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Abstract

The Binary Partition Tree (BPT) is a hierarchical region-based representation of an image in a tree structure.

BPT allows users to explore the image at different segmentation scales. Often, the tree is pruned to get a more

compact representation and so the remaining nodes conform an optimal partition for some given task. Here, we

propose a novel BPT construction approach and pruning strategy for hyperspectral images based on spectral unmixing

concepts. Linear Spectral Unmixing (LSU) consists of finding the spectral signatures of the materials present in the

image (endmembers) and their fractional abundances within each pixel. The proposed methodology exploits the local

unmixing of the regions to find the partition achieving a global minimum reconstruction error. Results are presented

on real hyperspectral data sets with different contexts and resolutions.

Index Terms

Binary Partition Trees, Hyperspectral Images, Spectral Unmixing, Segmentation.

I. INTRODUCTION

Imaging spectroscopy [14] (a.k.a. hyperspectral imaging) is concerned with the measurement, analysis, and

interpretation of spectra acquired from a given scene or object [29]. The new generation of hyperspectral sensors
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will collect a huge amount of hyperspectral data in the next decade, and the fields of knowledge that will benefit

from the potential applications of hyperspectral imaging are huge [13], [29].

Besides, the high spectral resolution and the increase of the spatial resolution due to modern hyperspectral sensors

and new super-resolution techniques [1], pose new challenges that should be faced. Most of the traditional processing

algorithms fail when the spectral resolution increases significantly [3]. For instance, conventional statistical learning

becomes intractable with hyperspectral data because of the increased dimensionality [10]. Thus, there has been a

big increase in the research efforts conducted to develop new computational methods adapted to the specificities of

hyperspectral data in order to analyse and fully exploit the information contained in hyperspectral images.

For instance, over the last few years, many efforts have been devoted to supervised classification of hyperspectral

scenes [8], [11], [21], [29], [44]. In turn, unsupervised hyperspectral image segmentation has received comparatively

much less attention. However, due to the limited amount of reference information generally available in practice,

the unsupervised segmentation of hyperspectral images is an important area that still needs to be further developed.

Unsupervised segmentation allows to explore and understand the contents of hyperspectral images without any a

priori knowledge.

Most available hyperspectral segmentation techniques are focused on analyzing the data as a set of unordered

pixels, where the clustering process groups the data by means of their spectral information only. In [5], authors

propose a new substractive-clustering-based similarity segmentation and a novel cluster validation method using

One-Class Support Vector Machine (OC-SVM). In [12] unsupervised hyperspectral image segmentation based on the

phase-correlation measure of subsampled hyperspectral data, referred to as modified phase correlation, is presented.

In [2], authors make use of a fuzzy C-means (FCM) clustering algorithm to obtain segmentation maps that are later

used to improve the classification of hyperspectral images. Authors in [30] propose a fast search method for vector

quantization based on the generalized Lloyd algorithm (GLA). These clustering approaches as well as the classical

k-Means and related algorithms require the number of clusters as an input and do not take any spatial information

into account.

There is a growing interest in the development of unsupervised techniques taking into account both spectral

and spatial information to provide hyperspectral segmentation maps [29]. In [34], an extension of the Watershed

segmentation technique to hyperspectral images is investigated. The resulting segmentation map is then used to

improve the classification performances. However, if the goal is the unsupervised segmentation map itself, the use

of the Watershed technique generally yields oversegmented maps. Hierarchical segmentation using trees provides a

flexible approach to image interpretation. Authors in [4], [33], [35] make use of this approach for the segmentation

and classification of hyperspectral images. In [33], the method is based on the construction of a minimum spanning

forest (MSF) from region markers automatically defined from classification results. By assigning a class of each

marker to all the pixels within the region grown from this marker, a spectral-spatial classification map is obtained.

A similar approach is followed in [4], where the notion of stochastic MSF is introduced. In [35], the Hierarchical

SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, produces

a hierarchical set of image segmentations. Here, the use of markers allows the automated selection of a single
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segmentation level. However, these approaches make use of labelled data, which in hyperspectral image analysis is

a major issue as the availability of reliable ground-truth data is scarce and expensive to obtain.

Hierarchical segmentation algorithms have proved to be very valuable to explore and exploit the spatial content of

images by providing a hierarchy of segmentations working at different scales. Recently, some authors have proposed

the use of the Binary Partition Tree (BPT) to handle very high dimensional data such as hyperspectral data [36],

[38], [39]. The BPT is a hierarchical region-based representation of an image in a tree structure [31]. In these works,

two region models are commonly used for hyperspectral images: the first order parametric region model, which

represents a region by its mean spectrum, and the non-parametric statistical region model, which models a region

by its set of histograms (one histogram per spectral band). Both types of region models have their non-exhaustive

associated family of merging criteria [38]. Often, the BPT is pruned to achieve a segmentation where the nodes of

the pruned tree represent an optimal partition for some kind of application. Many pruning strategies have already

been investigated in the BPT literature [36], [38], [39] to achieve a classical segmentation or to improve a further

classification operation. However, none of these take full advantage of the high spectral information contained in

hyperspectral images. In this work (which was sketched in [42]), we introduce for the first time in the literature the

use of spectral unmixing for the construction and merging of a BPT hyperspectral representation and the posterior

segmentation of the image.

A hyperspectral image is usually represented as the result of the linear combination of a set of spectral signatures

corresponding to macroscopically pure materials (such as water, soil, etc...), named endmembers, weighted by a

set of cover proportions comprised in a fractional abundance matrix. This is the so called Linear Mixing Model

(LMM) [24]. The spectral unmixing process corresponds to the inverse problem: given an hyperspectral image, the

goal is to find the endmembers and their per-pixel abundances. The conventional approach is to manually select

the endmembers from a spectral library, or more often, automatically induce them from the image itself using

an endmember induction algorithm (EIA) [7], [15], [19], [40]. The fractional abundances can then be estimated

solving the equation systems of the LMM given the original image and the set of endmembers [22], [25]. In some

works [17], [23], [28], the abundance maps can act as segmentation maps of their corresponding materials.

