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Abstract
In this paper, we propose a general framework for performance improvement of the current state-
of-the-art registration algorithms in terms of both accuracy and computation time. The key
concept involves rapid prediction of a deformation field for registration initialization, which is
achieved by a statistical correlation model learned between image appearances and deformation
fields. This allows us to immediately bring a template image as close as possible to a subject
image that we need to register. The task of the registration algorithm is hence reduced to
estimating small deformation between the subject image and the initially warped template image,
i.e., the intermediate template (IT). Specifically, to obtain a good subject-specific initial
deformation, support vector regression is utilized to determine the correlation between image
appearances and their respective deformation fields. When registering a new subject onto the
template, an initial deformation field is first predicted based on the subject’s image appearance for
generating an IT. With the IT, only the residual deformation needs to be estimated, presenting
much less challenge to the existing registration algorithms. Our learning-based framework affords
two important advantages: 1) by requiring only the estimation of the residual deformation between
the IT and the subject image, the computation time can be greatly reduced; 2) by leveraging good
deformation initialization, local minima giving suboptimal solution could be avoided. Our
framework has been extensively evaluated using medical images from different sources, and the
results indicate that, on top of accuracy improvement, significant registration speedup can be
achieved, as compared with the case where no prediction of initial deformation is performed.

Index Terms
Deformation prediction; fast image registration; principal component analysis (PCA); support
vector regression (SVR)

I. Introduction
Deformable image registration has been extensively investigated in medical image analysis,
owing to its importance in removing structural variability that confounds precise detection
of anatomical abnormalities. After registration, the anatomical differences among a
population of subjects can be quantitatively evaluated according to their deformations with
respect to a common template, i.e., using atlas-based morphometry [1]–[3] or inter/
intragroup difference comparison [4]–[6].
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Deformable registration methods, regardless whether intensity-based [7]–[9] or feature-
based [10]–[14], mostly define an objective function that is optimized under various
regularization constraints to estimate physically realistic deformations. Possible forms of
regularization constraint include elastic energy [15], [16], viscous fluid [17], [18],
biomechanical model [19], and Laplacian term [11], [12]. More recent methods have
incorporated regularization based on statistical constraints [20]–[24]. However, due to
significant template–subject structural shape differences and the high dimensionality of the
objective function, determination of accurate template–subject deformations has been a
long-standing problem. Accompanying problems include 1) long computation time arising
from the need to estimate “large” deformations and 2) vulnerability to ambiguous matching
due to structural variability.

A. Motivations
The goal of this paper is to propose a general registration framework to not only reduce the
computation time and but also further improve the registration accuracy of the state-of-the-
art registration algorithms. To achieve this goal, we present a learning-based registration
framework to learn the correlation between image appearances and their respective
deformations. For each subject image, we generate an intermediate template (IT), which is
close in similarity to the subject image, based on a deformation field predicted from the
learned correlation model. The need to only estimate the residual deformation field between
the IT and the subject image is much less challenging for most of the existing registration
methods. This way, a significant amount of computation time can be saved, and the
registration accuracy can be improved since the risk of being trapped by local minima will
be greatly reduced.

Specifically, our framework consists of three steps in the training stage. First, principal
component analysis (PCA) is employed on a set of deformation fields to capture the
principal modes of brain deformations using a finite set of parameters. A brain appearance
model is then constructed, utilizing low-dimensional image features instead of the whole
brain image. After obtaining the statistical models of deformation fields and brain image
appearances, we train a deformation–appearance model through support vector regression
(SVR), which will help bridge the intrinsic statistics of deformation fields and brain
appearances.

When registering a new subject onto the template in the application stage, the initial
deformation field and the IT can be rapidly predicted by the trained SVR according to the
appearance of the new subject image. Consequently, by requiring only the estimation of the
residual deformation from the IT to the subject, the registration time can be greatly
decreased. Another obvious advantage is that more reliable registration results can be
achieved by our method since the structural difference of a subject from the IT is much
smaller than that from the original template. To our knowledge, this paper presents the first
attempt to combine, via SVR, statistics of deformation fields and image appearances for not
only improving speed but also registration robustness.

To demonstrate the generality of the proposed registration framework, we selected five
typical deformable registration algorithms, i.e., hierarchical attribute matching mechanism
for elastic registration (HAMMER) [11], [12] (feature-based registration), diffeomorphic
demons [25] (intensity-based registration with diffeomorphism constraint), FNIRT [26] (an
intensity-based registration algorithm with deformation model parameterized by B-splines),
ART [27] (intensity-based registration by nonparametric vector fields, subject to regularity
constraints), and SyN [28] (intensity-based registration with a symmetric diffeomorphic
optimization) to demonstrate the registration performance before and after integration with
our framework. It is worth noting that all these registration methods have been
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acknowledged as the state-of-the-art registration methods in [29]. As we will show in the
experiment section, we are able to not only speed up their computation time but also
improve their registration accuracy.

