimics real-world
patterns without infringing upon privacy norms, is rapidly
gaining attention.

In response to the growing need for residential load data,
numerous studies have sought to develop load data generation
methods. A prominent approach within this body of research is
employs physical modeling methods [15]–[20]. These models
typically account for various physical factors that influence
residential energy consumption, such as the type and number
of electric appliances, the insulation characteristics of the
housing, and the behavior patterns of the residents. More
specifically, these models often simulate the operation of each
individual appliance within a household based on user be-
haviors, weather conditions, appliance use, and other housing
characteristics. The resulting consumption patterns of each
individual component are then aggregated to form the overall
load profile of the household. Although this method can yield
highly accurate and detailed synthetic load data, it is inher-
ently complex in collecting information concerning driving
factors and requires substantial computational resources. For
example, collecting detailed appliance and user behavior data
can be challenging and often infringe on privacy, presenting a
significant limitation to this approach.

To tackle these limitations, traditional statistical or prob-
abilistic methods have emerged as a more feasible alterna-
tive to physical modeling, particularly for directly simulating
aggregate-level load data [21]–[25]. By leveraging the statis-
tical characteristics of historical load data, this approach gen-
erates synthetic profiles that are representative of residential
electricity consumption. In essence, these methods transcribe
aggregated load data into synthetic equivalents, bypassing the
needs for detailed appliance, housing, or occupant specific
information. This approach not only preserves privacy but also
simplifies the data collection process. Various techniques, such
as Markov chain models, Copulas models, and Gaussian mix-
ture models, fall into this category and have exhibited satisfac-
tory performance in extracting key characteristics and patterns
of load data. However, traditional statistical or probabilistic
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methods have their limitations. Owing to the multifaceted fac-
tors influencing electricity consumption, a key shortcoming of
this approach lies in its inability to accurately capture complex
and non-linear relationships inherent in residential load data.
The oversimplification caused by these methods often leads to
synthetic data, which is statistically similar but lacks fidelity to
real-world patterns. Therefore, while these traditional methods
address some of the issues encountered in physical modeling,
they fall short of comprehensively capturing the complexities
of residential load profiles.

Recognizing the limitations of traditional statistical and
probabilistic methods in directly modeling residential-level
load, there has been a shift towards deep learning based
techniques in recent years. Such techniques have demonstrated
successful applications in a broad spectrum of energy data
related topics, such as renewable energy scenario generation
[26], renewable power forecasting [27], battery lifecycle fore-
casting [28], wind farm turbine fault detection [29], residential
load forecasting [30], and system level load data generation
[31], [32]. The distinguishing feature of these methodologies
is their innate ability to learn and model complex data patterns.
However, the direct application of these methods for resi-
dential load data generation presents unique challenges. The
distinct granularity, dynamics, and heterogeneity are inherent
in residential load profiles necessitate tailored solutions that
can effectively capture this intricacy and faithfully generate
synthetic data without compromising on diversity or realism.
A recent study has successfully employed the Auxiliary Clas-
sifier Generative Adversarial Network (ACGAN) to generate
residential load data [33]. Despite the relative advancement
offered by ACGAN, it has still been identified to potentially
compromise the diversity in the generated data. This limitation
primarily stems from the dual functionality of the discrimina-
tor within the ACGAN model which is tasked with classifying
real or synthetic data while simultaneously determining the
data class. This conditional Generative Adversarial Network
(GAN) based method can inadvertently result in limiting the
generator’s ability to learn from diverse data patterns that
belong to the same class, thus affecting its diversity.

In response to the research gap identified above, we de-
velop the Ensemble Recurrent Generative Adversarial Network
(ERGAN) model. ERGAN effectively integrates ensemble
learning and recurrent GAN architectures, aimed at effectively
capturing the complexity of diverse household load patterns. In
addition, ERGAN incorporates statistical properties in the loss
function, alongside adversarial losses. This dual focus ensures
a closer resemblance of the generated load patterns to the
original distribution. This innovation enhances the realism and
diversity of synthetic load data, thereby presenting a promising
advancement for power system operation research relying on
load data. The contributions of this paper are summarized as
follows.

• This work presents an effective framework, named ER-
GAN, to generate synthetic residential load patterns. It
effectively encapsulates the complexity and diversity of
residential load patterns, ensuring that the synthetic data
maintains high fidelity with real-world scenarios.

• By leveraging the strengths of an ensemble of recurrent

GANs, ERGAN diversifies and elevates the quality of
the generated synthetic data. This distinctive architecture
sets the ERGAN framework apart from existing studies,
especially in terms of data diversity.

• The ERGAN framework introduces a unique loss func-
tion implementation that integrates statistical property
differences along with the adversarial loss. This further
ensures the generated data’s alignment with the original
distribution. This approach contributes significantly to the
model’s superior performance.

• We evaluate the ERGAN framework against several state-
of-the-art benchmarks in residential load pattern data
generation across different performance metrics, such as
diversity, similarity, and statistical measures, ensuring a
comprehensive assessment.