Spectral unmixing is one of the most important and widely used techniques in hyperspectral image analysis. Here,

we provide a new framework for hyperspectral data interpretation that combines the benefits of both techniques, i.e.,

spectral unmixing and binary partition trees. This framework relies on a BPT representation based on the spectral

and/or spatial information of the regions, that leads to merge regions with similar materials and/or in similar

proportions; and, pruning strategies that yield to a segmentation map that is optimal in terms of spectral unmixing

quality. The BPT representation allows one to exploit the increasing spatial information of modern hyperspectral

imagery which, combined with the information provided by the spectral unmixing, makes the most of the spatial-

spectral variability contained in the hyperspectral images for their automatic segmentation. Our contribution is

two-fold:

• We provide a new framework for hyperspectral data interpretation that combines spectral unmixing concepts

with BPT representations. Specifically, we propose two pairs of region models and corresponding merging
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criteria, based on spectral unmixing concepts, that exploit the spectral mixture information in order to build a

BPT representation of hyperspectral images. The first one defines a region model as the endmembers induced

from the region by means of some EIA, and a merging criterion based on the spectral similarity between two

regions. The second one introduces the fractional abundances of the induced endmembers, in addition to the

spectral information provided by the aforementioned endmembers, in order to define a spectral-spatial region

model. A spectral-spatial dissimilarity is used to define the corresponding merging criterion.

• We propose four novel pruning optimization criteria that produce a partition with minimum energy, being

the energy of a partition defined as the combination of the average/maximum unmixing reconstruction error

obtained from the partition and a regularization on the size/number of regions in the partition. The final result

is an optimal segmentation of the hyperspectral scene in terms of spectral unmixing quality and segmentation

complexity by means of a BPT representation, which represents an unique and innovative contribution in the

field of hyperspectral data interpretation.

The remainder of the paper is organized as follows. The BPT construction and merging processes are explained in

Section II. In Section III we outline some fundamental concepts about spectral unmixing. In Section IV we introduce

the proposed segmentation methodology using a BPT representation and pruning by means of hyperspectral unmixing

concepts. Then, we present the materials and experimental methodology in Section V, and we provide detailed results

on two standard hyperspectral scenes: Pavia University and Cuprite, in Section VI and Section VII, respectively.

Finally, we conclude the paper with some remarks and hints at potential future research lines in Section VIII.

II. BINARY PARTITION TREES

A. Building a BPT

In the BPT representation, the leaf nodes correspond to an initial partition of the image, which can be the

individual pixels, or a coarser segmentation map. From this initial partition, an iterative bottom-up region merging

algorithm is applied until only one region remains. This last region represents the whole image and corresponds to

the root node. All the nodes between the leaves and the root result of the merging of two adjacent children regions.

An example of BPT is displayed in Fig. 1. If the initial partition contains n leaf nodes, the final BPT contains

2n− 1 nodes.

Two notions are of prime importance when defining a BPT: i) the region model MR which specifies how a

region R is modelled, and ii) the merging criterion O(MRα ,MRβ ), which is a distance measure between the

region models of any two regions Rα and Rβ . Each merging iteration involves the search of the two neighbouring

regions which achieve the lowest pair-wise similarity among all the pairs of neighbouring regions in the current

segmentation map. Those two regions are consequently merged.

Given a hyperspectral region R, with NR hyperspectral samples rj ∈ Rq , j ∈ 1 . . . NR, the first-order parametric

model MR is defined by the average of the hyperspectral samples r̄ in each band k = 1, . . . , q:

MR(k) d
= r̄(k) =

1

NR

NR∑
j=1

r
(k)
j . (1)
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Fig. 1. Construction of the Binary Partition Tree (BPT).

Using the first-order parametric model (1), a merging criterion is defined as the spectral angle distance, dSAD,

between the average values of any two adjacent regions:

O
(
MRα ,MRβ

) d
= dSAD (r̄α, r̄β) = arccos

(
r̄Tα r̄β
‖r̄α‖‖r̄β‖

)
. (2)

The building of a BPT may suffer from small and meaningless regions resulting in a spatially unbalanced tree.

To overcome this limitation, a priority term is included in the merging criterion that forces those regions smaller

than a given percentage of the average region size to be merged first [9], [36].

B. Pruning a BPT

The pruning step follows the construction of the BPT. If the construction of the BPT is generic once the region

model and merging criterion have been defined, the pruning of the BPT is application dependant. Consequently,

different pruning strategies are very likely to lead to different results. In the pruning operation, the branches of the

tree are pruned such that the tree representation is reduced and the new leaves correspond to the regions achieving

the most meaningful partition of the image with respect to the desired task.

There are two simple pruning strategies, the height-based pruning and the region-based pruning, that are often

used to test that the BPT construction is reasonable and to serve as a baseline for the comparison with other pruning

strategies. These two pruning strategies are application independent and thus, do not take full advantage of the BPT

structure:

• The former consists in pruning the tree at some given height h ≥ 0. The root is located at h = 0 and its

children are located at height h = 1. Generalizing, the children from the nodes at height h = i are located

at height h = i+ 1. Fig. 2(a) shows an example of the use of the heigth-based pruning strategy to prune the

aforementioned BPT (see Fig. 1) at heigth h = 1.
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• The latter traverses the tree using an inverse order to its construction, pruning it once the number of regions

in the partition reaches some given value nr ≥ 0. In other words, the final segmentation will be composed

of the nr remaining regions before the completion of the tree. For instance, if the building of the nodes was

done in the order R6 → R7 → R8 → R9 and nr = 3, the BPT will be pruned after the merging of regions

R5 and R6 into R7 as it can be seen in Fig. 2(b).

(a)

(b)

Fig. 2. (a) Height-based pruning of the Binary Partition Tree using h = 1, and (b) Region-based pruning of the Binary Partition Tree using

nr = 3.