B. Related Works
Learning-based statistical models have been widely investigated to improve registration
accuracy by imposing more realistic registration constraints. However, most works are
limited in building learning models based on the deformation fields only. For example, Xue
et al. [22] construct a statistical model on the wavelet coefficients of deformations to
constrain the deformation field during registration. Similar works can be also found in [21]
and [23], where the authors build statistical models of B-spline coefficients by principal
components analysis. Recently, Glocker et al. [20] proposed to hierarchically learn
deformation by adaptively treating the control points into two groups, i.e., masters (to
encode important information to drive more global deformations) and slaves (to be
connected to the masters to estimate more local deformations). In addition, in order to
improve the registration accuracy of femur bone computed tomography images, Albrecht et
al. [24] presented a method for learning deformation statistics from noisy and incomplete
data.

There are several other ways, other than the construction of deformation models, to improve
registration accuracy. For example, the image similarity metric can be learned in order to
increase the accuracy of correspondence matching for shape alignment in [30] and
multimodality image registration in [31] and [32]. Wu et al. [33] also addressed the
importance of determining the appropriate neighborhood sizes for image feature
computation. This paper was later extended in [34] to a more general framework based on a
boosting algorithm to select the best features and key points. Recently, Yeo et al. [35] have
proposed an iterative machine learning framework to select the best parameters for an
application-specific cost function. They demonstrated that, by improved alignment of
cortical foldings, promising results in localizing the underlying cytoarchitecture and
functional regions in the cerebral cortex can be obtained.

Ultimately, our learning-based registration framework shares the same motivation as the
work of Yeo et al., that is, to boost the performance of the existing registration algorithms.
However, we approach this problem from a different perspective in which we attempt to
predict an initial deformation field with the help of the correlation information learned
between deformation statistics and image appearances. Our goal is to not only improve the
registration accuracy but also reduce the computation time, which is of paramount
importance to clinical applications.

We have previously developed a method called rapid alignment of brains by building
intermediate templates (RABBIT) [36], which is capable of generating the initial
deformation fields and the corresponding ITs. The statistical deformation model is first built
using a set of training samples by utilizing PCA to characterize the intrinsic warping modes.
Then, several ITs are generated by parameterizing the PCA coefficient distribution as a
Gaussian distribution and then by performing a uniform coefficient sampling. When
registering a new individual subject onto the template, the algorithm automatically
determines the most similar precomputed IT as the reference image to which the subject is
registered. We note here that the IT is determined based on a simple similarity metric, i.e.,
the sum of squared difference (SSD), that might not be sufficient for adequately
characterizing shapes in a very high-dimensional space. Uniform sampling, as the number of
samples exponentially increases, is also inadequate [37]. Our method differs from RABBIT
in which: 1) We jointly consider the statistical models of deformation fields and brain
appearances and capture their relationship by SVR instead of selecting the IT based on a
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simple SSD measurement; 2) several individual subjects might end up with the same IT in
RABBIT since they are predetermined by uniform sampling in eigenspace; our method, on
the other hand, generates a unique IT for each individual brain adaptively according to its
distinctive appearance via the trained SVR; and 3) the number of ITs is fixed in RABBIT,
whereas our method can theoretically generate an unlimited number of different ITs.

This paper is structured as follows. In Section II, we describe the proposed registration
framework, followed by the details on the statistical models for both deformation and image
appearance and also a regression model for correlating deformation and appearance, as well
as the prediction of an initial deformation field. We show the experimental results on both
real and simulated data in Section III. In Section IV, we conclude this paper.

II. Method
We propose a general framework for improving the registration performance of the existing
algorithms by principled estimation of an initial deformation field, which will be discussed
in Section II-A. We will explain our learning-based approach in Section II-B, where we
apply SVR to learn the correlation between brain appearances and their deformation
coefficients. With this learned knowledge, we can automatically determine a good initial
deformation field for each individual subject, which we then use to generate a corresponding
IT for registration refinement. We will detail each step of the prediction of the IT in Section
II-C. Finally, we will summarize our learning-based registration method in Section II-D.

