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Abstract—This paper presents a robust tracking approach to
handle challenges such as occlusion and appearance change.
Here, the target is partitioned into a number of patches. Then,
the appearance of each patch is modeled using a dictionary
composed of corresponding target patches in previous frames.
In each frame, the target is found among a set of candidates
generated by a particle filter, via a likelihood measure that is
shown to be proportional to the sum of patch-reconstruction
errors of each candidate. Since the target’s appearance often
changes slowly in a video sequence, it is assumed that the
target in the current frame and the best candidates of a small
number of previous frames, belong to a common subspace.
This is imposed using joint sparse representation to enforce the
target and previous best candidates to have a common sparsity
pattern. Moreover, an occlusion detection scheme is proposed
that uses patch-reconstruction errors and a prior probability of
occlusion, extracted from an adaptive Markov chain, to calculate
the probability of occlusion per patch. In each frame, occluded
patches are excluded when updating the dictionary. Extensive
experimental results on several challenging sequences shows that
the proposed method outperforms state-of-the-art trackers.

Index Terms—Visual tracking, particle filter, dictionary, joint
sparse representation, Markov chain

I. INTRODUCTION

V ISUAL TRACKING is a classic computer vision prob-
lem that remains challenging after more than three

decades. There is a high demand for visual tracking in many
computer vision applications, where it is directly or indirectly
required to track an object in a video sequence. To name a few,
consider traffic control, robotics, sports, gaming, augmented
reality, and gesture recognition.

Given a bounding box defining the object of interest (target)
in the first frame of a video sequence, the goal of a tracker, is
to determine the object’s bounding box in subsequent frames.
Primary challenges encountered in visual tracking are target
appearance change and occlusion, while other challenges arise
from variation in illumination, scale, and camera motion
(see Table I). A general tracker is composed of three main
components: 1) A Motion model, which generates a number of
potential bounding boxes as target candidates in each frame.
2) An Appearance model, which models the appearance of
the target throughout the video sequence. 3) An Observation
Model, which defines a measure of similarity (likelihood) to
determine which candidate is most likely to be generated by
the appearance model. This candidate is then selected as the
target in the current frame. The focus of this paper is on the
two latter components.

A. Zarezade, H. R. Rabiee, A. Soltani-Farani, and A. Khajenezhad are with
the Department of Computer Engineering, Sharif University of Technology,
Tehran, Iran.

Recently, sparse representation has shown appealing results
in computer vision applications, such as face recognition
[1], image super-resolution [2], background subtraction [3],
denoising [4], and classification [5]. Motivated by the work
of Wright et. al [1] in face recognition, [6] used sparse
representation for object tracking, which paved the way for
other sparse trackers [7]–[11]. The main idea of [6] is to
model the object with a linear combination of few target
images in previous frames (target templates) plus a linear
combination of canonical basis vectors (trivial templates). The
true candidate is distinguished from other candidates, since it
is expected to be represented mostly by the target templates.
Accordingly, the likelihood of a candidate is selected to be
inversely proportional to its reconstruction error with the target
templates. The main drawback of this method is that, in cases
of sever occlusion the nonzero coefficients rarely correspond
to the target template [1] and therefore the likelihood measure
will no longer indicate the ”true” candidate. Many other
trackers [6]–[8], [12]–[17] have also taken a holistic view,
in which the target is treated as a single entity. In contrast,
other algorithms view the object image as a collection of small
patches in order to better handle partial occlusion [9]–[11],
[18]. In these methods, occlusion only affects a small subset
of the patches where it occurs, and can therefore be treated
more efficiently [19].

In this paper, we propose a robust tracking algorithm by
taking advantage of the similarity between target objects in
consecutive frames (temporal similarity assumption). Inspired
by the success of patchwise methods and sparse representa-
tion for visual tracking, we consider the target object as a
collection of non-overlapping patches and assume that a true
candidate patch accompanied by the target patches found in
previous frames, have sparse representations with a common
sparsity pattern (i.e. belong to a common subspace). This
is accomplished by using a regularization term that induces
joint-sparsity. The appearance of each patch is modeled by a
collection of corresponding target patches in previous frames,
called a patch template. To increase the discriminative power
of the algorithm, we model the object appearance using a
dictionary composed of all the patch templates. This enables
us to measure the overall likelihood of a candidate as a
sum of patchwise reconstruction errors. The advantage of this
likelihood measure is that in cases of partial occlusion, as
long as there are patches which are not totally occluded, it
will indicate the best candidate. Another advantage of building
the appearance model using patch templates, is that we are
able to take advantage of the patchwise reconstruction errors
to determine occluded patches, and exclude them from the
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dictionary update procedure. To summarize, the contributions
of this work are as follows:
• Introduction of a patchwise likelihood measure com-

puted as the sum of patch-reconstruction errors, hence
increasing tracker robustness to misalignment and partial
occlusion.

• Taking into account the temporal similarity assumption
through joint sparse representation, and therefore increas-
ing tracker robustness to appearance change.

• Removing occluded patches from the dictionary update
procedure, using patchwise occlusion detection based on
an adaptive Markov model.

The remainder of this paper is organized as follows. Section
II discusses prior work by categorizing tracking algorithms
into generative and discriminative classes, and provides a more
detailed description of methods that exploit sparse representa-
tion. In Section III, the motion model used in our algorithm,
which is based on particle filter is introduced. The proposed
tracker is introduced in Section IV . Experimental results
are presented in Section V, and the concluding remarks are
provided in Section VI.

II. PRIOR WORKS AND MOTIVATION

The literature on visual object tracking is extensive [20],
and two major categories of visual tracking are discriminative
and generative [7], [8], [10]. In this section, we briefly
review the main works of each category. Afterwards, a more
detailed review of significant tracking methods based on sparse
representation is given. For a recent survey of sparse coding
based trackers, the interested reader may refer to [21].

A. Discriminative Trackers

In discriminative methods, a classifier is trained to discrimi-
nate the target object from the background. Often, a likelihood
measure is considered as the classification score. Regarding
the training scheme of the classifier, the appearance model
may be static [22] or adaptive [23]–[26]. In static models, the
classifier is learned off-line using a training set consisting of
object and background images. For example, Avidan proposed
an off-line trained SVM for car tracking [22]. Although, static
discriminative trackers are robust to the extent of the available
training data, they can’t handle previously unseen appearance
variations. In adaptive approaches, the classifier is trained
online during tracking and bootstraps itself with positive and
negative training data sampled from the target and background.
In [23]–[25], [27], [28], an ensemble of weak classifiers is
learned online and combined to create a stronger classifier. An
important issue that causes drift in discriminative trackers is
uncertainty in labeling training data for updating the classifier.
To overcome this problem, Grabner et al. proposed an online
semi-boosting algorithm [29], in which labeled samples are
collected only from the first frame. Babenko et al. [25], utilized
the idea of multiple instance learning (MIL), in which labels
are assigned to a bag of instances instead of each individual
instance, to transfer the ambiguity in labeling to the learning
algorithm. In [30] both ideas of MIL and semi-supervised
learning are combined to take advantage of both approaches.

