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Metric Temporal LogicMTL[ U;, S;] is one of the most  The satisfiability question for various fragment\T L has
studied real time logics. It exhibits considerable divgrsievoked lot of interest and work over the past years. In their
in expressiveness and decidability properties based on #wminal paper, Alur and Henzinger showed that the satikfiabi
permitted set of modalities and the nature of time intervdy of MTL[ U;, S;] is undecidable, while the satisfiability
constraints/. Henzinger et al., in their seminal paper showedf the “non-punctual” fragmenMITL of MTL[ U;, S/] is
that the non-punctual fragment d¥ITL called MITL is decidable. As the nhame suggests, the non-punctual fragment
decidable. In this paper, we sharpen this decidability Itesdisallows punctual intervals: these are intervals of the form
by showing that the partially punctual fragment MTL [t ,¢]. The satisfiability of the future only fragment &ATL,
(denotedPMTL) is decidable over strictly monotonic finiteviz., MTL[ U;] was open for a long time, till Ouaknine and
point wise time. In this fragment, we allow either punctualorrell [12] showed its decidability via a reduction to Iack
future modalities, or punctual past modalities, but newahb alternating timed automata. Even though the IdgiEL[U;, S]
together. We give two satisfiability preserving reductifnasn is more expressive thaMTL[ U], it was shown to be
PMTL to the decidable logidMTL[ U;]. The first reduction decidable([8] by an equisatisfiable reductiorMd@ L[U;]. The
uses simple projections, while the second reduction useslecidability of the unary fragmemMTL[([,4 ] has remained
novel technique of temporal projections with oversamplingpen for a long time, it was recently shown undecidable [7].
We study the trade-off between the two reductions: while tHéne only fragment whose decidability is unknown is thus,
second reduction allows the introduction of extra actiom{zo the “partially punctual fragment” oMTL, where we allow
in the underlying model, the equisatisfialfeTL[U;] formula punctualities only in the future or in the past modalitiest b
obtained is exponentially succinct than the one obtainad viever in both. The main result of this paper is the decidgbili
the first reduction, where no oversampling of the underlyingf the partially punctual fragment dfITL for finite strictly
model is needed. We also show tHAVITL is strictly more monotonic timed words; our results can be adapted to work
expressive than the fragmesTL[U;, S] andMTL[U, S;].  for weakly monotonic finite words.

II. METRIC TEMPORAL LOGIC
I. INTRODUCTION

Let X be a finite set of propositions. A finite timed word

Metric Temporal LogidMTL is a well established logic use-over ¥ is a tuplep = (0,7) whereos and 7 are sequences
ful for specifying quantitative properties of real time ®ms. ¢103...0, and 77y ... 7, respectively, witho; € 2% — (),
The main modalities oMTL are U; (read “until Iy and S; and¢; € R for 1 < ¢ < n. Let dom(p) be the set of
(read “sincel”), where I is a time interval with end points positions{1,2,...,n} in the timed word. Le® = {a, b}. An
in N. These formulae are interpreted over timed behavioursexample of a timed word i${a, b},0.3)({b},0.7)({a},1.1).
timed words. A formulaa Uy, 30 holds at a position of a p is strictly monotonic ifft; < ¢; 1, for all i,i + 1 € dom(p).
timed word iff there is a positiorj strictly in the future ofi Otherwise, it is weakly monotonic. Given, the formulae of
whereb holds, and at all intermediate positions betweéemd MTL are built from ¥ using boolean connectives and time
4, a holds good; moreover, the difference in the time stamg®nstrained versions of the modalitié¢sand S as follows:
of ¢ and j must lie in the interval [2,3]. Similarlyg Spp 310 ¢ == a(€ X) [true [p Ay | = | ¢ Urp | ¢ Sre
holds good at a point iff there is a position; strictly in  wherel is an open, half-open or closed interval with end points
the past ofi whereb holds, and at all intermediate positionsn N U {occ}.
betweeni and j a holds; further, the difference in the time Formulae ofMTL are interpreted over timed words over a
stamps betweehandj lie in the interval [2,3]. The intervals chosen set of propositions. Letbe anMTL formula. If ¢ is
I can be bounded of the fornl,«), or unbounded of the interpreted over timed words ovek, then we say thap is
form (I, 00), with [, u € N, and( represents left closed or leftinterpreted overA. Note that this is different from saying
open, while) represents right closed or right open intervalgs built from a set of propositionk: this just means that the
The unary modalities); (read “fut I”) and $; (read “past propositions inp are taken from.
I") are special cases of until and singgia = true Uya and Given a finite timed worcgh, and anMTL formula, in the
&ra = true Sya. pointwise semantics, the temporal connectivespoauantify
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over a finite set of positions ip. For an alphabek, a timed

word p = (o, 7), a position; € dom(p), and anMTL formula

¢, the satisfaction of at a positioni of p is denotedp, ) |=

o, and is defined as follows:

piEa aco;

psiE < i F g

Pyl E @1 A2 & pyi |1 andp,i = pa

pvi ': ®1 UIQPQ Ane 3] > 4, pvj ': 9027tj -t € I,
andp,k E ¢p1 Vi<k<j

psi | p1S1p2 <> 3G <d,pj F 2, ti—t; €1,
andp,k E p1 Vi<k<i

p satisfiesy denotedp | ¢ iff p,1 E ¢. Let L(y) = {p |

0,1 = ¢}. The set of all timed words ovél is denotedl’>*.

A non-punctual interval has the forfa, b) with a # b. We
denote byMTL[ Uy, S,,] the class ofMTL formulae with
non-punctual past modalities. SimilarMTL[U,,;,, S;] is the

class of MTL formulae with non-punctual future modalitiesProof. The proof can be found in Appendix A.

The class of partially punctudTL formulae,PMTL consists
of all formulae with non-punctual future or non-punctuaspa
PMTL = MITLUMTL[ Uy, StJUMTL[ Uz, Sppl

2) For any timed worch overX U X, (p E ¢) —
pis a (X, X)-simple extension and\ X = ¢,

3) For any timed wordp over ¥ such thatp = ¢, 3 a
(3, X)-simple extension’ such thaty’ = ¢, and
P\NX =p.

We denote by = 3X.¢, the fact thatyp is equisatisfiable to
1) modulo simple projections.

Extended Normal Form(ENF)Given a formulap built from
¥’ D ¥, the extended normal form abp with respect toX
denotedEN Fx () is the formulap A O(\/ ).

Lemma 1 (Boolean Closure Lemma) et 1, ¢2 be formulae
built from X. Let ¢y, be formulae built from® U X; and
¥ U X, respectively. Let; = X U X; for ¢ = 1,2, and let
XinX, =0. Then,(cpl = 3X1.91 and pg = Engg) —

01 A 2 = (X1 U Xa).(¢h1 A th2).

O

B. Flattening
Let p € MTL[Uy, S;] built from 3. Given any sub-formula

Additional temporal connectives are defined in the standard of ¢, and a fresh symbal; ¢ X, T; = O%(¢; < b;) is
way: we have the constrained future and past eventualiglled atemporal definitiorandb; is called awitness Let ) =

operatorsQra = true Ura and$ra = true Sya, and their
duals Ora -Or—a, Bra —-$r—a. Weak versions of
operators are defined as¢a = a VvV Qa,(0%a = a A Ua,

aU¥b =0V [aA (aUb)].

IIl. TEMPORAL PROJECTIONS

In this section, we discuss the notion of “temporal proje¢-

©[bi/1;] be the formula obtained by replacing all occurrences
of ¢; in ¢, with the witness;. Flattening is done recursively
until we have replaced all future/past modalities of insére
with witness variables, obtaining s, = ¥ AT, whereT is

the conjunction of all temporal definitions. L& be the set

of all witness propositions. For example, consider the fdem
aUjo,3(cS(®0,11d)). Replacing theS,$ modalities with

tions” that are central to this paper. We discuss two kind4n€ss propositiona, andw; we gety = a Up 3 w1, along

of temporal projections: simple projections, and overdargp
projections.

A. Simple Extensions and Projections

(3, X)-simple extensionsLet X, X be finite sets of propo-
sitions such that> N X = 0. A (¥, X)-simple extension
is a timed wordp over X U X such that at any point
i € dom(p), o; NS # 0. For ¥ = {a,b},X = {c,d},
({a},0.2)({b,c,d},0.3)({b,d},1.1) is a (X, X)-simple ex-
tension. However({a},0.2)({¢, d},0.3)({b,d},1.1) is not a
(3, X)-simple extension for the same choice ©f X, since
for the positioni = 2, {c,d} N = 0.

Simple ProjectionsConsider g3, X)-simple extensiop. We
define thesimple projectionof p with respect toX, denoted
p\ X as the word obtained by erasing the symbolsfofrom
eacho;. Note thatdom(p) = dom(p\ X). For example, it2 =
{a,c}, X = {b}, andp = ({a,b,c},0.2)({b,c},1)({c}, 1.3),
thenp\ X = ({a,c¢},0.2)({c},1)({c},1.3). p\ X is thus, a
timed word overX. If the underlying wordp is nota (X, X)-
simple extension, then the simple projectionpoivith respect
to X is undefined

Equisatisfiability modulo Simple ProjectianGiven MTL for-
mulaet and ¢, we say thatp is equisatisfiable t@) modulo
simple projectionsff there exist disjoint set&, X such that

1) ¢ is interpreted oveE, andv is interpreted oveEU X,

with the temporal definition§} = O%(w; < (¢ Swz)) and
Ty = O%ws + 9p,11d). Hence,pfi = v ATy ATy is
obtained by flattening th&,$ modalities fromy. Here W =
{w1,w2}. Note thatyy;,, is a formula built fromE U W.

Given a timed wordp over %, flattening marks precisely
positions inp satisfying; with withessesh;. This marked
word p’ over ¥ U W satisfiespsq¢ iff p = . Hence, we
havey = IW.ENFx(priat). ENFs(¢fiac) €nsures that any
timed word p’ over ¥ U W that satisfiesp ., is indeed a
(2, W)-simple extensionL(EN Fx(¢yi4:)) is the set of all
those (X, W)-simple extensiong’ satisfyingy .+ Such that
PAW = L(p).

C. Oversampled Behaviours and Projections

(3, X)-oversampled behaviourd et X, X be finite sets of
propositions such that N X = (. A (3, X)-oversampled
behaviour is a timed word’ = (¢/,7") over X UX, such that
AR anda’dom(p/ 2 # 0. ForY = {a, b}, X = {c,d},
({a},0.2)({ec, d},0.3)({)a,b},,0.7)({b,d}, 1.1) is a (%, X)
oversampled behaviour, whilda},0.2)({c,d},0.3)({c},1.1)
is not. If p is a (3, X)-oversampled behaviour, then poirits
where)/ X is not true are calledion-action pointsHence, in
any (3, X )-oversampled behaviour, the first as well as the last
points are action points.

