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Abstract— Given textured images considered as realizations 

of 2-D stochastic processes, a framework is proposed to 

evaluate the stationarity of their mean and variance. Existing 

strategies focus on the asymptotic behavior of the empirical 

mean and variance (respectively EM and EV), known for some 

types of non deterministic processes. In this paper, the 
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theoretical asymptotic behaviors of the EM and EV are studied 

for large classes of second order stationary ergodic processes, 

in the sense of the Wold decomposition scheme, including 

harmonic and evanescent processes. Minimal rates of 

convergence for the EM and the EV are derived for these 

processes; they are used as criteria for assessing the 

stationarity of textures. The experimental estimation of the 

rate of convergence is achieved using a non parametric block 

sub-sampling method. Our framework is evaluated on 

synthetic processes with stationary or non stationary mean and 

variance and on real textures. It is shown that anomalies in the 

asymptotic behavior of the empirical estimators allow detecting 

non stationarities of the mean and variance of the processes in 

an objective way. 
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I. INTRODUCTION 

ANAGING texture in image analysis tasks such as 

segmentation, classification or indexation generally 

requires the description of its statistical properties (e.g. 

[1][2][3][4][5]). Not only first-order but also second- and 

higher-order statistics have long been proved to influence 

texture perception and to efficiently help in machine-based 

texture recognition (e.g. [1][6][7]). The mean and variance 

of pixel intensity are first order statistics, whereas 

autocovariance, co-occurrences [1] or multidimensional 

histograms [2] can be used efficiently as texture descriptors 

of the second and higher order. 

In many practical cases, the estimation of such statistical 

features is performed on one single, finite sample image and 

thus requires the double assumption of stationarity and 

ergodicity of the underlying 2-D random process. More 

precisely, stationarity and ergodicity must be assumed for 

every statistical moment of interest. For instance, on second 

order stationary-ergodic processes, the estimation of 

moments up to the second order, e.g. mean, variance and 

autocovariance, can be performed by spatial averages 

provided that a spatially infinite sample is available, which 

of course is illusory in practice. As a consequence, if the 

image is not stationary, the estimated statistical features are 

irrelevant and useless. A segmentation of the image into 

several homogeneous regions is then required to obtain 

relevant descriptive features, unless the features slowly 

evolve over the image, e.g. in presence of a deterministic 

trend, which would then have to be estimated and removed. 

On the contrary, statistical features estimated on a stationary 

region are representative not only of the observed image, 

but of any realization of its underlying random process, and 

can thus be used as a basis for comparing textures. For 

example, Stoica et al. [3][4] propose a method for 

measuring a distance between stationary textures using a 

parametric representation based on the Wold decomposition 

[8], which is employed in an indexing and retrieval 

application, but also for segmentation purposes. Taking 

advantage of the image stationarity, Blanc et al. [9] evaluate 

approximate confidence intervals for estimating the true 

fiber fraction of a composite material based on the 

observation of a single image.  

Criteria employed to decide whether an image is 

stationary or not are often empirical and rely on visual 

inspection, thus introducing a high degree of subjectivity in 

the decision. That is the reason why, in practice, stationarity 

is generally presupposed. However, a few authors have 

proposed some objective criteria to study the stationarity 

and the ergodicity of textures. For instance in [10], 

ergodicity is assumed if the sample size is greater than the 

integral range, i.e. the integral of the normalized 

autocovariance. In such a case, the image sample can be 

considered as representative of the random process. The 

ergodicity can then be verified provided that several 

realizations of the 2-D image process are available, which 

seldom occurs in real-life image processing. In contrast, 

some tests of second order stationarity of spatial processes 
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have been proposed, which rely on the covariance structure 

[11], on spectral methods [12] or on the asymptotic 

distribution of spatial spectral estimates [13].  

For a few decades, numbers of studies have dealt with the 

estimation of statistical moments on second order 

stationary-ergodic 2-D processes. For instance, various 

methods aim at drawing inferences for the statistical mean, 

by providing measures of its estimation variance and, by the 

way, of its uncertainty. Such methods are based either on 

geostatistical concepts [14][15] or on image sub-sampling, 

re-sampling or on block-bootstrap; see [16]–[20]. These 

approaches, though meant to measure the uncertainty in the 

estimation of statistical moments, can be used to evaluate 

their stationarity since the asymptotic behavior of their 

estimation variance closely depends on their homogeneity. 

