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Abstract—The paper proposes a solution based on Generative
Adversarial Network (GAN) for solving jigsaw puzzles. The
problem assumes that an image is divided into equal square
pieces, and asks to recover the image according to information
provided by the pieces. Conventional jigsaw puzzle solvers often
determine the relationships based on the boundaries of pieces,
which ignore the important semantic information. In this paper,
we propose JigsawGAN, a GAN-based auxiliary learning method
for solving jigsaw puzzles with unpaired images (with no prior
knowledge of the initial images). We design a multi-task pipeline
that includes, (1) a classification branch to classify jigsaw per-
mutations, and (2) a GAN branch to recover features to images
in correct orders. The classification branch is constrained by the
pseudo-labels generated according to the shuffled pieces. The
GAN branch concentrates on the image semantic information,
where the generator produces the natural images to fool the
discriminator, while the discriminator distinguishes whether a
given image belongs to the synthesized or the real target domain.
These two branches are connected by a flow-based warp module
that is applied to warp features to correct the order according to
the classification results. The proposed method can solve jigsaw
puzzles more efficiently by utilizing both semantic information
and boundary information simultaneously. Qualitative and quan-
titative comparisons against several representative jigsaw puzzle
solvers demonstrate the superiority of our method.

Index Terms—Solving jigsaw puzzles, generative adversarial
networks, auxiliary learning

I. INTRODUCTION

Solving the jigsaw puzzle is a challenging problem that

involves research in computer science, mathematics and en-

gineering. It abstracts a range of computational problems that

a set of unordered fragments should be organized into their

original combination. Numerous applications are subsequently

raised, such as reassembling archaeological artifacts [1]–[4],

recovering shredded documents or photographs [5]–[7] and

genome biology [8]. Standard jigsaw puzzles are made by
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dividing images into interlocking patterns of pieces. With

the pieces separated from each other and mixed randomly,

the challenge is to reassemble these pieces into the original

image. The degree of difficulty is determined by the number

of pieces, the shape of the pieces and the graphical compo-

sition of the picture itself. The automatic solution of puzzles,

without having any information on the underlying image, is

NP-complete [9], [10]. This task relies on computer vision

algorithms, such as contour or feature detection [11]. Recent

development of deep learning (DL) opens bright perspectives

for finding better reorganizations more efficiently.

The first algorithm that attempted to automatically solve

general puzzles was introduced by Freeman and Gardner [14].

The original approach was designed to solve puzzles with 9

pieces by only considering the geometric shape of the pieces.

Various puzzle reconstruction methods are then introduced,

which obey a basic operation that the unassigned piece should

link to an existing piece by finding its best neighbor according

to some affinity functions [1], [15], [16] or matching con-

tours [6], [17], [18]. These algorithms are slow because they

keep iterating themselves until a proper solution is produced,

as long as all parts are put in place. Moreover, the ‘best neigh-

bors’ may be false-positives due to the occasionally unobvious

continuation between true neighbors. Some subsequent works

are proposed to avoid checking all possible permutations of

piece placements [19]–[22]. However, they mainly concentrate

on the boundary information (four boundaries of each piece),

whereas ignoring the semantic information that is useful

for image understanding. Recently, some methods based on

convolutional neural networks (CNN) have been introduced

for predicting the permutations by neural optimization [23],

[24] or the relative position of a fragment with respect to

another [12], [25], [26]. Similar to previous methods, these

algorithms do not consider the semantic content information

and only rely on learning the position of each piece.