II. METHODOLOGY

The methodology of this study is established on the syner-
gistic integration of K-means clustering and GANs to generate
synthetic residential load patterns, as shown in Figure 1
and Algorithm 1, which we will explain in detail later. In
the first phase, the data is divided into K discrete clusters
utilizing K-means clustering. For each of these K clusters,
a separate GAN model is trained independently to learn the
data distribution specific to that cluster. This design allows the
ERGAN framework to capture the unique characteristics and
variabilities of different clusters more effectively than training
a single GAN model on the entire dataset. To do so, this
partitioned data serves as the input for subsequent GAN mod-
els, which encompass a generator and a discriminator. Both
these components employ Bi-Directional Long Short-Term
Memory (Bi-LSTM) [34] networks for data generation. The
integrated loss function in our models combines adversarial
losses with statistical property differences, thereby maintaining
alignment with the original data distribution. Upon completion
of the GAN models’ training, the generated outputs from all
models are consolidated to yield the final synthetic residential
load data. The following subsections provide a more detailed
exposition of each component of the ERGAN framework.

A. Problem Formulation

The residential load pattern generation can be formulated
as a time-series generation problem. Let us consider a dataset
D of residential load patterns, each denoted as a time-series
sequence x = (xt)

T
t=1, where T represents the time duration

and xt represents power consumption in t-th time slot.
Our goal is to create a generative framework Gen that can

generate synthetic residential load patterns x̂ = (x̂t)
T
t=1 to

construct synthetic dataset D̂. More specifically, at the dataset
level, the objective is to minimize the divergence between the
distribution of the real load patterns pD(x) and the distribution
of the generated load patterns pD̂(x̂), formulated as:

min
Gen

Div(pD(x)||pD̂(x̂)), (1)

where Div is a divergence measure.
Since the load patterns exhibit temporal dependencies, the

generative framework should capture these dependencies to
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Fig. 1. The ERGAN framework for generating synthetic residential load patterns via an ensemble of recurrent GANs and K-means clustering. Note that
this framework involves clustering original load patterns using K-means and Davies-Bouldin score, training separate Bi-LSTM GAN models for each cluster,
generating synthetic patterns from the trained generators, and combining the synthetic clustered datasets to form the final synthetic load pattern dataset while
preserving cluster structures.

generate realistic patterns. Thus, the generative model should
minimize the divergence between a synthetic power consump-
tion pattern x̂m and original power consumption pattern xm

at any time slot m ∈ {2, ...T − 1} conditioned on both the
previous and future time slots:

min
Gen

Div(pD
(
xm|(xt)

m−1
t=1 , (xt)

T
t=m+1

)
||

pD̂
(
x̂t|(xt)

m−1
t=1 , (xt)

T
t=m+1

)
). (2)

The generative framework thus can generate synthetic load
patterns that not only follow the historical consumption pattern
up to the current time slot but also anticipate the future
consumption pattern.

B. K-means Clustering and Davies-Bouldin Score for Optimal
Cluster Selection

As shown in Figure 1, the construction of our ERGAN
framework begins with the application of K-means clustering
to the residential load pattern dataset D = (xi)

N
i=1, where N

represents the total number of load patterns and xi represents
the i-th load pattern in the dataset. Our method creates an
initial grouping of the load patterns into K distinct clusters.
By dividing the load patterns in this manner, we aim to capture
the inherent structures and variances within the dataset, laying
the foundation for the production of synthetic load patterns that
are both diverse and representative.

For each cluster denoted as Ck, where k = 1, ...,K, we
denote the centroid as ck. The objective of the K-means

clustering algorithm is to minimize the within-cluster sum of
squares (WCSS), mathematically defined as:

min

K∑
k=1

∑
xi∈Ck

||xi − ck||2. (3)

The clustering algorithm iteratively executes two operations:
cluster assignment and centroid updating. In the cluster assign-
ment step, each load pattern profile xi is assigned to the cluster
with the closest centroid cj . Mathematically, this assignment
is expressed as:

Cluster assignment: xi ∈ Ck, k = argmin
j
∥xi − cj∥22,

(4)
where j ∈ {1...K} is an index used to iterate over all clusters,
and cj is the centroid of cluster j.

In the centroid updating step, the position of each centroid
ck is recalculated based on the current members of its cluster.
This step is defined as:

Centroid update: ck :=
1

|Ck|
∑
i∈Ck

xi, (5)

where |Ck| symbolizes the number of load patterns associated
with the cluster Ck. These two stages are iterated until a steady
state is reached (the cluster assignments no longer fluctuate),
or until a pre-determined maximum number of iterations has
been achieved.