In the present paper, we deal with textured images 

considered as realizations of 2-D stochastic processes 

sampled on a regular grid and propose a framework to 

analyze the stationarity of their mean and variance in an 

objective way. The proposed strategy consists in comparing 

the asymptotic behavior of their estimation variance with 

the theoretical behaviors of standard processes in the sense 

of Wold’s decomposition i.e. stochastic, harmonic and 

evanescent processes [8][4][5]. As any stationary random 

process can be decomposed as a sum of such processes, the 

established standard behaviors are used as references to 

discuss the assumption of stationarity.  

The manuscript is organized as follows. Section 2 focuses 

on the empirical mean (EM) and empirical variance (EV) as 

estimators of the mean and variance of a spatial process. 

Theoretical expressions of their variance are given. In 

section 3, we provide the asymptotic laws of the EM and 

EV for second order stationary ergodic process, including 

harmonic and evanescent processes. In section 4, estimators 

of the variance of the EM and EV are proposed; their 

asymptotic behavior is studied on image samples generated 

according to Wold’s decomposition. Finally, in section 5, 

our strategy for stationarity assessment is presented. It is 

applied to synthetic processes with stationary and non 

stationary mean and variance and to various real textures. 

Conclusions are then drawn and possible extensions of the 

method are discussed.  

II. ESTIMATION OF THE MEAN AND OF THE VARIANCE OF 

SPATIAL PROCESSES 

We consider a random process (.)Z  in d dimensions. We 

assume that a single realization (.)z  of (.)Z  is available. 

(.)z  is known only on a finite number N of points. In an 

image analysis context, the set of N points corresponds to 

the vertices of the regular lattice, or window W. N is also the 

Lebesgue measure of this set. For shorter notation, we will 

simply write ( )Z Z= u  at an unspecified point u, 

( )i iZ Z= u  and ( )i iz z= u  respectively for the random 

process and for its available realization at the specific point 

iu .  
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A. Estimation of the Mean of a Spatial Process 

Let [ ]( ) ( )E Zµ =u u  be the mathematical expectation 

(i.e. the mean) of ( )Z u  and ˆ ( )Nµ  be the sample mean 

computed on the spatial sample of size N:  

1

1
ˆ( )

N

i

i

N z
N

µ
=

= ∑ . (1) 

If (.)Z  is first-order stationary, ( )µ µ=u  is invariant by 

translation. The sample mean ̂( )Nµ  is an unbiased 

estimator of µ . Herein, it will also be denoted EM 

(Empirical Mean). Its variance can be expressed as follows: 

( )( )

( )

2
2

1 1

2
1 1

1
ˆ

1
,

N N

i j

i j

N N

i j

i j

Var N E Z Z
N

Cov Z Z
N

µ µ
= =

= =

= −  

=

∑∑

∑∑
. (2) 

where ( ),i jCov Z Z  is the covariance for the two points iu  

and ju , see [10]. 

If the iZ  are independently and identically distributed 

(i.i.d.), this equation reduces to the classical expression: 

( )( )
2

ˆiidVar N
N

σµ =
, (3) 

where 2σ  is the variance of the process. 

In the non i.i.d. case, the evaluation of ( )( )ˆVar Nµ  

requires the knowledge of the covariance ( ),i jCov Z Z  

between any pair of sites in the observation window W. For 

second order stationary processes, ( ),i jCov Z Z  is 

translation invariant: 

( ), ( ),i j i jCov Z Z Cov where= = −h h u u
. (4) 

Equation 4 then yields: 

( )( ) 2

1
ˆ ( ) ( )WVar N c Cov

N
µ = ∑

h

h h , (5) 

where ( )Wc h  is the number of pairs of points in W that are 

separated by h, also called the geometric covariogram, e.g. 

[22]. Under 2nd order stationarity and ergodicity, the 

autocovariance ( )Cov h  can be estimated using spatial 

averages, thus providing an estimation of ( )( )ˆVar Nµ . This 

approach will be discussed, later on, in section 4. 