B. Generative Trackers

Generative trackers attempt to model the object appearance
and measure the likelihood that a candidate was generated by
the model. Generative models can also be static or adaptive.
The simplest appearance model is a single image of the target,
called a template. Early trackers modeled the object appear-
ance using a fixed template and searched for the candidate with
minimum sum of squared distance (SSD) to the template [31].
The mean-shift tracker [32], [33] uses an adaptive appearance
model, which is the best candidate of the previous frame.
The likelihood measure is defined to measure the similarity
between intensity histograms of the appearance model and a
candidate. Fragment-based tracker [18] is one of the successful
extensions of mean-shift tracker. To handle occlusion it divides
the candidate image into a collection of overlapping patches
and finds the likelihood by aggregating all patches.

The main limitation of template-based appearance models
is that illumination variation can’t be handled efficiently. The
work of Turk and Pentland [34] called Eigenfaces, addressed
this limitation. Their technique employed principal component
analysis (PCA) to model the target object (face). To overcome
the problems caused by illumination variation, it is assumed
that the target object belongs to the subspace spanned by a
few of the principle components. It has been theoretically
proven that an object image under Lambertian reflections
belongs to a low dimensional subspace [35]. Also it has
been empirically observed that even under mild pose change
an object belongs to a low-dimensional subspace [1], [6],
[36]. Based on these properties, Black and Jepson utilized
Eigenimage and optical flow to introduce the Eigentracker
[37]. Since the object appearance may change during the
video sequence, the appearance model needs to be adaptive
and should be updated during tracking. Ross et al. exploit
eigenbasis update algorithms and proposed an incremental
learning method [38] which updates eigenbases of the object
subspace using incremental SVD with a forgetting factor.

C. Sparse Trackers

After the aforementioned developments in generative mod-
els, sparse representation as a variant of subspace models,
was used for visual tracking leading to state-of-the-art results
[6]–[12]. Generally, a candidate is represented using a linear
combination of a few elements (atoms) from a dictionary
composed of a number of previously found target images.
The coefficients of this representation are used to find the best
candidate. Apart from the ability to handle illumination and
mild pose changes, these trackers attempt to tackle occlusion.
Based on how the sparse representation is used, sparse trackers
can also be categorized into generative and discriminative
approaches.

Generative sparse approaches model appearance using a
dictionary composed of two parts, one of which models the
target object while the other is used to model occlusion.
The likelihood measure is usually defined as a function of
the reconstruction error of a candidate using coefficients
corresponding to target atoms in the dictionary. As was
previously mentioned, the dictionary used by the `1 tracker
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[6] is composed of target (object) and trivial (occlusion)
templates. Due to the large size of the trivial templates, the
computational complexity of this tracker is high, and since it
lacks an occlusion detection method, the dictionary may be
contaminated by occlusion which causes the tracker to drift
and eventually lose the target. Mei et. al addressed these two
drawbacks [7] by solving the `1 minimization for a reduced set
of candidates that are likely to possess a lower reconstruction
error and then detecting occlusion by deriving an occlusion
map from the sparse coefficients. The dictionary was updated
for candidates with occlusion less than some threshold. To
increase tracker accuracy, a new occlusion-aware minimization
is proposed in [8], which is solved using a customized version
of APG [39]. In [14], the problem of finding the sparse
representation of the candidates is cast into low-rank sparse
matrix learning. The sparse representation of all candidates is
found simultaneously by minimizing their reconstruction error
accompanied with an `1 and low-rank regularization term.
To take advantage of the relationship between particles and
increase tracker speed, Zhang et. al proposed to group all the
candidates in a frame and find their joint-sparse representation,
simultaneously [12], [15]. Since the number of candidates
that don’t belong to the target object’s subspace is usually
large, the joint-sparse minimization is likely to compensate
for these candidates rather than accurately representing the
fewer candidates that belong to the target object’s subspace.
Therefore, the assumption made by Zhang et. al that all
candidates are related through a common low-dimensional
subspace seems unrealistic.

Discriminative sparse trackers, employ sparse representation
to discriminate the target from its background. In [17], the
dictionary is learned from SIFT descriptors extracted from
a general dataset of object images, and a linear classifier is
learned online with positive and negative samples. To better
discriminate the target from background, in [10] a dictionary is
learned online from target patches. The sparse representation
of candidate patches are obtained via Local Linear Coding
(LLC) [40]. Finally, the best candidate is found via regularized
Mean-Shift. In [13], a sparse measurement matrix is adopted
to extract low dimensional discriminative features and the
tracking problem is formulated as an online naive Bayes
classifier. In [9], a dictionary composed of overlapping patches
from the target is used to find the sparse representation
of candidate patches. A method called alignment-pooling is
proposed where the likelihoods are found by summation over
a feature vector composed of the similarity of each candidate
patch to related patches in the target dictionary.

III. PARTICLE FILTER

Visual tracking problem may be cast as Bayesian filtering.
The goal of Bayesian filtering is to find the posterior pdf
of a system state xt, given all observations z1:t. Bayesian
filtering is composed of two steps: prediction and update. In
the prediction step, with Markov assumption, the prior pdf of
the state is obtained using the Chapman-Kolmogorov equation
as:

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (1)

When a new observation zt becomes available, in update step,
the posterior is found via Bayes’ rule as:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(2)

Solving (1) and (2) gives the optimal solution of the filtering
problem. Particle filter represents an analytical method for
solving these equations. The key idea is to represent the pos-
terior by samples (particles) and their associated probabilities
(weights). Therefore, updating the posterior is equivalent to
updating the particles and their weights. So far, many variants
of particle filters have been developed [41]. We use Sequential
Importance Resampling (SIR) filter [42] in which particles are
resampled in each frame to reduce the degeneracy problem.
The update equations of SIR filter are:

xit ∼ p(xt|xit−1), wi
t ∼ p(zt|xit) (3)

where xit is the ith particle in frame t. In visual tracking,
state xt denotes the affine motion parameters which define the
object region in frame t, and observations z1:t are a collection
of frames observed so far. We notice from SIR equations
(3) that visual tracking requires a likelihood evaluation mea-
sure p(zt|xit) and the state transition probability p(xt|xit−1).
Without any prior knowledge, p(xt|xit−1) is considered to
be a zero mean Gaussian with predefined variance Σ. To
evaluate p(zt|xit), first the candidate region associated with
particle xit is cropped from frame t, then the probability that
it is generated by the appearance model is considered as its
likelihood.