The selection of the number of clusters K is a critical
aspect of the algorithm’s execution. An appropriate K cap-
tures the granularity of the load patterns, therefore, to guide
this selection, we employ the Davies-Bouldin (DB) index-a
measurement that quantifies the average similarity between
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Algorithm 1 ERGAN
1: Input: Dataset of residential load patterns D
2: Output: Synthetic dataset D̂
3: Determine Optimal Number of Clusters K:
4: Initialize range for K (e.g., 2 to 12)
5: for each K in range do
6: Apply K-means clustering to D to form K clusters
7: Calculate Davies-Bouldin Index for this K
8: end for
9: Select K with the lowest Davies-Bouldin Index

10: Cluster Data using Optimal K:
11: Apply K-means clustering to D to create K clusters
{C1, C2, . . . , CK}

12: Initialize Generative Models:
13: for each cluster Ck do
14: Generator Gk with weight θGk

initialized randomly
15: Discriminator Dk with weight θDk

initialized ran-
domly

16: end for
17: Train Generative Models:
18: for each cluster Ck do
19: while not converged do
20: for each batch of data in Ck do
21: z ← sample noise vector
22: x̂k ← Gk(z)
23: x← sample from Ck

24: Update θDk
of Dk

25: Update θGk
of Gk

26: end for
27: end while
28: end for
29: Generate Synthetic Data:
30: Initialize D̂ as empty
31: for each Gk do
32: Generate synthetic patterns Ĉk

33: D̂ ← D̂ ∪ Ĉk

34: end for
35: Return D̂

each pair of clusters [35]. The DB index is formally defined
as:

DB =
1

K

K∑
k=1

max
k′ ̸=k

(Rkk′) , (6)

where Rkk′ is a measure of the similarity between two clusters
Ck and Ck′ , given by the formula:

Rkk′ =
sk + sk′

dkk′
, (7)

in which sk denotes the average distance of all patterns in
cluster Ck to its centroid ck, defined as:

sk =
1

|Ck|
∑

xi∈Ck

||xi − ck||, (8)

and dkk′ is the Euclidean distance between centroids ck and
ck′ of clusters Ck and Ck′ , calculated as

dkk′ = ||ck − ck′ ||2. (9)

C. Generative Model Design and Construction

After identifying the clusters and their corresponding cen-
troids, for each cluster Ck, we construct a recurrent GAN
model, which consists of a generator and a discriminator.

Residential load profiles exhibit strong temporal correlations
influenced by factors such as household activities, weather
conditions, and energy usage habits. This results in power
consumption that often depends on past consumption and po-
tential future consumption. Bi-LSTM networks are particularly
suitable for this context as they can process sequences in both
forward and backward directions, enabling them to capture
complex temporal dependencies present in residential load
patterns. Specifically, Bi-LSTM offers a superior capacity to
model dependencies between load consumption both back-
ground and forward across various time slots, making them
highly proficient in generating residential load profiles. Thus,
both the generator and the discriminator are implemented
using Bi-LSTM networks.

For the GAN model of the k-th cluster, we denote the gener-
ator as Gk and the discriminator as Dk. For each GAN model,
the generator Gk takes a random noise vector z sampled from
a predefined noise distribution pz(z) and produces synthetic
load patterns x̂k = (x̂k

1 , x̂
k
2 , . . . , x̂

k
T ).

The following Equations (10) to (13) detail the step-by-step
process within Gk to generate synthetic load patterns x̂k. At
each time step t, the generator produces a forward hidden state−→
hGk

t and a backward hidden state
←−
hGk

t using the Bi-LSTM
cells:

−→
hGk

t =
−−−−→
LSTM(zt,

−→
hGk

t−1; θGk
), (10)

←−
hGk

t =
←−−−−
LSTM(zt,

←−
hGk

t+1; θGk
). (11)

The forward hidden state
−→
hGk

t captures the dependencies
on the previous time steps, while the backward hidden state←−
hGk

t captures the dependencies on the future time steps. These
forward and backward hidden states are then concatenated to
form the combined hidden state hGk

t at time step t:

hGk
t = [

−→
hGk

t ,
←−
hGk

t ]. (12)

The combined hidden state hGk
t encapsulates both past

and future dependencies, enabling the generator to generate
realistic load patterns that follow the temporal dependencies
present in the original data. Finally, the load value x̂k

t at time
step t is generated by passing the combined hidden state ht

through a non-linear function f , which is a fully connected
layer:

x̂k
t = f(hGk

t ; θGk
), (13)

where θGk
represents the trainable parameters of the generator

network. The generator Gk trained on data from cluster Ck,
utilizes the above process to generate synthetic load patterns
that are inherently associated with the corresponding cluster.
The collection of synthetic load patterns is used to form
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the synthetic clustered dataset denoted as Ĉk, which will be
formally defined in Equation (23).