B. Estimation of the Variance of a Spatial Process 

A simple estimator of the variance of the spatial process 

(.)Z  is the empirical variance: 

( )22

1

1
ˆ ˆ( ) ( )

1

N

i

i

N z N
N

σ µ
=

= −
− ∑ . (6) 

From now on, it will also be denoted EV (empirical 

variance). The calculation of the mathematical expectation 

and variance of this estimator is tractable and yields: 

[ ]

( )( )

2 2

,

2

1 1
ˆ ( )

1

ˆ

i j

i j

E N NE Z E Z Z
N N

Var N

σ

σ µ

   = −      −  

= −

∑
 (7) 

and  

( )( )
( )

( )[ ]( )

2
2

, , ,

2
2

2
, , ,

1 2
ˆ

1

1
ˆ

iijj iijk

i j i j k

ijkl

i j k l

Var N R R
NN

R E N
N

σ

σ

= −− 

+ −


∑ ∑

∑
 (8) 

where { }, , , 1, ,i j k l N∈ …  and ijkl i j k lR E Z Z Z Z=    .  

When the spatial realizations are i.i.d., 2ˆ ( )Nσ  is 

unbiased and its variance tends to zero when N increases, 

provided that the moments [ ]4E Z  and [ ]3E Z  are finite: 
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( )( )

[ ] [ ]( )

4
2

4 3 4 4 2 2

2
ˆ

1
1

4 3 3 6 ,

iidVar N
N

E Z E Z
N

σσ

µ σ µ µ σ

=
−

+ − − + +
 (9) 

which simplifies to ( ) 142 1Nσ −−  in the Gaussian case. 

The formula of ( )( )2ˆVar Nσ , see (8), involves moments 

of the 4th order. Stationarity and ergodicity up to the 4th 

order are thus required to estimate such moments using 

spatial averages. Even then, their estimation implies the use 

of algorithms of high computational complexity. 

III.  VARIANCE OF THE EM AND EV: ASYMPTOTIC 

BEHAVIOR ON WOLD PROCESSES. 

A. Wold Decomposition of Stationary Random Processes 

We restrict here to the case of 2-dimensional second 

order stationary random processes. According to Wold’s 

decomposition [8][4][5], any such process is the sum of a 

purely stochastic component with an absolutely continuous 

spectrum, a finite number of harmonic components and a 

finite number of evanescent components. All harmonic and 

evanescent components are singular on the spectrum. In the 

following, we investigate the variances of the EM and EV 

on second order stationary processes following the Wold 

decomposition. More specifically, we are interested in the 

asymptotic behavior of these variances. We consider 

discrete rectangular windows W of sides XL  and YL . 

X YN L L=  data points are thus available. 

B. The Stochastic Component 

In [10], it is assessed that the estimation of the mean of a 

stationary ergodic process is reliable when the integral 

range A is finite i.e. when the process exhibits weak spatial 

dependences: 

2

1
lim ( )

W W
A Cov d

σ →∞
= < ∞∫ h h , (10) 

where 2σ  is the variance of the process. If the covariance 

tends to zero as the modulus of h increases, if 0A ≠  and if 

the sample size N is much larger than A, then the variance of 

the EM of a stationary ergodic random process has the 

following asymptotic behavior: 

( )( )
2

ˆ
A

Var N
N

σµ ∼ . (11) 

Experiments using synthetic processes show that the 

asymptotic behavior can be observed when the image size is 

about a hundred times larger than the integral range A [10]. 

If 0A = , the decrease of ( )( )ˆVar Nµ  is faster, see 

sections III.C and III.D hereafter. In the case of non 

deterministic stationary processes with long range 

dependences, i.e. infinite integral range, the decrease of the 

variance is slower. In such a case, the validity of the 

stationary ergodic assumption for the available sample can 

be questioned [10]. Such processes will not be considered 

here.  

Besides, we have studied the asymptotic behavior of the 

variance of the EV, i.e. ( )( )2ˆVar Nσ . Formal calculations, 

not reported in this manuscript, have shown that it depends 

on the convergence of integrals of fourth order moments. In 

the case of weak spatial dependences, i.e. with finite integral 

range, it was shown that ( )( )2ˆVar Nσ  asymptotically 
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decreases as 1N− : 

( )( )2ˆ ,Var N
N

ασ α +∈∼ ℝ . (12) 

C. The Harmonic Component 

A harmonic process can be defined at any pixel ( ),x y  as 

follows: 

( )( )( , ) sin 2 X YZ x y a f x f yπ ϕ= + + , (13) 

where the phase ϕ  is a real valued random variable 

whereas the amplitude a and the frequencies Xf  and Yf  

along the two axes are constant parameters. For such a 

harmonic process, the variance of the EM has been 

expressed as: 

( )( ) ( ) ( )
( ) ( )

2 2 2

2 2 2 2

sin sin
ˆ

2sin sin
X X Y Y

X Y X Y

a f L f L
Var N

f f L L

π π
µ

π π
= , (14) 

where XL  and YL  are the horizontal and vertical 

dimensions of the sample. ( )( )ˆVar Nµ  thus decreases 

asymptotically as 2N−  if neither Xf  nor Yf  are zero. 