Oversampled ProjectionsGiven a (3, X )-oversampled be-
haviour o’ = (¢/,7'), we define theoversampled projection




of p’ with respect toX, denotedp’ | X as the timed word

act A (OL—act) whereact denotes\/ X. Proofs of Lemmas

obtained by deleting points for which ¢, N ¥ = 0, and [2,[3 and# can be found in Appendides[B, C add D.

then erasing the symbols of from the remaining pointg

(05 N # 0). The result of oversamplings=p’ | X is a

timed word overX. If p = p’ | X, there exists a strictly
increasing functionf : {1,2,...,n} — {1,2,...,m} such

thatn = |dom(p)|, m = |dom(p’)|, and

e f()=1,01=0/N%, 7y =7, and

e f(n)=m,op,=0,,N%, 1, =1, and

e Fori<i<mn-1, fi)=jand f(i+1) =k iff

- o =0;N%, andr; = 7},
— Oit1 = O';c N3, andrq = T]/g,
— Forallj <i<k, o;nX=0.

For o' = ({a},0.2)({a,c},0.7)({c},0.9)({b,d},1.1), a

(3, X)-oversampled behaviour foX = {a,b}, X = {c¢,d},
we havep’ | X = ({a},0.2)({a},0.7)({b},1.1). We have
f:4{1,2,3} = {1,2,3,4} with f(1)=1,f(2) =2, and
f(3) = 4.
Equisatisfiability modulo Oversampled Projections Given
MTL formulaewy and¢, we say that) is equisatisfiable ta)
modulo oversampled projectionff there exist disjoint sets
X, Y such that

1) ¢ is interpreted ovek, andiy overX U X,

2) For any(X, X)-oversampled behavioyr,

PEY ) LXES
3) For any timed wordy over X such thatp = ¢, there
exists a(X, X )-oversampled behaviopf such thap’ |=
Y, andp’ | X = p.
We denote by = 3 | X.¢ the fact thatp is equisatisfiable

to ¢ modulo oversampled projections. The above conditions

Lemma 2 (Oversampling Closure Lemma)let ¢ be a
formula built fromX. Thenp =V | .ONFx(p).

Lemma 3. Let ¢ be a formula built fromX and let{ =
ONFx(p). Then,( =V | (.

Lemma 4. Consider formulaep, w2 built from 3. Let)y, 1o
be formulae built from> U X; and ¥ U X, respectively. Let
X=X1UXy X, =2XUKX; for ¢ = 1,2, anXm N X = 0.
Let Cl = O‘Z\/vF‘Z1 (wl) and <2 = ()]VF‘E2 (1/12) Then,

©p1 = ] Xl-Cl and P2 = =N X2.<2 —

p1 A2 =31 X.(C1AG).

Lemma 5. Lety € MTL[U;, S;] be built fromX, and W be
the set of witness variables obtained while flatteningrhen
» = = \L WONFE(gOﬂat).

IV. DECIDABILITY OF MTL[ Uy, Sy

In this section, we show that the clab4TL[ U;, S,,] is
decidable, by giving a satisfiability preserving reductimn
MTL[ U;]. Given a timed wordp, and a non-singular past
modality of the formy) = © .y, Lemmal[6 establishes a
relationship between time stamps of the pointgiwherey
holds and the time stamps of points wheréolds inp with
respect ta, u.

Lemma 6. Given a timed wortp = (o, 7) and a point; €
dom(p). Let first, and last, denote respectively the first
and last occurrences af € X in p. p,i | =(0 g uy) iff

(@) 7 ~1 Trirst, + 1, Wwhere~q is < when( is [, and~; is
< when{(is (, or

establish the existence sbme(3, X )-oversampled behaviour (0) 7i ~2 Tiast, -+ u, Where~s is > when) is ], and ~5 is

o’ corresponding tg that satisfies), whenp satisfiesp. If
condition 3 above holds for all possib(&, X )-oversampled
behaviours, i.e,

« if for any timed wordp over ¥ such thatp | ¢, all
(3, X)-oversampled behaviougs for which
p 1 X = p satisfy,

then we say thap andi areequivalent modulo oversampled

projectionsand denote it byp =V | .¢

Oversampled Normal FornfONF): Let ) be a formula built
from X U X. Let act denote\/ 2. The oversampled normal
form with respect toX of ¢ denotedON Fx () is obtained
by replacing recursively

all subformulae of the forma € X by a A act,

all subformulae of the forng; Ur¢; with

(act - ONFx(¢;)) Ur(ON Fx(;) A act),

all subformulae of the forng; S;¢; with

(act — ONFE(¢Z)) S](ONFZ(¢7) A\ act).

all subformulae of the forml;¢ with

Or(act - ONFx(¢)), and all subformulae of the form

Or¢ with Or(o A act).

and conjuncting the resultant formulae witbé A (O L — act).
Lety = ¢ U[((,OQ/\DQD3), andQZONFE(QDi) fori=1,2, 3.

ThenON Fx(¢)=(act—(1) Ur(act A [¢2 A D(act—C3)]) A

> when) is ),or
() 7 € (rj +u,m + 1) for all points j,k(j < k) wherea

holds consecutively (that is there does not exist any point

z, j < z < k where « holds). Note that in this case
Ti+u <7+ L

Proof. We prove the lemma for intervals of the foffnu). The
proof can be extended for other type of intervals also. Assum
thatp,i = 9y, We then show that(7; < 7ips, +1) and
=(7; > Tiast, +u) and—(r; € [1;+u, 7, +1)) for consecutive
points j, k wherea holds.

1) Let7 < Trirst, + 1. pi = Qpua implies that there

is a pointi’ such thatr;, € (7, — u,; — ], such that
p, i = a. Then,y < 7, — 1 < Tyirst,, CONtradicting
that first, is the first point wherev holds.

2) LetT; > Tiqst, +u. Again, p,i |= 9, a implies that
there is a point’ such thatr;, € (r; — u,7; — ] such
that p,i’ E a. We then haver; > 7, — u > Tgst.,,
contradicting thafast,, is the last point where: holds.
Assume that there exist consecutive points & where
a holds. Also, letr; € [1; +u, 7 +1). p,i = Qpu)a
implies that there exists a poiilt such thatr; € (7; —
u, 7, — ] andp,i’ = a. Also, 7, —u € [1j, 76 + (I — u))
andr;, — 1 € [r; + (u—1), 7). This givesr; < i < 7,

3)
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Fig. 1. Cases (a) and (b) of Lemimh 691,uya holds in[0, 7f;rs¢, +1) and [1yqs¢, + u,00)
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Fig. 2. Case (c) Lemnid 629)1,,)a holds in shaded region

contradicting the assumption thgtk are consecutive for any interval(l, ). If all the past modalities involved have
points wherex holds. unbounded intervals, then we get an equivalent formula, as

The converse can be found in Appentdix E. Fiddre 1 illustraté§0own by Lemma]7.

reg?ons for cases (a) and (b), while Figlre 2 illustrates .trp_%mma 7. Consider a temporal definitiol = D¥[b «
region for case (c). In the rest of the paper, we refer to regioy ~0ya] built from SUW. Then we can synthesize a formula

in case(a) as Region I, regions in case(b) as Region Il ante MTL[ U;] built from £ U W equivalent toON Fy(T).
regions in case (c) as Region lll. O
Proof. It can be shown thafd“a VvV {a U%[(a A ac%)] A

In the rest of this section, we show the decidability ofif \(act — —b)[HO"[(a A act) — Op,ec)(act — b)H is
MTL[ Uz, %] by reducing any formulgp € MTL[ U7, 9,,] equivalent toON Fx(T), for a = (act — (—a A —b)). Details
to a formulay) € MTL[ U;]. We have two techniques for thisin Appendix[F. O
proof: one using oversampling projections, and the ottreéngu

simple projections. Lemma 8. Consider a temporal definitiom = OY[b «+

Qu.wal, built from X UTW. Then we can synthesize a formula
A. Elimination of Past with Oversampled Projections ¢ € MTL[ U] built from X U W U X linear in the size of

In this section, given a formula in MTL[ U;,%,,,] built ONF5(T), such thatONF5 (T) =3 | X-0.
from X, we synthesize a formulg € MTL[ U;] built from Proof. We start withON F(T') and a (X, W) oversampled
¥ U X equisatisfiable tap modulo oversampled projectionsbehaviourp’. Let dom(p') = {1,2,...,n}. If there exists a
whose size idinear in |p|. Starting with a timed worgh over pointi € dom(p') markedact Aa, then we want to ensure that
¥, we synthesize ani¥, X)-oversampled behavioyr such all points; in dom(p’) markedact such that; € [r]+1, 7] +u)

thatp = ¢ iff p/ = . are marked. This is enforced by the following formula:
1) Start with a formulap € MTL[ Uy, 9,,,] built from £, « MARK, : O0%[(a A act) — Opu (act — b)]
and a timed worg over X, MARK;, enforces the directionct — (0. (a A act) — b)

2) Flatteny obtainingy .. Let W be the witness propo-of ON Fx(T'). Marking points ofp’ with —b is considerably
sitions usedyp ., is a formula built fromX U W, with  more involved. We use Lemnid 6 to characterize the points
SNW = 0. where—%; ,ya holds, and use this to ensure that such points

3) LetT = A\_, T; be the conjunction of all temporal defi-are marked-b. Recall that by Lemm&l6, such points can be
nitions in ¢ ;¢ EachT; has the forni1" (b <+ 6, ,ya), classified into three regions.
with I, u € RsqU{oc}, and/\le T; is built from SUW. Region | consists of all those points to the leftgf, ., +
©flar = Y AT, with 1p € MTL[ U;]. We know from I. In any model, these points are described by the formula
Lemmal® thatp = 3 | W.ON Fx(¢ f1at)- MARK first = O"(ma A =b) V (ma A =b) U%(a A D‘f{),l)ﬁb)@v

4) Fori=1,2,...,k letS;, = SUWUX,, whereX; are a Which says that there are rits in [0, 745, + (). Region Il
set of fresh propositions, such th&fNX; = () fori # j. consists of all points i, + u,00). In any model, these
Synthesize a formulg, = ON Fx;, (¢};) € MTL[U;] over points are captured by the formuldARK .. = 0" (H-a —
¥; such thatON Fx (T;) = 3 | X;.¢;. Ofu,0)—b), Which says that there are bis in [7y4s¢, +u, 00).

5) Using Lemm{]4/\f:1 ¢; € MTL[Uy] is such that _Let us now discuss how to mark po_ints lying in region Il
ONFE(/\le T) =31 X. /\le G, for X = Ui?:l x,. With —b. Recall that these are the points [iry + u, 7 + [)

LemmalT and Lemmgl 8 show how to synthesize an equ[ any two consecutive pointh k such thata € o, o, but

satisfiable formula ifMTL[ U;] corresponding t@®N Fx(T;). af Uh’]hﬁdh <|fk' Son_sferj_,k; 6}; twolcor]sef[:rl]mve points
LemmalT shows step 4 for intervals of the fofhoo), while wherea noias. fmy — 7 = w—1, Ien clearly, there are no
Lemmal[8 shows step 4 for bounded intervals of the formiynen; — o, o U¥[a A act A —b]

[I,u). The results of these lemmas can be extended to worRwhen! = 0, 0%[(=a A —b) V [(—a A =b) U¥(a A —b)]]



Fig. 3. Marking[7; + u, 7 + ) with —b

points in[r; + u, 7, + 1) to be marked-b. Assume now that

unit interval.