IV. PROPOSED METHOD

Given the initial state of the target, the goal is to find the
target object among the set of candidates generated by the
particle filter, in subsequent frames. In order to accomplish
this task, we need to model the target’s appearance and
find the candidate that is most likely to be generated by
this model. We use a dictionary composed of image patches
selected from targets found in previous frames to model the
target’s appearance. The best candidate is assumed to have
the least reconstruction error sum, over its patches. In order to
support changes in the appearance of the target object, once
the best candidate is found, the model needs to be updated
accordingly. We attempt to exclude occluded image patches
when updating the dictionary with the best candidate. In this
section, we describe these steps in detail and intuitively justify
the proposed approach.

A. Notation

In the sequel, bold lower case and bold upper case letters are
used for vectors (d) and matrices (D), respectively. For any
variable, the superscript (i) is used to indicate that the variable
is related to the ith patch. Suppose that Λ ⊂ {1, 2, . . . , n} is
a subset of indices, the complement of which is denoted by
Λc = {1, 2, . . . , n}\Λ. By dΛ we mean the vector obtained
from d by eliminating indices inside Λc. Similarly, by DΛ we
mean the matrix obtained by removing from D the columns
indexed by Λc.
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Fig. 1. Appearance Dictionary. Target appearance is modeled by a dictionary
composed of patch templates. Each patch template DΛi

is used to model the
corresponding target patch, and is composed of a number of target patches
found in previous frames.

B. Appearance Model

Given a dictionary composed of a number of the best
candidates found in previous frames, the target’s appearance is
modeled with a linear combination of a few elements (atoms)
from this dictionary. In other words, it is assumed that the
target belongs to a low-dimensional linear subspace spanned
by a few of the dictionary atoms. Linear subspaces are rich
appearance models that can handle illumination and pose
change. It has been theoretically proven that an object under
different illumination lies on a low-dimensional subspace [35].
Also, [36] empirically showed that a dictionary of pose varying
face images is able to model pose change. We take a patchwise
view and model the target’s appearance with a dictionary D,
composed of patches selected from n previous best candidates
(see Fig. 1):

D =

[ DΛ1︷ ︸︸ ︷
d

(1)
1 · · ·d(1)

n

∣∣∣ · · · ∣∣∣
DΛm︷ ︸︸ ︷

d
(m)
1 · · ·d(m)

n

]
(4)

where d
(j)
i ∈ RM is a vectorized grayscale image of the jth

patch of the ith target placed in the dictionary, Λj denotes the
set of indices of the atoms that belong to the jth patch in all
targets, DΛj is the jth patch template, and D ∈ RM×N . The
number of dictionary atoms is N = nm, where n and m are
the number of targets and number of patches in each target
image, respectively.

Before further discussing the model, we look into two issues
regarding the proposed appearance model, namely feature ex-
traction and patchwise treatment of the target. Among features
used by sparse trackers are grayscale [6], [9], [10], SIFT [17],
block-division based covariance [43], and covariance matrix
[44]. Most feature extraction methods involve only linear (or
approximately linear) operations, and it has been shown that
linear transform of grayscale features under mild conditions
has no considerable effect on face recognition using sparse rep-
resentation [1]. On the other hand, feature extraction methods
such as SIFT or Haar [25], [28], [29] are usually accompanied
by information loss, which reduce the discriminative ability
of the tracker. Considering these observations and to reduce
computational complexity, we use grayscale features. The
other major issue is the target representation scheme. The
common approach is to view the target as a single entity, in
which the dictionary is a collection of vectorized images of

the target in previous frames, in contrast to the dictionary in
(4) which is composed of vectorized patches. Wright et. al [1]
showed that severe occlusions cause a considerable decrease
in face recognition performance. Also, the results of a recent
benchmark [19] shows that trackers with a patchwise view
[9], [10], [18] are more robust to occlusion than methods with
a holistic view [6], [8], [12]. The advantages of the proposed
target appearance model are twofold: improved performance in
handling occlusion and considerable speed up due to reduced
dictionary size compared to [6].

In the current frame, the ith patch of the target y, denoted
by y(i), is assumed to belong to a low-dimensional subspace
spanned by the columns of the ith patch template DΛi . Con-
sidering the appearance variations of the target and presence
of noise, each patch template is expected to be a full-rank
matrix. Since different patch templates DΛj

correspond to
different non-overlapping patches of the target, and each patch
template is likely to be full-rank, it is reasonable to assume
that the collection of patch templates DΛj , j 6= i, denoted by
DΛc

i
is likely to be overcomplete. Hence, any occlusion or

noise in y(i) may be modeled as e(i) = DΛc
i
c
(i)
Λc

i
leading to

our representation of y(i) as:

y(i) = DΛi
c

(i)
Λi

+ e(i) = DΛi
c

(i)
Λi

+ DΛc
i
c

(i)
Λc

i
= Dc(i) (5)

where c(i) is the vector of representation coefficients. As
mentioned before, the appearance model dictionary D is
expected to be overcomplete. Therefore, the system of linear
equations (5) is underdetermined, and has no unique solution
for c(i). When occlusion and noise is negligible, we can expect
c(i) to be sparse. This sparsity may be imposed by solving:

argmin
c(i)

‖c(i)‖0 s.t. y(i) = Dc(i) (6)

Taking into account any shortcomings due to the linear nature
of the model, a relaxed form [45] is usually solved by using
at most L atoms:

argmin
c(i)

1

2
‖y(i) −Dc(i)‖22 s.t. ‖c(i)‖0 ≤ L (7)

Considering that the target’s appearance changes smoothly,
it is plausible to assume that the target objects, over a few
consecutive frames, belong to the same subspace. We apply
this assumption by enforcing the sparse representation of the
current target patch y(i) to be jointly sparse (i.e. have the
same sparsity pattern) with the same patch in the previous k
best candidates, i.e. y∗(i)t−k, . . . ,y

∗(i)
t−1. To this end, we solve the

following optimization problem:

argmin
C(i)

1

2
‖Y (i) −DC(i)‖2F s.t. ‖C(i)‖2,0 ≤ L (8)

where Y (i) = [y
∗(i)
t−k, · · · ,y

∗(i)
t−1,y

(i)], the columns of C(i) are
the corresponding sparse representations, and ‖C(i)‖2,0 is the
`0 pseudo-norm computed over the `2 norms of rows of C(i),
i.e. counts the number of nonzero rows of C(i) (see Fig. 2).

This optimization problem belongs to the class of NP-Hard
problems [46], and is therefore usually solved approximately,
by using a greedy algorithm or convex relaxation. Different
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t− 2 t− 1 t (Current frame)

[ ]=[ . . . | . . .| . . . ]
y
∗(1)
t−2 y

∗(1)
t−1 y

(1)
t DΛ1

. . . DΛ9

..
.