The discriminator Dk, on the other hand, is designed to
differentiate between real and generated load patterns. It plays
a crucial adversarial role in the GAN framework, that learns to
distinguish between original residential load patterns from the
training data and synthetic patterns produced by the generator.
The discriminator’s output, presented as a probability score
indicating the likelihood of the input being real, guides the
generator to produce increasingly realistic synthetic data. The
dynamic interaction between the generator and discriminator
drives the adversarial training process, ultimately leading to
the generation of high-quality synthetic load patterns. In our
settings, for each time step t, the input load pattern can either
be real, denoted as xk

t , or synthetic, denoted as x̂k
t . We define

the data term datakt for the discriminator at each time step as
follows:

datakt =

{
xk
t for real data,

x̂k
t for synthetic data.

Using this definition, the discriminator processes datakt and
produces both a forward hidden state

−→
hDk

t and a backward
hidden state

←−
hDk

t using Bi-LSTM cells:
−→
hDk

t =
−−−−→
LSTM(datakt ,

−→
hDk

t−1; θDk
), (14)

←−
hDk

t =
←−−−−
LSTM(datakt ,

←−
hDk

t+1; θDk
). (15)

For the discriminator Dk, instead of using the combined
hidden states at every time step, we leverage the final forward
hidden state

−→
hDk

T and the final backward hidden state
←−
hDk

1 ,
and concatenate them to form the combined final hidden state
hDk :

hDk = [
−→
hDk

T ,
←−
hDk

1 ]. (16)

This combined hidden state hDk encapsulates the depen-
dencies from both directions, capturing the temporal patterns
in the entire input sequence.

Finally, the discriminator passes hDk through a fully con-
nected layer with a sigmoid activation function denote as g to
produce the output ŷk:

ŷk = g(hDk ; θDk
). (17)

The detailed model architecture is provided in Table I in
Section IV.

D. Generative Model Training

The training process for each GAN model involves a two-
player min-max game between Gk and Dk, with the value
function being:

min
Gk

max
Dk

V (Dk, Gk) =Exk∼pCk
(xk)[logDk(x

k)]+

Ez∼pz(z)[log(1−Dk(Gk(z)))],
(18)

where pCk
(xk) is the distribution of real load patterns in the

k-th cluster. In the minimax game, both the generator and
discriminator are optimized alternately, where Gk is trained
to generate synthetic load patterns that Dk cannot distinguish
from the real ones, while Dk is simultaneously trained to

improve its ability to distinguish real patterns from generated
ones. Formally, we define the loss function for Gk and Dk as:

LGk
=Ez∼p(z)[log(1−Dk(Gk(z)))]+

λ(||Ez∼p(z)[µGk(z)]− Exk∼pCk
(xk)[µxk ]||+

||Ez∼p(z)[σGk(z)]− Exk∼pCk
(xk)[σxk ]||),

(19)

LDk
=− Exk∼pCk

(xk)[logDk(x
k)]−

Ez∼p(z)[log(1−Dk(Gk(z)))],
(20)

where µG(z) and σG(z) represent the mean and variance of the
synthetic load pattern generated by the generator G; µx and σx

represent the mean and variance of the original load pattern
x; λ is a factor controlling the importance of the statistical
match.

In our work, we set λ to a large value (i.e., 100) to
heavily emphasize the importance of the statistical match
in the generator’s optimization process. This choice is due
to the application of K-means clustering process, where the
residential load patterns within one cluster should have sta-
ble statistical properties while still demonstrating temporal
variability. Thus, by setting a large value for λ, we heavily
emphasize the generator’s ability to match these statistical
properties of the real load patterns. This mechanism effectively
pushes the generator to not only capture the temporal dynamics
but also to replicate the overall statistical characteristics of the
real data. In effect, the large λ value acts as strong guidance
for the generator, ensuring that the synthetic load patterns
generated are representative and realistic at both the micro
(time-dependent fluctuations) and macro (overall statistical
properties) levels. The detailed training hyperparameters are
provided in Table II in Section IV.

E. Generation of Synthetic Dataset via Ensemble Method

After training the GANs for each distinct cluster Ck, we
have effectively obtained a set of generators denoted as Gk.
Each Gk is proficient in generating synthetic load patterns
that effectively capture the distinct characteristics associated
with their respective residential load clusters. The final step in
this framework involves creating a comprehensive synthetic
dataset that encapsulates the wide-ranging diversity present in
the original dataset. To achieve this, we employ an ensemble
approach for combining the synthetic data generated from each
individual recurrent GAN.

Given a desired volume M for the synthetic dataset, we
commence by identifying the proportion αk of the original
dataset D that each cluster Ck constitutes. This can be math-
ematically expressed as:

αk =
|Ck|
N

. (21)

Subsequently, we calculate the number of synthetic load
patterns Mk that ought to be generated from each GAN Gk.
This is achieved by multiplying the desired synthetic dataset
volume M by the respective cluster’s proportion αk:

Mk = ⌊M · αk⌉. (22)
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Following this, we generate Mk synthetic load patterns
from each GAN corresponding to each cluster Ck, resulting
in a synthetic clustered dataset Ĉk. This strategic approach
ensures that the synthetic dataset D̂ resonates with the original
dataset D in terms of exhibiting a diverse spectrum of load
characteristics. Subsequently, we merge the synthetic load pat-
terns generated from all GANs to assemble the final synthetic
dataset D̂:

Ĉk = Gk(Zk), (23)

D̂ =

K⋃
k=1

Ĉk, (24)

where Zk symbolizes the input noise vector for the k-th GAN,
with each Zk being a matrix with the size of Mk × T .