7 —7; > u—1. We need to mark exactly the points falling inNow we write formulae inMTL[ U;] that implement the
[7j +u, 7, +1) with —b. It is quite possible that, we dont havegpgye, which will hold good on théS U W, X )-oversampled

the pointsy, h in dom(p’) such thatr, = 7;,4+w andr, = 7, +1.

a behaviourp” from p/, by adding extra points tdom(p’).
Corresponding to every pajr k of consecutive: points, such
that 7, — 7; > w — [, we add pointse, y to dom(p’), such
that, = 7; + v andr, = 7, + . We mark these new points
with fresh propositionseg, and end, respectively. We then
say that betweeheg, andend,, nob can occur. To pindown
the pointsz, y correctly, we mark the pointg k& respectively
with fresh proposition$, andb,.

To summarize the marking scheme, given (8, W)-
oversampled behavioyr satisfyingON Fx(T'), whereT =
O%[b < ©p..al, we construct a(¥ U W, X')-oversampled
behaviourp” from p’, such that

« p” is obtained by introducing extra points tom(p’).
These extra points are related to consecutivpoints
J.k € dom(p’), whenr, —7; > u — [. For such
j, k € dom(p’), we add pointse, y to dom(p’”") such that
T» = 7; +w andr, = 7, + (. The fresh propositions used
so far, consists of symbol&y, b., begy, endy} C X.

o Symbolsb, and b, represent the “start” and “end” po-
sitions j, k. Thus, b, holds at a point where A act is
true, and where the next consecutive occurrence isf
> u—[ distance apart. Similarly,. holds at a point where
a A act is true, and where the previous occurrence:of
is > u — [ distance apart. Once we mark with b5 and
T, With b, the points atr; + u and 7, + [ are marked
beg, andend,, respectively. Once we have the pointg,

andend, marked, we assert that between any consecutive

pair of beg, andendy, all points of o’ are marked-b.

« We need to make sure that theg, andend, occurring
in p” are legitimate with respect tb, and b.: That is,
there must be no “free occurrence” bég, and end,,.
Any occurrence obeg, andend, should witnes$, and

b. at exactlyu andi distance in the past respectively. This ,

i naT behaviourp” from p'.
Here, we use the idea of oversampled projections, to obtain

o Mark b, andb, at points;j andk: The conjunction of the
following two formulae is denoteMARK; .
O%(bs > (a Aact A (act — —a) Uy—,00)(a A act))),
O0%(be <> (a A act A (act — —a) S(bs A act)) B
o Mark beg, andend, appropriately atr; + v and 7, + [
respectively. The conjunction of the following two formu-
lae is denotedMARKpeg end-
0% (bs > (Oh,) LV [Bw,ut1)7begs A Ofu,u+1)beg A
D(u—l,u)_‘begb]))'
OY(be + ( o0 v
D(z,l+1)ﬁ6ndb]))>ﬂ
« Note that the above formula only asserts whéeg,
and end, should occur. We must assert that all other
remaining pointsbeg, and end;, do not occur. This is
done as follows:

— First mark all integer timestamps with a fresh propo-
sition ¢. The following formula is denotetMARK..
c N\ DW(C — [0(0,1)|:u_ \Y (D(O,l)ﬂc A\ <>(071]C)]

— We identify the points betwedn andb. by uniquely
marking the closest integral point befdrewith c;,
and and the closest integral point befégewith c;, .
Recall thatb, andb. were marked at; andr; thus,
e, and ¢y, get marked respectively at points; |
and |7 ]. We then assert thdteg, can occur at a
point ¢ only if there is acy, in (t —u — 1,t — u].
Thus, given that,, is marked a{ 7; |, beg, is marked
only in [|7;] +u, ;] +u+1). However, by formula
MARKpeg end, We disallowbegy, in (1 +u, 7;+u+1)
and(7; + v —1,7; + u). Thus, we obtain a unique
marking forbeg,. In a similar manner, we obtain a
unigue marking forendy, givenb.. The conjunction
of the following formulae denoteMARK., marks

[D(l,lﬂl)ﬁendb AN <>(l71.,l] endy A

S can be removed fronMTL[ Uy, S] obtaining equisatisfiable formula

can be done adding extra points at all integer timeStamiﬁsMTL[ U;] modulo simple projectiong 3], details in AppendiX L

and restricting the free occurrencese§;,, end, in every

4whenl = 0, O%([be <> endy] A [be — —b])



cp, andc,,, and controls the marking dfeg, and built from A; = X UW U X; such thatEN Fx(Ty) =

endy correctly: IAX11.
O%[co, <> (€A O 1)bs)] AT [ew, < (e A Qg 1ybe)] 5) Repeat step 5 folE N Fx,(T;) for all 2 <@ <k
O%[e A ey, — L, 41y 7bEGe] obtaining formulaep; € MTL[ U;] built from some
O¥[e A ey, — D‘[’;Jﬂ)ﬁendb] A; D ¥; such thatEN Fx(T;) = 3X,.¢; in each case.
Note that these formula do not restrict the behavior of ~ The choice ofA; is such thatA; —¥;)N(A; %) =0
beg, andendy, in the prefix[0, u]. At these timepoints for i # j.
beg, andend, should not occur. Here we assert that 6) Using Lemmal[ll, we obtainENFx(pfat) =
O ) (=begy A —end,) ENFs (i) A AT = 3X.[v A A, @], where
« Now that we have precisely placédg, and end;,, we X = Ui, Xi. Then we getp = IW.ENFx(¢fiat) =
can assert at all points gf betweenbeg, andend,, —b AW[EX. (Y A /\f:1 ©i)l-
holds. This formula is denotedARK_;,. 7) Steps 1-7 show that) A /\f:1 wi € MTL[ U] is
OY{begy, — (—endy A (act — —b)) U¥endy} equisatisfiable tax modulo simple projections.
Figure[3 illustrates marking ofibegy,. Lemmal® explains how to eliminate temporal definitions of

Let MARK = MARK, AMARK st AMARK.AMARK 45: A the formO"[b <+ ©; o) (a)], while Lemma 1D explains how to
MARK; x A MARKpeg,ena A MARK ; A MARKCbE Let X; = eliminate temporal definitions of the forfd™[b < ©; ,y(a)].
YUWUX, for X = {be,bs, begp, endy, c,cp,,cp. }. Then, If all the past modalities involved have unbounded intesyal
p" is a (¥ U W, X)-oversampled behaviour such thét = then we get an equivalent formula, as shown by Lerhina 9.
ONFs,(MARK) iff o = ONFx(T). That is, ONFx(T) =

3| X.ONFg, (MARK). A detailed proof of correctness Cangimm(i)?bﬁl??rigqeéjﬁ t‘?’Lnepr:)\r;é gzzggsgwe:izg a[l;o:n "
be seen in Appendix]G. O Voo :

1 € MTL[ U;] built from ¥ U W equivalent toT.

Theorem 1. qu everyp € MTL] l/JI’ Snp] Over L, we can Proof. It can be shown thal1*(~a) v 0"[a — Oy o0)b]] A
constructtyr,, in MTL[ U] over¥’ O ¥ such thatp = 3 | [0%(=a A=b) V (=a A =b) UM (a ALH, , -b)[1 is equivalent to

Xpur, X =3 = 3. T. Details can be found in AppendiX I. O

Proof. Follows from the fact that,,, can be expressed using| o .nma 10. Consider the temporal definitioffl = O¥[b <>
S and4,,f [3] and elimination of S [3], [8]. 9 (1,u)(a)] built from SUW. We can synthesize a formulac
By symmetry, using reflection[8], the satisfiability ofVITL[U:] builtfromXUWUX such thatEN F5(T) = 3X.¢.

MTL[ Uy, S;] can be reduced to the satisfiability ofproof. We prove the lemma for temporal definitions of the
MTL[ Uz, S,,p]. Hence, the satisfiability oMTL[ Unp, Si] - form 7 = 0%[b ++ 9., (a)]. The proof can be extended to
is also decidable. all kinds of intervals(l, u).
Note thatT" is the conjunction ofC; = O%[b < 9y .)al
_ o _ _ and Cy = O"[b — ©p,.)a]. Consider a timed worgh over
This section is devoted to showing that given apye x U W. p satisfiesC; iff, for all points j € dom(p), if there
MTL[U;,©y,] built from X, we can synthesizg’ € MTL[U;]  exists a pointi € dom(p), with 7; € (r; — u,7; — ] and
built from 3’ such thaty = 3X.¢', whereX =X’ —X. The 4 ¢ ¢, thenb € o;. Clearly, such modelg are such that
main steps are similar to the case of oversampling projestioyhenevera € oy, thenb € o; for all j € dom(p) such that

B. Elimination of Past with Simple Projections

Here are the steps: T; € [Ti + 1,7+ u) Let MARK, = Dw[a — D[lyu)b]. Clearly,
1) Start with a formulap € MTL[ U;,%,,,] built from X, p = MARK, iff p = C;.
and a timed worg overX. Flatteny obtainingy fq; = For a wordp to satisfyT", the above conditions are not

U A /\f:1 T;. EachT; is a temporal definition of the enough, since they only characterize points in the modetevhe
form O%(b; + ©(ai), andy € MTL[U;]. Let w; b hold. The formulaVARK, € MTL[U,] does not characterize
be the fresh witness variable introduced in the temporadints whereb should not hold. Models satisfyind ARK; can
definition 7;. Let W = {wy,...,w,} be the set of all allow a point wheréh as well as=%; ., a holds. Our next goal
the witness variables. is therefore, to find a formulMARK-;, € MTL[U;] which is
2) As discussed in section By = IW.EN Fx:(¢10¢).  €quisatisfiable t&;. ThenMARK, A MARK; is the formula
3) We now synthesizenodulo simple projectiongormulae in MTL[U;] that is equi-satisfiable t@'.

in MTL[ U] equisatisfiable withEN Fx(T;) for i = We use Lemmal6 to characterize the points whedg ,ya
1,2,...,k, modulo simple projections. holds, and use this to ensure that such points are marked

4) Start withEN Fx(Ty), a formula built fromX UW. Let Recall that by Lemma&l6, such points can be classified into
¥, = X UW. We synthesize a formula, € MTL[U;] three regions. Points lying in Regions I,Il are handled kg th
formulae MARK f;,.5¢, MARK 45 given in LemmaB. So far,
Swhen! = 0, conjunct0"([a A Ojg )y ~a A Ofg,a] — —b) to MARK
SFor instance, we can writeS; b as<y; b A (aSb) AB[g ;) (aAaSh), "when! = 0, [[0%(=a) vV O0"[a — Oj,c0)b]] A [O0%(ma A =b) V (ma A
forr=101+1,00 =b) U% (a A —b)]



we have the conjunctioMARK ;¢ A MARK 45t A MARKG
of formulae inMTL[ Uy].

Region 1lI consists of all points ifir; + u, 7, + 1) for any
pair of consecutive ¢” points j,k (a € o;,0, and for all
j < h < k, a ¢ o). The difficulty in marking points in
[7j +u, 7, + 1) with —b is :

1) Pointspi,ps € dom(p) with 7,, = 7; + v and7,, =

T + [ may not be present idom(p);

2) The length of the regiofr; + u, 7 + 1) may not be an
integer. If it were, we can pin down points i +u, 7+
1) by anchoring at pointg, k sincel, u are integers.