C
(1)
Λ1

..
.

C
(1)
Λ9

Fig. 2. Joint sparse representation of a patch. To find the sparse representation of a candidate patch, it is grouped with corresponding patches from the
two previous best candidates. The joint-sparse minimizations (8) or (9), force the sparse coding of the signals in a group to have similar support, as depicted
in the row-sparse matrix C(1).

convex relaxations have been proposed for this problem which
often take the form of:

arg min
C(i)

1

2
‖Y (i) −DC(i)‖2F + λ‖C(i)‖p,q (9)

where ‖C(i)‖p,q is the `q norm computed over the `p norms
of rows of C(i), and λ is a regularization parameter, which
balances reconstruction error with model complexity. For (9)
to become a convex problem, we require p, q ≥ 1. This is the
well known convex formulation of the joint sparse recovery
[47] or simultaneous sparse approximation [48] problem, also
known as the Multiple Measurement Vector (MMV) [49]
problem in the compressed sensing community. Other convex
formulations for this problem follow the general `q/`p form
with q ≥ 1 and p = 1, among which `2/`1 and `∞/`1
formulations are more widely used. We adhere to the `2/`1
form because the objective function of (9) is strongly convex
for k > 0, and therefore has a unique solution. Several
algorithms exist that efficiently solve this problem [49]–[52].

A common greedy strategy used to solve (8) is the Simul-
taneous Orthogonal Matching Pursuit (SOMP) algorithm [53]
which is an extension of the well known Orthogonal Matching
Pursuit (OMP) algorithm. In SOMP, it is initially assumed that
C(i) = 0, i.e. no atoms are used in the representation. Then in
each iteration, the remainder R = Y (i)−DC(i) is computed,
and the dictionary atom dj that has the largest correlation with
R, i.e. arg maxj ‖RTdj‖2, is added to the set of active atoms
in the representation. The sparse representation, C(i) is then
updated to use the set of active atoms.

Among the algorithms proposed to solve (9), Malioutov,
et al. [50] show that the optimization may be posed as
Second Order Cone Programming (SOCP) for which off-the-
shelf optimizers are available. The inner loops of SOCP are
computationally expensive and the algorithm is only suitable
for small-size problems [50], [51]. The work of Lu, et al. [51]
extends the Alternating Directions Method (ADM) of [54] to
solve the MMV recovery. Although the proposed algorithm is
quite fast within an acceptable solution accuracy, there is no
guarantee that each iteration of the algorithm will reduce the
objective function. We employ the regularized M-FOCUSS
algorithm of Cotter et al. [49] which is simple, efficient,
and also guaranteed to reduce the objective function in each
iteration. The algorithm works by estimating the `2 norm
of each row of C(i), and then updating C(i) based on that

estimate. The update rule may be written as:

C(i) = ΛDT (DΛDT + λI)−1Y (i) (10)

where Λ = diag(‖C(i)
j ‖2) is computed using the previous

estimate of C(i). The algorithm may be initialized from any
random point for which all rows of C(i) have a nonzero norm,
and is terminated when the difference between consecutive
estimates of C(i) is smaller than some threshold.

C. Observation Model

The model defined in (5) represents both the target object
and any occlusion or noise, through the sparse coefficients.
For a given sparse representation c(i) of patch i, c

(i)
Λi

are
the coefficients corresponding to the patch template i, and
represent the target, while c

(i)
Λc

i
represents any occlusion or

noise. In order to measure the likelihood that a given candidate
is generated by the target model, we only pay attention to
the portion of sparse coefficients that represent the target, and
disregard the representation of the occlusion which we later
use for occlusion detection in Section IV-D.

Given the current frame image z, and a region defined by the
state x which is provided by the motion model as a candidate
for the target, we define the likelihood of the candidate image
y as the probability that it is generated by the appearance
model dictionary D through the portion of sparse coefficients
that represent the target found by minimization (8) or (9).
Hence we define:

p(z|x) , p(y|D, c
(1)
Λ1
, . . . , c

(m)
Λm

) (11)

Assuming independence between patches of a candidate, we
can evaluate a candidate’s likelihood as:

p(y|D, c
(1)
Λ1
, . . . , c

(m)
Λm

) =
∏
i

p(y(i)|DΛi , c
(i)
Λi

) (12)

Considering a zero mean Gaussian error e(i) ∼ N(0, σ(i)I) in
equation (5), the likelihood of each patch is obtained from:

p(y(i)|DΛi
, c

(i)
Λi

) = exp(−
‖y(i) −DΛic

(i)
Λi
‖22

σ(i)2 ) (13)

Taking the log-likelihood of (11), using (12) and (13), and
assuming equal variance for all patches, we have the final
measure for selecting the best candidate:

log p(z|x) ∝ −
∑
i

‖y(i) −DΛic
(i)
Λi
‖22 (14)
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Fig. 3. Misalignment effect. Illustrative sparse representation of patch 1
(highlighted in white) and patch 2 (highlighted in yellow). The center patch
of the white candidate is aligned with the target and has low reconstruction
error in its corresponding patch template. The center patch in the yellow
candidate is slightly shifted away from the target and is mainly reconstructed
by a non-corresponding patch template, hence increasing its reconstruction
error in the corresponding patch template.

Intuitively, this log-likelihood measure will favor the candidate
with the lowest sum of reconstruction errors calculated for
each patch separately, via its representation in the correspond-
ing patch template. The main benefit of this new likelihood
measure is due to patchwise treatment of the candidates. When
a partial or even a severe occlusion occurs, as long as there
are some patches which are not totally occluded, this measure
will indicate the true best candidate. A pseudocode for the
proposed tracker is presented in the Algorithm 1.

We expect to get better results by using some heuristic to
select appropriate values for σ(i). As the target can not usually
be inscribed inside a rectangle, marginal patches often contain
the background. Moreover, occlusion usually occurs at the
boundaries of the target, and therefore marginal patches are
more affected. To alleviate this undesirable effect we can set
the values of σ(i)s proportional to the inverse distance of the
patch center from the center of the rectangle enclosing the
target. In the experiments of Section V, we have used the
simple case with equal variance for all patches.

Calculating the negative log-likelihood of a candidate as the
sum of its patch-reconstruction errors, increases the robustness
of the tracker to misalignments. When a candidate is slightly
shifted away from the target, the reconstruction error of its
patches will substantially increase. As depicted in Fig. 3,
this is because the shifted candidate is no longer aligned
with the target, hence the sparse representation of any of its
patches is less likely to use atoms from its corresponding patch
template. Since the reconstruction error is computed using
the coefficients of the corresponding patch template, the log-
likelihood of a misaligned candidate will be quite small.