A. Framework for Fast Image Registration
The goal of a deformable registration algorithm is to estimate a dense transformation field h
= {h(x)|h(x) = x + uT→S(x), x = (x1, x2, x3) ∈ ΩT} for aligning subject image S to template
T, where uT→S(x) denotes the displacement of a point x in the template image domain ΩT.
On the other hand, inverse transformation field h−1 = {h−1(x)|h−1(x) = x + uS→T(x), x = (x1,
x2, x3) ∈ ΩS} is used to warp the image in the template space ΩT to the subject space ΩS.
Most registration algorithms initiate the registration with a null deformation field, i.e.,
uT→S(x) = 0, ∀x ∈ ΩT. However, for our case, we decompose the overall deformation field
uT→S into two parts: the estimated initial deformation field uT→IT and the residual
deformation field uIT→S, i.e., uT→S = uT→IT + uIT→S, as illustrated in the top part of Fig. 1.
Here, IT denotes an IT. In our method, uT→IT is automatically determined according to a
regression model learned in the training stage, as shown in the bottom part of Fig. 1. Five
steps are involved in this training stage. In Step 1, a set of training subject brains I0 = {Ii,0|i
= 1, …, M} is registered using a registration algorithm, such as HAMMER [11], [12],
diffeomorphic demons [25], FNIRT [26], ART [27], or SyN [28] to estimate the
deformation field ui,0 from the template T to each subject Ii,0, resulting in a set of
deformations U0 = {ui,0|i = 1, …, M} and the corresponding warped images WI = {WIi,0(x)
= Ii,0(hi,0(x)) = Ii,0(x + ui,0(x))|i = 1 … M}. Here, Ii,0(hi,0(x)) denotes warping of an image
Ii,0 using a transformation hi,0 (or displacement field ui,0). PCA is then employed in Step 2
to construct a statistical deformation model (called deformation PCA) of U0, giving us a
deformation coefficient vector c⃗i,0 (as explained in Section II-B1) for each deformation field
ui,0. Each c⃗i,0 is a Q-element column vector, where Q(Q ≤ M − 1) denotes the number of
top-ranked eigenvalues after PCA. The aim of Step 3 is to solve the small sample problem,
where we introduce some perturbations to the elements of each deformation coefficient
vector c⃗i,0 to obtain a set of N new simulated deformation coefficient vectors {c⃗i,j, j = 1, …
N}. By using both real and simulated deformation coefficient vectors, an enlarged set of
(dense) deformation fields Ũ = {ũi,j|i = 1, …, M, j = 0, …, N} can be obtained. It is worth
noting that since ũi,j is reconstructed from the perturbed deformation coefficient vector c⃗i,j,
thus ũi,0 is not equal to ui,0. By applying the inverse of each ũi,j to each warped image WIi,0,
a total of M2(N + 1) simulated training samples,
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, can be obtained, where  denotes transforming an image WIi′,0 to the subject

image space by using the inverse transformation field . Although our framework does not
explicitly impose diffeomorphism on the deformation field, in practice, deformations can be
reasonably inverted using the method proposed in [38].

Steps 4 and 5 involve constructing the brain appearance model based on the data set Ĩ. To
build an efficient regression function with better generalization performance, we propose
employing signature images SI = {SIi,k|i = 1, …, M, k = 1, …, M · (N + 1)} that capture
brain outlines and also the boundaries along the interfaces of white matter (WM), gray
matter (GM), cerebrospinal fluid (CSF), and ventricular (VN) CSF of Ĩi,k instead of directly
using all voxels in Ĩi,k. After calculating the eigenvalues and eigenvectors of SI by PCA
(called signature PCA), we select D eigenvectors with the largest eigenvalues to project SI
to obtain their low-dimensional representations called signature vectors SMD × M2(N+1),
where each column of SM is the signature vector of the corresponding SIi,k. We will give a
more detailed description of this in the next section.

The key of our approach is the use of a support regression machine to bridge the statistical
deformation model with the brain appearance model, as shown in the middle part of Fig. 1.
We train Q support vector machines independently, and each of them will make its own
regression between each deformation coefficient and the whole set of signature vectors SM.
Therefore, when registering a new subject S onto the template T, its signature vector is first
calculated according to its signature image. Then, through a set of Q trained support vector
machines, we can predict a unique deformation coefficient vector c⃗s for the subject S, which
can be, in turn, used to construct an IT and an initial deformation field uT→IT. We note here
that the shape difference between IT and S is quite small, as illustrated by the right two brain
images at the top part of Fig. 1. Finally, many existing registration algorithms can be
employed to estimate the rest of the deformation uIT→S. The IT allows this to be done more
efficiently by avoiding the direct subject-to-template registration.

B. SVR on Statistical Deformation and Image Appearance Models
Here, we will describe our learning-based framework (outlined at the bottom part of Fig. 1).
We will describe how a PCA-based method is used to build the statistical models of both
deformation fields (see Section II-B1) and image appearances (see Section II-B2), followed
by how we train a set of SVR models to establish deformation–appearance correlation (see
Section II-B3).

1) Statistical Model of Deformation Fields—Given a set of M brain images I0, their
respective deformation fields U0 can be estimated by many existing registration algorithms
such as HAMMER [11], [12], diffeomorphic demons [25], FNIRT [26], ART [27], or SyN
[28]. After arranging each deformation field into a vector representation, we apply PCA on
these M vectors and obtain a statistical deformation model that captures the statistical
variations of these deformation fields U0. Specifically, the eigenvectors of covariance matrix
of the deformation fields represent the principal modes of variation, and their eigenvalues
indicate the magnitude of deformation variation in the direction of the corresponding
eigenvector. Usually, only a small number of eigenvectors with the largest eigenvalues will
be used to approximate the original data since they characterize the principal shape changes.
For instance, by selecting Q = 25 eigenvectors after employing PCA on 50 deformation
fields, we are able to represent almost 95% of the total energy of shape variations. The
reconstructed deformation field ûi,0 of each ui,0 ∈ U0 with the Q largest eigenvectors can be
formulated as
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(1)

where ū denotes the mean deformation field, and  are the eigenvalues and
eigenvectors of covariance matrix of deformation samples, respectively. Each deformation
field ui,0 is now represented by ûi,0 in a subspace (spanned by the Q largest eigenvectors)
with a deformation coefficient vector

. Note that c⃗i,0 is a Q-element
column vector.

