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Metric Temporal LogicMTL[ UI , SI ] is one of the most
studied real time logics. It exhibits considerable diversity
in expressiveness and decidability properties based on the
permitted set of modalities and the nature of time interval
constraintsI. Henzinger et al., in their seminal paper showed
that the non-punctual fragment ofMTL called MITL is
decidable. In this paper, we sharpen this decidability result
by showing that the partially punctual fragment ofMTL

(denotedPMTL) is decidable over strictly monotonic finite
point wise time. In this fragment, we allow either punctual
future modalities, or punctual past modalities, but never both
together. We give two satisfiability preserving reductionsfrom
PMTL to the decidable logicMTL[ UI ]. The first reduction
uses simple projections, while the second reduction uses a
novel technique of temporal projections with oversampling.
We study the trade-off between the two reductions: while the
second reduction allows the introduction of extra action points
in the underlying model, the equisatisfiableMTL[UI ] formula
obtained is exponentially succinct than the one obtained via
the first reduction, where no oversampling of the underlying
model is needed. We also show thatPMTL is strictly more
expressive than the fragmentsMTL[UI , S] andMTL[U, SI ].

I. I NTRODUCTION

Metric Temporal LogicMTL is a well established logic use-
ful for specifying quantitative properties of real time systems.
The main modalities ofMTL are UI (read “until I”) and SI

(read “sinceI”), where I is a time interval with end points
in N. These formulae are interpreted over timed behaviours or
timed words. A formulaa U[2,3]b holds at a positioni of a
timed word iff there is a positionj strictly in the future ofi
whereb holds, and at all intermediate positions betweeni and
j, a holds good; moreover, the difference in the time stamps
of i and j must lie in the interval [2,3]. Similarly,a S[2,3]b
holds good at a pointi iff there is a positionj strictly in
the past ofi whereb holds, and at all intermediate positions
betweeni and j a holds; further, the difference in the time
stamps betweeni andj lie in the interval [2,3]. The intervals
I can be bounded of the form〈l, u〉, or unbounded of the
form 〈l,∞), with l, u ∈ N, and〈 represents left closed or left
open, while〉 represents right closed or right open intervals.
The unary modalities♦I (read “fut I”) and ♦−I (read “past
I”) are special cases of until and since:♦Ia = true UIa and
♦−Ia = true SIa.

The satisfiability question for various fragments ofMTL has
evoked lot of interest and work over the past years. In their
seminal paper, Alur and Henzinger showed that the satisfiabil-
ity of MTL[ UI , SI ] is undecidable, while the satisfiability
of the “non-punctual” fragmentMITL of MTL[ UI , SI ] is
decidable. As the name suggests, the non-punctual fragment
disallows punctual intervalsI: these are intervals of the form
[t, t]. The satisfiability of the future only fragment ofMTL,
viz., MTL[ UI ] was open for a long time, till Ouaknine and
Worrell [12] showed its decidability via a reduction to 1-clock
alternating timed automata. Even though the logicMTL[UI , S]
is more expressive thanMTL[ UI ], it was shown to be
decidable [3] by an equisatisfiable reduction toMTL[UI ]. The
decidability of the unary fragmentMTL[♦I ,♦−I ] has remained
open for a long time, it was recently shown undecidable [7].
The only fragment whose decidability is unknown is thus,
the “partially punctual fragment” ofMTL, where we allow
punctualities only in the future or in the past modalities, but
never in both. The main result of this paper is the decidability
of the partially punctual fragment ofMTL for finite strictly
monotonic timed words; our results can be adapted to work
for weakly monotonic finite words.

II. M ETRIC TEMPORAL LOGIC

Let Σ be a finite set of propositions. A finite timed word
over Σ is a tupleρ = (σ, τ) whereσ and τ are sequences
σ1σ2 . . . σn and τ1τ2 . . . τn respectively, withσi ∈ 2Σ − ∅,
and ti ∈ R≥0 for 1 ≤ i ≤ n. Let dom(ρ) be the set of
positions{1, 2, . . . , n} in the timed word. LetΣ = {a, b}. An
example of a timed word is({a, b}, 0.3)({b}, 0.7)({a}, 1.1).
ρ is strictly monotonic iffti < ti+1 for all i, i+ 1 ∈ dom(ρ).
Otherwise, it is weakly monotonic. GivenΣ, the formulae of
MTL are built fromΣ using boolean connectives and time
constrained versions of the modalitiesU and S as follows:
ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ UIϕ | ϕ SIϕ
whereI is an open, half-open or closed interval with end points
in N ∪ {∞}.

Formulae ofMTL are interpreted over timed words over a
chosen set of propositions. Letϕ be anMTL formula. If ϕ is
interpreted over timed words over∆, then we say thatϕ is
interpreted over∆. Note that this is different from sayingϕ
is built from a set of propositionsΣ: this just means that the
propositions inϕ are taken fromΣ.

Given a finite timed wordρ, and anMTL formulaϕ, in the
pointwise semantics, the temporal connectives ofϕ quantify
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over a finite set of positions inρ. For an alphabetΣ, a timed
word ρ = (σ, τ), a positioni ∈ dom(ρ), and anMTL formula
ϕ, the satisfaction ofϕ at a positioni of ρ is denoted(ρ, i) |=
ϕ, and is defined as follows:
ρ, i |= a ↔ a ∈ σi
ρ, i |= ¬ϕ ↔ ρ, i 2 ϕ
ρ, i |= ϕ1 ∧ ϕ2 ↔ ρ, i |= ϕ1 andρ, i |= ϕ2

ρ, i |= ϕ1 UIϕ2 ↔ ∃j > i, ρ, j |= ϕ2, tj − ti ∈ I,
andρ, k |= ϕ1 ∀ i < k < j

ρ, i |= ϕ1 SIϕ2 ↔ ∃ j < i, ρ, j |= ϕ2, ti − tj ∈ I,
andρ, k |= ϕ1 ∀ j < k < i

ρ satisfiesϕ denotedρ |= ϕ iff ρ, 1 |= ϕ. Let L(ϕ) = {ρ |
ρ, 1 |= ϕ}. The set of all timed words overΣ is denotedTΣ∗.

A non-punctual interval has the form〈a, b〉 with a 6= b. We
denote byMTL[ UI , Snp] the class ofMTL formulae with
non-punctual past modalities. Similarly,MTL[Unp, SI ] is the
class ofMTL formulae with non-punctual future modalities.
The class of partially punctualMTL formulae,PMTL consists
of all formulae with non-punctual future or non-punctual past.
PMTL = MITL ∪MTL[ Unp, SI ] ∪MTL[ UI , Snp].

Additional temporal connectives are defined in the standard
way: we have the constrained future and past eventuality
operators♦Ia ≡ true UIa and ♦−Ia ≡ true SIa, and their
duals �Ia ≡ ¬♦I¬a, ⊟Ia ≡ ¬♦−I¬a. Weak versions of
operators are defined as :♦wa = a ∨ ♦a,�wa = a ∧ �a,
a Uwb = b ∨ [a ∧ (a Ub)].

III. T EMPORAL PROJECTIONS

In this section, we discuss the notion of “temporal projec-
tions” that are central to this paper. We discuss two kinds
of temporal projections: simple projections, and oversampling
projections.

A. Simple Extensions and Projections

(Σ, X)-simple extensions: Let Σ, X be finite sets of propo-
sitions such thatΣ ∩ X = ∅. A (Σ, X)-simple extension
is a timed word ρ over X ∪ Σ such that at any point
i ∈ dom(ρ), σi ∩ Σ 6= ∅. For Σ = {a, b}, X = {c, d},
({a}, 0.2)({b, c, d}, 0.3)({b, d}, 1.1) is a (Σ, X)-simple ex-
tension. However,({a}, 0.2)({c, d}, 0.3)({b, d}, 1.1) is not a
(Σ, X)-simple extension for the same choice ofΣ, X , since
for the positioni = 2, {c, d} ∩ Σ = ∅.
Simple Projections: Consider a(Σ, X)-simple extensionρ. We
define thesimple projectionof ρ with respect toX , denoted
ρ\X as the word obtained by erasing the symbols ofX from
eachσi. Note thatdom(ρ) = dom(ρ\X). For example, ifΣ =
{a, c}, X = {b}, andρ = ({a, b, c}, 0.2)({b, c}, 1)({c}, 1.3),
thenρ \X = ({a, c}, 0.2)({c}, 1)({c}, 1.3). ρ \X is thus, a
timed word overΣ. If the underlying wordρ is not a (Σ, X)-
simple extension, then the simple projection ofρ with respect
to X is undefined.
Equisatisfiability modulo Simple Projections: GivenMTL for-
mulaeψ andφ, we say thatφ is equisatisfiable toψ modulo
simple projectionsiff there exist disjoint setsΣ, X such that

1) φ is interpreted overΣ, andψ is interpreted overΣ∪X ,

2) For any timed wordρ overΣ ∪X , (ρ |= ψ)→
ρ is a (Σ, X)-simple extension andρ \X |= φ,

3) For any timed wordρ over Σ such thatρ |= φ, ∃ a
(Σ, X)-simple extensionρ′ such thatρ′ |= ψ, and
ρ′ \X = ρ.

We denote byφ = ∃X.ψ, the fact thatφ is equisatisfiable to
ψ modulo simple projections.
Extended Normal Form(ENF): Given a formulaϕ built from
Σ′ ⊇ Σ, the extended normal form ofϕ with respect toΣ
denotedENFΣ(ϕ) is the formulaϕ ∧�(

∨
Σ).

Lemma 1 (Boolean Closure Lemma). Letϕ1, ϕ2 be formulae
built from Σ. Let ψ1, ψ2 be formulae built fromΣ ∪ X1 and
Σ ∪ X2 respectively. LetΣi = Σ ∪ Xi for i = 1, 2, and let
X1 ∩ X2 = ∅. Then,(ϕ1 = ∃X1.ψ1 and ϕ2 = ∃X2.ψ2) →
ϕ1 ∧ ϕ2 = ∃(X1 ∪X2).(ψ1 ∧ ψ2).

Proof. The proof can be found in Appendix A.

B. Flattening

Let ϕ ∈ MTL[UI , SI ] built from Σ. Given any sub-formula
ψi of ϕ, and a fresh symbolbi /∈ Σ, Ti = �w(ψi ↔ bi) is
called atemporal definitionandbi is called awitness. Letψ =
ϕ[bi/ψi] be the formula obtained by replacing all occurrences
of ψi in ϕ, with the witnessbi. Flattening is done recursively
until we have replaced all future/past modalities of interest
with witness variables, obtainingϕflat = ψ ∧ T , whereT is
the conjunction of all temporal definitions. LetW be the set
of all witness propositions. For example, consider the formula
ϕ = aU[0,3](cS(♦−[0,1]d)). Replacing theS,♦− modalities with
witness propositionsw1 andw2 we getψ = aU[0,3]w1, along
with the temporal definitionsT1 = �w(w1 ↔ (c Sw2)) and
T2 = �w(w2 ↔ ♦−[0,1]d). Hence,ϕflat = ψ ∧ T1 ∧ T2 is
obtained by flattening theS,♦− modalities fromϕ. HereW =
{w1, w2}. Note thatϕflat is a formula built fromΣ ∪W .

Given a timed wordρ over Σ, flattening marks precisely
positions inρ satisfyingψi with witnessesbi. This marked
word ρ′ over Σ ∪ W satisfiesϕflat iff ρ |= ϕ. Hence, we
haveϕ = ∃W.ENFΣ(ϕflat). ENFΣ(ϕflat) ensures that any
timed word ρ′ over Σ ∪ W that satisfiesϕflat is indeed a
(Σ,W )-simple extension.L(ENFΣ(ϕflat)) is the set of all
those(Σ,W )-simple extensionsρ′ satisfyingϕflat such that
ρ′ \W = L(ϕ).

C. Oversampled Behaviours and Projections

(Σ, X)-oversampled behaviours: Let Σ, X be finite sets of
propositions such thatΣ ∩ X = ∅. A (Σ, X)-oversampled
behaviour is a timed wordρ′ = (σ′, τ ′) overX ∪Σ, such that
σ′
1∩Σ 6= ∅ andσ′

|dom(ρ′)|∩Σ 6= ∅. ForΣ = {a, b}, X = {c, d},
({a}, 0.2)({c, d}, 0.3)({a, b}, , 0.7)({b, d}, 1.1) is a (Σ, X)
oversampled behaviour, while({a}, 0.2)({c, d}, 0.3)({c}, 1.1)
is not. If ρ is a (Σ, X)-oversampled behaviour, then pointsi
where

∨
Σ is not true are callednon-action points. Hence, in

any(Σ, X)-oversampled behaviour, the first as well as the last
points are action points.
Oversampled Projections: Given a (Σ, X)-oversampled be-
haviour ρ′ = (σ′, τ ′), we define theoversampled projection



of ρ′ with respect toΣ, denotedρ′ ↓ X as the timed word
obtained by deleting pointsi for which σ′

i ∩ Σ = ∅, and
then erasing the symbols ofX from the remaining pointsj
(σ′

j ∩ Σ 6= ∅). The result of oversampling,ρ=ρ′ ↓ X is a
timed word overΣ. If ρ = ρ′ ↓ X , there exists a strictly
increasing functionf : {1, 2, . . . , n} → {1, 2, . . . ,m} such
that n = |dom(ρ)|, m = |dom(ρ′)|, and

• f(1) = 1, σ1 = σ′
1 ∩ Σ, τ1 = τ ′1, and

• f(n) = m, σn = σ′
m ∩Σ, τn = τ ′m, and

• For 1 ≤ i ≤ n− 1, f(i) = j andf(i+ 1) = k iff

– σi = σ′
j ∩ Σ, andτi = τ ′j ,

– σi+1 = σ′
k ∩ Σ, andτi+1 = τ ′k,

– For all j < l < k, σ′
l ∩ Σ = ∅.