Unless we can pin down these points or mark this region
uniguely, we may end up marking lesser points than necessary
with —b or may mark a point already markdd with —b,
giving rise to inconsistencies. The rest of the proof is dedo

to showing how we can indeed pin down the set of points
betweenr; + v andy, + [

Since we may not have the points + v and 7, + [, we
try to get points as close as possiblerio+ v and 1, + I, by
considering an over approximation of the interfigl+ u, 71, +

l). The idea is to express; + u, 7, + ) as the intersection
of two intervalsl}, and 7, both having integer length, and
such that it is pOSS|bIe to pin dowf}, andI?,. For this, we
consider the mtervalsflk =[re+1—d, + l) and 12,C =

[, +u, 7 +u+d) whered = [T — 73] + (I —u). Note that

d is the closest integer that is larger than the actual duratio
of the interval{r; +u, 7 +1). Also, 7, + 1 —d < 7; + v and
7+l < 7j+u+d. Hence[r;+u, 7, 4-1) C I, N7, . We now
pin down points in the mtersechonk N IQk and mark them
—b. Towards getting the points in the |ntersect|0n we allow
marking pointsi € dom(p) with fresh witness propositions,
obtaining fromp, a simple extensiop’'.

In the following, we explain the choice of these proposision
the marking scheme to obtajf, and formulae itMTL[U;, S
which enforce these markings.

Case 11If 7, — 7; < u — [ for consecutive pointg, & with

a € oj,0. Then[r; + u, 7, + 1) is the empty interval and
d= [, —7;] + (Il —u) <0 and hence no action need to be
taken. FiguréX illustrates this case.

Case 2If 7, —7; € (u—1,u]. Then the intervalr; +u, 7, +1)

is non-empty, and < d = [r, — ;] + (Il —u) <.

1) We introduce two propositiongg, a; that marks all
positionsi € dom(p) such thata € o; with a unique
element from{ao, a1 }. The positionfirst, is marked
ap; iIf consecutiver’s are at a distance v — 1, then they
are marked by exactly one af anda;_; respectively,
for ¢ € {0,1} such that they alternate; if consecutive
are at a distance u — I, they are both marked with
exactly the same;, i € {0,1}. A consecutiveu;, a1—;
pair “flags” attention : they play a role, in marking
some interval with-b. The conjunction of the following
formulae, denotedlARK, implements these:

a) O((ap Va1) ¢ a) ANOY(—ag V —ay)

8'S can be removed frooMTL[ Uy, S| obtaining equisatisfiable formula
in MTL[ U;] modulo simple projections [3], details in Appendk L

3)

b) —a U¥(a A ag)

©) Nicgo1y B [F1 A F»] where
Fy i (a; AOjg,y—gyma) — Dﬂa\/(ﬂaU(a/\al,i))ﬁ,
Fy i (a; A Qpo,u—na) = —aU(a A a;).

2) To easily identify the intervalg;, and I7,, we mark

the pointsj, k € dom(p) with proposmonsbegdb and
endgy. Thed in suffix isd = [7, — ;] + (I — u), the
b in suffix is the witness proposition fo; ., a, while
beg, end signify the beginning and end of respective
consecutiver positions. To correctly get thé we need
to check the closest unit interval correspondingte-7;
: for instance, ifr, — 7; = (v — 1) + 0.4, then we know
Tk — 75 € (u—1,u— 1+ 1]. In this case[r, — 7;] =
u— 1+ 1, and henced = 1. We need to do this for
all the! — 1 possibilities :7, — 7; € (¢,t + 1], where
t € {u—I,...,u—1}. In each case, the symbols marking
the respective consecutivés will be beg; 14— » @and
endiy14+1—vu b, Wheret +1 = I_Tk — 7'j~|.
To  summarize, we introduce  propositions
{begap, enday | 1 < d < 1} to mark two consecutive’s
that are at a distance ifu — [, u]. Thed in the suffix
is the closest integep> the duration of the interval
[7; + u, 7, + ). This is used in the next step to mark
correctly the intervald; , and?,, both of which have
durationd : Identifying pointsj, k with begq, andendgy,
Ijlk is the interval[tena,, + ! — d, Tena,, + 1) while IJ2
is the interval[Tyeg,, + U, Toeg,, + d + u). Note that a
unigue value ofd will only satisfy formula 2(a) below:
that value isd = [7, — 7] + (I —uw) =t +1+1—u.
The following formulae implement this idea by ensuring
that begq, and endy, indeed correspond to consecutive
pointsj, k with @ € o;,04. Fort € {u —1,...,u— 1},
andd € {1,...,1},

a) O%(begir111—u b < (@A (ma Uy q1a))).

b) OY(endag <> (a A (—a'S begap))).
Let MARKpeg.end,a b€ the conjunction of the above
formulae.
The propositionsbegy, and endg, now help us in
identifying the relevant points in the mtersectlonl(}f
and 12,C as follows: Recall that pointg, £ marked with
begdb,enddb are also marked with one afy,a; such
that {begap, a;} C o; iff {enda,a1—;} C o,. We now
identify the points m[lk = [Tendy, +1—d, Tendy, +1) DY
marking them with a propositiog.;, iff a1_. € oy. Like-
wise, all the points inl?, = [Theg,, + U, Thegy, +d + )
are marked with a propositian; iff a. € ;. It can be
observed now that points i, N I7, will be marked
with both .y, y.,. Such pomts are markedb Figurel®
illustrates this. This is implemented by the conjunction
of the following formulae, denotetMARK,, ,, .:

a) /\ce{O,l} DW((begdb A ac) - D[u,u+d)xcb)
b) Acego,1y B¥((endap A ac) — Of_ 4 yy1—c b))

9Note that pointsj, k with consecutives’s, such thatry, — 7; > u also are
marked bya;,a1_;
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4) LetMARK_ ;. denoted"((xcp Ayer) — —b), ¢ € {0,1}.
Case 2 SummaryWe mark consecutive pointg, k& having
a that are apart by a distance {w — [, u] with a., a1,
¢ € {0, 1}, and withbegqy,, endg, respectively, wherd is the
closest integer that i& [, — 7;] +{ — u. The bitc € {0,1}
and the valuel help in marking all points ifr, +1—d, 7. +1)
with y., and all points in7; +u, 7; +u + d) with z.,. Points
marked bothz., y., are then markeehb.

Case 37, — 7; € (u, ). Then again[r; + u, 7, +1) is non-
emptyl Thend = [, — ;] + (I —u) > L. Figure[® illustrates
this case.

1) We introduce proposition$b’_, b2} to mark consecu-
tive a’s that are more tham distance apart. We assert
that—b holds in the|0, [) future ofb2_; also—b holds at

all points that are at a distancew from b%_ and that lie

beforeb?,. We first mark such consecutive pointsk
with propositionshl, andb?,. Let MARKsycc.o0 be the
conjunction of the following formulae:

a) O"(bl, < (a A—a U o0)a))

b) O% (b2, > (a A —aSbL.))

Next we assert that points {m; +u, 7] and in[rx, 7 +1)

be marked-b. This is implemented by the conjunction

of the following formulae, denoteARK; ~:
a) OY((b, A Olo,uwb) — ( 10,0y (0 A b UbZ))
b) O"((bi, A D[O u)ﬂb) — (=b A =b Ub2))
c) Ov (b2, — Opo, l)ﬂb)

Purpose of Extra PropositionsThe extra propositions in-

troduced are X {ag, a1, Tob, T1b, Yob, Y1b, b, b2} U

{begdb, endgp | 1<d< l}

2)

10f | = 0, case 2 gives an empty interval. Case 3 deals with distance.
For a’s which areu apart, we add the formuléa A Ojg,,y—a A Opg @) —
Of0,u)mb

1) First of all,aq, a; are chosen to enable marking points in
I},k, Ifk with zop, yo» OF 15, Y15, depending on whether
the pointj was marked:, or a;. Consider three consec-
utive pointsy, k, h wherea holds, withry, —7;, 7, — Tk €
[u — I, u]. Clearly, we are looking at points Lf#k, r
and I, I%,. If we just hadz,,y, to mark these
intervals, then we get points i ., I, ,, marked withys,
and points in/7 ., I}, markedz;,. There is a possibility
as illustrated by the example below, that points marked
p in I3, intersect with points markeg, in I, , . By our
technlque of marking points with both,, y, as—b, this
could give rise to inconsistency. For example, consider
L,u) = [6,7), ;, = 3.1,7 = 4.8, 7, = 5.9. Clearly,
Te—Tj, Tn—Tk € (1,7]. Fordy = [my—7;]+({—u) =1,
the over approximations of the intervial, +u, 7, +1) =
[10.1,10.8) are[r, +1—dy, 7 +1) = [9.8,10. 8) =1l
and (7 + u, 7 + u + di) [10.1,11. 1) By
construction, points if9.8,10.8) = I},k are markedyb,
points in [10.1,11.1) = Ij%k are markedz;. Clearly,
points in [10.1,10.8) have bothz;,y, marked. Again,
the over approximations for the interva), +u, 7, +1) =

[11.8,11.9) arel} , = [r,+1—da2, 7 +1) = [10.9,11.9)
and I, = [m + u, 7 +u + da) = [11.8,12.8)
for dg = [m — 7] + (I —u) = 1. As per the

marking scheme, we would mark0.9,11.9) with y,
and[11.8,12.8) with x;. While this gives us points in
[11.8,11.9) marked with bothzy, yp, this also gives us
points in[10.9, 11.1) marked with bothey, y,. We would
then mark—b for all points in[10.9,11.1), giving rise
to inconsistency, ag0.9,11.1) is markedb by MARKG.
However, had we marke@{) 8,10.8) = 11 with yop,
[10.1,11.1) = I?, with 2y, [10.9,11.9) = Ik , with 1,
and [11 8,12. 8) = I,f , With 215, the erroneous interval
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Fig. 7. Erroneous intersectiofi,u) = [6,7),j = 3.1,k = 4.8,h = 5.9.

[10.9,11.1) is marked withzq, and yo,. Thus, using by formula MARK-; 1_.; this does not generate
two bits 0,1, we can rule out marking points having inconsistencies, since they are already markéd
Zeb, Y1—c » With —b. The situation of erroneous marking by MARK_ ..

is illustrated in Figuré&l7. o T1 ¢, Y1—cp Occur freely in B. The freely oc-
Note that it suffices to have only two bits 0,1 and hence curring z1_. p, y1—c » results in marking of-b by
propositionsxop, Yo, T1b, Y15- We do not need:op, yop. formulaMARK_;, 1_; but these points are already
Consider any two pairs of poinjgk andh, m such that markedb by MARK,. Thus, at any poinp in B,
j<k<h<m,andj andk,h andm andk and h PP ¥ x1-c b ANYy1—cp, for ¢ € {0,1}. Thus, at all
are all consecutive with respect to i.e, there are no points of B, the appearance af; ., andy; .
points betweery, k or k, h or h,m that are marked. (if that is the case), is mutually exclusive.