2) Statistical Model of Image Appearances
Generating More Training Samples: We are often faced with the problem of having a
limited number of training samples in I0. To remedy this, we simulate additional brain
images based on the generated statistical model of U0 with the hope of increasing the
robustness of estimation of the brain appearance model. Unlike the simulation method used
in RABBIT [36], which parameterizes the distribution of c⃗i,0 as a Gaussian model and
simulates new deformations by uniform sampling in a PCA-represented subspace (see [37,
Fig. 1]), we generate MN new deformation coefficient vectors c⃗i,j = c⃗i,0 + p⃗i,j(i = 1, …, M, j
= 1, …, N) by perturbing c⃗i,0 with p⃗i,j. Specifically, p⃗i,j is generated by randomly sampling
around the location of vector c⃗i,0 in the Q-dimensional subspace. It is worth noting that p⃗i,0 =
0 since c⃗i,0 is the baseline of all c⃗i,j(1 ≤ j ≤ N). Therefore, the simulated deformation fields
can be constructed using

(2)

Fig. 2 gives an illustration of the procedure we use in simulating brain samples. We assume
that we have M = 5 subjects, each with N = 4 perturbations. After registration using
HAMMER, diffeomorphic demons, FNIRT, ART, or SyN, these subjects are aligned onto
the template (black circle) and are denoted as WIi,0(i = 1, …, M). In order to cover as much
of the brain space as possible, we continue to generate N new simulated deformation fields
ũi,j(j > 0) for each ũi,0, according to (2). There are, hence, M · (N + 1) deformations in total.
As shown in Fig. 2, we consider all the brains as nonuniformly distributed in the high-
dimensional manifold. In order to cover as much as possible different image appearances,
we apply all M · (N + 1) deformations to each real training sample, obtaining M2 · (N + 1)
simulated images in total. In Fig. 2, each blue circle denotes a set of M simulated images of
subject j(j = 0, 1, …, N).

Statistical Model of Image Appearances: Similar to the method presented in the previous
section, the brain appearance model can be constructed based on an enlarged set of brain
images Ĩ [39]. However, in order to obtain a brain appearance model feasible for estimating
the regression model described in the next section, we employ a number of strategies to
reduce the dimensionality of Ĩ before building the brain appearance model.

For each brain image Ĩi,k(i = 1, …, M, k = 1, …, M(N + 1)) ∈ Ĩ, the uninformative
background voxels will be first cropped away by computing a bounding box that covers the
whole brain volume. The image will be then downsampled by a factor of 4 in each

dimension, obtaining , as shown in the second column of Fig. 3. To represent the shape
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variations of each brain image , we segment the images into four tissue types, i.e., WM,
GM, CSF, and VN, and extract the brain outlines and boundaries along the interfaces
between them as shape descriptors for constructing the signature image SIi,k (see the third
column of Fig. 3). Tissue classification consisted of two steps. First, we used the fast
algorithm (FSL, http://www.fmrib.ox.ac.uk/fsl/) to segment the whole brain into WM, GM,
and CSF. Second, we warp the ventricle label of the template to the subject space to label
the subject ventricle. It is worth noting that our purpose of employing tissue classification
here is not for accurate segmentation but for extracting boundary information. Therefore,
other kinds of edge features can be also used here, e.g., Canny edge filter or even simple
intensity gradient map. Next, we apply PCA (called as signature PCA) to whole signature
images. Afterward, the signature PCA model is applied to each signature image SIi,k to

obtain a low-dimensional representation by a signature column vector 

(3)

where  denotes the mean shape of all signature images, and  are eigenvalues
and eigenvectors of their covariance matrix, respectively. Only the top D ranked
eigenvectors, representing around 70% the sum of all M2(N + 1) eigenvalues, are selected
(see the fourth column of Fig. 3) so that the appearance model is less sensitive to the less

important shape deviations. By arranging all column vectors  into a matrix, we obtain

 (see the rightmost part of Fig. 3). In the following
section, we will describe how we train the SVR models to estimate the correlation between
deformation coefficient vectors CQ × (M2(N+1)) = [c⃗1,0 c⃗1,1, …, c⃗M, M + MN] and signature
matrix SM.

3) Regression on Deformation–Brain Appearance Model—An important part of
our learning-based registration approach is the utilization of SVR models to learn the
correlation between brain appearances and their corresponding deformation coefficients, and
then use them to predict a set of deformation coefficients when given a new brain image for
registration (as illustrated in Fig. 4). Specifically, we will train Q SVR models, each of them
determining a nonlinear regression function fq(q = 1 … Q) between signature matrix SM
(see Section II-B2) and each deformation coefficient from a respective row of matrix C (see
Section II-B2).