For ρ′ = ({a}, 0.2)({a, c}, 0.7)({c}, 0.9)({b, d}, 1.1), a
(Σ, X)-oversampled behaviour forΣ = {a, b}, X = {c, d},
we haveρ′ ↓ X = ({a}, 0.2)({a}, 0.7)({b}, 1.1). We have
f : {1, 2, 3} → {1, 2, 3, 4} with f(1) = 1, f(2) = 2, and
f(3) = 4.
Equisatisfiability modulo Oversampled Projections: Given
MTL formulaeψ andφ, we say thatφ is equisatisfiable toψ
modulo oversampled projectionsiff there exist disjoint sets
X,Σ such that

1) φ is interpreted overΣ, andψ overΣ ∪X ,
2) For any(Σ, X)-oversampled behaviourρ′,

ρ′ |= ψ → ρ′ ↓ X |= φ
3) For any timed wordρ over Σ such thatρ |= φ, there

exists a(Σ, X)-oversampled behaviourρ′ such thatρ′ |=
ψ, andρ′ ↓ X = ρ.

We denote byφ = ∃ ↓ X.ψ the fact thatφ is equisatisfiable
to ψ modulo oversampled projections. The above conditions
establish the existence ofsome(Σ, X)-oversampled behaviour
ρ′ corresponding toρ that satisfiesψ, whenρ satisfiesϕ. If
condition 3 above holds for all possible(Σ, X)-oversampled
behaviours, i.e,

• if for any timed wordρ over Σ such thatρ |= ϕ, all
(Σ, X)-oversampled behavioursρ′ for which
ρ′ ↓ X = ρ satisfyψ,

then we say thatϕ andψ areequivalent modulo oversampled
projectionsand denote it byϕ = ∀ ↓ .ψ
Oversampled Normal Form(ONF): Let ψ be a formula built
from Σ ∪ X . Let act denote

∨
Σ. The oversampled normal

form with respect toΣ of ψ denotedONFΣ(ψ) is obtained
by replacing recursively

• all subformulae of the forma ∈ Σ by a ∧ act,
• all subformulae of the formφi UIφj with
(act→ ONFΣ(φi)) UI(ONFΣ(φj) ∧ act),

• all subformulae of the formφi SIφj with
(act→ ONFΣ(φi)) SI(ONFΣ(φj) ∧ act).

• all subformulae of the form�Iφ with
�I(act → ONFΣ(φ)), and all subformulae of the form
♦Iφ with ♦I(φ ∧ act).

and conjuncting the resultant formulae withact∧(�⊥ → act).
Letψ = ϕ1UI(ϕ2∧�ϕ3), andζi=ONFΣ(ϕi) for i=1, 2, 3.

ThenONFΣ(ψ)=(act→ζ1) UI(act ∧ [ζ2 ∧�(act→ζ3)]) ∧

act ∧ (�⊥→act) whereact denotes
∨
Σ. Proofs of Lemmas

2, 3 and 4 can be found in Appendices B, C and D.

Lemma 2 (Oversampling Closure Lemma). Let ϕ be a
formula built fromΣ. Thenϕ = ∀ ↓ .ONFΣ(ϕ).

Lemma 3. Let ϕ be a formula built fromΣ and let ζ =
ONFΣ(ϕ). Then,ζ = ∀ ↓ ζ.

Lemma 4. Consider formulaeϕ1, ϕ2 built fromΣ. Letψ1, ψ2

be formulae built fromΣ ∪ X1 andΣ ∪X2 respectively. Let
X = X1 ∪X2, Σi = Σ ∪Xi for i = 1, 2, andX1 ∩X2 = ∅.
Let ζ1 = ONFΣ1 (ψ1) and ζ2 = ONFΣ2 (ψ2). Then,
ϕ1 = ∃ ↓ X1.ζ1 andϕ2 = ∃ ↓ X2.ζ2 →
ϕ1 ∧ ϕ2 = ∃ ↓ X.(ζ1 ∧ ζ2).

Lemma 5. Let ϕ ∈ MTL[UI , SI ] be built fromΣ, andW be
the set of witness variables obtained while flatteningϕ. Then
ϕ = ∃ ↓W.ONFΣ(ϕflat).

IV. D ECIDABILITY OF MTL[ UI , Snp]

In this section, we show that the classMTL[ UI , Snp] is
decidable, by giving a satisfiability preserving reductionto
MTL[ UI ]. Given a timed wordρ, and a non-singular past
modality of the formψ = ♦−〈l,u〉ϕ, Lemma 6 establishes a
relationship between time stamps of the points inρ whereψ
holds and the time stamps of points whereϕ holds inρ with
respect tol, u.

Lemma 6. Given a timed wordρ = (σ, τ) and a pointi ∈
dom(ρ). Let firstα and lastα denote respectively the first
and last occurrences ofα ∈ Σ in ρ. ρ, i |= ¬(♦−〈l,u〉α) iff
(a) τi ∼1 τfirstα + l, where∼1 is < when〈 is [, and∼1 is
≤ when〈 is (, or

(b) τi ∼2 τlastα + u, where∼2 is > when〉 is ], and∼2 is
≥ when〉 is ),or

(c) τi ∈ 〈τj + u, τk + l〉 for all points j, k(j < k) whereα
holds consecutively (that is there does not exist any point
z, j < z < k whereα holds). Note that in this case
τj + u ≤ τk + l.

Proof. We prove the lemma for intervals of the form[l, u). The
proof can be extended for other type of intervals also. Assume
thatρ, i |= ♦−[l,u)α. We then show that¬(τi < τfirstα + l) and
¬(τi ≥ τlastα +u) and¬(τi ∈ [τj+u, τk+ l)) for consecutive
pointsj, k whereα holds.

1) Let τi < τfirstα + l. ρ, i |= ♦−[l,u)α implies that there
is a point i′ such thatτi′ ∈ (τi − u, τi − l], such that
ρ, i′ |= α. Then,τi′ ≤ τi − l < τfirstα , contradicting
that firstα is the first point whereα holds.

2) Let τi ≥ τlastα + u. Again, ρ, i |= ♦−[l,u)α implies that
there is a pointi′ such thatτi′ ∈ (τi − u, τi − l] such
that ρ, i′ |= α. We then haveτi′ > τi − u ≥ τlastα ,
contradicting thatlastα is the last point whereα holds.

3) Assume that there exist consecutive pointsj < k where
α holds. Also, letτi ∈ [τj + u, τk + l). ρ, i |= ♦−[l,u)α
implies that there exists a pointi′ such thatτi′ ∈ (τi −
u, τi− l] andρ, i′ |= α. Also, τi − u ∈ [τj , τk +(l− u))
andτi − l ∈ [τj + (u− l), τk). This givesτj < τi′ < τk
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contradicting the assumption thatj, k are consecutive
points whereα holds.

The converse can be found in Appendix E. Figure 1 illustrates
regions for cases (a) and (b), while Figure 2 illustrates the
region for case (c). In the rest of the paper, we refer to regions
in case(a) as Region I, regions in case(b) as Region II and
regions in case (c) as Region III.

In the rest of this section, we show the decidability of
MTL[ UI ,♦−np] by reducing any formulaϕ ∈ MTL[ UI ,♦−np]
to a formulaψ ∈ MTL[UI ]. We have two techniques for this
proof: one using oversampling projections, and the other, using
simple projections.

A. Elimination of Past with Oversampled Projections

In this section, given a formulaϕ in MTL[ UI ,♦−np] built
from Σ, we synthesize a formulaψ ∈ MTL[ UI ] built from
Σ ∪ X equisatisfiable toϕ modulo oversampled projections,
whose size islinear in |ϕ|. Starting with a timed wordρ over
Σ, we synthesize an(Σ, X)-oversampled behaviourρ′ such
that ρ |= ϕ iff ρ′ |= ψ.

1) Start with a formulaϕ ∈ MTL[ UI ,♦−np] built from Σ,
and a timed wordρ overΣ,

2) Flattenϕ obtainingϕflat. Let W be the witness propo-
sitions used.ϕflat is a formula built fromΣ∪W , with
Σ ∩W = ∅.

3) LetT =
∧k

i=1 Ti be the conjunction of all temporal defi-
nitions inϕflat. EachTi has the form�w(b↔ ♦−〈l,u〉a),
with l, u ∈ R≥0∪{∞}, and

∧k

i=1 Ti is built fromΣ∪W .
ϕflat = ψ ∧ T , with ψ ∈ MTL[ UI ]. We know from
Lemma 5 thatϕ = ∃ ↓W.ONFΣ(ϕflat).

4) Fori = 1, 2, . . . , k, letΣi = Σ∪W∪Xi, whereXi are a
set of fresh propositions, such thatXi∩Xj = ∅ for i 6= j.
Synthesize a formulaζi = ONFΣi

(ϕ′
i) ∈ MTL[UI ] over

Σi such thatONFΣ(Ti) = ∃ ↓ Xi.ζi.
5) Using Lemma 4,

∧k
i=1 ζi ∈ MTL[ UI ] is such that

ONFΣ(
∧k

i=1 Ti) = ∃ ↓ X.
∧k

i=1 ζi, for X =
⋃k

i=1Xi.

Lemma 7 and Lemma 8 show how to synthesize an equi-
satisfiable formula inMTL[UI ] corresponding toONFΣ(Ti).
Lemma 7 shows step 4 for intervals of the form[l,∞), while
Lemma 8 shows step 4 for bounded intervals of the form
[l, u). The results of these lemmas can be extended to work

for any interval〈l, u〉. If all the past modalities involved have
unbounded intervals, then we get an equivalent formula, as
shown by Lemma 7.

Lemma 7. Consider a temporal definitionT = �w[b ↔
♦−[l,∞)a] built from Σ∪W . Then we can synthesize a formula
ψ ∈ MTL[ UI ] built from Σ ∪W equivalent toONFΣ(T ).

Proof. It can be shown that[�wα ∨ {α Uw[(a ∧ act) ∧
�w

[0,l)(act → ¬b)]}]�w[(a ∧ act) → �[l,∞)(act → b)]1 is
equivalent toONFΣ(T ), for α = (act→ (¬a∧¬b)). Details
in Appendix F.

Lemma 8. Consider a temporal definitionT = �w[b ↔
♦−[l,u)a], built fromΣ∪W . Then we can synthesize a formula
ψ ∈ MTL[ UI ] built from Σ ∪W ∪ X linear in the size of
ONFΣ(T ), such thatONFΣ(T ) = ∃ ↓ X.ψ.

Proof. We start withONFΣ(T ) and a(Σ,W ) oversampled
behaviourρ′. Let dom(ρ′) = {1, 2, . . . , n}. If there exists a
point i ∈ dom(ρ′) markedact∧a, then we want to ensure that
all pointsj in dom(ρ′) markedact such thatτ ′j ∈ [τ ′i+l, τ

′
i+u)

are markedb. This is enforced by the following formula:
• MARKb : �

w[(a ∧ act)→ �[l,u)(act→ b)]

MARKb enforces the directionact → (♦−[l,u)(a ∧ act) → b)
of ONFΣ(T ). Marking points ofρ′ with ¬b is considerably
more involved. We use Lemma 6 to characterize the points
where¬♦−[l,u)a holds, and use this to ensure that such points
are marked¬b. Recall that by Lemma 6, such points can be
classified into three regions.

Region I consists of all those points to the left ofτfirsta +
l. In any model, these points are described by the formula
MARKfirst = �w(¬a ∧ ¬b) ∨ (¬a ∧ ¬b) Uw(a ∧ �w

[0,l)¬b)
2,

which says that there are nob’s in [0, τfirsta + l). Region II
consists of all points in[τlasta + u,∞). In any model, these
points are captured by the formulaMARKlast = �w(�¬a→
�[u,∞)¬b), which says that there are nob’s in [τlasta +u,∞).