In this paper, we propose JigsawGAN, a GAN-based auxil-

iary learning pipeline that combines the boundary information

of pieces and the semantic information of the global images to

solve jigsaw puzzles, which can better simulate the procedure

that how humans solve jigsaw puzzles. Auxiliary learning

approaches aim to maximize the prediction of a primary task

by supervising the model to additionally learn a secondary

task [27], [28]. In this work, we address the problem of

permutation classification by simultaneously optimizing the

GAN network as an auxiliary task. The proposed pipeline

consists of two branches, a classification branch (Fig. 2 (b))

and a GAN branch (Fig. 2 (d), (e) and a discriminator). The

http://arxiv.org/abs/2101.07555v3
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(a) Inputs (b) Results of [12] (c) Results of [13] (d) Ours

Fig. 1. Comparisons with two recent jigsaw puzzle solvers. (a) Input images.
(b) Results of Paumard et al.’s method [12]. (c) Results of Huroyan et al.’s
method [13]. (d) Our results. Paumard et al.’s method [12] cannot handle
these two cases and Huroyan et al.’s method [13] fails to solve the house
example. The proposed JigsawGAN works well on these cases due to the
concentration of boundary and semantic information simultaneously.

classification branch classifies the jigsaw permutations, and

the GAN branch recovers features to images with correct

sequences. The two branches are connected by the encoder

(Fig. 2 (a)) and a flow-based warp module (Fig. 2 (c)).

The flow-based warp module is applied to warp encoder

features to the predicted positions according to the classifi-

cation results. Moreover, it contributes to the gradient back

propagation from the GAN branch to the classification branch.

The GAN branch consists of the decoder and the discriminator.

The former one recovers the features to the images and the

latter one aims to classify that an image belongs to the

generated dataset or the real dataset. The discriminator can

be regarded as the process that humans judge whether the

reorganization of pieces is correct. The judgment process is

essential to equip the pipeline with the capability of high-level

image understanding, together with low-level boundary clues.

The boundary loss and the GAN loss are applied for constrain-

ing the boundaries of pieces and distinguishing the semantic

information, respectively. The JigsawGAN is mainly designed

for solving 3 × 3 puzzles and existing algorithms for 3 × 3
puzzles can benefit from our method. We introduce reference

labels to guide the convergence of the classification network.

The GAN branch can push the encoder to generate more

informative features, thereby obtaining higher classification

accuracy. Our method is able to improve the reorganization

accuracy of existing methods if we select their results as our

reference labels. Detailed descriptions and experiments are

presented in Section IV-E4.

Fig. 1 shows the comparisons with two recent methods [12],

[13]. Paumard et al. proposed a CNN-based method to detect

the neighbor pieces and applied the shortest path optimization

to recover the images [12]. Huroyan et al. applied the graph

connection Laplacian algorithm to determine the boundary

relationships [13]. Fig. 1 exhibits the reassembled pieces ac-

cording to the predicted labels. It includes two hard examples,

in which three grassland pieces in the house example and two

leg pieces in the elephant example can be easily confused.

Paumard et al.’s method [12] cannot handle the two cases and

Huroyan et al.’s method [13] fails to solve the house example.

In contrast, our method works well on these cases due to the

concentration on the boundary information and semantic clues.

Overall, the main contributions are summarized as follows:

• We propose JigsawGAN, a GAN-based architecture to

solve jigsaw puzzles, in which both the boundary infor-

mation and semantic clues are fused for the inference.

• We introduce a flow-based warp module to reorganize

feature pieces, which also ensures the gradient from the

GAN branch can be back-propagated to the classification

branch during the training process.

• We provide quantitative and qualitative comparisons with

several typical jigsaw puzzle solvers to demonstrate the

superiority of the proposed method.

II. RELATED WORKS

Introduced by Freeman and Gardner [14], the puzzle solving

problems have been studied by many researchers, even though

Demaine et al. discovered that puzzle assembling is NP-hard

if the dissimilarity is unreliable [10].

A. Solving Square-piece Puzzles

Most jigsaw solvers assume that the input includes equal-

sized squared pieces. The first work was proposed by [29],

where a greedy algorithm and a benchmark were proposed.

They presented a probabilistic solver to achieve approximated

puzzle reconstruction. Pomeranz et al. evaluated some com-

patibility metrics and proposed a new compatibility metric to

predict the probability that two given parts are neighbors [16].

Gallagher et al. divided the squared jigsaw puzzle problems

into three types [19]. ‘Type 1’ puzzle means the orientation

of each jigsaw piece is known, and only the location of

each piece is unknown. ‘Type 2’ puzzle is defined as a non-

overlapping square-piece jigsaw puzzle with unknown dimen-

sion, unknown piece rotation, and unknown piece position.