Note that SVR [40], [41] is a supervised learning technique for finding nonlinear mapping
functions that correlate a number of input variables (features) with the values of a
continuous output variable (target). Here, the features are the signature matrix
SMD × (M2(N+1)), and the targets are the rows of the deformation coefficient matrix
CQ × (M2(N+1)) [see (3)]

(4)

where fq denotes the qth SVR model in Fig. 4.  is the transpose of a Q-dimensional
column vector with all zeros except the qth element, which has a value of 1. An identical set
of signature vectors SM is used as the features of all regression models, and the qth row of
deformation coefficient matrix C is independently used as the target for the qth regression
model fq.
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We select the Gaussian radial basis function as the kernel function due to its good
performance in classification and regression [42]. In our method, we estimate the kernel size

based on the distribution of each signature vector  by computing the average of the

distances from all possible pairs of . A recently proposed algorithm [41], which uses an
intensive loss function ε to achieve the global minimum with reliable generalization bound,
has been used to determine f for all SVR models. Parameter ε is used to control the width of
the insensitive zone that penalizes the training data outside this zone. Constant γ > 0
determines the tradeoff between the flatness of f and the tolerance to deviation larger than ε.
The values of ε and γ can be calculated as [43]

(5)

(6)

where σs is the standard deviation of distances between all pairs of , τ is an empirical
constant, and M2(N + 1) is the number of signature vectors used as the features for
regression. c̄ and σc are the mean and the standard deviation of overall deformation
coefficients c⃗i,k, respectively.

C. Predicting the IT and Initial Deformation Field
After training the regression models, the ITs can be predicted to facilitate the registration by
achieving robust results in a significantly reduced time. For a new subject S, its signature

vector  will be first computed by projection onto the top D eigenvectors (see Section II-
B2) after the affine alignment to the template by FSL FLIRT [44]. Deformation coefficients

 can be then predicted one by one through each trained SVR model (see
the bottom part of Fig. 4). Next, it is straightforward to obtain the initial deformation uT→IT
for the subject by (1). The IT for S can be then generated by warping the template with
respect to uIT→T. Fig. 1 illustrates the whole procedure of registering template T to subject S
with the proposed registration method. Unlike traditional registration algorithms, we simply
need to estimate only the remaining deformation field from the IT to the subject, and this
helps save a significant amount of computation cost and circumvent the error-prone
approach of estimating large deformations from the original template to the subject. Upon
estimating uIT→S (by the existing registration method), deformations uT→IT and uIT→S can
be concatenated. Fig. 5 shows images from each step of the proposed method for template
(a) and subject image (b). First, an IT (c) is estimated. The IT is then registered to the
subject image. By concatenating the deformations from the template to the IT and from the
IT to the subject, we can warp the template to the subject, as shown in (d), which gives a
result comparable to HAMMER (e).

D. Summary of our Fast Registration Framework
Our registration method is capable of achieving robust registration results with much less
computation time by predicting a good initial deformation field and an IT for a subject
image under registration. The whole registration framework can be summarized in two
stages, i.e., training and application stages. They are summarized below.

Training Stage
t1) Collect M deformation fields ui, i = 1, …, M, each estimated by deformable

registration (using HAMMER, diffeomorphic demons, FNIRT, ART, or SyN)
between a template T and M brain images {Ii,0, i = 1, …, M}.
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t2) Perform PCA on the deformation fields to construct a statistical deformation

model with eigenvectors , eigenvalues , and mean deformation field ū.

t3) For each c⃗i,0 (calculated from each deformation field sample with PCA),
introduce N perturbations to simulate a set of new deformation coefficient
vectors c⃗i,j(j = 1, …, N). Then, reconstruct dense deformation fields ũi,j(i = 1,

…, M, j = 0, …, N) by (2). Next, invert ũi,j and apply  onto each WIi,0 to
obtain M2(N + 1) simulated brain images

.

t4) Construct the signature image for each simulated brain image Ĩi,k (see Section II-
B2).

t5) Create signature matrix SMD × (M2(N+1)). Each column of matrix SM is a low-
order representation of a signature image obtained by projection onto the top D
eigenvectors by (3).

t6)
Train Q regression models  through SVR by regarding signature
matrix SMD × (M2(N+1)) as inputs and each row of deformation coefficient matrix
CQ × (M2(N+1)) as target values.

Application Stage
a1) Calculate the signature vector  for a new subject s.

a2) Predict the deformation coefficient  through the Q learned
SVR models.

a3) Generate an initial dense deformation field uT→IT according to c⃗s by (1) and
warp template image T using uIT→T to obtain an IT.

a4) Use a deformable registration method (e.g., HAMMER, diffeomorphic demons,
FNIRT, ART, or SyN) to estimate the remaining deformation field uIT→S from
the IT to the subject S and then concatenate uT→IT and uIT→S for obtaining the
final deformation field.

III. Experimental Results
The accuracy, robustness, and speed of the proposed learning-based registration method are
comprehensively evaluated in comparison with several typical deformable registration
algorithms. We first validate the advantages of our registration framework by regarding the
simulated deformations as the ground truth. Here, we take HAMMER as an example and
demonstrate the superiority of the proposed framework over RABBIT [36]. Additional
experimental results are reported on real elderly brains and the public data sets (nonrigid
image registration evaluation project (NIREP) [45] and Laboratory of Neuro Imaging
(LONI) [46] data set). Our registration framework can be easily integrated with a number of
the existing registration algorithms for immediate improvement of registration performance.
To show this, we use HAMMER (feature-based registration method), diffeomorphic demons
[25] (intensity-based registration method with diffeomorphism constraint), FNIRT [26]
(intensity-based registration method with deformation field parameterized with the B-
splines), ART [27] (intensity-based registration by nonparametric vector fields, subject to
regularity constraints), and SyN [28] (intensity-based registration with symmetric
diffeomorphic optimization) as the example registration methods in the subsequent
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experiments. Note that these methods have been acknowledged as state of the art in a recent
survey paper [29].