Since the target’s appearance often changes slowly, obtain-
ing the sparse representation of a candidate patch, jointly
with its corresponding patches from the best candidates of
previous frames, increases the robustness of the tracker to
“false” candidates. Grouping a “true” candidate patch with
corresponding patches from the best previous candidates is
expected to increase its chance of being represented by atoms
from the correct patch template even in case of a moderate
pose change, hence increasing its likelihood. Our intuition is
that the joint sparse nature of the solution of minimization (9)
is likely to tolerate an increase in the reconstruction error of

the “true” patch, in order to best represent the whole group of
patches.

To illustrate the above discussions, we have depicted in
Fig. 4, the likelihood measure for a set of regularly sampled
candidates centered inside a rectangular region around the
target, for various methods. As expected, the likelihood peaks
at the center of the region, but more steeply for the proposed
method. In other words, our likelihood measure has less
variance compared to the other methods.

Algorithm 1 Proposed tracker
Input: Previous particles Xt−1 = {xi

t−1}Ni=1, frame zt, dictionary
D, previous k targets {y∗

t−1, . . . ,y
∗
t−k}.

Output: Target y, current particles Xt = {xi
t}Ni=1, dictionary D.

1: Draw particles Xt from Xt−1 using xi
t ∼ N (xi

t−1,Σ).
2: for i = 1 to N do
3: Generate candidate y corresponding to particle xi

t and resize
it to a predefined size.

4: Partition candidate y in to equal-sized non-overlapping
patches {y(1),y(2), . . . ,y(m)}.

5: for j = 1 to m do
6: Y (j) ← [y

∗(j)
t−k , · · · ,y

∗(j)
t−1 ,y

(j)]

7: C(j) ← solution of minimization (8) or (9)
8: c(j) ← C

(j)
k+1

9: p(y(j)|DΛi , c
(i)
Λi

)← exp(−‖y(j) −DΛjc
(j)
Λj
‖22)

10: end for
11: log p(zt|xi

t)←
∑

j log p(y(j)|DΛj , c
(j)
Λj

)
12: end for
13: Select the candidate with the largest log p(zt|xi

t) as the target y
in current frame.

14: Update dictionary D with y using Algorithm 2.

D. Dictionary Update

The appearance model needs to be updated over time in
order to handle variations in the target’s pose and illumination.
Commonly, the best candidate found in the current frame is
used to update the appearance model. Many schemes have
been presented to update generative and discriminative track-
ers. In most generative sparse trackers, the target is modeled
with a dictionary and is updated by replacing its atoms. Two
issues are important when updating the dictionary. The first
issue is the policy used to select the dictionary atom(s) that
are going to be replaced, while the second issue is related
to detecting and perhaps removing any occlusion present in
the new atom(s). If severely occluded atoms are allowed to
enter, and hence corrupt the dictionary, the tracker is prone to
produce erroneous results leading to further corruption of the
dictionary and gradual failure of the tracker. This is known as
the problem of drift. Therefore, an accurate occlusion detection
approach is essential to alleviate this problem.

To select an old atom to be replaced with a newly found
target, the policy used by [6]–[8], [12], [15] is based on
assigning weights to the dictionary atoms. The weight assigned
to each atom is proportional to its corresponding coefficient
in the sparse representation of the best candidate. The weights
are updated in each frame, after the best candidate is found.
The atom with the lowest weight is selected to be replaced
by the target. To alleviate the drift problem, similar to [9], we
randomly select dictionary atoms according to a predefined
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MTT ALSA PJS-M

Fig. 4. Likelihood measure. Comparison of likelihood maps obtained by MTT [15], ASLA [9], and proposed tracker. These maps show the likelihood of
candidates generated by sweeping the ground truth bounding box (yellow rectangle) inside the red rectangular region.

distribution. This distribution is defined so that recent atoms
are more likely to be removed.

Based on our patchwise approach, we propose a new
occlusion detection scheme. We investigate whether each patch
is occluded or not by defining an occlusion probability. A
patch is assumed to be occluded if its occlusion probability is
larger than 1

2 . Then the occluded patches are excluded from the
best candidates, when updating the dictionary. The occlusion
probability of a patch y(i), is defined as:

p(o(i)|D,O(i),y(i), c(i)) ∝ (15)

p(y(i)|D,O(i), o(i), c(i))p(o(i)|D,O(i), c(i))

where o(i) = 1, and o(i) = 0 indicate the occluded and non-
occluded states, respectively, and O(i) = {o(i)

1 , . . . , o
(i)
t−1} is

the history of occlusion states for patch i. Assuming that given
the current occlusion state of y(i), this patch is independent of
previous occlusion occurrences, and considering a first order
Markov model for occlusion state of patches, we have:

p(y(i)|D,O(i), o(i), c(i)) = p(y(i)|D, o(i), c(i)) (16)

p(o(i)|D,O(i), c(i)) = p(o(i)|o(i)
t−1) (17)

To determine the probability of occlusion in (15), it suffices to
define the above two distributions. Considering the model in
(5), the target patch is represented by the sparse coefficients
c

(i)
Λi

, while severely occluded patches are expected to be
represented mainly by c

(i)
Λc

i
. Since the best candidate is already

found, we no longer need to impose the temporal similarity
assumption, and cΛi

is obtained from (9) with k = 0. Hence,
to discriminate an occluded patch form a non-occluded patch
we define the likelihood of patch i in (16) for the case of
o(i) = 0 and o(i) = 1, respectively:

p(y(i)
∣∣D, c(i), o(i) = 0) = exp(−‖y(i) −DΛi

c
(i)
Λi
‖22) (18)

p(y(i)|D, c(i), o(i) = 1) = exp(−‖y(i) −DΛc
i
c

(i)
Λc

i
‖22) (19)

To define a prior for the occlusion state of patch i in (17),
we consider a simple two state Markov chain for each patch,
as shown in Fig 5. The transition probabilities of this model
are updated online during tracking, by using Maximum A
Posteriori (MAP) estimation. Removing the patch superscript
(i) from occlusion states o(i) and restoring the frame subscript
for notational convenience, we have:

p(ot|ot−1) =µot−1(1−ot)(1− µ)ot−1ot (20)

η(1−ot−1)ot(1− η)(1−ot−1)(1−ot)

o ō

µ

η

1 − µ 1 − η

Fig. 5. Markov chain of occlusion state. Two-state Markov chain with
adaptive transition probabilities used to define occlusion prior of each patch.
States o and ō represent occluded and non-occluded states, respectively.