Meanwhile, the global geometry and position of every jigsaw

piece in ‘Type 3’ puzzle are known, and only the orientation

of each piece is unknown. Gallagher et al. solved ‘Type 1’

and ‘Type 2’ puzzle problems through the minimum spanning

tree (MST) algorithm constrained by geometric consistency

between pieces. A Markov Random Field (MRF)-based algo-

rithm was also proposed to solve the ‘Type 3’ puzzle.

Some subsequent works were proposed to solve the ‘Type

1’ puzzle problem. Yu et al. applied linear programming to

exploit all pairwise matches, and computed the position of

each component [30]. There are also some methods aimed to

solve the complicated ‘Type 2’ puzzle problem. Son et al.

introduced loop constraints for assembling non-overlapping

jigsaw puzzles where the rotation and the position of each

piece are unknown [20]. Huroyan et al. utilized graph con-

nection Laplacian to recover the rotations of the pieces when

both shuffles and rotations are unknown [13]. Some variants

were investigated subsequently, including handling puzzles

with missing pieces [31] and eroded boundaries [12]. Paikin et

al. calculated dissimilarity between pieces and then proposed

a greedy algorithm for handling puzzles of unknown size

and with missing entries [31]. Bridger et al. proposed a

GAN-based architecture to recover the eroded regions and
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Fig. 2. The pipeline exhibits the architecture of the proposed JigsawGAN, which consists of two streams that operate different functions. The top stream

classifies the jigsaw permutations. In turn, the bottom stream recovers features to images. The two streams are connected by the encoder and a flow-based
warp module. The encoder extracts features of input shuffled pieces. The shuffled features are then combined, called Fshuffle, to be fed to the classification
module to predict the jigsaw permutation. The classification results provides information to generate flow fields that can reassemble the combined feature
Fshuffle to a new combined feature Fwarp. The warped feature Fwarp is then sent to the residual blocks and the decoder to recover natural image.

reassembled the images using greedy algorithms [26]. Our

method concentrates on solving the ‘Type 1’ non-overlapping

square-piece jigsaw puzzles.

Current DL-based methods are mainly designed for solv-

ing 9 pieces with strong robustness compared to traditional

algorithms. Dery et al. [24] applied a pre-trained VGG model

as feature extractor and corrected the order using a pointer

network [32]. Paumard et al. utilized a CNN-based method

to detect the neighbor pieces and used the shortest path

optimization to recover the eroded images [12]. These methods

obey the conventional rule to solve jigsaw puzzles, which

consists of two steps. The first step is applying the neural

network to determine the relationships of pieces, and the

second step is using optimization techniques to reorganize the

pieces. Their performances are limited by the first step due

to the aperture problem based only on the local pieces. We

propose a GAN-based approach to include global semantic

information apart from local pieces for a better accuracy.

B. Pre-training Jigsaw Puzzle Solvers

Numerous self-supervised methods consider solving jigsaw

puzzles as pre-text tasks. This learning strategy is a recent

variation of the unsupervised learning theme that transfers the

pre-trained network parameters on jigsaw puzzle tasks to other

visual recognition tasks [33]. These methods assume that a

rich universal representation has been captured in the pre-

trained model, which is useful to be fined-tuned with the task-

specific data using various strategies. Noroozi et al. introduced

a context-free network (CFN) to separate the pieces in the

convolutional process. Its main architecture focused on a sub-

set of possible permutations including all the image tiles and

solved a classification problem [34]. Santa et al. proposed to

handle the whole set by approximating the permutation matrix

and solving a bi-level optimization problem to recover the

right ordering [35]. The above methods tackled the problem

by dealing with the separate pieces and then finding a way

to recombine them. Carlucci et al. proposed JiGen to train a

jigsaw classifier and a object classifier simultaneously. They

focused on domain generalization tasks by considering that the

jigsaw puzzle solver can improve semantic understanding [36].