III. BENCHMARK MODELS AND EVALUATION METHODS

In this section, we present our selection of benchmark mod-
els and the corresponding evaluation methodologies employed
to assess the performance of synthetic residential load pattern
generation. The benchmark models considered in this study
include the ERGAN-baseline, Auxiliary Classifier Generative
Adversarial Network (ACGAN), Wasserstein Generative Ad-
versarial Network (WGAN), and Continuous RNN-GAN (C-
RNN-GAN), each providing unique attributes and benefits rel-
evant to our problem setting. We provide the rationale behind
these selections and highlight their differences compared to
ERGAN. Subsequently, we present the evaluation methods
deployed to assess the quality and diversity of the synthetic
load patterns, facilitating a comprehensive and interpretable
comparison between ERGAN relative and above-mentioned
benchmark models.

A. Benchmark Models

In this study, we perform a comparative evaluation of our
proposed ERGAN framework alongside state-of-the-art mod-
els, providing a robust assessment of ERGAN’s performance
in generating realistic synthetic residential load patterns. The
selected benchmark models for comparison covers a range
of techniques that have demonstrated considerable promise in
the task of generative modeling, particularly time-series data
generation. Each of these models brings unique capabilities,
providing a robust basis for comparison with our proposed
ERGAN framework. Details are discussed as follows.

• ERGAN-Baseline serves as a benchmark model in our
study, representing the ERGAN framework without the
K-means clustering and ensemble methods. By com-
paring its performance against the complete ERGAN
framework and other benchmark models, we can evaluate
the added value and effectiveness of techniques developed
in this paper, such as clustering and ensemble methods, in
generating diverse and realistic synthetic residential load
patterns.

• Auxiliary Classifier GAN (ACGAN) [36] extends the
traditional GAN structure by conditioning both the gen-
erator and the discriminator on class labels, thereby
enabling the generation of specific classes of data. It

has been previously utilized in a similar context for
residential load generation [33], showing its suitability
as a benchmark for our study. Their conditioning of
ACGAN is similar to our use of cluster information
in generating load patterns, although the methods differ
substantially. ACGAN is a form of conditional GAN
where the same model is used for all categories, con-
ditioned on the category label. In contrast, our ERGAN
framework employs an ensemble of GANs, each tailored
to a specific cluster, and thus being capable of capturing
distinct characteristics across clusters. However, despite
its merits, ACGAN uses convolutional neural network
(CNN) which does not incorporate the advantages of Bi-
LSTM in handling time-series data and does not focus on
the preservation of statistical properties, as our framework
does.

• Wasserstein GAN (WGAN) [37] provides an alterna-
tive approach to the traditional GAN loss function to
address the issue of training instability, which is known
as a common challenge in training GAN models. Its
notable characteristic of improved training stability and
convergence offers a valuable benchmark for comparison
with our ERGAN model, which also emphasizes stable
and efficient training. Nevertheless, WGAN also uses
CNN which might not inherently accommodate the global
temporal dependencies present in our load pattern data as
well as our approach does.

• C-RNN-GAN [38] is a robust model for time-series
generation, harnessing the power of recurrent neural
networks (RNN) and adversarial training from GANs. It
uses LSTM units, ideal for learning and remembering
long-term dependencies in the data, which are vital in
the context of residential load patterns. Despite these
strengths, the C-RNN-GAN does not explicitly cater to
the diversity observed in residential load patterns across
different households, a feature our ensemble of Bi-LSTM
GANs addresses. Furthermore, C-RNN-GAN, although
using Bi-LSTM units in the discriminator, does not
incorporate a bidirectional structure in its generator which
lacks consideration of the time-series data forward.

By comparing our ERGAN framework with these diverse
benchmark models, we aim to thoroughly evaluate and val-
idate the performance and effectiveness of our approach in
generating synthetic residential load patterns.

B. Evaluation Methods

The quality of the synthetic residential load patterns gener-
ated by our ERGAN framework and the selected benchmark
models are evaluated via three distinct but complementary
methods, with details described as follows.

• Visual Examination of Real and Synthetic Load Patterns
and Their Autocorrelation: We randomly select multiple
real load pattern samples and compare them to the
samples generated by different models. Each generated
sample is selected to match the real samples based on
the minimum Euclidean distance. Additionally, we em-
ploy auto-correlation techniques to examine correlations
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between observations at different points in the time series,
enriching our analysis of similarities and differences.

• Comparative Histograms of Original and Synthetic
Residential Load Patterns: This metric employed
histogram-based comparison to visualize the distribu-
tional attributes of original and synthetic data. In this
approach, all load patterns produced by a generative
model are aggregated together, and its histogram is plot-
ted alongside that of the original data. By investigating
to what extent the histogram of generated synthetic load
patterns aligns with that of the original data, we can
assess the model’s ability to accurately replicate the data’s
global statistical properties.