In [37], the author proposes a pruning strategy to segment hyperspectral images based on the minimization of

an energy function formulated as a Langrangian optimization problem:

P? = arg min
P∈Ω

∑
R∈P

[D (R) + λC (R)] , (3)

where Ω denotes the set of all the partitions that could be obtained from the BPT representation of the image,

D (R) denotes a data fit error accounting for the region R in the partition, C (R) denotes some complexity term,

and λ denotes the Lagrangian multiplier. In [37], author defines D (R) as the Spectral Information Divergence
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(SID) measure according to the average spectrum of the region itself and its siblings:

D (R) =
∑
r∈R

SID (r, r̄) +
∑
r∈Rl

SID (r, r̄l) +
∑
r∈Rr

SID (r, r̄r) , (4)

where Rl and Rr denote the siblings of the region R, r̄ denotes the average spectrum of a region, and:

SID (a,b) = dKL (a,b) + dKL (b,a) , (5)

being dKL (·, ·) the Kullback Leibler divergence. The complexity term is defined as C (R) = 1 aiming to minimize

the number of regions in the partition. The author proposes in [37] a pruning strategy that looks for the optimum

Lagrangian parameter, λ∗, that minimizes (3) subject to
∑
R∈P C (R) ≈ C0, where C0 denotes the number of

regions in the partition (arbitrarily specified by the user).

III. SPECTRAL UNMIXING

Spectral unmixing pursues the decomposition of a hyperspectral image into the spectral signatures of its main

constituents and their corresponding spatial fractional abundances. A common assumption in spectral unmixing is

that the mixture of spectral signatures is linear. This yields to the LMM [7], [24] in which most of the unmixing

methods are based on.

A. Linear Mixing Model (LMM)

The LMM states that a hyperspectral sample is formed by a linear combination of the spectral signatures of

pure materials present in the sample (endmembers), plus some additive noise. Let E = [e1, . . . , em] be the

pure endmember signatures (normally corresponding to macroscopic objects in the scene, such as water, soil,

vegetation,. . . ) where each ei ∈ Rq is a q-dimensional vector. Then, the hyperspectral signature r at each pixel in

the image is defined by the expression:

r = s + n =

m∑
i=1

eiφi + n, (6)

where r is given by the sum of the pixel’s signal s and an independent additive noise component n; and, φ is the

m-dimensional vector of fractional per-pixel abundances subject to the Abundance Non-negative Constraint (ANC)

and the Abundance Sum-to-one Constraint (ASC):

φi ≥ 0 ∀i = 1, . . . ,m and
m∑
i=1

φi = 1. (7)

This equation can be extended to the whole image as H = EΦ + η, where H denotes the hyperspectral image, Φ

is a matrix of fractional abundances and η is an independent additive noise.

B. Endmember induction and abundance estimation

Most of the times, the spectral signatures of the materials are unknown, and the set of endmembers must be

built by either selecting spectral signatures from a spectral library, or by automatically inducing them from the
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image itself. Both can be performed manually or in an automatic way. In order to automatically induce the set of

endmembers from the image, the use of some endmember induction algorithm (EIA) is required. The hyperspectral

literature features plenty of such algorithms. Some reviews on the topic can be found in [7], [24], [40].

Once the set of endmembers, Ê, has been induced, their corresponding per-pixel abundances, Φ̂, can be estimated

by approximating a solution to an overdetermined linear system by the Least Squares method [25]. The Fully-

Constrained Least Squares Unmixing (FCSLU) method [22] solves the overdetermined linear system subject to

ANC and ASC constraints.

The quality of the unmixing, Ê and Φ̂, at a given pixel r can be measured by the Root Mean Squared Error

(RMSE) of the original hyperspectral signature with respect to the reconstructed one, r̂ =
∑m
i=1 êiφ̂i:

ε(r, r̂) =

√√√√1

q

q∑
k=1

(
r(k) − r̂(k)

)2
. (8)

IV. BPT CONSTRUCTION AND PRUNING BY MEANS OF HYPERSPECTRAL UNMIXING

In this section, we introduce the adaptation of the BPT algorithm for hyperspectral unmixing purposes by defining

a region model and merging criterion based on the induced endmembers and/or fractional abundances, and four

pruning strategies based on the optimization of the spectral reconstruction error regularized by the segmentation

complexity. Finally, we detail the novel methodology depicted in Fig. 3 to find an optimal segmentation of

hyperspectral images from their BPT representation based on the information provided by the spectral unmixing.

A. Novel unmixing-based region models and merging criteria

We propose two novel region models and corresponding merging criteria based on spectral unmixing information

extracted from the region. The first one is defined by means of the spectral information provided by the endmembers

induced from the region. Thus we refer to this model as the spectral region model and merging criterion. In the

second one, we propose to make use of the spatial information provided by the fractional abundances in addition to

the corresponding endmembers. Therefore, we refer to this model as the spectral-spatial region model and merging

criterion.

1) Spectral region model and merging criterion: For each regionRi a set of mi endmembers ERi = [e1, . . . , emi ]

is induced by an EIA, defining the spectral region model:

MRi
d
= ERi = [e1, . . . , emi ] . (9)

The spectral merging criterion between two regionsRα andRβ modelled by (9) is given by the spectral dissimilarity

between the set of endmembers of the two regions [16]:

O
(
MRα ,MRβ

) d
= s

(
ERα ,ERβ

)
= ‖mr‖+ ‖mc‖ , (10)

where ‖mr‖ and ‖mc‖ are the minimum Euclidean norms among all row and column vectors, respectively, of the

endmembers distance matrix Dα,β = [dkl], k = 1, . . . ,mα, l = 1, . . . ,mβ ; being dkl the spectral angle distance
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Fig. 3. Flowchart of the proposed novel methodology.

between two endmembers ek ∈ ERα and el ∈ ERβ . Once two regions merge into a new one, the set of endmembers

for the new (larger) region is induced again by the given EIA. The rationale and originality of this spectral region

model and merging criterion is to favour the grouping of neighbouring regions that are made of similar materials

(endmembers). The proposed spectral merging criterion, as it is defined, strongly penalizes regions that do not

contain the same materials, therefore it is fully adapted to the underlying motivation.
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2) Spectral-spatial region model and merging criterion: For each region Ri a set of mi endmembers ERi =

[e1, . . . , emi ] is induced by some EIA, and their corresponding abundances, ΦRi = [φ1, . . . , φmi ], are estimated.