On the contrary, if the harmonic process is vertical or 

horizontal, ( )( )ˆVar Nµ  decreases as 2
YL−  (respectively 

2
XL− ). For square samples, i.e. 1/ 2

X YL L N−= = , 

( )( )ˆVar Nµ  thus decreases as 1N− . 

Similar calculations lead to the variance of the EV: 

( )( ) ( ) ( )
( ) ( )

4 2 2
2

2 2 2 2

2 2

sin 2 sin 2
ˆ

8sin 2 sin 2

1

X X Y Y

X Y X Y

X Y

a f L f L
Var N

f f L L

o
L L

π π
σ

π π
=

 +  
 

 (15) 

which asymptotically decreases as 2N− . 

D. The Stochastic Component 

An evanescent process can be written as a composition of 

two orthogonal 1-D processes:  

( ) ( )( )( , ) sin 2Z x y T x y x y fα β π β α ϕ= + − + , (16) 

where (.)T  is a 1-D stochastic process orthogonal to the 

direction of the 1-D harmonic process. f and ( )tan /θ α β=  

are respectively the frequency and the direction of the 

harmonic part. The phase ϕ  is a real valued random 

variable.  

Theoretical derivations have been carried out when 

1α = , 0β = , (.)T  and ϕ  are independent white noises, 

following respectively a normal distribution of mean µ  and 

variance 2σ  and a uniform distribution on the interval 

[ [0, 2π . We found the following variance of the EM: 

( )( ) ( )
( )

( )22 2

2 2

sin
ˆ

2sin
Y

X Y

fL
Var N

f L L

πσ µµ
π

+
= ⋅ , (17) 

and the variance of the EV : 

( )( ) ( )2 2 2
2 2 1

ˆ
2 X X Y

Var N o
L L L

σ σ µσ +  = +  
 

. (18) 

Contrary to the harmonic case, the asymptotic laws do not 

depend on the direction θ  of the process. In the case of 

square samples, the variances of the EM and EV thus 

asymptotically decrease as 3/ 2N−  and 1/ 2N−  respectively. 

These results were verified experimentally even in the case 

where T was a colored noise with small range dependences, 

i.e. an autoregressive process, see the following section. 

IV.  EXPERIMENTAL ESTIMATION OF THE VARIANCE OF THE 

EM AND EV. 

In this section, we propose estimators for ( )( )ˆVar Nµ  

and ( )( )2ˆVar Nσ  i.e. for the variance of the EM and EV. 
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These estimators are then used to verify the theoretical 

results of section 3. 

A. Estimating the variances of the EM and EV 

Geostatistics-based methods 

As shown by (5), the variance of the empirical mean 

estimator, i.e. ( )( )ˆVar Nµ , can be expressed using the 

autocovariance. Estimating this variance is then possible 

provided that an estimator of the autocovariance itself is 

available. Geostatistics [14][15] provide the mathematical 

background and the tools necessary to undertake this 

estimation. Parametric methods are usually preferred in 

order to guarantee that the estimation of the autocovariance 

is definite positive. Such methods are based, for instance, on 

the least square adjustment of autocovariance models or on 

the maximum likelihood estimation of the parameters of the 

process model itself, see for instance [15][23]. However, 

different choices for the autocovariance model can lead to 

very different estimations of the variance, while the 

goodness-of-fit of the models remains similar. 

Likewise, equation (8) provides a framework for the 

estimation of ( )( )2ˆVar Nσ . However, it implies integrals 

of fourth order moments. Not only the estimation of such 

moments would be computationally expensive but it would 

also require the use of parametric methods in order to 

guarantee the integrability of the moments and the positivity 

of the variance. As in the case of the autocovariance, the 

choice of the best parametric models would not be 

straightforward, making such methods inappropriate for 

implementation. 