Du et al. combined the jigsaw puzzle and the progressive

training to optimize the fine-grained classification by learning

which granularities are the most discriminative and how to fuse

information cross multi-granularity [37]. However, solving

jigsaw puzzle tasks in these methods are supervised, which

depend heavily on the training data. In this paper, we propose a

GAN-based auxiliary learning method to solve jigsaw puzzles,

where the ground truth of jigsaw puzzle task is unavailable.

Auxiliary learning in our method means that we formulate

the permutation classification as the primary task with the

secondary goal is to optimize the GAN network.

III. METHOD

We propose a GAN-based architecture for solving the jigsaw

puzzles with unpaired datasets. The architecture includes two

streams operating different functions. The first stream defines

the jigsaw puzzle solving as a classification task to judge

which permutation the shuffled input belongs to. The second

stream is composed of the generator G and the discriminator

D. The generator G learns the mapping function between

different domains, while the discriminator D aims to optimize

the generator by distinguishing target domain images from the

generated ones. Specifically, we generate a wide diversity of

shuffled images {xi}i=1,...,N ∈ X as the source domain data,

and a collection of natural images {yj}j=1,...,M ∈ Y , as the

target domain data. The data distributions of the two domains

are denoted as x ∼ pdata(x) and y ∼ pdata(y), respectively.
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TABLE I
LAYER CONFIGURATIONS OF THE ARCHITECTURE. B REPRESENTS THE BATCH SIZE, Hp AND Wp ARE THE HEIGHT AND WIDTH OF INPUT PIECES. THE

ENCODER EXTRACTS FEATURES OF INPUT SHUFFLED PIECES. THE SHUFFLED FEATURES ARE THEN COMBINED (Fshuffle) WITH SIZE Hf AND Wf . THE

WARPED FEATURE Fwarp IS SENT TO THE RESIDUAL BLOCKS AND THE DECODER TO RECOVER NATURAL IMAGE.

(a) Encoder

Input: [B × n× n, 3, Hp, Wp]

Conv BN
Activation

Kernel Stride Channel Channel

7 1 64 64 ReLU
3 2 128 - -
3 1 128 128 ReLU
3 2 256 - -
3 1 256 256 ReLU

Fshuffle: [B, 256, Hf , Wf ]

(b) Classification module

Fshuffle: [B, 256, Hf , Wf ]

Conv
Activation

Max pooling FC
Kernel Stride Channel Stride Channel

3 2 256 ReLU 2 -
3 2 384 ReLU 2 -
3 2 384 ReLU 2 -
- - - - - 4096
- - - - - P

Classification output: B × P

(c) Residual blocks and decoder

Fwarp: [B, 256, Hf , Wf ]

Conv BN
Activation

Kernel Stride Channel Channel

3 2 256 256 ReLU
3 1 256 256 ES

3 1/2 128 - -
3 1 128 128 ReLU
3 1/2 64 - -
3 1 64 64 ReLU
7 1 3 - -

Generator output: [B, 3, H , W ]

(d) Discriminator

Input: [B, 3, H , W ]

Conv BN
Activation

Kernel Stride Channel Channel

3 1 32 - LReLU
3 2 64 - LReLU
3 1 64 64 LReLU
3 2 128 - LReLU
3 1 128 128 LReLU
3 1 256 256 LReLU
3 1 1 - -

Output: [B, 1, H/4, W/4]

A. Network Architecture

We present the classification network C, generator G in

Fig. 2. where C, G and the discriminator D are simultaneously

optimized during the training process. Their detailed layer

configurations are shown in Table I. The inputs are obtained

by decomposing the source images into n × n pieces, which

are then shuffled and reassigned to one of the n2 grid positions

to generate n2! combinations. n2! is a very large number and

scarcely possible to be considered as classification tasks if

n > 2, for example, (32)! = 362, 880. Generally, P elements

are selected from n2! combinations according to the maximal

Hamming distance [34], and we assign an index to each entry.