Let us now discuss how to mark points lying in region III
with ¬b. Recall that these are the points in[τj + u, τk + l)
for any two consecutive pointsj, k such thata ∈ σj , σk, but
a /∈ σh, j < h < k. Considerj, k as two consecutive points
wherea holds. If τk − τj ≤ u − l, then clearly, there are no

1when l = 0, α Uw [a ∧ act ∧ ¬b]
2when l = 0, �w[(¬a ∧ ¬b) ∨ [(¬a ∧ ¬b) Uw(a ∧ ¬b)]]
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Fig. 3. Marking [τj + u, τk + l) with ¬b

points in [τj + u, τk + l) to be marked¬b. Assume now that
τk− τj > u− l. We need to mark exactly the points falling in
[τj +u, τk+ l) with ¬b. It is quite possible that, we dont have
the pointsg, h in dom(ρ′) such thatτg = τj+u andτh = τk+l.
Here, we use the idea of oversampled projections, to obtain
a behaviourρ′′ from ρ′, by adding extra points todom(ρ′).
Corresponding to every pairj, k of consecutivea points, such
that τk − τj > u − l, we add pointsx, y to dom(ρ′), such
that τx = τj + u andτy = τk + l. We mark these new points
with fresh propositionsbegb and endb respectively. We then
say that betweenbegb andendb, no b can occur. To pindown
the pointsx, y correctly, we mark the pointsj, k respectively
with fresh propositionsbs andbs.

To summarize the marking scheme, given a(Σ,W )-
oversampled behaviourρ′ satisfyingONFΣ(T ), whereT =
�w[b ↔ ♦−[l,u)a], we construct a(Σ ∪ W,X)-oversampled
behaviourρ′′ from ρ′, such that

• ρ′′ is obtained by introducing extra points todom(ρ′).
These extra points are related to consecutivea points
j, k ∈ dom(ρ′), when τk − τj > u − l. For such
j, k ∈ dom(ρ′), we add pointsx, y to dom(ρ′′) such that
τx = τj +u andτy = τk + l. The fresh propositions used
so far, consists of symbols{bs, be, begb, endb} ⊆ X .

• Symbolsbs and be represent the “start” and “end” po-
sitions j, k. Thus, bs holds at a point wherea ∧ act is
true, and where the next consecutive occurrence ofa is
> u−l distance apart. Similarly,be holds at a point where
a ∧ act is true, and where the previous occurrence ofa
is > u− l distance apart. Once we markτj with bs and
τk with be, the points atτj + u and τk + l are marked
begb andendb respectively. Once we have the pointsbegb
andendb marked, we assert that between any consecutive
pair of begb andendb, all points ofρ′ are marked¬b.

• We need to make sure that thebegb andendb occurring
in ρ′′ are legitimate with respect tobs and be: That is,
there must be no “free occurrence” ofbegb and endb.
Any occurrence ofbegb andendb should witnessbs and
be at exactlyu andl distance in the past respectively. This
can be done adding extra points at all integer timestamps
and restricting the free occurrences ofbegb, endb in every

unit interval.

Now we write formulae inMTL[ UI ] that implement the
above, which will hold good on the(Σ∪W,X)-oversampled
behaviourρ′′ from ρ′.

• Mark bs andbe at pointsj andk: The conjunction of the
following two formulae is denotedMARKj,k.
�w(bs ↔ (a ∧ act ∧ (act→ ¬a) U(u−l,∞)(a ∧ act))),
�w(be ↔ (a ∧ act ∧ (act→ ¬a) S(bs ∧ act)))3

• Mark begb and endb appropriately atτj + u and τk + l
respectively. The conjunction of the following two formu-
lae is denotedMARKbeg,end.
�w(bs ↔ (♦w

[0,u)�⊥ ∨ [�(u,u+1)¬begb ∧ ♦[u,u+1)begb ∧
�(u−1,u)¬begb])),
�w(be ↔ (♦w

[0,l)�⊥ ∨ [�(l−1,l)¬endb ∧ ♦(l−1,l]endb ∧

�(l,l+1)¬endb]))
4

• Note that the above formula only asserts wherebegb
and endb should occur. We must assert that all other
remaining pointsbegb and endb do not occur. This is
done as follows:

– First mark all integer timestamps with a fresh propo-
sition c. The following formula is denotedMARKc.
c ∧�w(c→ [♦(0,1)�⊥∨ (�(0,1)¬c ∧ ♦(0,1]c)]

– We identify the points betweenbs andbe by uniquely
marking the closest integral point beforebs with cbs
and and the closest integral point beforebe with cbe .
Recall thatbs andbe were marked atτj andτk; thus,
cbs and cbe get marked respectively at points⌊τj⌋
and ⌊τk⌋. We then assert thatbegb can occur at a
point t only if there is acbs in (t − u − 1, t − u].
Thus, given thatcbs is marked at⌊τj⌋, begb is marked
only in [⌊τj⌋+u, ⌊τj⌋+u+1). However, by formula
MARKbeg,end, we disallowbegb in (τj+u, τj+u+1)
and (τj + u − 1, τj + u). Thus, we obtain a unique
marking for begb. In a similar manner, we obtain a
unique marking forendb, givenbe. The conjunction
of the following formulae denotedMARKcb marks

3 S can be removed fromMTL[ UI , S] obtaining equisatisfiable formula
in MTL[ UI ] modulo simple projections [3], details in Appendix L

4when l = 0, �w([be ↔ endb] ∧ [be → ¬b])



cbs and cbe , and controls the marking ofbegb and
endb correctly:
�w[cbs ↔ (c ∧ ♦w

[0,1)bs)] ∧�w[cbe ↔ (c ∧ ♦w

[0,1)be)]
�w[c ∧ ¬cbs → �w

[u,u+1)¬begb]
�w[c ∧ ¬cbe → �w

[l,l+1)¬endb]
Note that these formula do not restrict the behavior of
begb andendb in the prefix[0, u]. At these timepoints
begb andendb should not occur. Here we assert that
�w

[0,u)(¬begb ∧ ¬endb)

• Now that we have precisely placedbegb and endb, we
can assert at all points ofρ′ betweenbegb andendb, ¬b
holds. This formula is denotedMARK¬b.
�w{begb→ (¬endb ∧ (act→ ¬b)) Uwendb}

Figure 3 illustrates marking of¬begb.
LetMARK = MARKb∧MARKfirst∧MARKc∧MARKlast∧

MARKj,k ∧MARKbeg,end ∧MARK¬b ∧MARKcb .
5 Let Σi =

Σ ∪ W ∪ X , for X = {be, bs, begb, endb, c, cbs , cbe}. Then,
ρ′′ is a (Σ ∪W,X)-oversampled behaviour such thatρ′′ |=
ONFΣi

(MARK) iff ρ′ |= ONFΣ(T ). That is,ONFΣ(T ) =
∃ ↓ X.ONFΣi

(MARK). A detailed proof of correctness can
be seen in Appendix G.

Theorem 1. For everyϕ ∈ MTL[ UI , Snp] over Σ, we can
constructψfut in MTL[ UI ] over Σ′ ⊇ Σ such thatϕ = ∃ ↓
X.ψfut, X = Σ′ − Σ.

Proof. Follows from the fact thatSnp can be expressed using
S and♦−np

6 [3] and elimination of S [3], [8].

By symmetry, using reflection [8], the satisfiability of
MTL[ Unp, SI ] can be reduced to the satisfiability of
MTL[ UI , Snp]. Hence, the satisfiability ofMTL[ Unp, SI ]
is also decidable.

B. Elimination of Past with Simple Projections

This section is devoted to showing that given anyϕ ∈
MTL[UI ,♦−np] built fromΣ, we can synthesizeϕ′ ∈ MTL[UI ]
built from Σ′ such thatϕ = ∃X.ϕ′, whereX = Σ′ − Σ. The
main steps are similar to the case of oversampling projections.
Here are the steps:

1) Start with a formulaϕ ∈ MTL[ UI ,♦−np] built from Σ,
and a timed wordρ overΣ. Flattenϕ obtainingϕflat =

ψ ∧
∧k

i=1 Ti. EachTi is a temporal definition of the
form �w(bi ↔ ♦−〈l,u〉ai), andψ ∈ MTL[ UI ]. Let wi

be the fresh witness variable introduced in the temporal
definition Ti. Let W = {w1, . . . , wn} be the set of all
the witness variables.

2) As discussed in section III-B,ϕ = ∃W.ENFΣ(ϕflat).
3) We now synthesizemodulo simple projections, formulae

in MTL[ UI ] equisatisfiable withENFΣ(Ti) for i =
1, 2, . . . , k, modulo simple projections.

4) Start withENFΣ(T1), a formula built fromΣ∪W . Let
Σ1 = Σ ∪W . We synthesize a formulaϕ1 ∈ MTL[ UI ]

5when l = 0, conjunct�w([a ∧�[0,u)¬a ∧ ♦[0,u]a] → ¬b) to MARK

6For instance, we can writeaS[l,r)b as♦−[l,r)b ∧ (aSb)∧⊟[0,l)(a∧aSb),
for r = l+ 1,∞

built from ∆1 = Σ ∪W ∪X1 such thatENFΣ(T1) =
∃X1ϕ1.

5) Repeat step 5 forENFΣ(Ti) for all 2 ≤ i ≤ k,
obtaining formulaeϕi ∈ MTL[ UI ] built from some
∆i ⊇ Σ1 such thatENFΣ(Ti) = ∃Xi.ϕi in each case.
The choice of∆i is such that(∆i−Σ1)∩(∆j−Σ1) = ∅
for i 6= j.

6) Using Lemma 1, we obtainENFΣ(ϕflat) =

ENFΣ(ψ ∧
∧k

i=1 Ti) = ∃X.[ψ ∧
∧k

i=1 ϕi], where
X =

⋃k

i=1Xi. Then we getϕ = ∃W.ENFΣ(ϕflat) =

∃W.[∃X.(ψ ∧
∧k

i=1 ϕi)].
7) Steps 1-7 show thatψ ∧

∧k

i=1 ϕi ∈ MTL[ UI ] is
equisatisfiable toϕ modulo simple projections.

Lemma 9 explains how to eliminate temporal definitions of
the form�w[b↔ ♦−〈l,∞)(a)], while Lemma 10 explains how to
eliminate temporal definitions of the form�w[b↔ ♦−〈l,u〉(a)].
If all the past modalities involved have unbounded intervals,
then we get an equivalent formula, as shown by Lemma 9.

Lemma 9. Consider the temporal definitionT = �w[b ↔
♦−[l,∞)(a)] built fromΣ∪W . Then we can synthesize a formula
ψ ∈ MTL[ UI ] built from Σ ∪W equivalent toT .

Proof. It can be shown that[�w(¬a) ∨ �w[a → �[l,∞)b]] ∧
[�w(¬a∧¬b)∨ (¬a∧¬b)Uw(a∧�w

[0,l)¬b)]
7 is equivalent to

T . Details can be found in Appendix I.

Lemma 10. Consider the temporal definitionT = �w[b ↔
♦−〈l,u〉(a)] built fromΣ∪W . We can synthesize a formulaψ ∈
MTL[UI ] built fromΣ∪W ∪X such thatENFΣ(T ) = ∃X.ψ.

Proof. We prove the lemma for temporal definitions of the
form T = �w[b ↔ ♦−[l,u)(a)]. The proof can be extended to
all kinds of intervals〈l, u〉.

Note thatT is the conjunction ofC1 = �w[b ← ♦−[l,u)a]
andC2 = �w[b → ♦−[l,u)a]. Consider a timed wordρ over
Σ ∪W . ρ satisfiesC1 iff, for all points j ∈ dom(ρ), if there
exists a pointi ∈ dom(ρ), with τi ∈ (τj − u, τj − l] and
a ∈ σi, then b ∈ σj . Clearly, such modelsρ are such that
whenevera ∈ σi, then b ∈ σj for all j ∈ dom(ρ) such that
τj ∈ [τi + l, τi + u). Let MARKb = �w[a→ �[l,u)b]. Clearly,
ρ |= MARKb iff ρ |= C1.

For a wordρ to satisfy T , the above conditions are not
enough, since they only characterize points in the model where
b hold. The formulaMARKb ∈ MTL[UI ] does not characterize
points whereb should not hold. Models satisfyingMARKb can
allow a point whereb as well as¬♦−[l,u)a holds. Our next goal
is therefore, to find a formulaMARK¬b ∈ MTL[UI ] which is
equisatisfiable toC2. ThenMARKb∧MARK¬b is the formula
in MTL[ UI ] that is equi-satisfiable toT .

We use Lemma 6 to characterize the points where¬♦−[l,u)a
holds, and use this to ensure that such points are marked¬b.
Recall that by Lemma 6, such points can be classified into
three regions. Points lying in Regions I,II are handled by the
formulaeMARKfirst,MARKlast given in Lemma 8. So far,

7when l = 0, [[�w(¬a) ∨ �w[a → �[l,∞)b]] ∧ [�w(¬a ∧ ¬b) ∨ (¬a ∧

¬b) Uw(a ∧ ¬b)]



we have the conjunctionMARKfirst ∧MARKlast ∧MARKb

of formulae inMTL[ UI ].
Region III consists of all points in[τj + u, τk + l) for any

pair of consecutive “a” points j, k (a ∈ σj , σk and for all
j < h < k, a /∈ σh). The difficulty in marking points in
[τj + u, τk + l) with ¬b is :

1) Pointsp1, p2 ∈ dom(ρ) with τp1 = τj + u and τp2 =
τk + l may not be present indom(ρ);

2) The length of the region[τj + u, τk + l) may not be an
integer. If it were, we can pin down points in[τj+u, τk+
l) by anchoring at pointsj, k sincel, u are integers.