Nonetheless, consistent non parametric estimations based 

on sub-sampling exist, both for the EM and the EV, as 

described in the subsequent section. 

 

Sub-sampling method 

Various methods based on sub-sampling, re-sampling or 

block bootstrap have been proposed in literature to estimate 

the uncertainty of statistical moments of spatial processes 

(e.g. [16]–[20]). 

The method proposed by Sherman and Carlstein [16] 

consists in splitting the image sample into various sub-

samples (i.e. sub-windows) kv  of size n N< . On each sub-

sample kv , an estimation of the statistic of interest (EM or 

EV) can be computed: ̂ ( )k nµ  or 2ˆ ( )k nσ . The sample 

variances can then be computed from all sub-sample 

estimates: 

� ( )( ) ( ) ( )( )2

1

1
ˆ ˆ ˆ

1

K

k

k

Var n n n
K

µ µ µ
=

= −
− ∑ , (19) 

� ( )( ) ( ) ( )( )2
2 2 2

1

1
ˆ ˆ ˆ

1

K

k

k

Var n n n
K

σ σ σ
=

= −
− ∑ , (20) 

where K is the number of available sub-samples,  

( ) ( )

( ) ( )

1

2 2

1

1
ˆ ˆ ( )

1
ˆ ˆ

K

k

k

K

k

k

n n N
K

n n
K

µ µ µ

σ σ

=

=

= =

=

∑

∑
.  (21) 

For better accuracy, sub-samples can even be chosen 

randomly or with overlapping [22]. These estimations are 

known to be consistent under mixing assumptions [20]. In 

other words, for large n, these estimations behave like 
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( )( )ˆVar Nµ  and ( )( )2ˆVar Nσ . Plotting � ( )( )ˆVar nµ  and 

� ( )( )2ˆVar nσ  for increasing values of n N<  will then allow 

us to verify experimentally the rates of convergence 

provided by theory in section III. 

B. Simulations on Wold Processes 

Let us now compare these experimental estimators to the 

theoretical results of section 3 on synthetic image samples. 

 

The stochastic case 

Experiments were carried out to check the asymptotic 

behaviors of � ( )( )ˆVar nµ  and � ( )( )2ˆVar nσ  and to compare 

them with those provided by theory. Fig. 1 provides one of 

these experiments. It involves one thousand synthetic 

images generated using an autoregressive process. 

For each scale n, each image was partitioned into n-sized 

sub-samples. The EM and the EV (respectively ( )ˆk nµ  and 

( )2ˆk nσ ) were then computed for each sub-sample k. The 

experimental variances � ( )( )ˆVar nµ  and � ( )( )2ˆVar nσ , 

calculated over all sub-samples, were expected to follow 

asymptotic laws in 1n−  (see section 3.2) for increasing 

sample sizes n. The average values of � ( )( )ˆVar nµ  and 

� ( )( )2ˆVar nσ , computed over the 1000 images, were plotted 

as functions of the sample size n. The corresponding curves 

are provided in Fig. 1. 95% confidence intervals (drawn 

from the 1000 realizations) are also specified by vertical 

segments. 

As shown by the asymptotes (in gray), the experimental 

estimations (in black) appear to decrease as 1n−  for large 

sample sizes as expected by the theoretical results of section 

3.2. The confidence intervals also show that the greater the 

scale n is, the more variable the estimations of the variances 

are. 

 

The harmonic case 

The same kind of experiment was carried out on 

harmonic processes. Here, two cases were considered 

depending on whether the harmonic component is oblique 

or not. Fig. 2 shows the results obtained on synthetic images 

generated following an oblique harmonic process. The 

asymptotic behavior observed for � ( )( )ˆVar nµ  (resp. 

� ( )( )2ˆVar nσ ) is plotted on the graph in the middle (resp. on 

the right) of fig. 2. As anticipated in equations 14 and 15, 

the variances � ( )( )ˆVar nµ  and � ( )( )2ˆVar nσ  show envelopes 

with an asymptotic decrease in 2n− . The high variability 

observed at high scales is noteworthy. For harmonic 

processes, this variability is emphasized by the presence of 

sines and cosines in the theoretical expressions of the 

variance. 

Equivalent results are obtained on harmonic components 

with horizontal or vertical orientation. In this case, the 

variability is linked to one specific direction. The 

decreasing rate of both variance estimations is 1n−  instead 

of 2n− . The corresponding experimental results are given in 
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Fig. 3. 