A. Experiments on Simulated Data
In the following experiment, we use the HAMMER registration algorithm as the baseline
and compare the registration performance with RABBIT and our proposed method. It is
worth noting that both RABBIT and our method use HAMMER to complete the estimation
of the rest of the deformation field after predicting the initial deformation field.

Brain Images With Simulated Deformations—We simulated a set of deformation
fields using the algorithm proposed in [47] to serve as ground truth for evaluation. The
baseline images are selected from the Baltimore Longitudinal Study of Aging (BLSA) [48]
data set. Specifically, we simulated three groups of deformation fields (10 in each group)
with different mean magnitudes of deformations, i.e., 2 mm (Group 1), 4 mm (Group 2), and
6 mm (Group 3). Fig. 6 shows, for each group, some typical images generated by warping
the template with the simulated deformation fields. We then estimated the deformation field
between the simulated subject and the template by HAMMER, RABBIT, and our method,
respectively. By comparing the residual error (average of the voxel-wise Euclidean
distances) between the estimated deformation fields with respect to the ground truth, we can
quantitatively measure the registration accuracy. From the average residual errors shown in
Table I, it is clear that our method outperforms original HAMMER and RABBIT,
particularly for the simulated subjects with larger deformations, thus showing the robustness
of our registration framework.

B. Experiments on Real Data
Real Elderly Brain Images—We used M = 50 elderly magnetic resonance (MR) images
randomly selected from the BLSA [48] data set for training and another 50 images for
validation. Each image has a size of 256 × 256 × 124 and a resolution of 0.9375 mm ×
0.9375 mm × 1.5 mm. The images were segmented into four tissue types, i.e., WM, GM,
CSF, and VN, respectively. Before training, affine registration [44] was performed on all
training samples to remove global translation, rotation, and scaling. We then estimated the
deformation fields of all these images with respect to a template by using HAMMER.
Applying PCA, we built a statistical deformation model with 49 modes from the 49
eigenvectors with nonzero eigenvalues, and each deformation field was represented by 25
PCA coefficients for covering 95% of the variability. For denser sampling of the
deformation field space, we applied N = 4 perturbations, thus giving us a total of M(N + 1) =
50 × 5 = 250 deformation samples and M2(N + 1) = 12 500 simulated brain images by
inverse deforming the 50 normalized images in the template space. We used half (i.e., 6250)
of the deformation–image pairs (corresponding to 25 original MR brain images) for training
and the other half for validation. We note here that a sufficient number of samples are
important for training a robust statistical model. The samples used for training and
validation can be considered independent since there is no overlap between the original MR
images used for training and testing.

The results show that the average prediction error based on predicted deformation
coefficients is 1.5% on the training data and 5.7% on the validation data. The prediction
error was computed based on the ratio of the difference between the predefined deformation
coefficients and their estimated ones. These results indicate that our model is able to predict
very good initial deformations for the validation data, which can significantly help reduce
computation cost and increase registration robustness, as reported in Section III-B. Since the
validation data were not used for training, the error in estimating its deformation coefficients
is larger than the training error, which is reasonable. To demonstrate the importance of using
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perturbation for generating sufficient samples, we further evaluated the performance of our
statistical model without perturbation, and the average prediction error on the same
validation data increases to 15.9%, which is more than two times higher than that using the
deformation perturbation strategy.

Given a new image, we first align it linearly to the template space, and then construct its
signature vector by downsampling, feature extraction, and dimensionality reduction, which
we can finally use to predict the initial deformation. To evaluate the quality of the predicted
deformation, we use other 50 images that have not been included in the training. Some test
images are shown in Fig. 7(b), and it can be observed that they are structurally very different
from the original template shown in Fig. 7(a). Fig. 7(c) and (d) shows the intermediate
registration results given by HAMMER in low (downsampled with a factor of 4) and middle
resolution (downsampled with a factor of 2), respectively. Fig. 7(e) and (f) shows the ITs
generated by RABBIT and our learning-based method, respectively. To help visual
comparison, we delineate the brain outline of each subject image (as shown by the green
lines) and superimpose it on the intermediate results/templates. It can be observed that the
ITs generated by the two learning-based methods are much better than those intermediate
registration results obtained by HAMMER in low and middle resolution. Closer inspection
further shows that the ITs given by our learning-based method outperform those of
RABBIT, particularly in the regions pointed by the red arrows.