• Hourly Comparative Boxplots for Original and Syn-
thetic Load Patterns: Our evaluation methodology fur-
ther incorporates a time-centric examination of the gen-
erated load patterns. Owing to the data’s hourly nature,
we create box plots for each time slot, showcasing the
distribution of generated and original data per time step.
This approach can provide insights into the model’s
capacity to mimic the temporal fluctuations of residential
load patterns.

• Comparative Visualization of T-SNE Dimension-
Reduced Load Patterns Another component of our
evaluation method is the use of t-SNE visualizations. This
high-dimensional data visualization technique enables us
to compare the manifold structures of original and syn-
thetic load patterns. The closeness of synthetic data points
to those of the original data in this reduced-dimension
space indicates the model’s proficiency in preserving the
manifold structure of high-dimensional load patterns.

• Quantitative Evaluation using Statistical Distances:
The final component of our evaluation method is to
assess the statistical similarity between the original and
synthetic datasets is by comparing key statistical prop-
erties: the mean, variance, 25th percentile (Q1), and
75th percentile (Q3) profiles. The L1 distance (sum of
absolute differences) is calculated for each property’s
profile between the original and synthetic datasets. The
model demonstrating the lowest L1 distances across these
properties is deemed to have generated synthetic data that
most closely aligns with the statistical characteristics of
the real data.

These evaluation methods offer comprehensive insights into
the generative models’ performance, assessing their ability
to accurately learn and capture the original data’s statistical,
temporal, and structural properties.

IV. RESULT AND ANALYSIS

This section firstly provides an in-depth description of the
residential load pattern data used in this paper. Following
this, we present a comprehensive performance evaluation using
the metrics described in Section III, including the real and
synthetic sample sets visualized in pattern and autocorrelation
depicted in Figure 3, comparative histograms depicted in
Figure 4, hourly comparative boxplots depicted in Figure 5,
and comparative visualization of T-SNE dimension-reduced

TABLE I
ERGAN MODEL ARCHITECTURE

Component Description
Generator

LSTM Layer 1 input, 16 hidden units, 5 layers, bidirectional
Fully Connected Layer 32 inputs, 1 output

Discriminator
LSTM Layer 1 input, 16 hidden units, 5 layers, bidirectional

Fully Connected Layer Linear layer (64 inputs, 1 output)

TABLE II
HYPERPARAMETERS FOR MODEL TRAINING

Parameters Details
Epochs 10000

Batch size 1024
Optimizer Adam

Generator Learning rate 0.0001
Discriminator Learning rate 0.0001

load patterns depicted in Figure 6. Through these robust
assessments, we aim to demonstrate the effectiveness of our
ERGAN framework in generating synthetic residential load
patterns that accurately capture the statistical, temporal, and
structural properties of real-world data.

A. Data Description and Model Setup

In this study, we use the Pecan Street dataset [39], which
provides hourly residential energy consumption data from
417 households for the entire year from January 1, 2017
to December 31, 2017. This dataset contains hourly smart
meter readings, and we specifically use total household energy
consumption from all electrical sources within each household.

While our model does not explicitly separate the data by
day types or seasons, the inclusion of data spanning all days
of the week and all seasons ensures that our synthetic load
patterns reflect the inherent variability associated with different
times of the year. To ensure the integrity of our analysis,
each 24-hour load profile is segmented from the smart meter
data, and all sequences containing missing values are prudently
removed. Subsequently, to concentrate on load patterns rather
than the magnitude of electricity consumption, each sequence
is normalized using linear scaling. This normalization process
ensures that each sequence falls within the range [0, 1], al-
lowing for consistent analysis and comparison across various
households. The well-curated dataset is then partitioned into
training, validation, and testing subsets, with 70% of the data
dedicated to training, and the remaining 30% for validation.

For our proposed ERGAN model, we present its model
architecture in Table I and training hyperparameter setting in
Table II, respectively.

B. Number of Cluster Selection and its Impact

In the ERGAN framework, the choice of the number of
clusters K is a key factor that influences both the quality
of synthetic data and the computational efficiency of the
model. The Davies-Bouldin (DB) index is employed to assess
clustering quality by evaluating the separation and cohesion
of clusters, where a lower DB index generally suggests a
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Fig. 2. Selecting the best number of clusters based on the Davies-Bouldin
score.

better configuration for capturing residential load patterns.
However, it is important to note that there is no definitively
optimal K; the choice of K is inherently dependent on the
method used and the specific characteristics of the dataset.
While the DB index provides useful guidance, the primary
goal is to generate synthetic data that reflects the diversity
and complexity of real-world residential loads while managing
computational overhead.