 

The evanescent case 

Finally, similar experiments were driven in the case of a 

strictly evanescent component, following the model of 

equation (16). The stochastic part T( ) was generated using 

an autoregressive process instead of the white noise used to 

establish the theoretical result in section III.D. Fig. 4 shows 

the results obtained through 1000 realizations. In spite of 

the difference in the nature of T( ), the observed asymptotic 

behaviors are similar to the foreseen theoretical results. The 

envelope of � ( )( )ˆVar nµ  decreases as 3/ 2n−  whereas 

� ( )( )2ˆVar nσ  decreases as 1/ 2n− . Besides, we remark here 

again that, the greater the scale n is, the wider the 

confidence intervals are. 

C. Simulations on Wold Processes 

Table 1 summarizes the asymptotic laws obtained by 

theory and verified experimentally on a few examples. 

Results are given for various types of second order 

stationary processes according to Wold’s decomposition. It 

is worthwhile to mention that these results do not include 

non deterministic stationary processes with long range 

dependences, i.e. with infinite integral range [10]. 

In view of these standard asymptotic behaviors, as second 

order stationary processes can be decomposed as sums of 

elementary stochastic, harmonic or evanescent components 

[8], it is possible to discuss the likelihood of the stationarity 

assumption for any process. Indeed, it can be shown that the 

variance of the EM (respectively of the EV) decreases as 

fast as or faster than the slowest of the process components. 

Consequently, whatever the nature of the process 

considered, if its mean (resp. its variance) is stationary, the 

rate of decrease of the EM (resp. the EV) is at least 1N−  

(resp. 1/ 2N− ). In other words, if the decrease is slower than 

1N−  (resp. 1/ 2N− ), the mean (resp. the variance) of the 

process is clearly non stationary. This makes an objective 

criterion to reject stationarity. 

V. APPLICATION TO THE ASSESSMENT OF TEXTURE 

STATIONARITY  

In the following, we take advantage of the properties 

discussed in sections III and IV to propose a method to 

detect non-stationarities on real image data. This method 

will be tested both on synthetic stationary and non 

stationary processes and on real textures.  

A. How to Assess the Stationarity 

Given a spatial sample of size N, the method of Sherman 

and Carlstein [16] provides with an estimate of the 

variances of the EM and the EV at scale n N< . Drawing 

the evolution of those variances for increasing values of n 

allows us to verify experimentally the rates of decrease 

found by theory on various stationary processes.  Inversely, 

we can expect that, for a spatial process suffering from non-

stationarities, the variances of the EM and EV will show 

anomalies in their rate of convergence. This gives us a 

method to detect non-stationarities of the mean and variance 
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of spatial processes.  

B. Illustration on Synthetic Processes 

Second order stationary process 

Fig. 5 shows a realization of a synthetic stationary 

process generated by adding a stochastic, a harmonic and an 

evanescent component, mutually independent. The variance 

of the EM reaches its asymptotic behavior and then 

decreases as 1n− . This rate of convergence was expected by 

theory since it corresponds to the rate of the slowest of its 

components i.e. the stochastic one. As for the variance of 

the EV, the decrease is at the rate of 1/ 2n−  which is 

consistent with the evanescent component. In this case, the 

stationarity of the mean and variance can not be rejected. 

Stationarity is plausible. 

 

First order stationary process 

We consider now a process with a stationary mean and a 

non-stationary variance. The image sample in Fig. 6 

corresponds to the zero mean stationary process of Fig. 5 

modified by a multiplicative perturbation. The perturbation 

is a linear trend increasing from the top left corner to the 

bottom right corner so that the variance is minimum in the 

top left and maximum in the bottom right corner. 

� ( )( )ˆVar nµ  does not show any anomaly in the rate of 

decrease. Stationarity of the mean is plausible.  The plot of 

� ( )( )2ˆVar nσ  decreases slower than 1/ 2n− , which shows that 

this process has a non stationary variance, and thus can not 

be considered as second order stationary. 

 

Second order stationary process 

Fig. 7 represents a process generated by applying an 

additive perturbation to a stationary stochastic process. This 

perturbation is a linear trend increasing from the top left 

corner to the bottom right corner. The first plot clearly 

shows that the mean is not stationary. However, the variance 

of the EV is not affected by the trend and appears 

homogeneous all over the image. 