Let 7, —7;, Ty, — T > u—1. Assume further thaio € o; Thus, free markings af ., y.;, if at all, they appear, do
as per our marking scheme. There are 2 cases : not come in the way of correctly marking points with
Case 1.7, — 7 < u — [. In this casek,h will be b, —b.

marked asa; and j,m will be marked asag. Note e formulaMARK in MTL[U;, S] obtained as a conjunc-

that the regiond;, , and I}, , are empty. No erroneousy; ., o MARK, MARK f41.5:, MARK; s, MARK., MARK
intersection can happen’?, is markedxo, while I} MARKpe.ena . MARK ... . MARK s . andMARK_ .. is

is markedy,. , o such thatp = EN Fx(T) iff o/ = MARK, wherep’ \ X = p.
Case 2:7, — 7, > u — [. In this casej,h will be A hro0f of correctness can be found in Appendix J. Using the
marked asap and k,m will be marked asai. Let tgchnique in[[3], we can eliminate tifemodality fromMARK

dy = [7. = 7j] + (I —u), d2 = [ = 7] + (I =), optaining an equisatisfiable formulain MTL[U;]. O
andds = [, — ] + (I — ).

o Intervalsly , = [r, +1—ds, 7 +1) (Markedyoy)
and If,k = [r; + u,7j + u+ dy) (markedzg,) are
disjoint: we haver; + u+di < T, +u <1, +1 <
Tm + 1 — ds. Theorem 2. For everyp € MTL[ Uy, S,,,] over X, we can

o Intervalsiy; = [m, +u, 7, +u+d3) (markedzoy) constructy s, in MTL[ U] over A = X U Y such thaty =
and I}, = [ry +1—di,7x +1) (markedyo) are 3J(X' — 2).4 sy
disjoint: 7, + u > 7 + (u— 1) +1 > 7 + L.

This shows that for consecutive pairsaopointsj, k£ and
h,m wherer, — 1, Tn, — Ti, Tm, — T, > u — [, intervals
I}, and I7, (respectivelyl;  and I;,) which are
markedz;, y;» Will never intersect. C. Simple Versus Oversampling Projections: Formulae Size

The formulae MARK,,, . only say wherezw,ys  Consider a formulap € MTL[ U, %,,]. Assume that the
are marked; they do not disallow occurrences Qfumber of past modalities it is n, of which there aren,
Ti-c b, Y1-c » at those points. We claim that the fregqyounded past modalities and, unbounded past modalitties.
occurrences ok1—c b,y1-c v does not create problems; e '\, — 1, + n,. Flatteningy results in a linear increase
Note that points marketiby MARK, and points marked i the size ofy. Convertingy,; to ENF gives a constant
—b by MARK-., ¢ € {0,1} are disjoint and span sjze increase. Elimination of unbounded past (Lerfina 9) also
dom(p). Let p,q be consecutive points marked For resylts in a constant increase in size. During eliminatién o
every pointp with a € oy, [1,+1,7p+u) is markedb by  poynded past modalitieé; ) (LemmalID), we add — 1
MARKG, and|r, +u, 7,+1) is marked-b by MARK-, .. new formulae resulting irO(l) extra modalities. Thus, the
In casep = last,, then[rias, +u,00) is marked=b by numper of extra modalities introduced after eliminatioratif
MARKiqs:. Thus, inducting on the's in p, the union of he 1, temporal definitions corresponding to bounded past
the points marked by MARK, (call it B) and points modalities is < 7l,,4., Where l,,.. is the maximal lower

Note that our reduction does not introduce any new punctual
modality. Hence, we also have the equivalence modulo simple
projection of MITL[U;, S;] andMITL[ U;].

Proof. Follows from the fact thas,,, can be expressed using
S and$,,, [3] and elimination ofS modulo simple projections
31, [8]. 0

marked—b by MARK . (call it B) is dom(p). bound of all bounded past modalities¢n Hence, the formula
Thus, there are 2 possibilties for the free occurrence gtained by simple projections; has in the worst case, an
Ti—c by Y1-c b- exponential increase in size overin the case of oversampled

e Ti_ch Y1—cp OcCcur freely in B. The freely oc- projections, it can be seen that both bounded as well as
curring z1_. »,¥1-c » results in marking of-b unbounded past modalities contribute to a linear increatiee



size of the resultant formulae. In simple projections (Leanndo not seem to generalize easily to the loyd L[ U;, S,,;]
[10), marking—b correctly in[r; + u, 7, + 1) depended on the considered here. In proving decidablity MfTL[U;, S,,,,], we
distancer;, — 7;, resulting inl — 1 formulae; in the case of have given two different proofs. In the first proof, we rediice
oversampling projections (Lemrha 8), this is handled irefiye MTL[U;, S,,;,] to MTL[ U;] using the notion of oversampled
by the introduction of extra integral points betwegmand k. temporal projections. This encoding is relatively simpfel a
However, the formulae needed to introduce these extragoingsults only in linear blowup in formula size. We also gave an
correctly have a constant size. A more detailed complexiéyternative reduction using only simple temporal projats,
analysis can be found in AppendiX K. but the reduction turns out to be considerably more complex,
) and leads to an exponential blow up in formula size.
D. Expressiveness The technique of temporal projections has been widely used
We wind up this section with a brief discussion about thiar continuous timeMTL. For example, Hirshfeld and Rabi-
expressive powers of logidd TL[U;, S,,,,] andMTL[U,,,,, S;]. novich [€] used it to eliminate non-singular future operato
The following lemma highlights that even unary modalio, ;) in terms of$( 1), U and S. Subsequently, D'souza
ties 01,9 with singular intervals are more expressive thaset al [3] as well as Kiniet al [8] used the technique to
Unp, Snp; likewise, non-singular intervals are more expressivemove past operatds; from MTL[ Uy, S;]. Their reduction
than intervals of the forn0, co). does not carry over to logiMTL[ Uz, S,,,] over pointwise
Lemma 11. () MTLO;] ¢ MTL[ Uy Sil, (i) time which is expressively weak and allows insertion errors

MTL[O7,1] & MTL[Ur, Suyl, and (iii) MTL[Ony, &np] & In this paper, we have extended the technique of temporal

MTL[U;, S|, projections to pointwise time (timed words). One novel aspe

Proof. The formula$g,1y{a A =Op1,1)(a Vv b)} in MTL[O/]
has no equivalent formula iMTL[ U,,,,, S;]. Similarly, the
formulad{bA—9 1 1)(aVb)} in MTL[O, 9] has no equivalent
formulainMTL[Uy, S,,]. The formula®; o) [aA =9 2ya] €
MTL[Onp,9np) has no equivalent formula iMTL[ Uy, S].
Details in AppendiM. O
V. DISCUSSION 1]
In this paper, we have proposed two notions of equivalen
betweenMTL formulae (with different sets of propositions),
which both preserve satisfiability. The notigh = 3X.4,
denoting equisatisfiability modulo simple projectiotenotes
that a timed word satisfyingg can be extended to a timed [4]
word with additional propositions{ which satisfiesy,, and
a timed word satisfying) can be projected to a timed word [5]
satisfyinge. In both cases the set of time stamps of the letterg)
remains identical. A more elaborate notiah,= 3 | X.v,
denotingequisatisfiability modulo oversampling projectjds [7]
similar but the models ofy may have additional time points. [g]
Thus, during temporal projection we allow oversampling of
the original behaviour by adding new time points. Both form I
of temporal projections are useful. They often allow foramul
of a more complex logic to be effectively reduced in equitOl
satisfiable manner to formulae of a much simpler logic. Thi§1]
often provides a convenient technique for proving satigfigb [12]
As a significant use of this technique of temporal projecjon
in the paper, we have shown the decidabilityTL[U;, S,,,,] (3]
over finite strictly monotonic timed words. This logic is neor [14]
expressive than the previously known decidable fragmehts o
MTL as well asMITL but less expressive thafiTL[ U, S;].
A symmetric proof would allow showing th| TL[U,,,, S;]
is also decidable. Our result can also be adapted to weaklé(
monotonic finite timed words (see AppendiX H). Thus, wi®!
have extended the boundary of known decidable fragments
of logic MTL over timed words. We note that the proof tech-
nigues used for showing decidability BfTL as well asMITL,

(3]

[15]

of our formulation is that during temporal projection weoall
oversampling of the original behaviour by adding new time
points. We have demonstrated that the ability of adding such
additional points can considerably simplify the reductiofihe
expressive power of (the two forms of) temporal projections
is an interesting topic of future work.
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APPENDIX
A. Proof of Lemmé&ll

We first define the composition of two simple extensions.

Composition of Two Simple ExtensionSonsider ¥, X, X5
suchthatt N X; =0 andXNX, =0 . LetX; =T U X,
Yo =XUX>y andX:X1UX2.

Let ¢ = (o}, 7!) be a(%, X;)-simple extension and let
¢ = (0%, 72) be a(%, X»)-simple extension, such that
¢\ X1 = ¢4\ X2. Then the composition af] and¢} denoted
(1 @ ¢, is a(X, X)-simple extensiont” = (¢/,7') such that
ol =0l Uo? andr; = 7} = 72. Note that(¢; @ ) \ X =
¢\ X1 = ¢\ Xo, and¢’\ X5 = ¢; and¢’\ X; = ¢,. Consider
the following example:
Let ¥ = {a,b}, X1 = {c}, X2 = {d},
¢ = ({a},0.3)({b, c},0.8)({b},1.1), and
¢b = ({a,d},0.3)({b,d},0.8)({b},1.1). Then
G\ X1 =G\ Xo = ({a},0.3)({b},0.8)({b}, 1.1),
G D <§ = ({a’ d}’ 0'3)({b’ G, d}7 0'8)({b}7 1'1)’
(C1® )\ Xo = ({a},0.3)({b, ¢}, 0.8)({b}, 1.1) = (j,
(G oG\ X1 = ({a,d},0.3)({b,d},0.8)({b}, 1.1) = (5.

We use the following easy lemma in the proof:

Lemma 12. ConsiderX, X;, X, such thatx N X; = § and
YNXe =0.LetY = ZUXq, X9 = XUXy and X = X;UX,.
Then¢’ = (¢"'\ X2) @ (¢"\ X1).

Proof of Lemmd L

Proof. Assumep; = 3X1.91, w2 = IX5.99.

(@) Then, fori = 1,2, and any timed worgb; over 3, such
thatp; = ¢;, we have %, X;)-simple extensiop, such
that p} = v; andp} \ X; = p;.

(b) For any timed word;, p! = ¢, implies p} is a (%, X;)-
simple extension such that \ X; |= ¢;.

Consideryp; A 2, a formula built over:. Also, ¢ Ao is a
formula built from> U X; U X,. Let X = X; U Xs.