Choosing K involves balancing the benefits of a more
detailed data representation against the challenges of increased
computational demands. For example, a larger K can offer
a more detailed representation of the data distribution, po-
tentially enhancing the diversity and realism of the synthetic
data. However, such a larger K also requires training more
generative models, leading to increased computational over-
head and a greater risk of overfitting, where models may
capture noises rather than meaningful patterns. Additionally,
too many clusters can fragment coherent data structures,
impacting the interpretability and quality of the generated data.
Conversely, selecting a smaller K may reduce computational
costs but risks underfitting, where the model oversimplifies
the data and fails to capture its variability. This can result in
synthetic data that lacks the necessary diversity to accurately
represent residential energy consumption patterns. To balance
these trade-offs, we calculated the DB index for cluster sizes
from 2 to 12 as shown in Figure 2. The results suggest that
K = 10 provides a practical balance, effectively capturing
diverse load patterns without excessive computational costs
or sacrificing data quality. This choice aligns with our study’s
objectives and offers a reasonable balance between complexity,
efficiency, and quality. The effectiveness of this clustering
strategy is evident in the ERGAN model’s performance, which
shows better results than benchmark models in capturing the
statistical and temporal characteristics of residential load data.
The detailed performance comparisons and results of ERGAN
with K = 10 are discussed in the subsequent sections.

TABLE III
L1-BASED DISTANCE ANALYSIS

Model Mean L1 Variance L1 Q1 L1 Q3 L1
ERGAN 0.0333 0.0138 0.1186 0.4885
ERGAN-baseline 0.1775 0.0297 0.2258 0.4909
WGAN 2.0767 0.8038 1.5132 3.7942
ACGAN 1.1032 0.6305 1.3049 2.3666
C-RNN-GAN 0.8328 0.5972 1.2641 1.4356

C. Results Analysis and Insights

1) Outstanding Performance of ERGAN over Benchmark
Models in Ensuring Diversity and Similarity in Synthetic Load
Patterns: The effectiveness of ERGAN in creating synthetic
residential load patterns is affirmed through an comprehensive
comparison with the benchmark models. Figure 3 reveals
that all models, including ERGAN, are capable of identifying
certain load patterns inherent to the original data. Despite
this common capability, ERGAN consistently outperforms
the benchmark models in terms of capturing the statistical
properties of the real data, as evidenced by its significantly
lower L1 distances across all four metrics (mean, variance,
Q1, and Q3) shown in Table III.

The comparative histograms shown in Figure 4 reveal the
diverse range of patterns generated by our ERGAN method.
A well-aligned spread is observed, matching closely with the
original data’s global statistical attributes and thus indicating
a comprehensive replication of the overall load consumption
behavior. In contrast, the benchmark models display slight de-
viations from the original data distribution, suggesting poten-
tial challenges in accurately capturing the intricate statistical
characteristics.

The hourly comparative boxplots shown in Figure 5 further
reinforce these observations. Our ERGAN method exhibits
the ability to replicate temporal fluctuations across the day
convincingly, evident by closely matching the spread of the
original data for each hourly time slot. Meanwhile, other
benchmark models seem to struggle with capturing data dis-
tribution at certain time steps, reflecting reduced quality and
diversity of the generated load patterns.

Furthermore, the t-SNE visualization of the original and
synthetic load patterns shown in Figure 6 also demonstrates
the effectiveness of our methodology. The generated load
patterns, when projected in a lower-dimensional space, form
data points that closely align with those formed by the original
data, implying a strong preservation of the high-dimensional
manifold structure. On the contrary, the benchmark models
show a divergence in this aspect, with their synthetic data
points presenting a higher level of discrepancy, or in some
cases overly concentrated.

2) Enhanced Performance of Recurrent GAN Models over
CNN GAN Models: The evaluation of generative models re-
veals the superiority of RNN models, specifically the ERGAN,
ERGAN-baseline, and C-RNN-GAN models, over the CNN
based models, such as WGAN and ACGAN. This finding
is supported by the observed characteristics in the evaluation
plots. Specifically, the comparative histograms shown in Fig-
ure 4 demonstrate that the synthetic load patterns generated
by the recurrent GAN models in ERGAN closely align with
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Fig. 3. Pattern and correlated autocorrelation comparison of original and synthetic residential load patterns via different generation methods.
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Fig. 4. Comparative histograms of original and synthetic residential load patterns via different generation methods.

Fig. 5. Hourly comparative boxplots for original and synthetic load patterns generated by ERGAN and benchmark methods.

Fig. 6. Comparative visualization of T-SNE dimension-reduced load patterns using original against synthetic data across multiple generation methods.

the distributional attributes of the original data, indicating
their proficiency in replicating the global statistical proper-
ties. The quantitative results, presented in Table III, further
solidify this observation. The RNN-based models, including
ERGAN, ERGAN-baseline, and C-RNN-GAN, exhibit consid-
erably lower L1 distances compared to WGAN and ACGAN,
indicating their superior ability to replicate the statistical
characteristics of the real data. Moreover, the hourly boxplots
shown in Figure 5 showcase the ability of the recurrent models
to capture the temporal fluctuations present in residential load
patterns. The close resemblance of the boxplots for each time
slot between the synthetic and original data further reinforces
the recurrent models’ capability in mimicking the temporal
dynamics. Lastly, the t-SNE visualizations shown in Figure 6
exhibit the close proximity of the synthetic data points to the
original data points in the reduced-dimension space, indicating
the recurrent models’ effectiveness in preserving the manifold
structure of the high-dimensional load patterns.