C. Illustration on Real Textures 

The texture samples used in this section come from 

Brodatz’s album [21]. The objective here is to evaluate the 

homogeneity of the textures by testing the stationarity of the 

underlying processes. We use the sub-sampling based 

approach proposed in section IV. The variances � ( )( )ˆVar nµ  

and � ( )( )2ˆVar nσ  are thus plotted together with their 

estimated asymptotic trends.  

Texture D64, shown in Fig. 8, gives the impression of a 

homogeneous texture. The rates of decrease of the variances 

do not invalidate this assumption, the mean and variance 

can thus be considered stationary. 

Texture D57 in Fig. 9 looks stationary as well. However, 

under attentive observation, the top left corner appears to be 

slightly darker than the rest of the image. This non 

stationarity is clearly revealed by the variance of the EM, 

which decreases much slower than 1n −  when the sample 

size increases. In contrast, the variance of the EV decreases 
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fast enough to consider that the process has a stationary 

variance. 

Texture D11 in Fig. 10 looks quite homogeneous too. 

However, some dark spots are visible in the top left and 

bottom right corners. This non homogeneity is revealed by 

the variance of the EM. The variance of the EV, which 

decreases slower than 1/ 2n− , indicates that the variance is 

not homogeneous either. To help interpreting these results, 

we computed the local mean and the local variance of the 

image on a 101 101×  square neighborhood. We then 

corrected the original texture, so that the mean and variance 

became homogeneous. First, we subtracted the local mean 

to the original image, leading to a mean-corrected image 

with a homogeneous zero mean. The image of the local 

variance was rescaled so that it ranged from 0.8 to 1.2. The 

corrected image (see Fig. 11) was finally obtained by 

dividing the mean-corrected image with the rescaled local 

variance. The analysis of the asymptotic behavior of the 

variances of the EM and EV on the corrected image shows 

that the non-stationarities of the mean and variance have  

been removed. 

Finally, we present briefly the output of the method on a 

set of various natural textured images, extracted from the 

free online photo collection http://www.imageafter.com.  

The images are presented on Fig. 12, Table 2 summarizes 

the output of our method, which are discussed below. 

The three images on the first row (a-c) are shown to 

present a stationary mean and variance, whereas the image 

on the second row are shown to present either a non 

stationary mean, a non stationary variance, or both. Image 

(f), on the bottom right corresponds to a filtered version of 

image (e) using the same correction as proposed above. 

Though this transformation changes significantly the aspect 

of the image, it is not powerful enough to produce a 

stationary texture, confirming that the non stationarity 

detected on image (e) is not due to simple causes such as 

lighting condition. 

VI.  CONCLUSIONS 

In this paper, we dealt with textured images considered as 

realizations of 2-D spatial processes and investigated the 

empirical estimators of their mean (EM) and variance (EV). 

Theoretical expressions of their variances were given and 

their asymptotic behaviors were studied for large classes of 

2nd order stationary ergodic processes, in the sense of the 

Wold decomposition scheme. In particular, minimal 

decreasing rates were provided for the variance of the EM 

and of the EV. Experimental non parametric estimators of 

these variances based on sub-sampling were proposed. They 

allowed verification of the theoretical results and showed to 

be consistent estimators of the variances of interest. 

Based on the theoretical study and on the experimental 

estimation method, we proposed a strategy to inspect texture 

homogeneity. This strategy was applied to synthetic 

processes with controlled stationarity properties and to real 

textures from Brodatz’s album. It was shown that anomalies 

in the asymptotic behavior of the estimators allowed 
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detecting non stationarities of the mean or of the variance of 

the processes which were difficult to detect perceptually in 

an objective way. This makes the presented non parametric 

method an interesting objective technique for the inspection 

of texture homogeneity. 

Extensions of this work are under study. They concern 

the generalization of the approach to other second order 

statistics, i.e. the autocovariance, in order to propose a 

method for assessing the full 2nd order stationarity. We also 

expect to extend the theoretical results and empirical sub-

sampling based estimators to the case of non scalar 

processes such as orientation vector fields. Possible 

applications concern the description of structural and 

stochastic textures with strong anisotropy properties. 
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Fig. 1 Left: sample of a purely stochastic image. Middle: theoretical asymptotic curve (in gray) and experimental variance (in black) of the EM. Right: 

theoretical asymptotic curve (in gray) and experimental variance (in black) of the EV. The plots are in log-log scales. 