For quantitative evaluation of those estimated ITs/results, we calculate the Dice ratios [49]
for those 50 test images to gauge the overlap of GM, WM, and VN after initial registration.
The results, as shown in Table II, indicate that the intermediate results given by HAMMER
in low resolution yield the lowest Dice ratios. The next lowest value is given by HAMMER
performed up to the middle resolution. Compared with RABBIT, our learning-based method
accomplishes the higher Dice ratios for all tissue types. All these experimental results
indicate the advantage of our method over HAMMER and RABBIT in predicting better ITs.
Note that, here, HAMMER used low resolution, or along with midresolution, to estimate the
intermediate deformation or template.)

LONI LPBA40 Data—Our framework is general enough to allow incorporation of
different registration algorithms. To demonstrate this, we utilized HAMMER, diffeomorphic
demons, FNIRT, ART, and SyN algorithms1 for obtaining the deformation fields from the
training samples, constructing the statistical deformation model, and estimating the residual
deformation from the IT to the subject. Note that our intention here is not to compare the
performance between HAMMER, diffeomorphic demons, FNIRT, ART and SyN, but to
demonstrate the improvement that our framework can yield.

The LONI LPBA40 data set is used for this experiment. This data set consists of 40 subjects,
each manually labeled with 54 regions of interest (ROIs). For the five registration methods
under evaluation, we incorporated them into our learning-based registration framework. For
each case, we randomly chose one subject as the template. For the remaining 39 subjects, we
used 20 subjects for training and 19 subjects for testing. The Dice ratios, for all ROIs of the
19 subjects yielded by HAMMER, diffeomorphic demons, FNIRT, ART, and SyN, are
compared for cases with and without our framework. The averaged Dice ratios over 54 ROIs
by three registration algorithms before and after integration with our registration framework

1Since the software of ART and SyN do not provide the interface for the initialized deformation field, the integrated version of these
two methods considers IT images (generated by our learning-based method in Section II-C) as the target images in their standard
registration procedure. That is, for each new subject, we first linearly register it to the template, and then use our method to estimate
an IT for it. Then, we use ART (or SyN) to register the subject onto the IT. Thus, with the known deformation from the template to the
IT, we can bring the warped subject in the IT space to the real template space. This way, all subjects can be finally warped onto the
same real template space for checking their overlap on the corresponding ROIs.
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are listed in Table III. The improvement for all cases is statistically significant (p < 0.05,
two-sample t-test). In Fig. 8, we show the Dice ratio for each ROI, with blue for the original
five registration methods on average and pink for the five methods after integrating with our
registration framework. Our framework yields a noticeable increase in overlap ratios for
most of ROIs.

C. Generalization
In all previous experiments, we all used a subgroup of the same data set for training and
performed testing based on the remaining data. However, anatomical structures might differ
from one group to another. For example, the images of elderly brains differ from those of
younger brains because of aging. Here, we further evaluate the generalization performance
of our proposed learning-based framework by training the correlation model using one data
set and applying to it to another data set. Specifically, we used 40 images from the LONI
LPBA data set for training and 16 images from the NIREP (with 32 manually labeled ROIs)
for testing. We randomly chose one subject from the LONI data set as the template and
employed HAMMER to generate the deformation fields for training. The images from
NIREP are used for testing the registration performance. After registration, we computed the
mean overlap ratio of ROIs between the template and each of the 16 aligned NIREP images.
The averaged overlap ratio of each ROI of the 16 aligned images is shown in Fig. 9. The
overall Dice ratios in all 32 ROIs are 66.8% by the original HAMMER, and they are 67.4%
after integration with our framework, indicating that the two methods have comparable
accuracy while taking less computation time (see Section III-D).

A similar experiment has been conducted using RABBIT reported in [36], which achieves
about 68% overlap ratio for NIREP data. However, the difference between their experiment
and ours is that, in their experiment, all training images (Open Access Series of Imaging
Studies database [50]) are aligned to a template selected from the test data set (NIREP
database). For comparison, we also performed the same experiment using our method and
achieved 69.1%, which is better than RABBIT’s result. Moreover, the computation time is
also reduced by 25% compared to RABBIT (see Section III-C). In these experiments, it is
worth noting that, although the training and testing sets come from different sources, the
proposed method is still capable of yielding good performance.