In our implementation, solving the jigsaw puzzle is considered

as a classification task and each permutation corresponds to

a classification label. The number of permutations indicates

the classification categories. The ultimate target is to predict

correct permutation of the shuffled input image.

The shuffled input image is first divided into n× n pieces,

and the pieces are sent to the network in parallel. We choose

the discrete pieces as inputs in order to prevent the cross-

influence between the boundaries of pieces. The encoder

(Fig. 2 (a)) extracts features of these shuffled pieces. The

shuffled features are then combined, called Fshuffle, to be sent

to the classification module (Fig. 2 (b)) to predict the jigsaw

permutation. The classification module is constrained by the

pseudo-labels, called reference labels. During the training,

we find that an unsupervised classification network converges

only with difficulty. To solve the problem, we generate the

reference labels to guide C. The classification results provide

information to generate flow fields (Fig. 2 (c)) that can

reassemble the combined feature Fshuffle to a new combined

feature Fwarp. The warped feature Fwarp is then sent to the

residual blocks (Fig. 2 (d)) and the decoder (Fig. 2 (e)) to

recover natural images. The decoder can recover a perfect

reorganized image if Fwarp is reassembled with the correct

order according to the classification label.

When the real permutation labels and the correct natural

images are unavailable, we adopt the GAN architecture to

achieve the unsupervised optimization. The vanilla GAN con-

sists of two components, a generator G and a discriminator

D, where G is responsible for capturing the data distribution

while D tries to distinguish whether a sample comes from

the real data or the generator. This framework corresponds to

a min-max two-player game, and introduces a powerful way

to estimate the target distribution. The GAN branch provides

global constraints to enable the network to concentrate on

semantic clues. The decoder and the discriminator as well as

extra losses enable the encoder to generate more informative

features and further improve the classification network.

Classification Network: The classification network consists

of two parts: the convolutional blocks (the encoder) and the

classification module. The encoder extracts useful signals for

downstream transformation. The classification module aims

to distinguish different permutations, which includes convolu-

tional layers, max pooling layers and fully connected layers.

Generator: The generator network is composed of three

parts: the encoder, eight residual blocks and the decoder. The

encoder of the classification network also extracts features for

the generator. Afterward, eight residual blocks with identical

layouts are adopted to construct the content and the manifold

features. The decoder consists of two identical transposed

convolutional blocks and a final convolutional layer.

Discriminator: The discriminator network complements the

generator and aims to classify each image as real or fake. The

discriminator network includes several convolutional blocks.

Such a simple discriminator uses fewer parameters and can

work on images of arbitrary sizes.
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Fig. 3. The flow-based warp module can warp the shuffled features to ordered
features according to the classification results.

B. Flow-based Warp Module

The GAN branch cannot recover the extracted features

directly because the features are shuffled. We introduce a flow-

based warp module to reassemble the shuffled encoder features

and ensure the gradient can be back-propagated correctly

during the feature recombination. In detail, we define the

flow fields to represent dense pixel correspondences between

the shuffled encoder features (Fshuffle) and the warpped

features (Fwarp). The optical flows are constructed according

to the predicted labels, which are used to warp Fshuffle into

Fwarp. The size of the flow-based warp module is defined as

Hf × Wf × 2, where the first Hf × Wf channel controls

the horizontal shift of the features and the last Hf × Wf

channel calculates the vertical shift of the features. The

discrete encoder features are combined before reassembling

by the flow-based warp module. Hf and Wf are the height

and width of combined features. The flow-based warp module

not only rearranges the shuffled features but also guarantees

the gradient back propagation. Note that, some shift operations

can also recombine the shuffled features, but block the gradient

back propagation. As a result, the semantic information from

the GAN branch cannot be delivered to the classification

branch, thereby resulting in lower classification accuracy.

The decoder can recover perfect images if the classification

labels are accurate, as shown in Fig. 3. Some wrong classifi-

cation can be tolerated when the network is initialized because

the GAN optimization can correct the mistakes gradually.