Since the transition probabilities are between 0 and 1, an
appropriate prior for these parameters is the beta distribution,
namely µ ∼ β(a, b), and η ∼ β(c, d). By changing the
parameters of these distributions we can fully reflect any prior
knowledge about the transition probabilities that determine
patch occlusion. With knowledge of occlusion states in previ-
ous frames and prior distribution of the transition probabilities,
µ, η can be found using MAP estimation as follows:

arg max
µ,η

p(µ, η|o1, o2, · · · , ot) = (21)

arg max
µ,η

β(µ|a, b)β(η|c, d)

t∏
i=1

p(oi|oi−1, µ, η)

Substituting (20) and solving this minimization, the MAP
estimation of µ and η can be found as:

µ̂MAP =
a− 1 + noō

a− 1 + noō + b− 1 + noo
(22)

η̂MAP =
c− 1 + nōo

c− 1 + nōo + d− 1 + nōō
(23)

where for example noō counts the number of transitions
between occlusion state oi−1 = 1, and non-occluded state
oi = 0 in the occlusion history O. A pseudo-code of the
dictionary update procedure is represented in Algorithm 2.

V. EXPERIMENTS

In this section, we present qualitative and quantitative ex-
perimental results to evaluate the performance of the proposed
trackers. Qualitative comparisons involve demonstrating each
tracker’s performance on a number of sample frames. Since
this measure is limited to observing performance for a few
hand picked frames, it is essential to evaluate different tracking
algorithms with quantitative measures such as Center Location
Error (CLE), PASCAL overlap score (VOC), and success rate.
The experimental results are organized as follows. In Section
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Algorithm 2 Dictionary update
Input: Dictionary D, newly found target image y, state transition

counters, occlusion history of patches {O(i)}mi=1.
Output: Updated dictionary D, updated state transition counters,

updated occlusion history of patches {O(i)}mi=1.
1: Randomly select an old dictionary target image yold, with higher

probability in selection of recent targets.
2: for i = 1 to m do
3: Find sparse representation of the target patch:

c(i) ← arg minc
1
2
‖y(i) −Dc‖22 + λ‖c‖1

4: Find occlusion likelihood of the target patch according to (18)
and (19).

5: Update the transition probabilities of Markov chain according
to (22) and (23).

6: Evaluate the prior probability of occlusion according to (20).
7: Calculate occlusion probability according to (15).
8: Upade dictrionary with non-occluded patches of the target:
9: if p(o(i) = 0|D,O(i),y(i), c(i)) ≥ 0.5 then

10: y
(i)
old ← y(i), o(i) ← 0

11: else
12: o(i) ← 1
13: end if
14: Update counters using occlusion states o(i) and o(i)

t−1.
15: O(i) ← O(i) ∪ {o(i)}
16: end for

V-A an overview of the different datasets used for experiments,
and the trackers used for comparison, is provided. Some
important implementation details are discussed in Section V-B.
The comparison of different trackers according to qualitative
and quantitative measures are presented in Sections V-C and
V-D, respectively.

A. Base Trackers and Dataset

For evaluation we have selected a set of 10 publicly avail-
able datasets that cover the common challenges prevalent in
visual tracking. The datasets are commonly known as board,
crossing, david, dollar, faceocc2, skating1, stone, sylv, trellis,
and walking, that are available along with their ground truth at
[19].A list of the challenges posed by these datasets is provided
in Table I. We have annotated the datasets according to these
challenges as listed in Table II, followed by their different at-
tributes, namely, target size, resolution, and number of frames.
A histogram that shows the number of datasets that pose each
challenge is shown in Fig. 6. This histogram approximately has
an uniform distribution, indicating the diversity of the selected
datasets.

We compare our results with four well known trackers,
namely OAB [24], MIL [25], Frag [18], and IVT [38]. We
also report results of two recent sparse trackers, denoted
as APG [8], and MTT [12]. For these trackers, we have
used the source codes either available from the corresponding
author’s website or provided by the tracking benchmark [19].
The proposed trackers are denoted by PJS-M1 and PJS-S2.
The two trackers differ in that PJS-M solves the convex
joint sparse minimization of (9), while PJS-S solves the non-
convex formulation of (8). We use the implementation of

1Patchwise Joint Sparse-M-FOCCUS
2Patchwise Joint Sparse-SOMP

TABLE I
LIST OF CHALLENGES USED AS ATTRIBUTES FOR DATASET ANNOTATION

IN TABLE II.

Attribute Description Attribute Description
IV Illumination variation PO Partial occlusion
SV Scale variation SO Sever occlusion
PC Pose change CM Camera motion
IR In-plane rotation MB Motion blur
OR Out-of-plane rotation ST Similar targets

TABLE II
DATASET CHARACTERISTICS: RESOLUTION, LENGTH, TARGET SIZE, AND

CHALLENGES LISTED IN TABLE I

Dataset Challenges Target size Resolution Length
board SV,IR,OR,FM,MB 195× 153 640× 480 696

david IV,SV,PC,OR,PO,MB 68× 122 320× 240 460

dollar PC,ST 62× 98 320× 240 325

faceocc2 IR,PC,PO 82× 98 320× 240 594

skating1 IV,SV,PC,OR,SO,ST,MB 35× 100 640× 360 400

stone SO,ST 41× 20 320× 240 591

sylv IV,PC,IR,OR 51× 61 320× 240 800

trellis IV,SV,PC,IR,OR,CM 68× 101 320× 240 569

walking2 SV,PC,PO,SO,ST 31× 115 384× 288 500

SOMP available by the SPAMS [55], [56] package to solve
(8), and our implementation of regularized M-FOCCUS for
(9). All source codes for our experiments are available at
http://ssp.dml.ir/research/pjs.

B. Implementation Details

For methods that use pixel intensities as features (IVT, APG,
MTT, PJS-M, and PJS-S) the target object was resized to
32× 32 pixels. For OAB, MIL, and Frag that extract features
from raw images, the parameters were set as provided by the
authors. The patch size was set to 8×8 pixels, resulting in 16
non-overlapping patches for our method. Hence, the dictionary
is composed of 16 patch templates each of which contains 10
vectorized grayscale patches. The dictionary is initialized by
patches from the given target object and nine slightly (1 to 2
pixels) shifted versions. The nine shifted versions are replaced
by the found target in the next nine frames, after which the
dictionary is updated according to the scheme described in
Section IV-D. The dictionary update parameters of (22) and
(23) were set equal to a = d = 4, and b = c = 8. For the joint
sparse recovery minimizations of (8) and (9) we use L = 4,
γ = 0.001, and k = 4. For methods that require a particle filter
motion model, the number of particles was set to 600 and their
variance was set to σ = diag([6, 6, 0.02, 0.002, 0.002, 0]).
The first two diagonal elements of σ correspond to spatial
variance in horizontal and vertical directions, and the others
correspond to rotation, scale, and skew. These parameters were
fixed across all datasets and trackers.