1) Let¢’ be atimed word oveCUX such that’ (= i1 Avs.
Then(’ | ; for ¢ = 1,2. Sincev; is a formula built
from 3;, and X; N X, = 0, we have

. C/ ':’lf)l —></\X2 ':’l/)l, and
o ('EYa =\ X1 EYr.
e Call '\ X; =¢ and(’'\ Xo =(j.
Note that(] is a (X, X;)-simple extension and} is a

Clearly, ¢’ is a (%, X)-simple extension obtained by
composing the(X, X;)-simple extension¢; and the
(3, X3)-simple extensiorg} such thatl’ \ X = ¢.
Since X1 N X3 = 0, and, is built from from X U X,
and s from X U X, ¢ @ ¢4 will not interfere in the
satisfiability of either); or ¢, in a way different from
¢1 and ¢h: Assume the contrary. That i§; ¥ 11 A ts.
That is, ¢’ ¥ 11 or ¢’ ¥ 1o. Let ¢’ ¥ 1. If so, then
¢\ X5 ¥ ¢ sincety; has no symbols fromX, (by
assumptionX; and X, are disjoint). But¢’ \ X2 = (1,
and we know(] = 1, contradicting¢’ ¥ ;. Hence,
¢ E 1 Ao

The following example illustrates what might go wrong when
X, N Xy # 0. Consider, = {a,c,d}, X1 = {b,e} and
X9 = {b, f} Note thatX1 NXo = {b}

Consider formulae), = bAO((b « Oc) AV X andyy =
bAO(D < ¢a) AOV X. Also, letp; = Oc andps = Qa. Let
¢ be the word(d,0.1)(c,0.3)(d,0.7)(a,0.9) over X. Clearly,
CE @1 A2

Consider; = ({d, e, b},0.1)({c},0.3)({e, d},0.7)({a}, 0.9),
a (X, X;)-simple extension and th@:, X5)-simple extension
G = ({d, £.5},0.1)({e,b},0.3)({f.b.d},0.7)({a},0.9).
Then, () | ¥1, ¢ | 2, (1 \ X1 = (3 \ X2 = (. However,
¢"'=({d,b,e, f},0.1)({c,b},0.3)({d, b, e, },0.7)({a},0.9),
the composition of; and{} is such that’ ¥ (¢ Avs). O

B. Proof of Lemma&l2

Proof. The proof follows by structural induction op.

o Let p be a timed word oved such thatp = ¢. We
have to show that for al{>, X)-oversampled behaviour
p' such thaty’ | X = p holds,p’ = ONFx(p).

Consider a(X, X)-oversampled behavioy?, such that
p L X = p. Then, there exists a strictly increasing
function f : {1,2,...,n} — {1,2,...,m} such that
n = |dom(p)|, m = |[dom(p')|, and
- f)=1,01=01N%, 7 =74, and
- f(n)=m, 0, =0, N%, 7, =7/, and
—Fori<i<n-—1, f(i)=jand f(i+1) =k iff
* 0 = U;— Ny, andr; = TJI-,
% 041 =0, N, and 7,1 = 7,
x Forallj <l<k, o] CX.
By applying structural induction on depth ¢f we show

(3, X2)-simple extension. This gives, by (b) above that thatp = ¢ — p' = ONFx(y). For depth O, the base

G\ X1 E i and( \ X2 | 2. By Lemmall2, we
have () \ X1 = ¢4\ Xy, call it some timed word,
over¥. Then( = @1 A 2. Also, ¢ = (¢4 \ X1) =
(¢'\ X2)\ X1 =/ \ X.

2) Now let¢ be a timed word oveE such thatl = o1 Aps.
We have to show that there i &, X )-simple extension
¢’ such that¢’ = 91 A 4o such that(’ \ X = (.
Sincep; = IX1.91, Y2 = IX5.95, we know that for
any word ¢ over X satisfying ¢y A w2, ¢ E ;. By
(a) above( = ¢; implies there exist§X:, X;)-simple
extensiong] such that¢ = v;, with ¢\ X; = ¢. Then
the compositioy’ = (] ®¢5, of ¢ and(} is well-defined.

case trivially holds for atomic propositions. For example
if o =a €3, thenONFx(¢) = aAact. Clearly,p,1 |
aiff p/, f(1) E ONFx(a).

Assume the result for formulag of depth< n — 1.
Consideryp as a formula of deptm. Lets discuss the
case of formulae of the formp = ¢y Uy where
and, have depth< n — 1.

If p,i = 11 Urie, then there existg > i where v,
holds, and all points in betweerand; satisfy. Also,
t; —t; € I. By the above, there exists a pojfitj) > f(7)
such thata}(j) E ONFx(19) (by induction hypothesis),
ando’; ;) |= act (definition of f). Let {i1,... 4.} be the



set of points betweerf(i) and f(j). For alli < < j,
f() € {i1,...,iq}. Also, oy = ONFx(v1). However,
there are points; € {i1,...,4,} such thati; # f(I) for
anyi < [ < j. These points are such thaij Ny = 0.
Now if we look at points betweerf (i) and f(j), then
we have

— For all pointsk such thatf (i) < & < f(j), we have
o, = ONFx(¢1), oro;, N X = 0.
i.e, (U;c Ny # (Z)) — U;c ': ONFE(wl)
— Recall that ifoj, N X # 0, theno}, = act
The above conditions give us
pl,f(i) ): (act — ONFE(wl)) UI(act A\ ONFz(’lﬁg))
Also, sincep’ is a (X, X)-oversampled behaviougct
holds good at the start and end points= act iff act
holds good at the starting poirifl L holds good only at
the last point;L stands forfalse. Clearly,p = (¢1 Uris)
impliesp’ |= (act = ON Fx(¢1) Ur(act AON Fx(2) A
act A (OL — act). The proof for past modaility is
analogous.

o Letp’ be a(¥, X)-oversampled behaviour such thét=
ONFx(p). We have to show thap’ | X = ¢. In a
manner similar to the above, by structural inductionpof
we can show thap’ | X | .

O

C. Proof of Lemm&]3

Proof. Follows from Lemmal2 and equivalence qf and
ONFx(Q). O

D. Proof of Lemmé&l4

We first define the composition of two oversampled be-

haviours.

Composition of Oversampled Behaviautst p; = (o!,71)
be a(X, X;)-oversampled behaviour ang = (02,72) be a
(X, X2)-oversampled behaviour such that| X; = po | Xo.
This condition says that the points ja where propositions of
Y hold is exactly same as the points pn where propositions
of ¥ hold; moreover the same propositionsX»hold at these
points of p; andp,. Let¥; = XU X; andY, = XU X5, We
define the composition gf; and p, denotedp; H p- to be all
(X, X1UX>)-oversampled behaviougssuch thap | X7 = po
andp | X5 = p;. Note thatp; B p, is guaranteed to exist
only when X; N X, = (). The following example illustrates
that whenX; N X, # 0, p1 B p2 may not exist.

Consider: = {a,b}, X1 = {c,e}, Xo = {d,e}. Let p; =
({a,c},0.1)({e},0.3)({b,e,c},1) be a (X, X;)-oversampled
behaviour andps ({a},0.1)({e},0.3)({b,e,d},1) be
a (X, Xo)-oversampled behaviour. Thep; | X,
({a},0.1)({b},1) = p2 | Xao. Assume thatp € p; H po.
Then,p | X1 = p2. However,p | X; will not contain any
positioni which is marked just withe, since such a position
will be eliminated during oversampled projection with resp
to X;. Thus, there can be no suphwhich after oversampling
projections with respect t&'; will give p,. A similar problem
happens when trying to show that, Xs = p;.

We now give an example to illustrate the
composition of two oversampled behaviours. Let
Y={a}, Xi1={c}, Xo={d}, p1=({a},0.1)({c},0.5) and

p2=({a},0.1)({d},0.5)({d},0.5). p1 B p2 consists of:

e ({a},0.1)({c},0.5)({d}, 0.5)({d},0.5)
e ({a},0.1)({d},0.5)({d}, 0.5)({c},0.5)
e ({a},0.1)({d},0.5)({c},0.5)({d},0.5)

Clearly, when the wordg;, p» are weakly monotonig; B po
can consist of more than one word; however, whenp, are
strictly monotonic,, Hps is a unique word. Our proof applies
to both weakly monotonic and strictly monotonic words. We
use the following easy lemma in the proof:

Lemma 13. Let X; N X, = 0, and X; U X5 = X. Letp be
a (¥, X)-oversampled behaviour, and 18; = ¥ U X; and
Yo =X UX,. Thenp € [(p | X2)] B [(p | X1)].

Proof of Lemmd #

Proof. Givenyp; =3 | X3.¢; andypy, = 3| X5.(;. We know
that by definition,

(a) For any(X%, X;)-oversampled behavioyf,,
PLE G — (0 L X0)
(b) For any timed wordp; over X such thatp; = ¢;, there
exists a(X, X;)-oversampled behavioyt such thap! =
G andp; | X; = p;.
We now want to show thap; A o = 3| X.(¢; A C2).

1) Let p be a timed word oved such thatp E @1 A
2. Sincep E ¢;, we have by (b) above(X, X;)-
oversampled behaviourg, such thatp, E ¢ and
P Xi = p, fori=1,2. Hence,p| By} is welldefined,;
let p’ € p} B ph.

Since(; is in the oversampled normal form with respect
to X;, by Lemmd3B, we havé; =V | .(; and(o =V |
.C2. We already have), = ¢;, for i = 1,2. Hence,

« any (X;, Xy)-oversampled behavioyr’” such that

P’ 1 Xo = p} will also satisfy(;.

any (32, X, )-oversampled behavioyr” such that

" | X1 = pl will also satisfy(s.

By definition of B, we know thatp’ € p} B pf, is

such thaty’ | X5 = p} andp’ | X1 = p}.

Picking p’ = p” = p’”", we havep’ = (; andp’ E

Ca.

Hencep' € p) B p), satisfies(; A (2. Further,

PrLX ={[p | Xi] | Xo} = {py | X2} = p.

Conversely, lety’ be a (X, X)-oversampled behaviour,

such thatp’ = ¢ A (. Thenp' | ¢ for i = 1,2.

Again, since(; is in the oversampled normal form with

respect tox;, by Lemmd3, we have; = (V |).¢; and

¢ = (V ]).C2. We already have' | ¢; for i = 1,2.

Hence,

e P EGQ =PI X E G

e P EGQ—=P X1 E G

o Letp) =p' | Xp andpy = p’ | X1. Thenp) = G
andp; = G2

2)



« By (a) above, we have) | X; E ¢ andp) |
X5 = ¢o.

o By Lemmald3,y’ € p} B p). Hence, by definition
of B, p} | X1 = ph | Xo. Call it p, a timed word
overX. Clearly,p = o1 Aga andp =p’ | X.

([l

E. Proof of Lemm&l6

F. Proof of Lemmal7
Proof. Let p’ be a(X, W)-oversampled behaviour. Let =

(act — (—a A —b)). Consider the following formulae in

MTL[ U;]
1) ¥ : [(YaV{aU"[(aAact) AOf ;) (act — —b)]}]
2) Yy : OY[(a A act) = Op o) (act — D)].

Let ) = ¢1 A 2. We claim thaty’ = ONFx(T) iff p E 4.

Proof. We prove the lemma for intervals of the fofffpu). The Assumep’ = ON Fx(T). Assume the contrary that = ;.
proof can be extended for other type of intervals also. Agsumhen, either there is a point markedt A b before the first

thatp, i |= 9,.)a. We then show that(r; < 7yirst, +1) and
(T > Tiast, +u) and—(r; € [1; +u, 7 +1)) for consecutive
points j, £ wherea holds.