Then, the spectral-spatial region model is defined as:

MRi
d
=
〈
ERi , φ̄Ri

〉
. (11)

where the tuple,
〈
ERi , φ̄Ri

〉
, is composed by the set of endmembers, ERi and their corresponding average fractional

abundances, φ̄Ri =
[
φ̄1, . . . , φ̄mi

]
, such that φ̄i = 1

NRi

∑NRi
j=1 φ

(j)
i , where NRi denotes the number of pixels in the

region Ri, and φ(j)
i the fractional abundance of the ith endmember for the jth pixel. The spectral-spatial merging

criterion between two regions Rα and Rβ modelled by (11) is given by the spectral-spatial dissimilarity between

the set of endmembers and the corresponding average abundances of the two regions [41]:

O
(
MRα ,MRβ

) d
= s

(〈
ERα , φ̄Rα

〉
,
〈
ERβ , φ̄Rβ

〉)
=∑

k,l

wk,ldk,l,
(12)

where dkl is the spectral angle distance between two endmembers, ek ∈ ERα and el ∈ ERβ , as it was defined

above; and, wk,l is a weighting coefficient measuring the significance associated to dk,l. The matrix of weighting

coefficients, Wα,β = [wkl], k = 1, . . . ,mα, l = 1, . . . ,mβ , is calculated using the significance credit assignment

algorithm (see Algorithm 1) introduced in [41] which is a version of the most similar highest priority principle [26],

where the average fractional abundances, φ̄Rα and φ̄Rβ play the role of ”significant credits” assigned to the spectral

distances, dk,l. The use of the proposed spectral-spatial merging criterion promotes the merging of regions containing

similar materials and in similar proportions.

B. Novel unmixing-based pruning criteria for segmentation

We present now four new pruning criteria based on the spectral unmixing of the regions in the BPT representation

of an hyperspectral image, in order to segment the image. The proposed unmixing-based pruning criteria are

inspired in the Lagrangian formulation in (3), where the fitting function D (R) is defined in terms of the unmixing

reconstruction error (8). The two first proposed criteria follow the scheme in (3) but we are not imposing any

constraint to the number of regions, so in strict terms the proposed criteria do not correspond to Lagrangian

optimizations. However, the λ term plays a similar role, weighting the trade-off between the unmixing reconstruction

error and the partition complexity. The second two pruning strategies follow an analogous approach, but the

optimization problem is formulated in terms of the lattice supremum operator,
∨

, instead of the arithmetic sum

operator,
∑

. Together with the four unmixing-based pruning criteria, we provide the algorithms to solve the

optimization problems.

1) Arithmetic definition of the unmixing-based pruning strategies: Let P be a partition of the image (a pruning

of the BPT) and Ω be the set of all possible partitions. Then, we propose a first unmixing-based pruning criterion

defined as the partition minimizing the overall average RMSE regularized by the number of regions in the partition:

P?∑ avg = arg min
P∈Ω

1

N

∑
R∈P

∑
r∈R

εR(r, r̂) + λ |P| , (13)
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Algorithm 1 Significance credits assignment algorithm.
1. L ← {}
2. M← {(i, j) : i = 1, . . . ,mα; j = 1, . . . ,mβ}
3. Choose the minimum dij for (i, j) ∈M−L
Label the corresponding (i, j) as (i′, j′)

4. wi′j′ ← min
{
φ̄αi′ , φ̄

β
j′

}
if φ̄αi′ < φ̄βj′ then

5. wi′j ← 0, ∀j 6= j′

else

6. wij′ ← 0, ∀i 6= i′

end if

if φ̄αi′ < φ̄βj′ then

7. φ̄αi′ ← 0

8. φ̄βj′ ← φ̄βj′ − φ̄αi′
else

9. φ̄βj′ ← 0

10. φ̄αi′ ← φ̄αi′ − φ̄βj′
end if7.

11. L ← L+ {(i′, j′)}
if
∑mα
i=1 φ̄

α
i > 0 and

∑mβ
j=1 φ̄

β
j > 0 then

12. go to step 3

else

13. return

end if

where N denotes the number of pixels in the image, |P| denotes the number of regions in the partition and εR(r, r̂)

is the RMSE (8) for the pixel r with respect to the reconstructed pixel r̂ =
∑m
i=1 êiφ̂i calculated using the set of

endmembers ÊR and the fractional abundances Φ̂R obtained from the unmixing of the region R. This expression

can be obtained from (3) by setting the fitting and complexity functions to be D (R) = 1/N
∑

r∈R εR(r, r̂) and

C (R) = 1.

Similarly, we define a second criterion as the partition minimizing the weighted average of the maximum RMSE

of the regions in the partition, regularized by the number of regions in the partition:

P?∑ max = arg min
P∈Ω

1

N

∑
R∈P

NRmax εR(r, r̂) + λ |P| , (14)

where NR denotes the number of pixels in the region R. In this case, the expression can be obtained by setting

D (R) = NR/|P|max εR(r, r̂) and C (R) = 1.
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Given the BPT representation, T (I), of the hyperspectral image I and the value of the regularization parameter,

λ, these two optimization problems (13) and (14) can be solved by dynamic programming as it was proved in [20].