Motion models, especially those which are based on a
particle filter, usually involve randomness. To fairly evaluate
the trackers and reduce the effects of randomness, we run each
experiment 10 times and report the average results. In order to
provide reproducible results, the random seed for the 10 runs
was set between 0 to 9 in MATLAB.

http://ssp.dml.ir/research/pjs


9

#0020 #0200 #0401 #0696 #0124 #0171 #0229 #0422

#0030 #0133 #0178 #0341

#0032 #0041 #0058 #0109

#0050 #0141 #0211 #0301 #0173 #0495 #0611 #0773

#0141 #0300 #0406 #0566 #0025 #0344 #0604 #0725

#0042 #0212 #0423 #0560 #0092 #0225 #0312 #0499

 Frag OAB MIL IVT APG MTT PJS−M PJS−S

Fig. 7. Sample frame illustration. Tracking results of different trackers on 10 datasets: board, david, skating1, crossing, dollar, faceocc2, stone, sylv, trellis,
and walking2, from left to right and top to bottom respectively.
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Fig. 6. Challenge histogram. Frequency of challenges listed in Table I.

C. Qualitative Comparison

Figure 7 shows sample frames and the bounding boxes
found by each tracker in each dataset. The illustrated results
show that the proposed trackers have been successful in chal-
lenging scenarios where previous trackers have often failed.
To better reflect on the robustness of the trackers, the next
subsection is dedicated to quantitative comparisons. In this
section we qualitatively describe how the trackers have dealt
with some of the challenges posed by the selected datasets.

1) board: In this video, an electronic board undergoes dif-
ferent visual changes such as scale variation, motion blur, and
in-plane and out-of-plane rotation. This is quite a challenging
dataset, and all trackers except PJS-S and PJS-M have lost
track of the target prior to frame 100. In frame 400, the target
passes its previous location, at which point Frag and MIL were
able to track the target again, but lost it again after 60 or so
frames. Only PJS-S was able to track the target throughout the
sequence.

2) david: This dataset shows a young man’s face as he
and the camera move, resulting in challenges such as pose
change, illumination variation, partial occlusion, and out-of-

plane rotation. Prior to frame 124, which has illumination
variation and minor pose change, only OAB drifted from the
target. In subsequent frames, before the target rotates about
90◦, APG, Frag, and MIL also lost the target. After the target
returned to its initial pose, all trackers except PJS-S drifted.

3) skating1: In this video sequence, the target object and
camera move, and the target undergoes sever illumination
change, pose variation, and occlusion by a similar object.
Around frame 73, the target goes through rapid pose change,
as a result only OAB, PJS-M, and PJS-S continued to track the
target. Finally, after a sever illumination change, only PJS-S
tracked the target until the sequence ended.

4) crossing: In this sequence a man (target) crosses a
street and a car passes by, momentarily changing the target’s
background. Almost all trackers were able to follow the target
up to frame 41, when the car appears. After this, due to
low resolution and decreased discrimination between the car
and the target, Frag, IVT, APG, and MTT lost the target. A
close look at the frames shows that PJS-M and PJS-S produce
better fitting bounding boxes and are more robust against scale
variation and low resolution.

5) dollar: The main challenge in this sequence is the
existence of an object similar to the target, which is a ticket
pass. The ticket is folded in frame 50, and then a similar
unfolded ticket is introduced. All trackers except Frag and
OAB were able to follow the ticket till the end of sequence.

6) faceocc2: In this video, the target undergoes pose
change, occlusion, and rotation. Before frame 336, the target is
not severely occluded and all trackers except the two proposed
trackers exhibited a minor drift. In subsequent frames, this
drift increases for all the competing methods, except for the
two proposed trackers. For IVT, although the center location
error is low, the overlap ratio decreased drastically. At the end,
APG, IVT, PJS-S, and PJS-M had less drift compared to the
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other trackers.
7) stone: The main challenge here is the existence of many

objects that are similar to the target (which may also occlude
the target). In frame 385, a similar object occludes the target,
at which point Farg, MIL, and APG lost the target. In frame
510, the target passes near another similar object, where only
PJS-S was able to overcome this challenge.

8) sylv: In this sequence, the camera is fixed and a stuffed
cat (target) moves in front of a light source, resulting in
illumination change, and in and out-of-plane rotation. During
the final frames, and after large out-of-plane rotations, only
PJS-S and PJS-M were able to track the target with the largest
overlap.

9) trellis: This dataset is similar to david but exhibits larger
pose change and sever illumination variations. After frame
212, a large change in illumination caused all trackers except
PJS-S and PJS-M to drift or lose the target.

10) walking2: The main challenge of this sequence is sever
occlusion by a similar object. In frame 200, after occlusion
by the similar object, Frag, MIL, and MTT followed the
occlusion, and APG and OAB drifted. This drift continued
for the remainder of the sequence, and only PJS-S and PJS-
M succeed to track the target with accurate alignment. This
sequence also shows the ability of our methods to handle large
scale changes.

D. Quantitative Comparison

The Center Location Error (CLE), and PASCAL overlap
score (VOC) are typical quantitative measures which are
usually plotted as a function of frame number. We have also
calculated the mean values of these measures and presented
them in tabular format for different trackers and datasets. The
center location error measures the Euclidian distance between
the centers of tracker, and ground truth bounding boxes. The
frame and target size or orientation are not taken into account
by CLE. Furthermore, after the target is lost, large values of
CLE become meaningless and corrupt the mean CLE value. To
resolve these deficiencies, the PASCAL overlap score is used.
This score is defined as the ratio of intersection to union of
tracker and ground truth bounding boxes: |Sgt∩Str|

|Sgt∪Str| , where |R|
denotes the number of pixels in region R. This measure which
is normalized within [0 1], is independent of video and target
sizes or orientation. The success rate measure which is equal
to the ratio of successfully tracked frames in a video sequence,
may be used to express the overall performance of a tracker.
Moreover, a frame is successfully tracked if its overlap score
is grater than a predefined threshold.

Figures 8 and 9 show the CLE measure and overlap score
vs frame number, for the average results of all trackers,
respectively. As illustrated, PJS-S and PJS-M are among the
trackers with lowest CLE and highest VOC. As we mentioned
earlier, CLE alone is not a fair measure for comparison. For
example, in the walking sequence PJS-S and IVT have the
lowest CLE but when comparing the VOC, PJS-S and PJS-
M gain the best results. From these figures, we can observe
the average performance of the trackers for the entire video
sequence, and evaluate them with regard to the challenges

TABLE III
FROM TOP TO BOTTOM: CLE, OVERLAP RATIO, AND SUCCESS RATE

AVERAGED ON 10 RUNS FOR DIFFERENT TRACKERS ON 10 DATASETS.
BEST TWO RESULTS ARE HIGHLIGHTED.