Unless we can pin down these points or mark this region
uniquely, we may end up marking lesser points than necessary
with ¬b or may mark a point already markedb with ¬b,
giving rise to inconsistencies. The rest of the proof is devoted
to showing how we can indeed pin down the set of points
betweenτj + u andτk + l.

Since we may not have the pointsτj + u and τk + l, we
try to get points as close as possible toτj + u andτk + l, by
considering an over approximation of the interval[τj +u, τk+
l). The idea is to express[τj + u, τk + l) as the intersection
of two intervalsI1j,k andI2j,k, both having integer length, and
such that it is possible to pin downI1j,k andI2j,k. For this, we
consider the intervalsI1j,k = [τk + l − d, τk + l) and I2j,k =
[τj + u, τj + u+ d) whered = ⌈τk − τj⌉+ (l− u). Note that
d is the closest integer that is larger than the actual duration
of the interval[τj + u, τk + l). Also, τk + l− d ≤ τj + u and
τk+l ≤ τj+u+d. Hence,[τj+u, τk+l) ⊆ I1j,k∩I

2
j,k. We now

pin down points in the intersectionI1j,k ∩ I
2
j,k and mark them

¬b. Towards getting the points in the intersection, we allow
marking pointsi ∈ dom(ρ) with fresh witness propositions,
obtaining fromρ, a simple extensionρ′.

In the following, we explain the choice of these propositions,
the marking scheme to obtainρ′, and formulae inMTL[UI , S]

8

which enforce these markings.
Case 1: If τk − τj ≤ u − l for consecutive pointsj, k with
a ∈ σj , σk. Then [τj + u, τk + l) is the empty interval and
d = ⌈τk − τj⌉+ (l − u) ≤ 0 and hence no action need to be
taken. Figure 4 illustrates this case.
Case 2: If τk−τj ∈ (u− l, u]. Then the interval[τj+u, τk+ l)
is non-empty, and1 ≤ d = ⌈τk − τj⌉+ (l − u) ≤ l.

1) We introduce two propositionsa0, a1 that marks all
positionsi ∈ dom(ρ) such thata ∈ σi with a unique
element from{a0, a1}. The positionfirsta is marked
a0; if consecutivea’s are at a distance> u− l, then they
are marked by exactly one ofai anda1−i respectively,
for i ∈ {0, 1} such that they alternate; if consecutivea’s
are at a distance≤ u − l, they are both marked with
exactly the sameai, i ∈ {0, 1}. A consecutiveai, a1−i

pair “flags” attention : they play a role, in marking
some interval with¬b. The conjunction of the following
formulae, denotedMARKa implements these:

a) �w((a0 ∨ a1)↔ a) ∧�w(¬a0 ∨ ¬a1)

8 S can be removed fromMTL[ UI , S] obtaining equisatisfiable formula
in MTL[ UI ] modulo simple projections [3], details in Appendix L

b) ¬a Uw(a ∧ a0)
c)

∧
i∈{0,1} �

w[F1 ∧ F2] where
F1 : (ai∧�[0,u−l]¬a)→ �¬a∨(¬aU(a∧a1−i))

9,
F2 : (ai ∧ ♦[0,u−l]a)→ ¬a U(a ∧ ai).

2) To easily identify the intervalsI1j,k and I2j,k, we mark
the pointsj, k ∈ dom(ρ) with propositionsbegdb and
enddb. The d in suffix is d = ⌈τk − τj⌉ + (l − u), the
b in suffix is the witness proposition for♦−[l,u)a, while
beg, end signify the beginning and end of respective
consecutivea positions. To correctly get thed, we need
to check the closest unit interval corresponding toτk−τj
: for instance, ifτk − τj = (u− l) + 0.4, then we know
τk − τj ∈ (u − l, u − l + 1]. In this case,⌈τk − τj⌉ =
u − l + 1, and hence,d = 1. We need to do this for
all the l − 1 possibilities :τk − τj ∈ (t, t + 1], where
t ∈ {u−l, . . . , u−1}. In each case, the symbols marking
the respective consecutivea’s will be begt+1+l−u b and
endt+1+l−u b, wheret+ 1 = ⌈τk − τj⌉.
To summarize, we introduce propositions
{begdb, enddb | 1 ≤ d ≤ l} to mark two consecutivea’s
that are at a distance in(u − l, u]. The d in the suffix
is the closest integer≥ the duration of the interval
[τj + u, τk + l). This is used in the next step to mark
correctly the intervalsI1j,k andI2j,k, both of which have
durationd : Identifying pointsj, k with begdb andenddb,
I1j,k is the interval[τenddb

+ l− d, τenddb
+ l) while I2j,k

is the interval[τbegdb + u, τbegdb + d + u). Note that a
unique value ofd will only satisfy formula 2(a) below:
that value isd = ⌈τk − τj⌉+ (l − u) = t+ 1 + l − u.
The following formulae implement this idea by ensuring
that begdb and enddb indeed correspond to consecutive
pointsj, k with a ∈ σj , σk. For t ∈ {u − l, . . . , u − 1},
andd ∈ {1, . . . , l},

a) �w(begt+1+l−u b ↔ (a ∧ (¬a U(t,t+1]a))).
b) �w(enddb ↔ (a ∧ (¬a S begdb))).

Let MARKbeg,end,d be the conjunction of the above
formulae.

3) The propositionsbegdb and enddb now help us in
identifying the relevant points in the intersection ofI1j,k
andI2j,k as follows: Recall that pointsj, k marked with
begdb, enddb are also marked with one ofa0, a1 such
that {begdb, ai} ⊆ σj iff {enddb, a1−i} ⊆ σk. We now
identify the points inI1j,k = [τenddb

+l−d, τenddb
+l) by

marking them with a propositionycb iff a1−c ∈ σk. Like-
wise, all the points inI2j,k = [τbegdb + u, τbegdb + d+ u)
are marked with a propositionxcb iff ac ∈ σj . It can be
observed now that points inI1j,k ∩ I

2
j,k will be marked

with bothxcb, ycb. Such points are marked¬b. Figure 5
illustrates this. This is implemented by the conjunction
of the following formulae, denotedMARKx,y,c:

a)
∧

c∈{0,1} �
w((begdb ∧ ac)→ �[u,u+d)xcb)

b)
∧

c∈{0,1} �
w((enddb ∧ ac)→ �w

[l−d,l)y1−c b))

9Note that pointsj, k with consecutivea’s, such thatτk − τj > u also are
marked byai, a1−i



a ∧ a0

τj

a ∧ a0

τk
[
τj + l τj + u

)
[ )
τk + l τk + u

< u − l
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4) LetMARK¬b,c denote�w((xcb∧ycb)→ ¬b), c ∈ {0, 1}.

Case 2 Summary: We mark consecutive pointsj, k having
a that are apart by a distance in(u − l, u] with ac, a1−c,
c ∈ {0, 1}, and withbegdb, enddb respectively, whered is the
closest integer that is≥ ⌈τk − τj⌉+ l− u. The bit c ∈ {0, 1}
and the valued help in marking all points in[τk+ l−d, τk+ l)
with ycb and all points in[τj + u, τj + u+ d) with xcb. Points
marked bothxcb, ycb are then marked¬b.
Case 3: τk − τj ∈ (u,∞). Then again,[τj + u, τk + l) is non-
empty.10 Thend = ⌈τk− τj⌉+(l−u) > l. Figure 6 illustrates
this case.

1) We introduce propositions{b1∞, b
2
∞} to mark consecu-

tive a’s that are more thanu distance apart. We assert
that¬b holds in the[0, l) future of b2∞; also¬b holds at
all points that are at a distance≥ u from b1∞ and that lie
beforeb2∞. We first mark such consecutive pointsj, k
with propositionsb1∞ andb2∞. Let MARKsucc,∞ be the
conjunction of the following formulae:

a) �w(b1∞ ↔ (a ∧ ¬a U(u,∞)a))
b) �w(b2∞ ↔ (a ∧ ¬a Sb1∞))

2) Next we assert that points in(τj+u, τk] and in[τk, τk+l)
be marked¬b. This is implemented by the conjunction
of the following formulae, denotedMARK¬b,∞:

a) �w((b1∞ ∧ ♦w

[0,u)b)→ (♦w

[0,u)(b ∧ ¬b Ub
2
∞))

b) �w((b1∞ ∧�w

[0,u)¬b)→ (¬b ∧ ¬b Ub2∞))

c) �w(b2∞ → �w

[0,l)¬b)

Purpose of Extra Propositions: The extra propositions in-
troduced areX = {a0, a1, x0b, x1b, y0b, y1b, b1∞, b

2
∞} ∪

{begdb, enddb | 1 ≤ d ≤ l}.

10If l = 0, case 2 gives an empty interval. Case 3 deals with> u distance.
For a’s which areu apart, we add the formula(a∧�[0,u)¬a∧♦[0,u]a) →
♦[0,u]¬b

1) First of all,a0, a1 are chosen to enable marking points in
I1j,k, I

2
j,k with x0b, y0b or x1b, y1b, depending on whether

the pointj was markeda0 or a1. Consider three consec-
utive pointsj, k, h wherea holds, withτk−τj, τh−τk ∈
[u− l, u]. Clearly, we are looking at points inI1j,k, I

2
j,k

and I1k,h, I
2
k,h. If we just had xb, yb to mark these

intervals, then we get points inI1j,k, I
1
k,h marked withyb,

and points inI2j,k, I
2
k,h markedxb. There is a possibility

as illustrated by the example below, that points marked
xb in I2j,k intersect with points markedyb in I1h,k. By our
technique of marking points with bothxb, yb as¬b, this
could give rise to inconsistency. For example, consider
[l, u) = [6, 7), τj = 3.1, τk = 4.8, τh = 5.9. Clearly,
τk−τj , τh−τk ∈ (1, 7]. Ford1 = ⌈τk−τj⌉+(l−u) = 1,
the over approximations of the interval[τj+u, τk+ l) =
[10.1, 10.8) are[τk + l−d1, τk + l) = [9.8, 10.8) = I1j,k,
and [τj + u, τj + u + d1) = [10.1, 11.1) = I2j,k. By
construction, points in[9.8, 10.8) = I1j,k are markedyb,
points in [10.1, 11.1) = I2j,k are markedxb. Clearly,
points in [10.1, 10.8) have bothxb, yb marked. Again,
the over approximations for the interval[τk+u, τh+l) =
[11.8, 11.9) areI1k,h = [τh+ l−d2, τh+ l) = [10.9, 11.9)
and I2k,h = [τk + u, τk + u + d2) = [11.8, 12.8)
for d2 = ⌈τh − τk⌉ + (l − u) = 1. As per the
marking scheme, we would mark[10.9, 11.9) with yb
and [11.8, 12.8) with xb. While this gives us points in
[11.8, 11.9) marked with bothxb, yb, this also gives us
points in[10.9, 11.1) marked with bothxb, yb. We would
then mark¬b for all points in [10.9, 11.1), giving rise
to inconsistency, as[10.9, 11.1) is markedb by MARKb.
However, had we marked[9.8, 10.8) = I1j,k with y0b,
[10.1, 11.1) = I2j,k with x0b, [10.9, 11.9) = I1k,h with y1b
and [11.8, 12.8) = I2k,h with x1b, the erroneous interval
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Fig. 7. Erroneous intersection:[l, u) = [6, 7), j = 3.1, k = 4.8, h = 5.9.

[10.9, 11.1) is marked withx1b and y0b. Thus, using
two bits 0,1, we can rule out marking points having
xcb, y1−c b with ¬b. The situation of erroneous marking
is illustrated in Figure 7.

2) Note that it suffices to have only two bits 0,1 and hence
propositionsx0b, y0b, x1b, y1b. We do not needx2b, y2b.
Consider any two pairs of pointsj, k andh,m such that
j < k < h < m, and j and k, h andm and k and h
are all consecutive with respect toa. i.e, there are no
points betweenj, k or k, h or h,m that are markeda.
Let τk−τj , τm−τh > u−l. Assume further thata0 ∈ σj
as per our marking scheme. There are 2 cases :
Case 1:τh − τk ≤ u − l. In this casek, h will be
marked asa1 and j,m will be marked asa0. Note
that the regionsI1k,h andI2k,h are empty. No erroneous
intersection can happen :I2j,k is markedx0b while I1h,m
is markedy1b.
Case 2:τh − τk > u − l. In this casej, h will be
marked asa0 and k,m will be marked asa1. Let
d1 = ⌈τk − τj⌉ + (l − u), d2 = ⌈τh − τk⌉ + (l − u),
andd3 = ⌈τm − τh⌉+ (l − u).

• IntervalsI1h,m = [τm + l− d3, τm + l) (markedy0b)
and I2j,k = [τj + u, τj + u + d1) (markedx0b) are
disjoint: we haveτj + u+ d1 < τk + u < τh + l <
τm + l − d3.

• IntervalsI2h,m = [τh +u, τh+u+ d3) (markedx0b)
and I1j,k = [τk + l − d1, τk + l) (markedy0b) are
disjoint: τh + u ≥ τk + (u− l) + l ≥ τk + l.