3) Utilizing Bi-LSTM Throughout the Architecture and
Leveraging Statistical Properties in the Loss Function for En-
hanced Residential Load Pattern Generation: The integration
of LSTM units as employed by C-RNN-GAN and ERGAN-

baseline is a promising strategy due to the inherent capability
of LSTM in handling long-term dependencies in residential
load patterns. While both models leverage LSTM units, their
fundamental differences lie in the directionality of LSTM im-
plementation and the consideration of statistical properties in
the loss function, facilitating an insightful comparative study.
Specifically, the ERGAN-baseline model utilizes Bi-LSTM
units throughout its architecture and incorporates statistical
properties in the loss function, unlike C-RNN-GAN which
uses LSTM in a unidirectional manner in its generator and
solely relies on adversarial loss.

Insights drawn from our comparative study reveal that
ERGAN-baseline consistently outperforms C-RNN-GAN
across all evaluation metrics, underscoring the significance
of bidirectional LSTM and statistical property-focused loss
function. The quantitative results shown in Table III provide
evidence of this superior performance. The lower L1 distances
achieved by ERGAn and ERGAN-baseline across all metrics
underscore the benefits of employing Bi-LSTM throughout
the architecture and incorporating statistical properties in the
loss function. The comparative histograms shown in Figure
4 demonstrate a closer alignment of synthetic load patterns
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generated by ERGAN-baseline to the original data distribu-
tion, indicating its superior capacity in capturing intricate
statistical characteristics. Similarly, the hourly comparative
boxplots depicted in Figure 5 shows ERGAN-baseline’s ability
to faithfully replicate the temporal fluctuations in load patterns,
with its synthetic data more closely matching the spread of the
original data across different hourly time slots.

The additional ensemble method deployed in the ERGAN
framework is not included in the ERGAN-baseline model,
making the comparison against C-RNN-GAN fairer. Despite
the absence of this enhancement, the performance of the
ERGAN-baseline still surpasses the C-RNN-GAN, demon-
strating the effectiveness of employing Bi-LSTM throughout
the architecture and incorporating statistical properties in the
loss function. The resulting synthetic residential load patterns
exhibit improved diversity, realism, and temporal accuracy,
establishing the merits of such an approach in the domain
of residential load pattern generation.

4) Effectiveness of the Ensemble Approach in Enhancing
the Diversity and Quality of Synthetic Load Patterns: The
ensemble approach incorporated in our ERGAN framework
can enhance the diversity and quality of the generated synthetic
residential load patterns. By comparing ERGAN with its
ERGAN-baseline counterpart, where the ensemble approach is
absent, we can delineate the substantial improvements brought
about by the ensemble strategy. Comparative histograms
shown in Figure 4 and hourly boxplots shown in Figure 5
indicate ERGAN’s superior ability to capture the intricate
global statistical characteristics and the temporal fluctuations
of the load patterns more accurately than its baseline model.
These improvements can also be found in the t-SNE scatter
plot visualization shown in Figure 6, where ERGAN exhibits
a more accurate preservation of the manifold structure of the
high-dimensional load patterns. This improvement is not only
evident in the qualitative evaluations but is also supported
by the quantitative results. As shown in Table III, ERGAN
achieves even lower L1 distances compared to its baseline
counterpart (ERGAN-baseline), demonstrating the quantitative
benefits of the ensemble strategy in capturing the statistical
properties of the real data. Through a strategy that encourages
diversity among individual generators and effectively amal-
gamates their strengths, the Ensemble approach significantly
enhances the realism, diversity, and temporal accuracy of the
synthetic data, validating the effectiveness of this technique in
the ERGAN framework.

V. CONCLUSION

This study addressed the vital task of synthetic residen-
tial load pattern generation by introducing an innovative
framework-the Ensemble Recurrent Generative Adversarial
Network Framework called ERGAN. The proposed framework
employs an ensemble of recurrent GANs and a unique loss
function incorporating statistical properties. Through com-
parative analysis with various state-of-the-art benchmarks,
ERGAN has proven its superior performance in generating
diverse and high-quality synthetic load patterns, closely emu-
lating real-world scenarios. The study can contribute to various

applications in power system operation and energy manage-
ment, where load data is needed. Yet, opportunities for further
exploration remain, including the potential to optimize the
ERGAN model by incorporating advanced feature conditions
for time-dependent residential load demand data generation.
Thus, this research represents a step forward in efficient and
realistic residential load data generation.
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