Frag OAB MIL IVT APG MTT PJS-M PJS-S

board 212 118 57 151 191 149 37 31
crossing 58 5 3 4 86 38 6 2

david 19 114 17 8 62 18 11 14
dollar 57 68 16 15 19 6 7 7

faceocc2 42 12 14 10 29 10 14 13
skating1 112 28 151 273 134 336 46 23

stone 31 95 33 10 32 72 47 19
sylv 7 10 7 19 15 12 9 5

trellis 64 74 53 59 76 55 7 9
walking2 59 10 56 4 9 16 8 4

Average 66 54 41 55 65 71 19 13

Frag OAB MIL IVT APG MTT PJS-M PJS-S

board 0.15 0.28 0.52 0.19 0.11 0.19 0.63 0.65
crossing 0.31 0.67 0.73 0.27 0.37 0.46 0.70 0.74

david 0.42 0.17 0.42 0.43 0.29 0.45 0.59 0.54
dollar 0.36 0.33 0.62 0.64 0.71 0.80 0.80 0.80

faceocc2 0.47 0.67 0.66 0.56 0.46 0.68 0.65 0.64
skating1 0.24 0.36 0.13 0.06 0.07 0.07 0.46 0.50

stone 0.32 0.10 0.22 0.35 0.32 0.20 0.25 0.45
sylv 0.72 0.65 0.70 0.63 0.61 0.54 0.67 0.73

trellis 0.27 0.17 0.29 0.23 0.19 0.24 0.66 0.63
walking2 0.26 0.44 0.30 0.60 0.59 0.54 0.68 0.75

Average 0.35 0.38 0.46 0.40 0.37 0.42 0.61 0.64

Frag OAB MIL IVT APG MTT PJS-M PJS-S

board 14 20 35 11 5 11 57 70
crossing 37 69 86 21 45 51 88 95

david 10 18 5 33 33 29 51 46
dollar 39 38 48 52 87 99 100 99

faceocc2 45 67 62 52 50 70 67 63
skating1 15 20 9 4 5 5 40 41

stone 13 12 10 14 13 11 21 26
sylv 81 73 81 81 74 19 79 94

trellis 22 5 17 22 13 12 79 72
walking2 19 22 29 58 52 51 78 92

Average 30 34 38 35 38 36 66 70

posed in different frames. In this regard, the results confirm the
observations of Section V-C. Table III provides a numerical
comparison of mean CLE, overlap ratio, and success rate
for an overlap ratio threshold equal to 0.6, over 10 runs for
each pair of dataset and tracker. The average results over all
datasets in the last row of the tables shows that the proposed
trackers are the best among the competing trackers. Also, in
all sequences except faceocc2, the proposed trackers achieve
the first or second place. The main reason is the patchwise
joint-sparse nature of our method, which causes the bounding
boxes to accurately align with the target. The average success
rate in all datasets for the two best trackers, PJS-S and PJS-M,
is 69% and 65%, respectively. Using one specific threshold for
tracker evaluation may not be adequately representative of its
performance; Therefore similar to [19] we have used a success
plot. The success plot shows the ratio of successful frames as
the threshold varies from 0 to 1. The average success plots
are shown in Fig. 10 for all datasets and trackers. These plots
show that the proposed trackers, as previously shown by using
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Fig. 8. Center location error plots. Distance between tracker and ground truth bounding boxes vs frame number. Results were averaged over 10 runs.

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

frame number

O
v

e
rl

a
p

 r
a

ti
o

 (
V

O
C

)

board

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

frame number

O
v

e
rl

a
p

 r
a

ti
o

 (
V

O
C

)

crossing

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

frame number

O
v

e
rl

a
p

 r
a

ti
o

 (
V

O
C

)
david

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

frame number

O
v

e
rl

a
p

 r
a

ti
o

 (
V

O
C

)

dollar

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

frame number

O
v
e
rl

a
p

 r
a
ti

o
 (

V
O

C
)

faceocc2

 

 

Frag

OAB

MIL

IVT

APG

MTT

PJS−M

PJS−S

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

frame number

O
v

e
rl

a
p

 r
a

ti
o

 (
V

O
C

)

skating1

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

frame number

O
v

e
rl

a
p

 r
a

ti
o

 (
V

O
C

)

stone

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

frame number

O
v

e
rl

a
p

 r
a

ti
o

 (
V

O
C

)

sylv

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

frame number

O
v

e
rl

a
p

 r
a

ti
o

 (
V

O
C

)

trellis

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

frame number

O
v

e
rl

a
p

 r
a

ti
o

 (
V

O
C

)

walking2

Fig. 9. Overlap ratio plots. Overlap ratio of tracker and ground truth bounding boxes vs frame number. Results were averaged over 10 runs.
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Fig. 10. Success plot diagrams. Success rates for thresholds in [0 1]. Results were averaged over 10 runs.

other measures, achieved the best success rate for all datasets,
except faceocc2.

To further investigate the effect of joint sparse coding on the
proposed tracker’s (PJS-S) performance, the success plot for
different values of group size, k = 0, 2, 4, 6 is depicted in Fig.
11 for board, skating1, and walking2 datasets. As expected,
increasing the group size will increase tracker performance,

as long as the temporal similarity assumption is not violated .
In board and walking2 group size k = 6 and k = 4 obtained
the best results. On the other hand, in skating1 due to sever
occlusions and fast movements, group sizes higher than k = 4
invalidate our assumption and consequently the performance
has decreased for k = 6.
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Fig. 11. Group size effect. Effect of group size on tracking performance of PJS-S. The results were averaged over 10 runs.

VI. CONCLUSION

In this paper, we exploited the temporal similarity assump-
tion by using joint sparsity to enforce the targets in consecutive
frames belong to a common subspace. The target image
was viewed as a collection of non-overlapping patches. This
resulted in a likelihood measure which is calculated as a sum
over patch-reconstruction errors. Furthermore, an occlusion
detection scheme was introduced by taking advantage of patch-
reconstruction errors, and a prior probability of occlusion
derived from an adaptive Markov chain of occlusion states.
Extensive experimental results showed the effectiveness of
the proposed approach on a variety of video sequences. In
particular, our observations show that interpreting the target
as a collection of smaller patches reduced the effects of
occlusion by isolating its effects to the occluded patches.
This is further important for updating the dictionary, because
the occluded patches can be excluded from this procedure.
In addition, we have observed that imposing the temporal
similarity assumption generally improved the tracker’s perfor-
mance against appearance change, although this improvement
was less profound for video sequences with rapid changes
in appearance. Many directions may be followed for future
work. The temporal similarity assumption may be imposed in
other manners, the tracker’s speed can be improved to make
it suitable for real-time applications, and finally a weighted
sum of patch-reconstruction errors may be able to improve
the tracker’s performance by assigning less weight to marginal
patches that often contain the background and are more prone
to occlusion.
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