D. Speed
Less computation cost requirement is one of the key advantages of the proposed method.
Upon the LONI LPBA40 data set (with a size of 220 × 220 × 184) used in the previous
section, we compared the average computation cost of our proposed method incorporating
HAMMER, diffeomorphic demons, FNIRT, ART, and SyN with that of the original
counterpart. In Fig. 10, we show the execution time for both before and after integration
with our method. In addition, achieving better registration accuracy as described in Section
III-B, our method takes only 4, 1.05, 13, 3, and 11 min after integrating HAMMER,
diffeomorphic demons, FNIRT, ART, and SyN, respectively, with our framework. Without
our framework, the original five methods need 42, 3.2, 40, 9, and 31 min, respectively. This
implies a reduction in the computation time by 10-fold, 3-fold, 3-fold, 3-fold, and 2.8-fold
for these five methods, respectively. It is worth noting that we used the same set of
parameters for the same registration algorithm, with its binary codes downloaded from the
respective website. For the prediction of the initial deformation in our method, it only takes
5 s on average. Therefore, the time cost of prediction is almost negligible, as compared to 5
min by RABBIT [36]. RABBIT also reported the computation time by integrating with
HAMMER on the same data set, which completes the whole process in 9 min. Compared
with nearly 4 min by our method [see Fig. 10(a)], the computation time is further reduced.
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IV. Conclusion
A fast deformable brain registration framework using a novel deformation prediction model
has been presented. Specifically, regression models are trained to capture the correlations
between brain appearances and their deformation coefficients. The learned correlation
models are then used to rapidly predict a good initial deformation for any given image under
registration. The IT is generated by warping the original template with the estimated initial
deformation field. Since the shape difference between the IT and the given image becomes
small, many existing registration methods (i.e., HAMMER, diffeomorphic demons, FNIRT,
ART, or SyN), when incorporated into our framework, can perform much faster with
comparable or slightly better registration performance. It is worth noting that our method
can be applied to a wider range of images since it employs a parameter-free statistical model
on both images and deformations.
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Fig. 1.
Overview of the proposed learning-based registration framework. Initial deformation field
uT→IT and the IT are predicted by the SVR models trained with deformation coefficients
and brain appearances (based on the training and testing stages, as shown in the large black
rectangle). Blue arrows represent the processes in the training stage, whereas red arrows
represent the processes in the testing stage. A registration algorithm is needed only to
estimate the residual deformation from the IT (in the pink rectangle) to the subject (in the
blue rectangle). (See Section II-A for more information.)
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Fig. 2.
Illustration of how new sample images are simulated in the training stage. In this example,
there are five subjects (M = 5), each with four perturbations (N = 4). Each large dotted black
circle denotes a set of M images generated for each subject j, j = 0, 1 ,…, N.
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Fig. 3.
Brain appearance model. The brain images after removal of uninformative background
voxels are shown in the leftmost column, with their downsampled versions given in the
second column. PCA is then applied to the signature images, as shown in the third column,
which consist of the brain outlines and the boundaries along the interfaces of WM, GM,
CSF, and VN. The fourth column denotes the signature vectors (projections onto the D
eigenvectors) for {Ĩi ,k} after reconstruction with only the top D eigenvectors, and they can
be agglomerated into a matrix SM, as displayed in the rightmost column.
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Fig. 4.
qth SVR among Q models used to correlate signature vectors with the qth row of
deformation coefficient matrix C. (Blue arrows) Features (signature vectors) and target
values (the qth row of the deformation coefficient matrix) used for training the qth
regression model. (Red arrows) Prediction of deformation coefficients for a new subject
image. By feeding the signature vector of the subject image to the learned SVR models, the
deformation coefficient  for the subject image can be predicted.

Kim et al. Page 21

IEEE Trans Image Process. Author manuscript; available in PMC 2012 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Illustration of the proposed registration algorithm in aligning (b) a subject image with (a) a
template image. (c) An IT is estimated, onto which (b) the subject image can be registered.
By concatenating the deformation fields from the template to the IT and from the IT to the
subject, we can warp the template to the subject, as shown in (d), which is comparable to the
results given by HAMMER, as shown in (e).
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Fig. 6.
Simulated images generated by warping the template with the simulated deformation fields.
According to the extent of deformation from the template, the simulated images are
classified into three groups: 2 mm (Group 1), 4 mm (Group 2), and 6 mm (Group 3). (a)
Group 1. (b) Group 2. (c) Group 3.
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Fig. 7.
Estimation of (f) the ITs for (b) the subject images by the proposed method. The estimated
ITs have a closer resemblance to the subject images than (a) the original template.
Compared with the results of HAMMER in (c) low resolution, (d) middle resolution, and (e)
RABBIT, our results show better performance (indicated by the red arrows). For visual
comparison, we overlay the brain outlines of the subject images onto the respective ITs or
intermediate registration results by HAMMER.
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Fig. 8.
Mean overlap ratios of 54 manually delineated ROIs given by five registration methods (i.e.,
HAMMER, diffeomorphic demons, FNIRT, ART, and SyN) on average with and without
our framework. The LONI LPBA40 data set was used.
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Fig. 9.
Mean overlap ratios on 32 manually delineated ROIs of the NIREP data set.
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Fig. 10.
Comparison of computation times for HAMMER, diffeomorphic demons, FNIRT, ART,
and SyN before and after integration with our learning-based deformation prediction
framework. (a) HAMMER. (b) Diffeomorphic demons. (c) FNIRT. (d) ART. (e) SyN.
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TABLE I

Mean Registration Error Evaluated With Respect to the Ground Truth (in Millimeters)

Group1 Group2 Group3 Average

HAMMER 0.44 0.49 0.62 0.52

RABBIT 0.36 0.47 0.53 0.45

Our Method 0.35 0.37 0.46 0.39
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TABLE II

Average Overlap Ratios (in Percent) of WM, GM, and VN, Computed Based on 50 Testing Subjects

WM GM VN Overall

HAMMER (low re.) 60.3% 50.4% 49.4% 53.4%

HAMMER (mid res.) 64.1% 58.3% 64.9% 62.4%

RABBIT 71.8% 64.7% 77.3% 71.3%

Our Method 77.4% 70.3% 85.6% 77.8%
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