This shows that for consecutive pairs ofa pointsj, k and
h,m whereτk − τj , τh − τk, τm − τh > u− l, intervals
I1h,m and I2j,k (respectivelyI2h,m and I1j,k) which are
markedxib, yib will never intersect.

3) The formulae MARKx,y,c only say wherexcb, ycb
are marked; they do not disallow occurrences of
x1−c b, y1−c b at those points. We claim that the free
occurrences ofx1−c b, y1−c b does not create problems.
Note that points markedb byMARKb and points marked
¬b by MARK¬b,c, c ∈ {0, 1} are disjoint and span
dom(ρ). Let p, q be consecutive points markeda. For
every pointp with a ∈ σp, [τp+ l, τp+u) is markedb by
MARKb, and[τp+u, τq+l) is marked¬b by MARK¬b,c.
In casep = lasta, then[τlasta +u,∞) is marked¬b by
MARKlast. Thus, inducting on thea’s in ρ, the union of
the points markedb by MARKb (call it B) and points
marked¬b by MARK¬b,c (call it B̄) is dom(ρ).
Thus, there are 2 possibilties for the free occurrence of
x1−c b, y1−c b:

• x1−c b, y1−c b occur freely in B̄. The freely oc-
curring x1−c b, y1−c b results in marking of¬b

by formula MARK¬b, 1−c; this does not generate
inconsistencies, since they are already marked¬b
by MARK¬b,c.

• x1−c b, y1−c b occur freely inB. The freely oc-
curring x1−c b, y1−c b results in marking of¬b by
formulaMARK¬b, 1−c; but these points are already
markedb by MARKb. Thus, at any pointp in B,
ρ, p 2 x1−c b ∧ y1−c b, for c ∈ {0, 1}. Thus, at all
points ofB, the appearance ofx1−c b and y1−c b

(if that is the case), is mutually exclusive.

Thus, free markings ofxcb, ycb if at all, they appear, do
not come in the way of correctly marking points with
b,¬b.

The formulaMARK in MTL[ UI , S] obtained as a conjunc-
tion of MARKb,MARKfirst,MARKlast,MARKa,MARKx,y,c,
MARKbeg,end,d,MARKsucc,∞,MARK¬b,c andMARK¬b,∞. is
such thatρ |= ENFΣ(T ) iff ρ′ |= MARK, whereρ′ \X = ρ.
A proof of correctness can be found in Appendix J. Using the
technique in [3], we can eliminate theS modality fromMARK

obtaining an equisatisfiable formulaψ in MTL[ UI ].

Note that our reduction does not introduce any new punctual
modality. Hence, we also have the equivalence modulo simple
projection ofMITL[ UI , SI ] andMITL[ UI ].

Theorem 2. For everyϕ ∈ MTL[ UI , Snp] over Σ, we can
constructψfut in MTL[ UI ] over∆ = Σ ∪ Σ′ such thatϕ =
∃(Σ′ − Σ).ψfut.

Proof. Follows from the fact thatSnp can be expressed using
S and♦−np [3] and elimination ofS modulo simple projections
[3], [8].

C. Simple Versus Oversampling Projections: Formulae Size

Consider a formulaϕ ∈ MTL[ UI ,♦−np]. Assume that the
number of past modalities inϕ is n, of which there arenb

bounded past modalities andnu unbounded past modalitties.
i.e, n = nb + nu. Flatteningϕ results in a linear increase
in the size ofϕ. Convertingϕflat to ENF gives a constant
size increase. Elimination of unbounded past (Lemma 9) also
results in a constant increase in size. During elimination of
bounded past modalities♦−[l,u) (Lemma 10), we addl − 1
new formulae resulting inO(l) extra modalities. Thus, the
number of extra modalities introduced after elimination ofall
the nb temporal definitions corresponding to bounded past
modalities is≤ nlmax, where lmax is the maximal lower
bound of all bounded past modalities inϕ. Hence, the formula
obtained by simple projections,ψ has in the worst case, an
exponential increase in size overϕ. In the case of oversampled
projections, it can be seen that both bounded as well as
unbounded past modalities contribute to a linear increase in the



size of the resultant formulae. In simple projections (Lemma
10), marking¬b correctly in [τj + u, τk + l) depended on the
distanceτk − τj , resulting in l − 1 formulae; in the case of
oversampling projections (Lemma 8), this is handled indirectly
by the introduction of extra integral points betweenj andk.
However, the formulae needed to introduce these extra points
correctly have a constant size. A more detailed complexity
analysis can be found in Appendix K.

D. Expressiveness

We wind up this section with a brief discussion about the
expressive powers of logicsMTL[UI , Snp] andMTL[Unp, SI ].
The following lemma highlights that even unary modali-
ties ♦I ,♦−I with singular intervals are more expressive than
Unp, Snp; likewise, non-singular intervals are more expressive
than intervals of the form[0,∞).

Lemma 11. (i) MTL[♦I ] * MTL[ Unp, SI ], (ii)
MTL[♦I ,♦−I ] * MTL[ UI , Snp], and (iii) MTL[♦np,♦−np] *
MTL[ UI , S].

Proof. The formula♦(0,1){a ∧ ¬♦[1,1](a ∨ b)} in MTL[♦I ]
has no equivalent formula inMTL[ Unp, SI ]. Similarly, the
formula♦{b∧¬♦−[1,1](a∨b)} in MTL[♦I ,♦−I ] has no equivalent
formula inMTL[UI , Snp]. The formula♦(1,2)[a∧¬♦−(1,2)a] ∈
MTL[♦np,♦−np] has no equivalent formula inMTL[ UI , S].
Details in Appendix M.

V. D ISCUSSION

In this paper, we have proposed two notions of equivalence
betweenMTL formulae (with different sets of propositions),
which both preserve satisfiability. The notionφ = ∃X.ψ,
denotingequisatisfiability modulo simple projectiondenotes
that a timed word satisfyingφ can be extended to a timed
word with additional propositionsX which satisfiesψ, and
a timed word satisfyingψ can be projected to a timed word
satisfyingφ. In both cases the set of time stamps of the letters
remains identical. A more elaborate notion,φ = ∃ ↓ X.ψ,
denotingequisatisfiability modulo oversampling projection, is
similar but the models ofψ may have additional time points.
Thus, during temporal projection we allow oversampling of
the original behaviour by adding new time points. Both forms
of temporal projections are useful. They often allow formulae
of a more complex logic to be effectively reduced in equi-
satisfiable manner to formulae of a much simpler logic. This
often provides a convenient technique for proving satisfiability.
As a significant use of this technique of temporal projections,
in the paper, we have shown the decidability ofMTL[UI , Snp]
over finite strictly monotonic timed words. This logic is more
expressive than the previously known decidable fragments of
MTL as well asMITL but less expressive thanMTL[UI , SI ].
A symmetric proof would allow showing thatMTL[Unp, SI ]
is also decidable. Our result can also be adapted to weakly
monotonic finite timed words (see Appendix H). Thus, we
have extended the boundary of known decidable fragments
of logic MTL over timed words. We note that the proof tech-
niques used for showing decidability ofMTL as well asMITL,

do not seem to generalize easily to the logicMTL[ UI , Snp]
considered here. In proving decidablity ofMTL[UI , Snp], we
have given two different proofs. In the first proof, we reduced
MTL[UI , Snp] to MTL[UI ] using the notion of oversampled
temporal projections. This encoding is relatively simple and
results only in linear blowup in formula size. We also gave an
alternative reduction using only simple temporal projections,
but the reduction turns out to be considerably more complex,
and leads to an exponential blow up in formula size.

The technique of temporal projections has been widely used
for continuous timeMTL. For example, Hirshfeld and Rabi-
novich [6] used it to eliminate non-singular future operator
♦[0,1) in terms of♦−[0,1), U and S. Subsequently, D’souza
et al [3] as well as Kini et al [8] used the technique to
remove past operatorSI from MTL[UI , SI ]. Their reduction
does not carry over to logicMTL[ UI , Snp] over pointwise
time which is expressively weak and allows insertion errors.
In this paper, we have extended the technique of temporal
projections to pointwise time (timed words). One novel aspect
of our formulation is that during temporal projection we allow
oversampling of the original behaviour by adding new time
points. We have demonstrated that the ability of adding such
additional points can considerably simplify the reductions. The
expressive power of (the two forms of) temporal projections
is an interesting topic of future work.
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APPENDIX

A. Proof of Lemma 1

We first define the composition of two simple extensions.
Composition of Two Simple Extensions: ConsiderΣ, X1, X2

such thatΣ ∩ X1 = ∅ andΣ ∩X2 = ∅ . Let Σ1 = Σ ∪ X1,
Σ2 = Σ ∪X2 andX = X1 ∪X2.

Let ζ′1 = (σ1, τ1) be a (Σ, X1)-simple extension and let
ζ′2 = (σ2, τ2) be a(Σ, X2)-simple extension, such that
ζ′1 \X1 = ζ′2 \X2. Then the composition ofζ′1 andζ′2 denoted
ζ′1 ⊕ ζ

′
2, is a (Σ, X)-simple extensionζ′ = (σ′, τ ′) such that

σ′
i = σ1

i ∪ σ
2
i and τi = τ1i = τ2i . Note that(ζ′1 ⊕ ζ

′
2) \X =

ζ′1\X1 = ζ′2\X2, andζ′\X2 = ζ′1 andζ′\X1 = ζ′2. Consider
the following example:

• Let Σ = {a, b}, X1 = {c}, X2 = {d},
• ζ′1 = ({a}, 0.3)({b, c}, 0.8)({b}, 1.1), and
• ζ′2 = ({a, d}, 0.3)({b, d}, 0.8)({b}, 1.1). Then
• ζ′1 \X1 = ζ′2 \X2 = ({a}, 0.3)({b}, 0.8)({b}, 1.1),
• ζ′1 ⊕ ζ

′
2 = ({a, d}, 0.3)({b, c, d}, 0.8)({b}, 1.1),

• (ζ′1 ⊕ ζ
′
2) \X2 = ({a}, 0.3)({b, c}, 0.8)({b}, 1.1) = ζ′1,

• (ζ′1⊕ ζ
′
2) \X1 = ({a, d}, 0.3)({b, d}, 0.8)({b}, 1.1) = ζ′2.

We use the following easy lemma in the proof:

Lemma 12. ConsiderΣ, X1, X2 such thatΣ ∩X1 = ∅ and
Σ∩X2 = ∅ . LetΣ1 = Σ∪X1, Σ2 = Σ∪X2 andX = X1∪X2.
Thenζ′ = (ζ′ \X2)⊕ (ζ′ \X1).

Proof of Lemma 1:

Proof. Assumeϕ1 = ∃X1.ψ1, ϕ2 = ∃X2.ψ2.
(a) Then, fori = 1, 2, and any timed wordρi overΣ, such

thatρi |= ϕi, we have a(Σ, Xi)-simple extensionρ′i such
that ρ′i |= ψi andρ′i \Xi = ρi.

(b) For any timed wordρ′i, ρ
′
i |= ψi implies ρ′i is a (Σ, Xi)-

simple extension such thatρ′i \Xi |= ϕi.
Considerϕ1 ∧ ϕ2, a formula built overΣ. Also, ψ1 ∧ ψ2 is a
formula built fromΣ ∪X1 ∪X2. Let X = X1 ∪X2.

1) Letζ′ be a timed word overΣ∪X such thatζ′ |= ψ1∧ψ2.
Then ζ′ |= ψi for i = 1, 2. Sinceψi is a formula built
from Σi, andX1 ∩X2 = ∅, we have

• ζ′ |= ψ1 → ζ′ \X2 |= ψ1, and
• ζ′ |= ψ2 → ζ′ \X1 |= ψ1.
• Call ζ′ \X1 = ζ′2 andζ′ \X2 = ζ′1.

Note thatζ′1 is a (Σ, X1)-simple extension andζ′2 is a
(Σ, X2)-simple extension. This gives, by (b) above that
ζ′1 \ X1 |= ϕ1 and ζ′2 \ X2 |= ϕ2. By Lemma 12, we
have ζ′1 \ X1 = ζ′2 \ X2, call it some timed wordζ
over Σ. Then ζ |= ϕ1 ∧ ϕ2. Also, ζ = (ζ′1 \ X1) =
(ζ′ \X2) \X1 = ζ′ \X .

2) Now letζ be a timed word overΣ such thatζ |= ϕ1∧ϕ2.
We have to show that there is a(Σ, X)-simple extension
ζ′ such thatζ′ |= ψ1 ∧ ψ2 such thatζ′ \X = ζ.
Sinceϕ1 = ∃X1.ψ1, ϕ2 = ∃X2.ψ2, we know that for
any word ζ over Σ satisfying ϕ1 ∧ ϕ2, ζ |= ϕi. By
(a) above,ζ |= ϕi implies there exists(Σ, Xi)-simple
extensionsζ′i such thatζ′i |= ψi, with ζ′i \Xi = ζ. Then
the compositionζ′ = ζ′1⊕ζ

′
2, of ζ′1 andζ′2 is well-defined.