GAN network can detect the reorganization error and rectify

it according to the semantic information acquired from the

real dataset. The correct information will be transferred to

the encoder and the classification module through the gradient

back propagation, and can guide the classification network to

classify the input correctly on following iterations.

C. Loss Function

We design our objective function to include the following

three losses: (1) the jigsaw loss Ljigsaw(C), which optimizes

the classification network to recognize the correct permu-

tations; (2) the adversarial loss LGAN(G,D), which drives

the generator network to achieve the desired transformation;

(3) the boundary loss Lboundary(G,D), which pushes the

decoder of G to recover clear images, and further constrains

the encoder to generate useful features that are helpful for the

classification network. The full objective function is:

L(G,D,C) = Ljigsaw(C)+LGAN(G,D)+Lboundary(G,D) (1)

1) Jigsaw Loss: We consider the jigsaw puzzle solving

as a classification task and P is the classification category.

Kullback-Leibler (KL) divergence can measure the similarity

between the predicted distribution and the target distribution.

The KL divergence becomes smaller when two permutations

tend to be similar. We aim to minimize the KL divergence

between the reassembled result (ppredict) and the ground truth

(preal), which can be described as follows:

argminKL(ppredict, preal) (2)

A simple classification network is first proposed to rec-

ognize the correct permutation. We minimize the following

jigsaw loss to optimize the classification network:

Ljigsaw(C) = Ex∼pdata(x)[CE(C(x), p)], (3)

where p is the probability distribution of the real data, C(x)
is the probability distribution of the predicted data which indi-

cates the probability that the result belongs to each category.

p and C(x) are defined as matrix with size B × P , where B

is the batch size. CE is cross-entropy loss which is defined as:

CE(C(x), p) = −
∑

p · log(C(x)) (4)

However, the real jigsaw labels are unavailable for un-

supervised tasks. Directly training C without jigsaw labels

is impossible. The classification network tends to assign

labels randomly, which achieves 30-40% classification ac-

curacy for three-classification tasks and 20-30% for four-

classification tasks according to our experiments. Note that,

three-classification tasks mean the dataset contains three cat-

egories and the model will predict the most likely category

that one input belongs to. Pseudo-labels are introduced to

achieve better classification performance. The pseudo-labels,

called reference labels, are generated according to the shuffled

input images. The reference labels can constrain C when

permutation indexes are unavailable. We apply the following

five steps to obtain the reference labels:

1) Cutting four boundaries from each piece, and the width

of the boundary is determined by a hyper-parameter pix.

2) Calculating the PSNR values between the top boundary

of a specific piece and bottom boundaries of other pieces

to obtain a vector with size 1 × n2. Then, a n2 × n2

matrix can be obtained when computes all top-bottom

relationships, as shown in Fig. 4.

3) Applying the same way to get another n2 × n2 matrix

to indicate the left-right relationships.

4) There are n× (n−1) correct top-bottom boundary pairs

and n × (n − 1) correct left-right boundary pairs, so

we adopt a greedy algorithm [38] to select n× (n− 1)
maximum values from two matrices, respectively.

5) A minimum spanning tree (MST) algorithm [19] is

then applied to assemble the pieces, and the reference

permutation pref is returned.
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Fig. 4. In this case, we calculate the PSNR values between the top boundary of
the top-middle piece and the bottom boundaries of other pieces. Corresponding
PSNR values are displayed in (a). These PSNR values compose the second
row of the 9 × 9 top-bottom relationship metric, as shown in (b).

TABLE II
EXPERIMENTS TO SHOW THE INFLUENCE OF THE HYPER-PARAMETER pix.

pix = 3 pix = 2 pix = 1

PSNR 20.1 21.5 24.7
Accuracy 56.5% 60.3% 66.4%

Empirically, pix is set to 1, which means we cut a row of

pixels of each boundary. Table II shows the corresponding

PSNR values and reorganization accuracy when we select

different pix. A larger pix may cut a wider boundary strip.

However, the redundant information could decrease the PSNR

values and the reorganization accuracy. We select pix = 1

when we obtain the boundary strips, which are more sensitive

to the boundary discontinuity.