Algorithm 2 works in a recursive way starting from the root of the BPT hierarchy. The energy of the root node is

calculated using the reconstruction error function, D (R), and the complexity function, C (R). Then, it makes a

recursive call to obtain the optimal cut of the root children. Once the optimal cuts are obtained, that is, the energy

and the optimal partition of each of the children; the energy of the root is compared to the addition of the energies

of the children. If the energy of the root is lower than the sum of the children’s energies, the optimal partition is

given by the root node. Otherwise, the optimal partition is given by the union of the optimal cuts of the children.

The optimalCut function works in a similar way, traversing the tree top-down by successive recursive calls up to

find the leaves. Then, the recursive function returns the calls in a bottom-up till reaching the root node.

2) Lattice definition of the unmixing-based pruning strategies: We also propose two novel unmixing-based

pruning criteria in base to the following optimization problem:

P? = arg min
P∈Ω

∨
R∈P

[D (R) + λC (R)] , (15)

where the
∑

symbol in the conventional optimization formulation (3) has been replaced by the lattice operator
∨

.

Eq. (15) characterizes a partition by bounds on the fitting and complexity functions. The optimal partition is the

one that minimizes the regularized combination of both bounds.

Using this lattice formulation, we define a third unmixing-based pruning criterion as:

P?∨ max = arg min
P∈Ω

∨
R∈P

[
max εR(r, r̂) +

λ

NR

]
, (16)

with D (R) = max εR(r, r̂), and C (R) = 1/NR. The pruning criterion in (16) finds a partition that minimizes the

upper bound on the partition’s reconstruction error and at the same time maximizes the lower bound on the size of

the regions in the partition, where the trade-off is governed by the λ parameter.

In a similar fashion, we propose the following fourth unmixing-based pruning criterion:

P?∨ avg = arg min
P∈Ω

∨
R∈P

[
1

NR

∑
r∈R

εR (r, r̂) +
λ

NR

]
, (17)

with D (R) = 1
NR

∑
r∈R εR (r, r̂), and C (R) = 1/NR. The pruning criterion in (16) finds a partition that

minimizes the upper bound on the average reconstruction error of the regions and at the same time maximizes the

lower bound on the size of the regions in the partition, where the trade-off is governed by the λ parameter.

The algorithm to solve (16) and (17) is analogous to Algorithm 2. The pseudocode of the algorithm is depicted

in Algorithm 3. Both, the algorithm and the proof that it is able to find the optimal partition are analogous to the

Algorithm 2 and the proof provided in [20], where the lattice operators
∨

and max replace the arithmetic operators∑
and +.

3) Use of a size constraint: It is sometimes interesting to constrain the set of valid partitions, Ω, to those

containing regions above a minimum spatial size. For instance, the segmentation of the image could be later used

for applications that require a minimum number of pixels to work, i.e. estimates of statistical parameters. In these
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Algorithm 2 Pseudo-code of the algorithm to solve the arithmetic definitions of the unmixing-based pruning criteria

P?∑ avg and P?∑ max.

Require: T (I), λ

1. R ← root (T )

2. E ← D (R) + λC (R)

3. Rl,Rr ← children (R)

4. El, {R∗l } ← optimalCut (Rl)
5. Er, {R∗r} ← optimalCut (Rr)
if E ≤ El + Er then

5. return R

else

6. return {R∗l }
⋃ {R∗r}

end if

function OPTIMALCUT(R)

E ← D (R) + λC (R)

if isLeaf (R) then

Return E,R
else

Rl,Rr ← children (R)

El, {R∗l } ← optimalCut (Rl)
Er, {R∗r} ← optimalCut (Rr)
if E ≤ El + Er then

return E,R
else

return El + Er, {R∗l }
⋃ {R∗r}

end if

end if

end function

cases, the set Ω of valid partitions in the formulation of the optimization problems is replaced by the subset of

size-constrained valid partitions, Ωc:

Ωc = {P ∈ Ω, s.t. ∀R ∈ P, NR ≥ c} , (18)

where NR denotes the number of pixels in region R and c ≥ 0 is a threshold on the region size. If c = 0, the

term (18) has no effect and the pruning criterion is considered to be unconstrained.
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Algorithm 3 Pseudo-code of the algorithm to solve the lattice definitions of the unmixing-based pruning criteria

P?∨ avg and P?∨ max.

Require: T (I), λ

1. R ← root (T )

2. E ← D (R) + λC (R)

3. Rl,Rr ← children (R)

4. El, {R∗l } ← optimalCut (Rl)
5. Er, {R∗r} ← optimalCut (Rr)
if E ≤ max (El, Er) then

5. return R

else

6. return {R∗l }
⋃ {R∗r}

end if

function OPTIMALCUT(R)

E ← D (R) + λC (R)

if isLeaf (R) then

Return E,R
else

Rl,Rr ← children (R)

El, {R∗l } ← optimalCut (Rl)
Er, {R∗r} ← optimalCut (Rr)
if E ≤ max (El, Er) then

return E,R
else

return max (El, Er) , {R∗l }
⋃ {R∗r}

end if

end if

end function

C. Proposed methodology

Fig. 3 shows the flow diagram of the proposed general methodology to obtain an optimal segmentation from a

hyperspectral image, by pruning the BPT representation of the image using the information provided by the spectral

unmixing process. The procedure is as follows:

Step one. An initial oversegmentation of the image is provided, instead of starting from the entire set of pixels,

to speed-up the BPT building. The initial segmentation should contain regions small enough not to encompass
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”actual” regions, and accurate enough to be able to reconstruct those regions with a good accuracy. Hence, starting

from an undersegmented image should be avoided at all cost as regions will not be allowed to split later on. On this

purpose, we propose to obtain the initial partition by a Watershed segmentation of the original image [32]. First,

we calculate the supremum of the component-wise morphological gradient from the original image, and then we

apply a classical Watershed onto this gradient map. Finally, we set all the resulting border pixels to their respective

most similar connected regions as it is explained in [34].