Clearly, ζ′ is a (Σ, X)-simple extension obtained by
composing the(Σ, X1)-simple extensionζ′1 and the
(Σ, X2)-simple extensionζ′2 such thatζ′ \X = ζ.
SinceX1 ∩X2 = ∅, andψ1 is built from fromΣ ∪X1

andψ2 from Σ ∪ X2, ζ′1 ⊕ ζ
′
2 will not interfere in the

satisfiability of eitherψ1 or ψ2, in a way different from
ζ′1 and ζ′2: Assume the contrary. That is,ζ′ 2 ψ1 ∧ ψ2.
That is, ζ′ 2 ψ1 or ζ′ 2 ψ2. Let ζ′ 2 ψ1. If so, then
ζ′ \ X2 2 ψ1 sinceψ1 has no symbols fromX2 (by
assumptionX1 andX2 are disjoint). Butζ′ \X2 = ζ′1,
and we knowζ′1 |= ψ1, contradictingζ′ 2 ψ1. Hence,
ζ′ |= ψ1 ∧ ψ2.

The following example illustrates what might go wrong when
X1 ∩ X2 6= ∅. Consider,Σ = {a, c, d}, X1 = {b, e} and
X2 = {b, f}. Note thatX1 ∩X2 = {b}.

Consider formulaeψ1 = b∧�(b↔ ♦c)∧�
∨
Σ andψ2 =

b∧�(b↔ ♦a)∧�
∨

Σ. Also, letϕ1 = ♦c andϕ2 = ♦a. Let
ζ be the word(d, 0.1)(c, 0.3)(d, 0.7)(a, 0.9) over Σ. Clearly,
ζ |= ϕ1 ∧ ϕ2.

Considerζ′1 = ({d, e, b}, 0.1)({c}, 0.3)({e, d}, 0.7)({a}, 0.9),
a (Σ, X1)-simple extension and the(Σ, X2)-simple extension
ζ′2 = ({d, f, b}, 0.1)({c, b}, 0.3)({f, b, d}, 0.7)({a}, 0.9).
Then,ζ′1 |= ψ1, ζ′2 |= ψ2, ζ′1 \X1 = ζ′2 \X2 = ζ. However,
ζ′ = ({d, b, e, f}, 0.1)({c, b}, 0.3)({d, b, e, f}, 0.7)({a}, 0.9),
the composition ofζ′1 andζ′2 is such thatζ′ 2 (ψ1 ∧ψ2).

B. Proof of Lemma 2

Proof. The proof follows by structural induction onϕ.

• Let ρ be a timed word overΣ such thatρ |= ϕ. We
have to show that for all(Σ, X)-oversampled behaviour
ρ′ such thatρ′ ↓ X = ρ holds,ρ′ |= ONFΣ(ϕ).
Consider a(Σ, X)-oversampled behaviourρ′, such that
ρ′ ↓ X = ρ. Then, there exists a strictly increasing
function f : {1, 2, . . . , n} → {1, 2, . . . ,m} such that
n = |dom(ρ)|, m = |dom(ρ′)|, and

– f(1) = 1, σ1 = σ′
1 ∩ Σ, τ1 = τ ′1, and

– f(n) = m, σn = σ′
m ∩ Σ, τn = τ ′m, and

– For 1 ≤ i ≤ n− 1, f(i) = j andf(i+ 1) = k iff

∗ σi = σ′
j ∩ Σ, andτi = τ ′j ,

∗ σi+1 = σ′
k ∩ Σ, andτi+1 = τ ′k,

∗ For all j < l < k, σ′
l ⊆ X .

By applying structural induction on depth ofϕ, we show
that ρ |= ϕ → ρ′ |= ONFΣ(ϕ). For depth 0, the base
case trivially holds for atomic propositions. For example
if ϕ = a ∈ Σ, thenONFΣ(ϕ) = a∧act. Clearly,ρ, 1 |=
a iff ρ′, f(1) |= ONFΣ(a).
Assume the result for formulaeϕ of depth≤ n − 1.
Considerϕ as a formula of depthn. Lets discuss the
case of formulae of the formϕ = ψ1 UIψ2 whereψ1

andψ2 have depth≤ n− 1.
If ρ, i |= ψ1 UIψ2, then there existsj > i whereψ2

holds, and all points in betweeni andj satisfyψ1. Also,
tj−ti ∈ I. By the above, there exists a pointf(j) > f(i)
such thatσ′

f(j) |= ONFΣ(ψ2) (by induction hypothesis),
andσ′

f(j) |= act (definition off ). Let {i1, . . . , iq} be the



set of points betweenf(i) and f(j). For all i < l < j,
f(l) ∈ {i1, . . . , iq}. Also, σf(l) |= ONFΣ(ψ1). However,
there are pointsij ∈ {i1, . . . , iq} such thatij 6= f(l) for
any i < l < j. These points are such thatσ′

ij
∩ Σ = ∅.

Now if we look at points betweenf(i) and f(j), then
we have

– For all pointsk such thatf(i) < k < f(j), we have
σ′
k |= ONFΣ(ψ1), or σ′

k ∩Σ = ∅.
i.e, (σ′

k ∩ Σ 6= ∅)→ σ′
k |= ONFΣ(ψ1).

– Recall that ifσ′
k ∩ Σ 6= ∅, thenσ′

k |= act

The above conditions give us
ρ′, f(i) |= (act → ONFΣ(ψ1)) UI(act ∧ ONFΣ(ψ2)).
Also, sinceρ′ is a (Σ, X)-oversampled behaviour,act
holds good at the start and end points.ρ′ |= act iff act
holds good at the starting point.�⊥ holds good only at
the last point;⊥ stands forfalse. Clearly,ρ |= (ψ1UIψ2)
impliesρ′ |= (act→ ONFΣ(ψ1)UI(act∧ONFΣ(ψ2)∧
act ∧ (�⊥ → act). The proof for past modaility is
analogous.

• Let ρ′ be a(Σ, X)-oversampled behaviour such thatρ′ |=
ONFΣ(ϕ). We have to show thatρ′ ↓ X |= ϕ. In a
manner similar to the above, by structural induction ofϕ,
we can show thatρ′ ↓ X |= ϕ.

C. Proof of Lemma 3

Proof. Follows from Lemma 2 and equivalence ofζ and
ONFΣ(ζ).

D. Proof of Lemma 4

We first define the composition of two oversampled be-
haviours.
Composition of Oversampled Behaviours: Let ρ1 = (σ1, τ1)
be a(Σ, X1)-oversampled behaviour andρ2 = (σ2, τ2) be a
(Σ, X2)-oversampled behaviour such thatρ1 ↓ X1 = ρ2 ↓ X2.
This condition says that the points inρ1 where propositions of
Σ hold is exactly same as the points inρ2 where propositions
of Σ hold; moreover the same propositions ofΣ hold at these
points ofρ1 andρ2. Let Σ1 = Σ∪X1 andΣ2 = Σ∪X2. We
define the composition ofρ1 andρ2 denotedρ1⊞ ρ2 to be all
(Σ, X1∪X2)-oversampled behavioursρ such thatρ ↓ X1 = ρ2
and ρ ↓ X2 = ρ1. Note thatρ1 ⊞ ρ2 is guaranteed to exist
only whenX1 ∩ X2 = ∅. The following example illustrates
that whenX1 ∩X2 6= ∅, ρ1 ⊞ ρ2 may not exist.

ConsiderΣ = {a, b}, X1 = {c, e}, X2 = {d, e}. Let ρ1 =
({a, c}, 0.1)({e}, 0.3)({b, e, c}, 1) be a (Σ, X1)-oversampled
behaviour andρ2 = ({a}, 0.1)({e}, 0.3)({b, e, d}, 1) be
a (Σ, X2)-oversampled behaviour. Thenρ1 ↓ X1 =
({a}, 0.1)({b}, 1) = ρ2 ↓ X2. Assume thatρ ∈ ρ1 ⊞ ρ2.
Then, ρ ↓ X1 = ρ2. However,ρ ↓ X1 will not contain any
position i which is marked just withe, since such a position
will be eliminated during oversampled projection with respect
toX1. Thus, there can be no suchρ, which after oversampling
projections with respect toX1 will give ρ2. A similar problem
happens when trying to show thatρ ↓ X2 = ρ1.

We now give an example to illustrate the
composition of two oversampled behaviours. Let
Σ={a}, X1={c}, X2={d}, ρ1=({a}, 0.1)({c}, 0.5) and
ρ2=({a}, 0.1)({d}, 0.5)({d}, 0.5). ρ1 ⊞ ρ2 consists of:

• ({a}, 0.1)({c}, 0.5)({d}, 0.5)({d}, 0.5)
• ({a}, 0.1)({d}, 0.5)({d}, 0.5)({c}, 0.5)
• ({a}, 0.1)({d}, 0.5)({c}, 0.5)({d}, 0.5)

Clearly, when the wordsρ1, ρ2 are weakly monotonic,ρ1⊞ρ2
can consist of more than one word; however, whenρ1, ρ2 are
strictly monotonic,ρ1⊞ρ2 is a unique word. Our proof applies
to both weakly monotonic and strictly monotonic words. We
use the following easy lemma in the proof:

Lemma 13. Let X1 ∩X2 = ∅, andX1 ∪X2 = X . Let ρ be
a (Σ, X)-oversampled behaviour, and letΣ1 = Σ ∪ X1 and
Σ2 = Σ ∪X2. Thenρ ∈ [(ρ ↓ X2)]⊞ [(ρ ↓ X1)].

Proof of Lemma 4:

Proof. Givenϕ1 = ∃ ↓ X1.ζ1 andϕ2 = ∃ ↓ X2.ζ2. We know
that by definition,

(a) For any(Σ, Xi)-oversampled behaviourρ′i,
ρ′i |= ζi → (ρ′i ↓ Xi) |= ϕi.

(b) For any timed wordρi overΣ such thatρi |= ϕi, there
exists a(Σ, Xi)-oversampled behaviourρ′i such thatρ′i |=
ζi andρ′i ↓ Xi = ρi.

We now want to show thatϕ1 ∧ ϕ2 = ∃ ↓ X.(ζ1 ∧ ζ2).

1) Let ρ be a timed word overΣ such thatρ |= ϕ1 ∧
ϕ2. Since ρ |= ϕi, we have by (b) above,(Σ, Xi)-
oversampled behavioursρ′i such thatρ′i |= ζi and
ρ′i ↓ Xi = ρ, for i = 1, 2. Hence,ρ′1⊞ρ

′
2 is welldefined;

let ρ′ ∈ ρ′1 ⊞ ρ′2.
Sinceζi is in the oversampled normal form with respect
to Σi, by Lemma 3, we haveζ1 = ∀ ↓ .ζ1 andζ2 = ∀ ↓
.ζ2. We already haveρ′i |= ζi, for i = 1, 2. Hence,

• any (Σ1, X2)-oversampled behaviourρ′′ such that
ρ′′ ↓ X2 = ρ′1 will also satisfyζ1.

• any (Σ2, X1)-oversampled behaviourρ′′′ such that
ρ′′′ ↓ X1 = ρ′2 will also satisfyζ2.

• By definition of ⊞, we know thatρ′ ∈ ρ′1 ⊞ ρ′2 is
such thatρ′ ↓ X2 = ρ′1 andρ′ ↓ X1 = ρ′2.

• Picking ρ′ = ρ′′ = ρ′′′, we haveρ′ |= ζ1 andρ′ |=
ζ2.

Henceρ′ ∈ ρ′1 ⊞ ρ′2 satisfiesζ1 ∧ ζ2. Further,
ρ′ ↓ X = {[ρ′ ↓ X1] ↓ X2} = {ρ′2 ↓ X2} = ρ.

2) Conversely, letρ′ be a (Σ, X)-oversampled behaviour,
such thatρ′ |= ζ1 ∧ ζ2. Then ρ′ |= ζi for i = 1, 2.
Again, sinceζi is in the oversampled normal form with
respect toΣi, by Lemma 3, we haveζ1 = (∀ ↓).ζ1 and
ζ2 = (∀ ↓).ζ2. We already haveρ′ |= ζi for i = 1, 2.
Hence,

• ρ′ |= ζ1 → ρ′ ↓ X2 |= ζ1.
• ρ′ |= ζ2 → ρ′ ↓ X1 |= ζ2.
• Let ρ′1 = ρ′ ↓ X2 andρ′2 = ρ′ ↓ X1. Thenρ′1 |= ζ1

andρ′2 |= ζ2.



• By (a) above, we haveρ′1 ↓ X1 |= ϕ1 and ρ′2 ↓
X2 |= ϕ2.

• By Lemma 13,ρ′ ∈ ρ′1 ⊞ ρ′2. Hence, by definition
of ⊞, ρ′1 ↓ X1 = ρ′2 ↓ X2. Call it ρ, a timed word
overΣ. Clearly,ρ |= ϕ1 ∧ ϕ2 andρ = ρ′ ↓ X .

E. Proof of Lemma 6

Proof. We prove the lemma for intervals of the form[l, u). The
proof can be extended for other type of intervals also. Assume
thatρ, i |= ♦−[l,u)α. We then show that¬(τi < τfirstα + l) and
¬(τi ≥ τlastα +u) and¬(τi ∈ [τj+u, τk+ l)) for consecutive
pointsj, k whereα holds.