 

Fig. 2. Left: purely harmonic image sample with a sloped sinusoidal component. Middle: theoretical asymptotic curve (in gray) and experimental variance (in 

black) of the EM. Right: theoretical asymptotic curve (in gray) and experimental variance (in black) of the EV. The plots are in log-log scales. 

 

Fig. 3. Left: purely harmonic image sample with a horizontal sinusoidal component. Middle: theoretical asymptotic curve (in gray) and experimental variance 

(in black) of the EM. Right: theoretical asymptotic curve (in gray) and experimental variance (in black) of the EV. The plots are in log-log scale. 
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Fig. 4. Left: purely evanescent image sample. Middle: theoretical asymptotic curve (in gray) and experimental variance (in black) of the EM. Right: theoretical 

asymptotic curve (in gray) and experimental variance (in black) of the EV. The plots are in log-log scale. 
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Fig. 5. Left: sample of a second order stationary process with stochastic, harmonic and evanescent components. Middle and right: plots of the estimated 

variances of the EM and EV versus the sub-sample scale n. The plots are in log-log scales. The curves in gray are the asymptotic trends. 

 

Fig. 6. Left: sample of a first order stationary process (process of Fig. 5, with non-stationary variance). Middle and right: plots of the estimated variances of the 

ME and VE versus the sample scale. The plots are in log-log scales. The curves in gray are the asymptotic trends of the corresponding stationary processes. 

 

Fig. 7. Left: process sample with non-stationary mean and stationary variance (process of Fig. 5, with non-stationary mean). Middle and right: plots of the 

estimated variances of the EM and EV versus the sample scale. The plots are in log-log scales. The curves in gray are the asymptotic trends of the corresponding 

stationary processes. 
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Fig. 8. Left: texture D64 from Brodatz’s album. Middle and right: plots of the estimated variances of the EM and EV versus the sample scale. The plots are in 

log-log scales. The curves in gray are the estimated asymptotic trends. 

 

Fig. 9. Left: texture D57 from Brodatz’s album. Middle and right: plots of the estimated variances of the EM and EV versus the sample scale. The plots are in 

log-log scales. The curves in gray are the estimated asymptotic trends. 

 

Fig. 10. Left: texture D11 from Brodatz’s album. Middle and right: plots of the estimated variances of the EM and EV versus the sample scale. The plots are in 

log-log scales. The curves in gray are the estimated asymptotic trends. The estimated decrease rates suggest that both the mean and the variance are not 

homogeneous on the image. 
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Fig. 11. Left: Corrected version of texture D11 from Brodatz’s album. Middle and right: plots of the estimated variances of the EM and EV versus the sample 

scale. The plots are in log-log scales. The curves in gray are the estimated asymptotic trends. 

 

 

Fig. 12. Additional test images extracted or made from the free online photo collection http://www.imageafter.com. First row, from left to right: b19fabrics101 

(a), b19walls317 (b), b1canefence_tr (c). Second row: compos1 (d), b9elements000 (e), b9elements000_tr (f). Images b1canefence_tr and b9elements000_tr 

have been transformed using the same method as for texture D11 in the previous section IV. 
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TABLE I 

ASYMPTOTIC BEHAVIORS OF ( )( )ˆVar Nµ  AND ( )( )2ˆVar Nσ  ON SECOND ORDER STATIONARY PROCESSES FOR SQUARE IMAGE SAMPLES 

Process nature ( )( )ˆVar Nµ  ( )( )2ˆVar Nσ  

Stochastic 

(with finite integral range) 

1N−  1N−  

Harmonic 

(non oblique) 

1N−  1N−  

Harmonic 

(oblique) 

2N−  2N−  

Evanescent 

(magnitude with finite integral range) 

3/ 2N−  1/ 2N−  

 

 

 

TABLE II 

STATIONARITY ASSESSMENT FOR THE ME AND VE OF THE SIX IMAGES OF FIGURE 12. 

 (a) (b) (c) (d) (e) (f) 

Slope of � ( )( )ˆVar nµ  -1.00 -1.04 -1.00 -0.38 -0.2 -1 

Stationarity of the ME yes yes yes no no yes 

Slope of � ( )( )2ˆVar nσ  -1.19 -1.1 -0.61 -0.35 +0.17 -0.14 

Stationarity of the VE yes yes yes no no no 

 