After the reference labels are obtained, focal (FL) loss [39]

is applied as the jigsaw loss. FL loss ensures the minimization

of the KL divergence whilst increasing the entropy of the

predicted distribution, which can prevent the model from

becoming overconfident. FL loss can down-weight easy ex-

amples and focus training on hard negatives. We replace the

CE loss conventionally used with the FL loss to improve the

network calibration. FL loss is defined as:

FL(C(x), p) = −
∑

(1 − C(x) · p)γ · log(C(x)) (5)

where (1− C(x) · p)γ is a modulating factor to optimize the

imbalance of the dataset and γ is a tunable focusing parameter

that smoothly adjusts the rate at which easy examples are

down-weighted. γ is set to 2 in our implementations. Finally,

the jigsaw loss can be described as follows:

Ljigsaw(C) = Ex∼pdata(x)[FL(C(x), pref )] (6)

2) Adversarial Loss: The performance of the classification

module C is limited by the reference labels. After the encoder

module generating distinctive features, we add a decoder

module to recover the features to natural images. We do not

train an autoencoder network that directly recovers the shuffled

inputs because it is useless for the encoder to generate more

informative features. The proposed flow-based warp module

is able to warp the shuffled features (Fshuffle) to warpped

features (Fwarp) according to the classification results. The

reorganized features Fwarp are then sent to the GAN branch

!
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Fig. 5. (a) An incorrect reorganized result that may confuse the discriminator.
(b) The correct reassemble result. The numbers indicate the SSIM values
between two adjacent boundaries.

to recover the images. The GAN branch is auxiliary to the

classification branch and trained to help the encoder module

generate useful features that are aware of the semantic infor-

mation, and further improve the classification performance.

As in classic GAN networks, the adversarial loss is used to

constrain the results of G to look like target domain images. In

our task, adversarial loss pushes G to generate natural images

in the absence of corresponding ground truth. Meanwhile, D

aims to distinguish whether a given image belongs to the

synthesized or the real target set, which tries to classify an

image into two categories: the generated image G(x) and the

real image y, as formulated in Eq. 7.

LGAN = Ey∼pdata(y)

[

logD(y)
]

+ Ex∼pdata(x)

[

log(1−D(G(x))
] (7)

3) Boundary Loss: The adversarial loss ensures that the

generated image looks similar to the target domain. It is inad-

equate for a smooth transaction, especially at the boundaries

of pieces. For example, in Fig. 5 (a), sorting adjacent top-

bottom pieces in house images mistakenly may confuse the

discriminator, such that the discriminator considers the imper-

fect image as correct image and cannot work as we desired.

Therefore, it is essential to enforce a more strict constraint to

guarantee the semantic consistency of the generated images.

To achieve this, we add penalties at the boundaries of pieces

to punish the incorrect combination. We first cut the decoder

result into n × n pieces and calculate the SSIM of adjacent

boundaries. For example, as for 3×3 puzzle, the top-left piece

needs to calculate the SSIM of its right boundary with the left

boundary of the top-middle piece (orange boxes in Fig. 5).

Similarly, the SSIM value between its bottom boundary and

the top boundary of the middle-left piece is computed (green

boxes in Fig. 5). We obtain n × (n − 1) values to represent

the top-bottom relationships and n×(n−1) values to indicate

the left-right relationships. Two average scores of these two

relationships are calculated to design the boundary loss, noted

as SSIMtb and SSIMlr, respectively. As such, the boundary

loss is defined as:

Lboundary(G,D) = Ex∼pdata(x)[(1− SSIMtb(G(x)))]

+ Ex∼pdata(x)[(1− SSIMlr(G(x)))]
(8)

Matching boundaries generate large SSIM values. The

boundary loss provides more penalties to wrong placements.
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Fig. 6. Examples generated by the proposed JigsawGAN. The top two rows show the results when the hyper-parameter n = 2, the middle two rows present
the results when the hyper-parameter n = 3, and the bottom two rows are results when n = 4. Different styles can be efficiently reassembled by JigsawGAN.