1) Let7 < Trirst, + 1. pi = Qpua implies that there
is a pointi’ such thatr;, € (r; — u, — ], such that
p, i = a. Then,y < 7, — 1 < Tyirst,, CONtradicting
that first,, is the first point wherex holds.

2) LetT; > Tiqs, +u. Again, p,i |= 9o implies that
there is a point’ such thatr;, € (r; — u,7; — ] such
that p,i’ = a. We then haver; > 7, — u > Tiase,,
contradicting thafast,, is the last point where: holds.
Assume that there exist consecutive points & where
a holds. Also, letr; € [1; 4+ u, 7 +1). p,i = @ u)a
implies that there exists a poitlt such thatr;, € (7; —
u, 7, —l] andp,i’ = a. Also, 7; —u € [1j, 7, + (I — u))
andr;, —l € [1; + (u—1), 7). This givesr; < iy < 7,
contradicting the assumption thgtk are consecutive
points wherex holds.

Conversely, assume thai(r; < Tgipse, + 1) and —=(r; >
Tlast,, +u) @and—(r; € [r; +u, 7 +1)) for consecutive points
Jj,k wherea holds. Thenr; € [Trirst, + 1, Tiast, + u). We
show thatp, i |= Gy ).

1) If Tfirsto, — Tlasty then T —u < Tfirstq < Ti — L.
Clearly, « holds in (7; — w,7; — I], and hencep,i
Q[lma.

2) If Tfirsta < Tlaste andn S [Tfirsta +ly7'lasta +U) By
the condition—(7; € [r; + u, 7, + 1)) for consecutive
points j, k where«a holds, we have for all consecutive
points j < k wherea holds, r; ¢ [r; + u, 7 + 1).
Combining this withr; € [Tirst, + 1, Tiast, + u), We
haver; € [ +1, Tiast, +u) OF T; € [Tfirst, +1,7; +u)
for k < last, andj > first,.

If j = firsty, and if7; € [7pirst, +1, Trirst, +u), and
as seen in the first casp,i |= 9, . Similar is the
case wherk = last,. Assume now thaj > first, and
k < last,. Considering/’ as the immediate point before
j wherea holds, (there is certainly such a poijit j/
could be first,) we have by assumption; ¢ [r;; +
u, 7; + ). This combined withr; € [7/irs1, + 1,7 + w)
givest; € [1; +1,7; + u). Similarly, considering:’ as
the immediate next point aftér wherea holds (there is
certainly one such point’ could belast,) we have by
assumptionr; ¢ [ + u, 7 + ). This combined with
Ti € [Tk +1, Tiast, +u) givest; € [1+1, 7 +u). Hence,
we havep, i [= 9y ).

3)

O

occurrence ofi A act, or there is a point markeakt Ab in the
[0,1) future of the firsuAact. Both of these imply-ON Fx (T')
giving contradiction.

Now assume thap’ = —),. Then some pointct in the
[I,00) future of a certairu A act is marked—b, which again
contradictsON Fx(T). Hencep’ = . The converse can be
proved in a similar way. Note that; Avy» increases a constant
number of modalities compared @N Fx(T).

O

G. Proof of Correctness of Lemma 8

Proof. We give a proof of correctness on the construction
of p” and the formulaMARK, showing thatON Fx(T')
3| X.ONFx,(MARK). We start with a(X, W)-oversampled
behaviourp’ over ¥ U W. We induct on thea’s in p/, and
show that a poinp of p’ is markedb iff p',p = 9.0 a-

« Given any pointg of p’ markeda, MARK, marks all

points in[r, 4 [, 74 + u) with b.

Lets look at the first of p’. Recall that the point where
a holds for the first time is calledirst,. The formula
MARK;.s¢ ensures that all points of’ that are at a
distancg0, !) from first, are markec-b. Also, all points
in [0, 7first,] are also marked-b. Thus, MARK ;s
accounts for all points if0, 7¢;rst, + 1), While MARK;
marks all points inN7is, + 1, Tirst, +u) With b.
Consider a pointj in dom(p’) such thatj > first,,
a € o; and assume that all thés in [0, 7;] have been
accounted for: that is, all points ifd,r; + u) of p
have been marked with or —b correctly. This is the
inductive hypothesis. Now consider the next consecutive
a occurring afterj, call that pointk. If 7, — 7; < u —1,
thenr, +1 < 7; + u, and by MARK,, all points in
[t + I, 7 + w) will be markedb. Hence, we are done
accounting fof{0, 7, +u). Hence, assume, —7; > u—1.
In this casezy, +u > 7, +1 > 7; + u. MARK, marks all
points in[r + I, 7 + u) with b; we need to reason that
points in[r; + u, 7 4 1) will be marked—b.

— The formulaeMARK; ;, MARKjyeg ena mark points
J, k respectively withb,, b., and pointsr; + u, 7, +1
respectively withbeg, andends,. Also, MARKpeg. end
marks (7; + u,7; + u + 1) as well as(r; + v —
1,75 + u) with —beg,. As discussed in Lemmi 8,
we must assert that all other remaining poibtg;,
and end, do not occur. The formuldMARK, first
marks all integer points with. We then identify the
points betweerb, and b. by uniquely marking the



closest integral point beforie with ¢;, and and the are no symbolsv afterbeg, sharing the same time stamp

closest integral point before, with ¢;,. Recall that asbegp.

bs and b, were marked at; and7; thus,¢,, and « In a similar way, the position afnd; depends on the left
e, get marked respectively at points; | and |7 . parantheses of the interval. Recall that we marid,
We then assert thdteg, can occur at a point iff at 7, + (. If the interval is of the form[l,«), then we
there is acy,, in (t —u — 1,¢ — u]. Thus, given that wantend;, to be the first symbol with time stamp, + (.
c, is marked af 7; |, beg, is marked only in[| ;| + Similarly, if the interval is of the form(/, ), then we
u, | 75] +u+1). However, by formulaMARKyeg end. want end, to be the last symbol at time stamp + I.
we disallowbegy, in (1; + u,7; +u + 1) and (7; + This can be done similarly as above.

u—1,7;+u). Thus, we obtain a unique marking for

begy. In a similar way, we obtain a unique marking. Proof of Lemmadl9

for end,. Note that the oversampled behaviguf  proof The temporal definitio is the conjunction of’; =
now has the;e markings. The fgrmleARKﬁb now D[+ Opooyal and Co = O%b — $p.00)a]. Models p
rr)/arks all points ofp’ (or all points markedict in  garisfyingc, are those wheré holds at all points such that
p") betweerbeg, andend, with —b. This takes care , ho|4s somewhere from the beginningofill 7; —1, that is in
of the interval we were interested in: the intervajne prefix(o, 7,—i] of p. Clearly, either there is no point marked

(7 +u, % +1). ) a in the model, in which casé™—a holds, or, whenever there
— Thus, we have now accounted for all pointspdfin g pointi markeda, thenb holds at all points infr; + 1, co).
[0, 7% + ). Thus, C is equivalent toy; = 0%(—a) V O%[a — Oy o) b).
« We are now left with the remaining pat, +u, 7aom(,)]-  Models satisfyingC, are those in which points where

If k # last,, we can extend the reasoning above tog,  a hold must be markeehb. Clearly, all points in[0, 1)
the next consecutive position aftér which is marked must be marked-b. Also, if i is the point wherex holds
an a. In this way, we can account for all pointsfor the first time, then all points ifr;, 7 + ) should be
of p" in [0,7ast, + u). We just need to reason formarked—b. Thus, the formulap, = 0%(—a A —b) V (=a A
[Tlast, + Us Tjdom(p))])- Consider the pointast,. The —p) U¥(a A O l)ﬁb) is equivalent toC,. We thus have a
formula MARK;,,; marks all points ofo’ in the interval formula; A ¢2’ € MTL[ U;] equivalent toT". 0
[Tlasta + u, T\dom(p’)\] with —b.
The above argument shows that all pointspbfre markedb J. Proof of Correctness for Lemmal10
or =b correctly. The(ZUW, X)-oversampled behaviowl’ re-  proof, The proof of correctness proceeds in similar lines as
flects these markings. When we do an oversampled projectiofinma[8. We give a proof of correctness on the construction
of p” with respect toX = {be, bs, begy, ends, ¢, v, co.}, W of ; and the formulaMARK, showing thatEN Fs,(T) =
are left with p’, where at all positions, we have the correcty MARK. We start with a timed worgh over ¥ U . We
marking with respect td or —b. Clearly, a pointp of " jnqyct on thea’s in p, and show that a point of p is marked
is markedb iff p',p = O u)a. Hence,p' = ONFx(T) iff 4 i pip = Opwa.
p” ': ONFEUwUx(MARK). ’
Conversely, if we start with &% U W, X)-oversampled
behaviourp” satisfyingON Fxuwux (MARK), then all points
p of p” markedact will be markedb iff $;; ., a holds good at
p. Thenp” | X will give a word p’ overX U W that satisfies
ONFx(T). O

« Given any pointg of p markeda, MARK;, marks all
points in[r, + [, 74 + u) with b.

« Lets look at the firsti of p. Recall that the point where
a holds for the first time is calledirst,. The formula
MARK¢;-s: ensures that all points of that are at a
distancg0, !) from first, are markecd-b. Also, all points
in [0, 7first,] are also marked-b. Thus, MARK ;s

. ) accounts for all points if0, 7¢;rst, + 1), While MARK;
Note that for weakly monotonic words, we need to specify  marks all points iNTfirst, + L Trirst, + 1) With b,

the exact location obeg; and end, for a fixed time-stamp. , cConsider a pointj in dom(p) such thatj > first,,
Recall that we mark the time stamp + u with beg,, for a a € o; and assume that all thes in [0,7;] have been
pair j, k of consecutiver's at distance> u — I. accounted for: that is, all points iit, 7; 4+ u) of p have
« Since there are several occurrences of the same time been marked witlh or —b correctly. This is the inductive
stamp, we wanbeg;, to the first symbol of the repeating hypothesis. Now consider the next consecutiveccur-

H. Extending Lemmal 8 to weakly monotonic timed words

time stampr; + v while dealing with intervalgi, v). We ring from j, call that pointk. If 7, — 7; < uw — 1, then
then add an extra formulBweakyey, = 0% (o 0;-begs) T+l < 7j+u, and byMARK,, all points in[,+1, 7x+u)
which says thabeg; is not after any symbak having the will be markedb. Hence, we are done accounting for
same time stamp dsgs. [0, 7% + u). Hence, assume, — 7; € (u — [, u]. In this

« Likewise, while dealing with interval§, u], beg, should case;r, +u > 1, +1 > 7; + u. MARK, marks all points
always be the last symbol at its timestamp + u. in [ + 1, 7 + u) with b; we need to reason that points

Lweakyeg, =" (begy, — Ojo,g)L) which says that there in [7; + u, 7 + 1) will be marked—b.



— We start marking points of with new propositions, extension.

obtaining a simple extensigst of p. We start mark-
ing points where: holds good inp with propositions
in {ao, al}.