1) Let τi < τfirstα + l. ρ, i |= ♦−[l,u)α implies that there
is a point i′ such thatτi′ ∈ (τi − u, τi − l], such that
ρ, i′ |= α. Then,τi′ ≤ τi − l < τfirstα , contradicting
that firstα is the first point whereα holds.

2) Let τi ≥ τlastα + u. Again, ρ, i |= ♦−[l,u)α implies that
there is a pointi′ such thatτi′ ∈ (τi − u, τi − l] such
that ρ, i′ |= α. We then haveτi′ > τi − u ≥ τlastα ,
contradicting thatlastα is the last point whereα holds.

3) Assume that there exist consecutive pointsj < k where
α holds. Also, letτi ∈ [τj + u, τk + l). ρ, i |= ♦−[l,u)α
implies that there exists a pointi′ such thatτi′ ∈ (τi −
u, τi− l] andρ, i′ |= α. Also, τi − u ∈ [τj , τk + (l− u))
andτi − l ∈ [τj + (u− l), τk). This givesτj < τi′ < τk
contradicting the assumption thatj, k are consecutive
points whereα holds.

Conversely, assume that¬(τi < τfirstα + l) and ¬(τi ≥
τlastα + u) and¬(τi ∈ [τj + u, τk + l)) for consecutive points
j, k whereα holds. Then,τi ∈ [τfirstα + l, τlastα + u). We
show thatρ, i |= ♦−[l,u)α.

1) If τfirstα = τlastα , then τi − u < τfirstα ≤ τi − l.
Clearly, α holds in (τi − u, τi − l], and henceρ, i |=
♦−[l,u)α.

2) If τfirstα < τlastα , andτi ∈ [τfirstα + l, τlastα +u). By
the condition¬(τi ∈ [τj + u, τk + l)) for consecutive
points j, k whereα holds, we have for all consecutive
points j < k where α holds, τi /∈ [τj + u, τk + l).
Combining this withτi ∈ [τfirstα + l, τlastα + u), we
haveτi ∈ [τk + l, τlastα +u) or τi ∈ [τfirstα + l, τj +u)
for k ≤ lastα andj ≥ firstα.
If j = firstα, and if τi ∈ [τfirstα + l, τfirstα + u), and
as seen in the first case,ρ, i |= ♦−[l,u)α. Similar is the
case whenk = lastα. Assume now thatj > firstα and
k < lastα. Consideringj′ as the immediate point before
j whereα holds, (there is certainly such a pointj′, j′

could befirstα) we have by assumptionτi /∈ [τj′ +
u, τj + l). This combined withτi ∈ [τfirstα + l, τj + u)
gives τi ∈ [τj + l, τj + u). Similarly, consideringk′ as
the immediate next point afterk whereα holds (there is
certainly one such point,k′ could belastα) we have by
assumptionτi /∈ [τk + u, τk′ + l). This combined with
τi ∈ [τk+ l, τlastα+u) givesτi ∈ [τk+ l, τk+u). Hence,
we haveρ, i |= ♦−[l,u)α.

F. Proof of Lemma 7

Proof. Let ρ′ be a (Σ,W )-oversampled behaviour. Letα =
(act → (¬a ∧ ¬b)). Consider the following formulae in
MTL[ UI ]:

1) ψ1 : [�wα ∨ {α U
w[(a ∧ act) ∧�w

[0,l)(act→ ¬b)]}]
2) ψ2 : �w[(a ∧ act)→ �[l,∞)(act→ b)].

Let ψ = ψ1 ∧ ψ2. We claim thatρ′ |= ONFΣ(T ) iff ρ′ |= ψ.
Assumeρ′ |= ONFΣ(T ). Assume the contrary thatρ′ |= ¬ψ1.
Then, either there is a point markedact ∧ b before the first
occurrence ofa∧act, or there is a point markedact∧ b in the
[0, l) future of the firsta∧act. Both of these imply¬ONFΣ(T )
giving contradiction.

Now assume thatρ′ |= ¬ψ2. Then some pointact in the
[l,∞) future of a certaina ∧ act is marked¬b, which again
contradictsONFΣ(T ). Henceρ′ |= ψ. The converse can be
proved in a similar way. Note thatψ1∧ψ2 increases a constant
number of modalities compared toONFΣ(T ).

G. Proof of Correctness of Lemma 8

Proof. We give a proof of correctness on the construction
of ρ′′ and the formulaMARK, showing thatONFΣ(T ) =
∃ ↓ X.ONFΣi

(MARK). We start with a(Σ,W )-oversampled
behaviourρ′ over Σ ∪ W . We induct on thea’s in ρ′, and
show that a pointp of ρ′ is markedb iff ρ′, p |= ♦−[l,u)a.

• Given any pointq of ρ′ markeda, MARKb marks all
points in [τq + l, τq + u) with b.

• Lets look at the firsta of ρ′. Recall that the point where
a holds for the first time is calledfirsta. The formula
MARKfirst ensures that all points ofρ′ that are at a
distance[0, l) from firsta are marked¬b. Also, all points
in [0, τfirsta ] are also marked¬b. Thus, MARKfirst

accounts for all points in[0, τfirsta + l), while MARKb

marks all points in[τfirsta + l, τfirsta + u) with b.
• Consider a pointj in dom(ρ′) such thatj > firsta,
a ∈ σj and assume that all thea’s in [0, τj ] have been
accounted for: that is, all points in[0, τj + u) of ρ′

have been marked withb or ¬b correctly. This is the
inductive hypothesis. Now consider the next consecutive
a occurring afterj, call that pointk. If τk − τj ≤ u− l,
then τk + l ≤ τj + u, and byMARKb, all points in
[τk + l, τk + u) will be markedb. Hence, we are done
accounting for[0, τk+u). Hence, assumeτk−τj > u− l.
In this case,τk +u > τk + l > τj +u. MARKb marks all
points in [τk + l, τk + u) with b; we need to reason that
points in [τj + u, τk + l) will be marked¬b.

– The formulaeMARKj,k, MARKbeg,end mark points
j, k respectively withbs, be, and pointsτj +u, τk+ l
respectively withbegb andendb. Also,MARKbeg,end

marks (τj + u, τj + u + 1) as well as(τj + u −
1, τj + u) with ¬begb. As discussed in Lemma 8,
we must assert that all other remaining pointsbegb
and endb do not occur. The formulaMARKc first
marks all integer points withc. We then identify the
points betweenbs and be by uniquely marking the



closest integral point beforebs with cbs and and the
closest integral point beforebe with cbe . Recall that
bs and be were marked atτj and τk; thus, cbs and
cbe get marked respectively at points⌊τj⌋ and⌊τk⌋.
We then assert thatbegb can occur at a pointt iff
there is acbs in (t − u − 1, t− u]. Thus, given that
cbs is marked at⌊τj⌋, begb is marked only in[⌊τj⌋+
u, ⌊τj⌋+u+1). However, by formulaMARKbeg,end,
we disallowbegb in (τj + u, τj + u + 1) and (τj +
u−1, τj+u). Thus, we obtain a unique marking for
begb. In a similar way, we obtain a unique marking
for endb. Note that the oversampled behaviourρ′′

now has these markings. The formulaMARK¬b now
marks all points ofρ′ (or all points markedact in
ρ′′) betweenbegb andendb with ¬b. This takes care
of the interval we were interested in: the interval
[τj + u, τk + l).

– Thus, we have now accounted for all points ofρ′ in
[0, τk + u).

• We are now left with the remaining part[τk+u, τ|dom(ρ′)|].
If k 6= lasta, we can extend the reasoning above to
the next consecutive position afterk, which is marked
an a. In this way, we can account for all points
of ρ′ in [0, τlasta + u). We just need to reason for
[τlasta + u, τ|dom(ρ′)|]. Consider the pointlasta. The
formulaMARKlast marks all points ofρ′ in the interval
[τlasta + u, τ|dom(ρ′)|] with ¬b.

The above argument shows that all points ofρ′ are markedb
or ¬b correctly. The(Σ∪W,X)-oversampled behaviourρ′′ re-
flects these markings. When we do an oversampled projection
of ρ′′ with respect toX = {be, bs, begb, endb, c, cbs , cbe}, we
are left with ρ′, where at all positions, we have the correct
marking with respect tob or ¬b. Clearly, a pointp of ρ′

is markedb iff ρ′, p |= ♦−[l,u)a. Hence,ρ′ |= ONFΣ(T ) iff
ρ′′ |= ONFΣ∪W∪X(MARK).

Conversely, if we start with a(Σ ∪ W,X)-oversampled
behaviourρ′′ satisfyingONFΣ∪W∪X(MARK), then all points
p of ρ′′ markedact will be markedb iff ♦−[l,u)a holds good at
p. Thenρ′′ ↓ X will give a wordρ′ overΣ∪W that satisfies
ONFΣ(T ).

H. Extending Lemma 8 to weakly monotonic timed words

Note that for weakly monotonic words, we need to specify
the exact location ofbegb and endb for a fixed time-stamp.
Recall that we mark the time stampτj + u with begb, for a
pair j, k of consecutivea’s at distance> u− l.

• Since there are several occurrences of the same time
stamp, we wantbegb to the first symbol of the repeating
time stampτj +u while dealing with intervals〈l, u). We
then add an extra formulaFweakbegb = �w(�[0,0]¬begb)
which says thatbegb is not after any symbolα having the
same time stamp asbegb.

• Likewise, while dealing with intervals〈l, u], begb should
always be the last symbol at its timestampτj + u.
Lweakbegb = �w(begb → �[0,0]⊥) which says that there

are no symbolsα afterbegb sharing the same time stamp
asbegb.

• In a similar way, the position ofendb depends on the left
parantheses of the interval. Recall that we markendb
at τk + l. If the interval is of the form[l, u〉, then we
want endb to be the first symbol with time stampτk + l.
Similarly, if the interval is of the form(l, u〉, then we
want endb to be the last symbol at time stampτk + l.
This can be done similarly as above.

I. Proof of Lemma 9

Proof. The temporal definitionT is the conjunction ofC1 =
�w[b ← ♦−[l,∞)a] and C2 = �w[b → ♦−[l,∞)a]. Models ρ
satisfyingC1 are those whereb holds at all pointsi such that
a holds somewhere from the beginning ofρ till τi−l, that is in
the prefix[0, τi−l] of ρ. Clearly, either there is no point marked
a in the model, in which case�w¬a holds, or, whenever there
is point i markeda, thenb holds at all points in[τi + l,∞).
Thus,C1 is equivalent toψ1 = �w(¬a) ∨�w[a→ �[l,∞)b].

Models satisfyingC2 are those in which points where
¬♦−[l,∞)a hold must be marked¬b. Clearly, all points in[0, l)
must be marked¬b. Also, if i is the point wherea holds
for the first time, then all points in[τi, τi + l) should be
marked¬b. Thus, the formulaψ2 = �w(¬a ∧ ¬b) ∨ (¬a ∧
¬b) Uw(a ∧ �w

[0,l)¬b) is equivalent toC2. We thus have a
formulaψ1 ∧ ψ2 ∈ MTL[ UI ] equivalent toT .

J. Proof of Correctness for Lemma 10

Proof. The proof of correctness proceeds in similar lines as
Lemma 8. We give a proof of correctness on the construction
of ρ′ and the formulaMARK, showing thatENFΣ(T ) =
∃X.MARK. We start with a timed wordρ over Σ ∪W . We
induct on thea’s in ρ, and show that a pointp of ρ is marked
b iff ρ, p |= ♦−[l,u)a.

• Given any pointq of ρ markeda, MARKb marks all
points in [τq + l, τq + u) with b.

• Lets look at the firsta of ρ. Recall that the point where
a holds for the first time is calledfirsta. The formula
MARKfirst ensures that all points ofρ that are at a
distance[0, l) from firsta are marked¬b. Also, all points
in [0, τfirsta ] are also marked¬b. Thus, MARKfirst

accounts for all points in[0, τfirsta + l), while MARKb

marks all points in[τfirsta + l, τfirsta + u) with b.
• Consider a pointj in dom(ρ) such thatj > firsta,
a ∈ σj and assume that all thea’s in [0, τj ] have been
accounted for: that is, all points in[0, τj + u) of ρ have
been marked withb or ¬b correctly. This is the inductive
hypothesis. Now consider the next consecutivea occur-
ring from j, call that pointk. If τk − τj ≤ u − l, then
τk+l ≤ τj+u, and byMARKb, all points in[τk+l, τk+u)
will be marked b. Hence, we are done accounting for
[0, τk + u). Hence, assumeτk − τj ∈ (u − l, u]. In this
case,τk + u > τk + l > τj + u. MARKb marks all points
in [τk + l, τk + u) with b; we need to reason that points
in [τj + u, τk + l) will be marked¬b.



– We start marking points ofρ with new propositions,
obtaining a simple extensionρ′ of ρ. We start mark-
ing points wherea holds good inρ with propositions
in {a0, a1}.