Step two. A BPT representation of the image is obtained using a given region model and a region merging

criterion compatible with it. We propose to use either, the spectral region model (9) and merging criterion (10)

or the spectral-spatial region model (11) and merging criterion (12) given in Section IV-A. In order to do that, a

spectral unmixing process is run independently for each region (see Fig. 4). First, the virtual dimensionality δ of

the region R is computed using the Hyperspectral Signal Subspace Estimation (Hysime) algorithm [6]. The value

of δ works as an estimation of the number m of endmembers present in the region. If the region is too small to

correctly estimate the number of endmembers (due to the presence of close to singular covariance matrices during

the application of the Hysime algorithm), that is, if δ = 0 or δ > NR, being NR the number of pixels in the region,

then its region model MR is set to the mean spectrum of the region as in (1). This happens in very small and

homogeneous regions, so the mean spectrum r̄ acts as a single endmember. Otherwise, an EIA is run over the NR

pixels of the region to induce the corresponding set of endmembers. To overcome the stochastic part of most of

the EIAs, the induction algorithm is run a number of times k for each region, and the set of endmembers yielding

the larger simplex volume [43], Vk (E), among the k trials is retained. If the spectral region model is selected to

build the BPT representation, the region model is defined by these endmembers as it is described in (9). If the

spectral-spatial region model is selected, the FCLSU is conducted and the fractional abundances of the induced

endmembers are estimated for each pixel in the region. The region model is then defined by the endmembers

and their average fractional abundances as it is described in (11). The population of the tree with the unmixing

information could be computationally expensive, but once the BPT has been populated it can be stored and any

posterior processing of the BPT representation is usually very fast. This trade-off is common in the analysis of

images by means of tree representations.

Step three. The reconstruction error of each region is calculated by the RMSE (8) given the set of endmembers and

corresponding abundances obtained from the pixels of each region. Note that if any of the two proposed unmixing-

based region models are used to build the BPT representation, this information is already calculated in step 2. If

not, for instance, when using the first-order parametric region model (1), the spectral unmixing process defined

above should be run for each region in order to induce the endmembers and estimate the fractional abundances.

Step four. Finally, one of the four proposed unmixing-based pruning criteria (see Sec. IV-B) is applied to prune

the BPT and find the nodes defining the optimal segmentation according to the spectral unmixing reconstruction

error and the regularization term.
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V. MATERIALS AND EXPERIMENTAL METHODOLOGY

A. Hyperspectral datasets

Two real hyperspectral data sets have been used in our experiments. Their selection is supported by the fact

that these scenes have been widely used to validate hyperspectral segmentation and spectral unmixing applications,

and currently constitute benchmarks used to validate new algorithms thanks to the availability of reliable reference

information. The considered scenes can be summarized as follows:

The Pavia University hyperspectral image was collected by the ROSIS-03 sensor over the facilities of the

University of Pavia in Italy. After discarding pixels with no information and noisy spectral bands, the image has a

spatial size of 610× 340 pixels with a spatial resolution of 1.3 m per pixel, and 93 spectral bands comprised in the

range of 430-860 nm. Fig. 5(a) shows a false color representation of the Pavia University scene. The scene shows

an urban area comprised of different buildings, parking lots, roads and other typical human-made constructions,

together with trees, green areas and bare soil.

The Cuprite hyperspectral scene [18] was acquired by the NASA’s AVIRIS sensor and covers the Cuprite mining

district in western Nevada, USA. This sensor collects data in 224 contiguous spectral bands with a bandwidth of

0.10 µm in the range of 0.4− 2.5µm. After removing noisy bands due to atmospheric water absorption 200 bands

remain. Each pixel represents a 20m2 square cell. The data used in the experiments is a 250 × 190 subset of the

original scene covering the mineralogical region of interest. Fig. 5(b) shows a false color representation of the

Cuprite scene and the subset used for experiments. The scene is well-known and widely used in hyperspectral

community thanks to the extensive reference information available for this scene from the United States Geological

Survey (USGS)1.

B. Experimental methodology

This section describes the procedure adopted to conduct the analysis of the two aforementioned hyperspectral

scenes. Specifically, we describe the steps followed in order to build and prune the BPT in our experiments, and

the quantitative measures employed to compare the different segmentation-oriented pruning criteria.

For each dataset, we built three independent BPT representations corresponding to each of the three presented

region models and corresponding merging criteria: a) the first-order parametric region model (1) and the spectral

angle distance-based merging criterion (2), b) the spectral region model (9) and the spectral distance-based merging

criterion (10), and c) the spectral-spatial region model (11) and the spectral-spatial distance-based merging crite-

rion (12). In all cases, we set the priority term [9], [36] to 0.15. For each of the three BPT representations, we

populated the tree with the endmembers and the fractional abundances obtained from an unmixing process run in each

node of the BPT representations, as it was explained in Section IV-C. In order to do that, we employed the Vertex

Component Analysis (VCA) algorithm [27] to induce the endmembers. In the case of the BPT representations using

the spectral and spectral-spatial region models, the unmixing information is obtained during the BPT construction.

1http://speclab.cr.usgs.gov/cuprite.html
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TABLE I

COMPUTATIONAL TIMES OF THE CONSTRUCTION AND UNMIXING POPULATION OF THE BPT REPRESENTATION OF PAVIA UNIVERSITY AND

CUPRITE SCENES, USING THE THREE DIFFERENT REGION MODELS AND MERGING STRATEGIES.

First-order parametric Spectral Spectral-spatial

Pavia University 98’48” 98’16” 104’22”

Cuprite 27’58” 28’06” 30’33”

In the case of the BPT representation using the first-order parametric region model, the population is done after

the construction of the BPT representation. The computational times required to build the BPT representations and

populate them with the unmixing information using a 64bits 4 core Intel Xeon(R) CPU at 2.80GHz are presented

in Table I. The computational time linearly scales with the size of the image, and is mainly due to the unmixing

population, since the computational cost of the BPT construction and the posterior pruning is almost negligible.