Assume that poinf is markeda, while & is marked
a; by formulaMARK,. Letd = [ — 7] +1 —

the closest integer> the duration of the mterva
[Tj + u, 7% + ). FormulaMARKpeg end,a marks j
with begq, and pointk with endg,. Identifying point
j as beggy and pointk with endg,, all points in
— d, Tendy, + 1) are markedzoy
and all points |nI = = [Toega, + U Toegy, + U + d)
are markedygs. The points infj , 1 12 ', are marked
—b by MARK 0.

Since[rj +u, 7, +1) C I1 N IQk, we have clearly
marked all points in; + u, 7, + 1) with =b. Also,
points in[r; + u, 73, + 1) are not handled by formula
MARK}, since these points are not in tlieu)-future

of any point markeda. Thus, points handled by
MARK_; o and MARK, are disjoint.

Recall the discussion in Lemmp_]10 regarding
free occurrences ofyy,y1, : as noted earlier, if
{z1b,y10} C oy for anyp € I 5N Ijk, there is
no problem, since these pomts are anyway marked4)
=b; if {z1p, 516} C op, fOr p ¢ I g ﬂ] oo then
either they lie in somd;, , NI correspondmg
pointsh, m such thatr,, — 1, € (u —Lul,orpis a

point handled byMARK;. In the former case, there

is no problem, while in the latter case, we get an
inconsistent simple extensigsf from p. Since we

work only on consistent simple extensions, we rule
out simple extensions where of the latter form.

Thus, to summarize, we have accounted for all points
[0, 7% +u), being marked by one @f —b in consistent
simple extensions.

« We are now left with the remaining pdrt, +u, T|gom(p)|]-
If & # last,, we can extend the reasoning above to
the next consecutive position aftér which is marked
an a. In this way, we can account for all points
of p in [0,74st, + u). We just need to reason for
[Tlast, + U, Tjdom(p)|]- Consider the pointlast,. The
formula MARK;,s; marks all points ofp in the interval
[Tlasta + u,T‘dom(p”] with —b.

1)

2)

3)

5

~

The above argument shows that all pointspadire marked
b or —b correctly. The(X UW, X )-simple extension’ reflects
these markings. When we do a simple projectiorpofvith
respect taX, we are left withp, the timed word ovek U W
satisfying EN Fx(T'). On thisp, at all positions, we have the
correct marking with respect tb or —b. Clearly, a pointp of
p is markedb iff p,p = ©p . a. Hence,p = ENFx(T) iff
P E MARK.

Conversely, if we start with a timed wogd over>UW U X
satisfyingMARK, then any poinp of p’ will be markedb iff
Qp,ua holds good ap. Thenp’ \ X will give a word p over
Y UW that satisfiesE N Fx(T) iff p' is a (XU W, X)-simple

O

K. Simple Versus Oversampling Projections: Formulae Size

Consider a formulg € MTL[U;,4%,,,]. First we discuss the
| case of eliminatingd,,, by simple projections. Assume that
the number of past modalities ipis n, of which there arey,
bounded past modalities and, unbounded past modalities.
i.e,n = ny + nyg.

The first step is flattening, resulting i@s;.:. This
only increases the size of the formula linearly Jin
Convertingy 11,: to ENF' again increases the size by a
constant number; thu&N Fx (¢ s1q¢) has a size increase
of O(n) with respect tap.

Let us first look at they,, unbounded past modalities. By
Lemmal[9, the elimination of each temporal definition
involving an unbounded past modality results in adding
2 formulaec MTL[U;], and hence, in 3 extra modalities.
Thus, after elimination of all the,, temporal definitions,
we get a formula whose size is increased®f).

Now let us look at the elimination of the temporal defi-
nitions corresponding to the, bounded past modalities.
LemmalID deals with this. Look at formula 2(a) (in
Case 2) introduced by Lemnia]10. This resultd in 1
new formulae, and hence results@{l) extra modalities.
Thus, the number of extra modalities introduced after
elimination of all then, temporal definitions correspond-
ing to bounded past modalities i nl.., Where
lmaz 1S the maximal lower bound of all bounded past
modalities in . Assuming constants are encoded in
binary, O(nplmae.) is pseudo polynomial; hence, the
formula obtained by simple projections; has in the
worst case, an exponential increase in size quejust

to illustrate,l,,q, = 10'° will really blow up!

Note that LemmB0 can further be optimized by chang-
ing the formula 2(a), 2(b), 3(a) and 3(b) in Case 2.
Recall that formula 2(a) ISV (zi4141—u v < (@ A
(ma Uge4110))), with t € {u—1,...,u — 1}, 2(b) is
(yap <> (a A (—a Szap))), while formula 3(a) is
Neegoy B ((zay A ac) = Opyurayze) and formula
3(b) is /}\ce{O,l} O ((yap Aac) — Dn’_w)yl,c)), where

d € {1,...,1}. The “bounding” interval between two
consecutives’s was considered as a unit interval here
. we were considering the interval lengths to lie in
(u—Iliu—1+1,(u—1+1u—1+2] and so on
till (u — 1, u]. This resulted in — 1 formulae. Had we
chosen intervals of size 2 instead of 1, we would have
considered the intervals d& — l,u — [ + 2], (u — [ +
2,u—1+4],...,(u—2,u], resulting ini formulae. In
general, we could have chosen as “period” anyhat
gives rise to% formulae. Clearly, since Case 2 in Lemma
[10 considersy, — 7; € (u — I, u], the maximum period
we can consider ist — [ i.e, 1 < pu < u —[. When
w=u—1,we getﬁ formulae. In this case, replacing
2(a),2(b),3(a),3(b), we get



Z(a) by DW(leH,u b (a A (_‘a U(t7t+u_l]a))) L] Wé = (b, 1 + 6)(1), 1 + 26) SN (b, 1 + (Z - 1)6)(1), 1 + 25—

for t € {u—1,2(u—1),..., 0=ty k)(b,1+i6)(b,1 + (i + 1)8) ... (b, 1+ nd)

o 2(b) by O"(yxp <> (a A (ma Szkp))) wy E ¢, butwy ¥ ¢. The underlined in W, shows that

o 3(a) by/\ce{o,l}DW((Inb/\aC) — Oju,utr(u—1))Te) there is ab at distance 1 fromu; however, this is not the

o 3(b) by case withW,. The key observation for duplicator’s win in
Neego, iy O (s A ac) — D\ﬁfn(ufl),l)ylfc)) an Uygs, Sy game is that (a) any non-singular future move
wherex € {1,.. ., ﬁ}_ of spoiler can be mimicked by the duplicator froWr, W,

or W,W; (b) for any singular past move made by spoiler
on W, W, duplicator has a reply fronW,W,. The same
polds for any singular past move of spoiler made fridmi’;.

In this case, we get an increase Of-2L) over the
size of ¢, as opposed to an increase f(nlqz).
Asymptotically, this is not a big saving, so we can stic
topu=1. .
Now we discuss the case of oversampled projections. Lem .
[4 discussed the case of unbounded past modalities and Le
[8 the case of bounded past modalities. In both cases, it
be seen that the resultant formulae had an increase of size %e
a constant number, while eliminating each temporal derﬂmtl

MTL[O7, €1 € MTL[ Uz, Spp)

Con3|deraformula M TLPY[O1], ¢' = O{bA—Q 1y(aV
We show that there is no way to express thls formula in
[Ur, Snp). This is symmetrical to (i). For am round
consider the words; = W,W, and wy = W,W,

with
Thus, the total increase of size in the resultant formigac . .
MTL[ U] is only O(n). e Woo = (a,0)(a,20)...(a,(0 — 1)d)(a,i0 —
k)(a,id) ... (a,nd)
L. Eliminating S from MTL[ U, S] e W! =(a,0)(a,20)...(a, (i —1)d)(a,id)...(a,nd)
Given a formulap € MTL[U;, S;] overX, we first flatten ~« Wo = (0,1 + 9,1 + 20)...(b,1 + (i —
the formula to obtain formula s, overSUW. In this section, 1)6)(b,1 +i0 — k)(b,1 +6) ... (b,1 4+ nd)

we elaborate[[8],[[3] on removing the temporal definitions of w1 ¥ ', w2 = ¢'. The underlinedb in W, shows that
the form[r < (c¢Sf)] from ¢, using future operators. Wethere is ana at past distance 1 i, but not inW,. The

use the short fornOy to denotefalse Up. key observation for duplicator’s win in amround Uy, Sys

[r < (cSf)] will be replaced by a conjunction, of the game is that (a) any non-singular past move by spoiler from
following future formulae: Wa, Wy, or from W) W, can be answered by duplicator, (b)

« o1 :OY(f > Or) for any singular future move made by spoiler oW,, W%,

« 0o duplicator has a reply fromil’,, W,. The same holds for any

e 3:0%[(r Ac) — Or] singular future move of spoiler made froWi,, W,.

° V4 DW[T A\ (ﬁC A\ ﬁf) — Oﬁ’f‘] i

« 5 O¥[(=r A=f) = O] (i) MTL[Onp,9np)] € MTL[ Ur, S]. We consider the

MTL[Onp, Onp| formulay” = ¢ 2y[a A =0 (1,2)a], and show
that there is no way to express it usigg, S. For ann round
game, consider the words, = W, W, andws = W1 W3 with

For example, consider the formula
@ = (a N (bA (cUuzgl(dSe) A f])) built from ¥ =

{aa b7 C, da €, f}
The flattened versiopia = (aAbAws) ATy ATy, where ¢ Wi =(a,05+¢)... (a,0.5+ne)(a,0.9+¢)...(a,0.9+
Ty = O"((d Se) > wi] and Ty = D [wy > ¢ Uy z[wy A f]]. ne)
©f1ar is built from £ U W, whereW = {w;, ws}. e Wo=(a,1.5)(a,1.6 +€)(a,1.6 + 2¢)...(a, 1.6 + ne)
ReplaceT} with v, to obtain the formula o W5 =1(a,1.6 +¢)(a,1.6 +2¢)...(a,1.6 + ne)

¢ = (aANbAw) Avy, ATy € MTL[U;]. ¢ is also built for a very smalle > 0. Clearly, w1 = ¢",ws # ¢". The
from X U W and is equivalent tao ;. It can be seen that underlineda in W shows thea in (1,2) which has na: in

0 = IW.Qp10r = IWah. ©(1,2)- The key observation for duplicator’s win in arround
U;, S game is that (a) when spoiler picks any positioriif,
M. Proof of Lemma 11 duplicator can play copy cat, (b) when spoiler pi¢ks1.5) in

We prove that thé1TL[U,,;,, S;], MTL[Uy, S,,,] are strictly 1, as part of a futur€0, 1) move fromW,, duplicator picks
less expressive thad TL[ Uy, S;] using EF Games. We omit 0.9 + ne in W3. All until, since moves from the configuration
the game strategies here and give the candidate formula &fd1.5), (a, 0.9 + ne)] are symmetric.
pair of words.

(i) MTL[Of] € MTL[ Uy, Si]

We consider a formula il TLP*[Or], ¢ = O,1p{a A
=Op,17(a vV b)}. For ann-round game, consider the words
w1 = W Wy and Wy = WaWé with

e W, =(a,9)(a,20)...(a,id — k)(a,id)...(a,nd)

e Wy, = (b1 + 0)(b,1 + 20)...(b,1 + i —

k)(b,14+14d)...(b,1 4 nd)
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