– Assume that pointj is markeda0, while k is marked
a1 by formulaMARKa. Let d = ⌈τk − τk⌉+ l − u,
the closest integer≥ the duration of the interval
[τj + u, τk + l). FormulaMARKbeg,end,d marks j
with begdb and pointk with enddb. Identifying point
j as begdb and pointk with enddb, all points in
I2j,k = [τenddb

+ l − d, τenddb
+ l) are markedx0b

and all points inI1j,k = [τbegdb + u, τbegdb + u + d)
are markedy0b. The points inI1j,k ∩ I

2
j,k are marked

¬b by MARK¬b,0.
– Since [τj + u, τk + l) ⊆ I1j,k ∩ I

2
j,k, we have clearly

marked all points in[τj + u, τk + l) with ¬b. Also,
points in [τj + u, τk + l) are not handled by formula
MARKb, since these points are not in the[l, u)-future
of any point markeda. Thus, points handled by
MARK¬b,0 andMARKb are disjoint.

– Recall the discussion in Lemma 10 regarding
free occurrences ofx1b, y1b : as noted earlier, if
{x1b, y1b} ⊆ σp for any p ∈ I1j,k ∩ I

2
j,k, there is

no problem, since these points are anyway marked
¬b; if {x1b, y1b} ⊆ σp, for p /∈ I1j,k ∩ I

2
j,k, then

either they lie in someI1h,m ∩ I
2
h,m corresponding

pointsh,m such thatτm − τh ∈ (u− l, u], or p is a
point handled byMARKb. In the former case, there
is no problem, while in the latter case, we get an
inconsistent simple extensionρ′ from ρ. Since we
work only on consistent simple extensions, we rule
out simple extensions where of the latter form.

– Thus, to summarize, we have accounted for all points
[0, τk+u), being marked by one ofb,¬b in consistent
simple extensions.

• We are now left with the remaining part[τk+u, τ|dom(ρ)|].
If k 6= lasta, we can extend the reasoning above to
the next consecutive position afterk, which is marked
an a. In this way, we can account for all points
of ρ in [0, τlasta + u). We just need to reason for
[τlasta + u, τ|dom(ρ)|]. Consider the pointlasta. The
formula MARKlast marks all points ofρ in the interval
[τlasta + u, τ|dom(ρ)|] with ¬b.

The above argument shows that all points ofρ are marked
b or ¬b correctly. The(Σ∪W,X)-simple extensionρ′ reflects
these markings. When we do a simple projection ofρ′ with
respect toX , we are left withρ, the timed word overΣ∪W
satisfyingENFΣ(T ). On thisρ, at all positions, we have the
correct marking with respect tob or ¬b. Clearly, a pointp of
ρ is markedb iff ρ, p |= ♦−[l,u)a. Hence,ρ |= ENFΣ(T ) iff
ρ′ |= MARK.

Conversely, if we start with a timed wordρ′ overΣ∪W ∪X
satisfyingMARK, then any pointp of ρ′ will be markedb iff
♦−[l,u)a holds good atp. Thenρ′ \X will give a word ρ over
Σ∪W that satisfiesENFΣ(T ) iff ρ′ is a (Σ∪W,X)-simple

extension.

K. Simple Versus Oversampling Projections: Formulae Size

Consider a formulaϕ ∈ MTL[UI ,♦−np]. First we discuss the
case of eliminating♦−np by simple projections. Assume that
the number of past modalities inϕ is n, of which there arenb

bounded past modalities andnu unbounded past modalities.
i.e, n = nb + nu.

1) The first step is flattening, resulting inϕflat. This
only increases the size of the formula linearly inn.
Convertingϕflat to ENF again increases the size by a
constant number; thus,ENFΣ(ϕflat) has a size increase
of O(n) with respect toϕ.

2) Let us first look at thenu unbounded past modalities. By
Lemma 9, the elimination of each temporal definition
involving an unbounded past modality results in adding
2 formulae∈ MTL[UI ], and hence, in 3 extra modalities.
Thus, after elimination of all thenu temporal definitions,
we get a formula whose size is increased byO(n).

3) Now let us look at the elimination of the temporal defi-
nitions corresponding to thenb bounded past modalities.

4) Lemma 10 deals with this. Look at formula 2(a) (in
Case 2) introduced by Lemma 10. This results inl − 1
new formulae, and hence results inO(l) extra modalities.
Thus, the number of extra modalities introduced after
elimination of all thenb temporal definitions correspond-
ing to bounded past modalities is≤ nlmax, where
lmax is the maximal lower bound of all bounded past
modalities in ϕ. Assuming constants are encoded in
binary, O(nblmax) is pseudo polynomial; hence, the
formula obtained by simple projections,ψ1 has in the
worst case, an exponential increase in size overϕ. Just
to illustrate,lmax = 1010 will really blow up!

5) Note that Lemma 10 can further be optimized by chang-
ing the formula 2(a), 2(b), 3(a) and 3(b) in Case 2.
Recall that formula 2(a) is�w(xt+1+l−u b ↔ (a ∧
(¬a U(t,t+1]a))), with t ∈ {u − l, . . . , u − 1}, 2(b) is
�w(ydb ↔ (a ∧ (¬a Sxdb))), while formula 3(a) is∧

c∈{0,1}�
w((xdb ∧ ac) → �[u,u+d)xc) and formula

3(b) is
∧

c∈{0,1}�
w((ydb∧ac)→ �w

[l−d,l)y1−c)), where
d ∈ {1, . . . , l}. The “bounding” interval between two
consecutivea’s was considered as a unit interval here
: we were considering the interval lengths to lie in
(u − l, u − l + 1], (u − l + 1, u − l + 2] and so on
till (u − 1, u]. This resulted inl − 1 formulae. Had we
chosen intervals of size 2 instead of 1, we would have
considered the intervals as(u − l, u − l + 2], (u − l +
2, u− l+ 4], . . . , (u− 2, u], resulting in l

2 formulae. In
general, we could have chosen as “period” anyµ that
gives rise tol

µ
formulae. Clearly, since Case 2 in Lemma

10 considersτk − τj ∈ (u − l, u], the maximum period
we can consider isu − l i.e, 1 ≤ µ ≤ u − l. When
µ = u− l, we get l

u−l
formulae. In this case, replacing

2(a),2(b),3(a),3(b), we get



• 2(a) by �w(xt+1+l−u b ↔ (a ∧ (¬a U(t,t+u−l]a)))

for t ∈ {u− l, 2(u− l), . . . , l(u−l)
u−l
},

• 2(b) by�w(yκb ↔ (a ∧ (¬a Sxκb)))
• 3(a) by

∧
c∈{0,1}�

w((xκb∧ac)→ �[u,u+κ(u−l))xc)
• 3(b) by∧

c∈{0,1} �
w((yκb ∧ ac) → �w

[l−κ(u−l),l)y1−c))

whereκ ∈ {1, . . . , l
u−l
}.

In this case, we get an increase ofO( nl
u−l

) over the
size of ϕ, as opposed to an increase ofO(nlmax).
Asymptotically, this is not a big saving, so we can stick
to µ = 1.

Now we discuss the case of oversampled projections. Lemma
7 discussed the case of unbounded past modalities and Lemma
8 the case of bounded past modalities. In both cases, it can
be seen that the resultant formulae had an increase of size by
a constant number, while eliminating each temporal definition.
Thus, the total increase of size in the resultant formulaψ2 ∈
MTL[ UI ] is onlyO(n).

L. Eliminating S from MTL[ UI , S]

Given a formulaϕ ∈ MTL[UI , SI ] overΣ, we first flatten
the formula to obtain formulaϕflat overΣ∪W . In this section,
we elaborate [8], [3] on removing the temporal definitions of
the form [r ↔ (c Sf)] from ϕflat, using future operators. We
use the short formOϕ to denotefalse Uϕ.
[r ↔ (c Sf)] will be replaced by a conjunctionνr of the

following future formulae:

• ϕ1 : �w(f → Or)
• ϕ2 : ¬r
• ϕ3 : �w[(r ∧ c)→ Or]
• ϕ4 : �w[r ∧ (¬c ∧ ¬f)→ O¬r]
• ϕ5 : �w[(¬r ∧ ¬f)→ O¬r]

For example, consider the formula
ϕ = (a ∧ (b ∧ (c U(1,2)[(d Se) ∧ f ]))) built from Σ =
{a, b, c, d, e, f}.

The flattened versionϕflat = (a∧ b∧w2)∧T1 ∧T2, where
T1 = �w[(d Se)↔ w1] andT2 = �w[w2 ↔ c U(1,2)[w1 ∧ f ]].
ϕflat is built from Σ ∪W , whereW = {w1, w2}.

ReplaceT1 with νw1 to obtain the formula
ψ = (a ∧ b ∧ w2) ∧ νw1 ∧ T2 ∈ MTL[ UI ]. ψ is also built
from Σ ∪W and is equivalent toϕflat. It can be seen that
ϕ = ∃W.ϕflat = ∃W.ψ.

M. Proof of Lemma 11

We prove that theMTL[Unp, SI ],MTL[UI , Snp] are strictly
less expressive thanMTL[UI , SI ] using EF Games. We omit
the game strategies here and give the candidate formula and
pair of words.
(i) MTL[♦I ] * MTL[ Unp, SI ]
We consider a formula inMTLpw[♦I ], ϕ = ♦(0,1){a ∧
¬♦[1,1](a ∨ b)}. For an n-round game, consider the words
w1 =WaWb andw2 =WaW

′
b with

• Wa = (a, δ)(a, 2δ) . . . (a, iδ − κ)(a, iδ) . . . (a, nδ)
• Wb = (b, 1 + δ)(b, 1 + 2δ) . . . (b, 1 + iδ −
κ)(b, 1 + iδ) . . . (b, 1 + nδ)

• W ′
b = (b, 1+ δ)(b, 1+2δ) . . . (b, 1+ (i− 1)δ)(b, 1+ iδ−

κ)(b, 1 + iδ)(b, 1 + (i + 1)δ) . . . (b, 1 + nδ)

w1 |= ϕ, but w2 2 ϕ. The underlinedb in Wb shows that
there is ab at distance 1 froma; however, this is not the
case withW ′

b. The key observation for duplicator’s win in
an UNS , SI game is that (a) any non-singular future move
of spoiler can be mimicked by the duplicator fromWaWb

or WaW
′
b (b) for any singular past move made by spoiler

on WaWb, duplicator has a reply fromWaW
′
b. The same

holds for any singular past move of spoiler made fromWaW
′
b.

(ii) MTL[♦I ,♦−I ] * MTL[ UI , Snp]
We consider a formula inMTLpw[♦I ], φ′ = ♦{b∧¬♦−[1,1](a∨
b)}. We show that there is no way to express this formula in
MTL[ UI , Snp]. This is symmetrical to (i). For ann round
game, consider the wordsw1 = WaWb and w2 = W ′

aWb

with

• Wa = (a, δ)(a, 2δ) . . . (a, (i − 1)δ)(a, iδ −
κ)(a, iδ) . . . (a, nδ)

• W ′
a = (a, δ)(a, 2δ) . . . (a, (i− 1)δ)(a, iδ) . . . (a, nδ)

• Wb = (b, 1 + δ)(b, 1 + 2δ) . . . (b, 1 + (i −
1)δ)(b, 1 + iδ − κ)(b, 1 + iδ) . . . (b, 1 + nδ)

w1 2 ϕ′, w2 |= ϕ′. The underlinedb in Wb shows that
there is ana at past distance 1 inWa, but not inW ′

a. The
key observation for duplicator’s win in ann-round UI , SNS

game is that (a) any non-singular past move by spoiler from
Wa,Wb or from W ′

a,Wb can be answered by duplicator, (b)
for any singular future move made by spoiler onWa,Wb,
duplicator has a reply fromW ′

a,Wb. The same holds for any
singular future move of spoiler made fromW ′

a,Wb.

(iii) MTL[♦np,♦−np] * MTL[ UI , S]. We consider the
MTL[♦np,♦−np] formulaϕ′′ = ♦(1,2)[a ∧¬♦−(1,2)a], and show
that there is no way to express it usingUI , S. For ann round
game, consider the wordsw1 =W1W2 andw2 =W1W

′
2 with

• W1 = (a, 0.5+ ǫ) . . . (a, 0.5+nǫ)(a, 0.9+ ǫ) . . . (a, 0.9+
nǫ)

• W2 = (a, 1.5)(a, 1.6 + ǫ)(a, 1.6 + 2ǫ) . . . (a, 1.6 + nǫ)
• W ′

2 = (a, 1.6 + ǫ)(a, 1.6 + 2ǫ) . . . (a, 1.6 + nǫ)

for a very smallǫ > 0. Clearly, w1 |= ϕ′′, w2 2 ϕ′′. The
underlineda in W2 shows thea in (1,2) which has noa in
♦−(1,2). The key observation for duplicator’s win in ann-round
UI , S game is that (a) when spoiler picks any position inW1,
duplicator can play copy cat, (b) when spoiler picks(a, 1.5) in
W2 as part of a future(0, 1) move fromW1, duplicator picks
0.9+nǫ in W ′

2. All until, since moves from the configuration
[(a.1.5), (a, 0.9 + nǫ)] are symmetric.
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