We plan to develop computationally efficient implementations (using high performance computing architectures) of

the proposed strategies for the construction and unmixing population of the tree representation in order to reduce

the computational burden.

Then, for each of the BPT representations, we independently pruned them by means of the four proposed pruning

approaches based on the arithmetic optimization formulation (13) and (14), named as ”Proposed SUM(AVG)” and

”Proposed SUM(MAX)”, respectively; and on the lattice optimization formulation (16) and (17), named as ”Proposed

SUP(MAX)” and ”Proposed SUP(AVG)”, respectively. We compared the results of the proposed pruning strategies to

the two common strategies presented in section II-B, the height and region pruning strategies. We also compared to

the pruning criterion proposed by Valero in [37], named as ”Valero SUM(SID)”. In order to make a fair comparison,

we fixed a set of expected number of regions and, in the case of the ”Valero SUM(SID)” and the proposed pruning

criteria, we experimentally obtained the λ values that yield to partitions with a number of regions close to the

expected ones. In the case of the height-based pruning criterion we obtained the height that yield to partitions that

better approximated the desired number of regions. We run eight independent experiments for each pruning criteria,

BPT representation and dataset, where the expected number of regions in the optimal partition, |P∗|, was respectively

set to |P∗| = [5, 10, 20, 35, 50, 75, 150, 500] for the Cuprite scene, and |P∗| = [5, 10, 40, 75, 100, 225, 350, 850] for

the Pavia University scene. The selected values were arbitrarily chosen.

In order to quantitatively compare the segmentations obtained by the different pruning criteria, we compared the

original image, I, to the one obtained by the unmixing reconstruction, Î = ÊΦ̂, calculated from the partitions

obtained by the different BPT representation models, pruning criteria and expected partition sizes. The reconstruction

was made piece-wise, where the endmembers and fractional abundances obtained in each region of a given

segmentation were used to reconstruct the pixels of that region. We made use of four different image reconstruction

quality measures. Two of them, the average RMSE and the average SAD, measure the average Euclidean and
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angular spectral error, respectively:

avgRMSE
(
I, Î

)
=

1

N

N∑
i=1

ε (ri, r̂i) , (19)

where ε (r, r̂) is the RMSE (8) between a pixel in the original image, r ∈ I, and the corresponding one in the

reconstructed image, r̂ ∈ Î.

avgSAD
(
I, Î

)
=

1

N

N∑
i=1

SAD (ri, r̂i) , (20)

where SAD (ri, r̂i) is the spectral angle distance (2). The third one, the average Q, measures the average correlation

between the original and the reconstructed images:

avgQ
(
I, Î

)
=

σIÎ
σIσÎ

2µIµÎ
µ2
I + µ2

Î

2σIσÎ
σ2
I + σ2

Î
, (21)

where µI and µÎ are the mean q-dimensional vectors of the original and reconstructed images respectively; σI

and σÎ denote the variances, and σIÎ the covariance. The last one is the ERGAS quality measure which evaluates

both spectral and spatial divergences:

ERGAS
(
I, Î

)
= 100

√√√√ 1

N

N∑
i=1

(
ε (ri, r̂i)

µri

)2

, (22)

where µri denotes the mean value of the pixel ri.

VI. RESULTS USING PAVIA UNIVERSITY SCENE

A. Reconstruction errors

Figs. 6-8 show the quantitative reconstruction quality measures of the different pruning criteria applied over the

BPT representations obtained by the first-order parametric model, the spectral model and the spectral-spatial model

representations of the Pavia University scene, respectively. Each point in the plots represents a partition obtained by

each of the pruning strategies over the corresponding BPT. In order to compare them, we plot the quality measure

with respect to the number of regions contained in each partition. The conventional region-based pruning strategy

is not shown since the quality measures obtained for it are very poor in all cases, making it difficult to visualize

the differences among the other methods if we include it in the plots.

The four proposed unmixing-based merging criteria outperform the other methods in all the cases. The differences

among the four proposed pruning criteria are small, being the ”Proposed SUM(AVG)” (13) consistently the

best. Nevertheless, the two proposed lattice-based pruning criteria present similar quality values compared to

the arithmetic-based ones, while they promote low upper bounds to the spectral RMSE reconstruction error, and

supposedly to the other aforementioned spectral reconstruction errors as well. With regards to the different region

models, the ones using the unmixing information to build the BPT representation present better quantitative results

than the first-order parametric model. This is especially relevant for the conventional and the ”Valero SUM(SID)”

pruning criteria that make no use of the unmixing information, showing that the use of the spectral unmixing

information either to obtain the BPT representation and/or to prune the BPT is absolutely meaningful.
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B. Segmentation results

Fig.VI-B shows the segmentations obtained by the four proposed unmixing-based pruning criteria and the one by

Valero, for the spectral-spatial BPT representation of the Pavia University scene. The top row shows segmentations

with about 50 regions, while the bottom row shows segmentations with approximately 100 regions. It can be

appreciated that the regions comprise structures which are spatially meaningful, for instance, grouping the university

(big blue building), the parking lots and other visible structures. However, there are not many visual differences

among the five approaches. The only noticeable difference is that the ”Proposed SUM(AVG)” and the ”Proposed

MAX(AVG)” approaches do not change much when the spatial regularization term is favoured, compared to the

other three approaches, which produce segmentations with smaller regions. This can be better understood looking

at the reconstruction quality measures (8), where these two pruning criteria stabilize around segmentations with

approximately 50 regions. It means that the λ parameter should be severely increased to obtain more oversegmented

partitions.

VII. RESULTS USING CUPRITE SCENE

A. Reconstruction errors

Figs. 10-12 show the quantitative reconstruction quality measures of the different pruning criteria applied over

the BPT representations obtained by the first-order parametric model, the spectral model and the spectral-spatial

model representations of the Cuprite scene, respectively. The obtained quantitative results present a similar trend

to the obtained for the Pavia University scene. The main difference is that the ”Proposed SUP(AVG)” (17) pruning

criterion is doing worse than the other proposed pruning criteria. This can be explained by a limitation in the

minimization of the upper bound on the average region error that could be achieved for this dataset. However, the

other three proposed approaches consistently outperform the one by Valero and the conventional ones, being the

”Proposed SUM(AVG)” the one showing the best results again.

B. Segmentation results

Fig.VII-B shows the segmentations obtained by the four proposed unmixing-based pruning criteria and the one

by Valero, for the spectral-spatial BPT representation of the Cuprite scene. As with Pavia University scene, the top

row shows segmentations with about 50 regions, while the bottom row shows segmentations with approximately

100 regions. Being a scene of a natural landscape, it is difficult to appreciate if the regions are spatially meaningful

or not. Visually, it can be appreciate that the ”Proposed SUM(AVG)” and the ”Valero SUM(SID)” approaches

get similar segmentations. The same observation happens for the ”Proposed SUM(MAX)” and the ”Proposed

SUP(MAX)”. However, the ”Proposed SUP(AVG)” is the one achieving the most different segmentation. The

segmentation obtained by this approach contains one large region that comprises approximately two thirds of the

image, and the remaining area is divided in small regions. This highly oversegmented area can be identified as the

mining district, where most of the spectral variability due to mineral takes place.
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VIII. CONCLUSIONS AND FUTURE RESEARCH LINES

In this paper, we have developed a new strategy for the representation of hyperspectral images using binary

partition trees and concepts from spectral unmixing. The presented approach addresses hyperspectral image seg-

mentation and unmixing in a synergistic fashion, i.e., by combining the properties of the two aforementioned

methods into a unified framework for the first time in the literature. The presented strategy has been evaluated

using reference hyperspectral scenes representing two contexts, urban areas and natural landscapes, at different

spatial and spectral resolutions. Overall, the segmentations obtained for the proposed approaches are meaningful and

valuable for hyperspectral image analysis. The four proposed unmixing-based pruning criteria yield to segmentations

that outperformed the approach by Valero and the conventional height and region-based pruning criteria in terms

of reconstruction quality. The ”Proposed SUM(AVG)” (13) pruning criteria consistently outperformed the other

ones. In general, the use of information coming from the unmixing process either in the construction of the BPT

representation, by means of the spectral and spectral-spatial region models and merging criteria, or in the pruning

of the BPT, by means of the four proposed unmixing-based pruning criteria, has a clear positive impact in the

quality of the obtained segmentations.

Although the proposed method has been shown to be a relevant new framework for hyperspectral data in-

terpretation, there are some aspects that may present challenges over time and which deserve a more extensive

evaluation. Among them, we list the possibility to use other unmixing-based fitting functions in the definition of

the pruning criterion or the evaluation using additional hyperspectral scenes. The proposed approach was found to

be useful not only to perform segmentation by taking into account the sub-pixel nature of mixed pixels, but also

to perform spectral unmixing using a local-to-global approach in which the optimization criteria is based on the

minimization of reconstruction errors at a local scale, which results in an overall minimization of reconstruction

errors that is highly appealing for spectral unmixing applications. This avenue will be further investigated. We also

plan to develop computationally efficient implementations (using high performance computing architectures) of the

proposed strategies for the construction and unmixing population of the tree representation in order to reduce its

computational burden.
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(a) (b)

Fig. 5. (a) False color representation of the Pavia University scene and (b) The Cuprite scene.
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Fig. 6. Comparison of the different segmentation oriented pruning criteria in terms of unmixing reconstruction quality for the BPT representation

of Pavia University image, built using the first-order parametric region model: (top-left) Average RMSE, (top-right) Average SAD, (bottom-left)

Average Q (1 is the best), and (bottom-right) ERGAS.
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Fig. 7. Comparison of the different segmentation oriented pruning criteria in terms of unmixing reconstruction quality for the BPT representation

of Pavia University image, built using the spectral region model: (top-left) Average RMSE, (top-right) Average SAD, (bottom-left) Average Q

(1 is the best), and (bottom-right) ERGAS.
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Fig. 8. Comparison of the different segmentation oriented pruning criteria in terms of unmixing reconstruction quality for the BPT representation

of Pavia University image, built using the spectral-spatial parametric region model: (top-left) Average RMSE, (top-right) Average SAD, (bottom-

left) Average Q (1 is the best), and (bottom-right) ERGAS.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9. Segmentations of Pavia University scene obtained by: (from left to right) Proposed SUM(AVG), Proposed SUM(MAX), Proposed

SUP(MAX), Proposed SUP(AVG), and VALERO SUM(SID). Top row segmentations have around 50 regions, bottom row segmentations have

around 100 regions.
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Fig. 10. Comparison of the different segmentation oriented pruning criteria in terms of unmixing reconstruction quality for the BPT representation

of Cuprite image, built using the first-order parametric region model: (top-left) Average RMSE, (top-right) Average SAD, (bottom-left) Average

Q (1 is the best), and (bottom-right) ERGAS.
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Fig. 11. Comparison of the different segmentation oriented pruning criteria in terms of unmixing reconstruction quality for the BPT representation

of Cuprite image, built using the spectral region model: (top-left) Average RMSE, (top-right) Average SAD, (bottom-left) Average Q (1 is the

best), and (bottom-right) ERGAS.
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Fig. 12. Comparison of the different segmentation oriented pruning criteria in terms of unmixing reconstruction quality for the BPT representation

of CUprite image, built using the spectral-spatial parametric region model: (top-left) Average RMSE, (top-right) Average SAD, (bottom-left)

Average Q (1 is the best), and (bottom-right) ERGAS.
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Fig. 13. Segmentations of Cuprite scene obtained by: (from left to right) Proposed SUM(AVG), Proposed SUM(MAX), Proposed SUP(MAX),

Proposed SUP(AVG), and VALERO SUM(SID). Top row segmentations have around 50 regions, bottom row segmentations have around 100

regions.