IV. EXPERIMENTS

We first illustrate the datasets and implementation details

in Section IV-A and then conduct comprehensive experiments

to verify the effectiveness of the proposed method, including

quantitative comparisons (Section IV-B), qualitative compar-

isons (Section IV-C), computational times (Section IV-D) and

ablation studies (Section IV-E). Specifically, we first com-

pare our method with several representative jigsaw puzzle

works, including a classic jigsaw puzzle solver [19], a linear

programming-based method [30], a loop constraints-based

method [20], a graph connection Laplacian-based method [13],

and then compare with a recent DL-based method which

relies on the shortest path optimization [12]. Some comparison

methods are designed for handling the ‘Type 1’ and ‘Type 2’

puzzles simultaneously, which can be easily applied for our

‘Type 1’ task for solving 3×3 pieces. Next, ablation studies are

performed to illustrate the importance of different components.

A. Datasets and Implementation Details

1) Data Collection: The dataset includes 7,639 im-

ages, among which 5,156 images originate from the PACS

dataset [40] and 2,483 images are from our own collec-

tion. The PACS dataset includes many pictures with similar

contents, so we gathered images from movies or Internet

that are more distinguishable to increase the diversity. Our

dataset covers 4 object categories (House, Person, Elephant

and Guitar), and each of them can be divided into 4 domains

(Photo, Art paintings, Cartoon and Sketches). Each category

is divided into three subsets: a jigsaw set (40%) to generate

the inputs, a real dataset (40%) to help the discriminator to

distinguish the generated images and real images, and a test set

(20%) to evaluate the performance of different methods. They

are randomly selected from the overall dataset. The shuffled

fragments are then prepared according to [36]: the input image

is divided into n × n pieces and the size of each piece is

set to 24 × 24. The permutation P is set to 1,000 in our

implementation. The hyper-parameter n and the permutation P

are important factors for the network performance. We perform

ablation studies on these two factors in Section IV-E3.

2) Training Details: We implement JigsawGAN in Py-

Torch, and all the experiments are performed on an NVIDIA

RTX 2080Ti GPU with 100 epochs. For each iteration, every
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TABLE III
QUANTITATIVE COMPARISONS WITH SEVERAL REPRESENTATIVE JIGSAW PUZZLE SOLVERS IN TERMS OF REORGANIZATION ACCURACY.

Gallagher2012 [19] Son2014 [20] Yu2015 [30] Huroyan2020 [13] Paumard2020 [12] Ours

House 64.5% 70.3% 73.8% 76.4% 61.2% 80.2%

Person 63.8% 68.2% 70.6% 73.7% 63.6% 79.9%
Guitar 59.4% 64.5% 68.3% 71.1% 60.4% 77.4%

Elephant 60.5% 66% 71.4% 73.1% 58.2% 78.5%

Mean 62.1% 67.3% 71.0% 74.6% 60.9% 79.0%

input image is divided into n×n pieces, which are sent to the

network in parallel. We choose the discrete pieces as inputs

in order to prevent the cross-influence between the boundaries

of pieces. Current architecture can handle a maximum of 16

pieces. If we want to deal with images with more pieces,

the classification network should be deepened with more

convolutional blocks to get a larger respective field. Adam

optimizer is applied with the learning rate of 2.0×10−4 for

the generator, the discriminator and the classification network.

The entire training process costs 4 hours on average.

B. Quantitative Comparisons

Table III lists the reorganization accuracy of the afore-

mentioned methods and the JigsawGAN when n = 3. The

reorganization accuracy means the proportion of correct re-

assembled images in all test images, and the scores reported

in Table III are the average results over the test sets. Some

comparison methods [13], [19], [20], [30] obey the basic rules

to solve jigsaw puzzles: (1) detecting boundaries to determine

the relationship between the pieces, and (2) applying different

optimization methods to reassemble the images. Gallagher et

al. applied the Mahalanobis Gradient Compatibility (MGC)

measurement to determine the pieces’ relationship and a

greedy algorithm to reorganize the pieces [19]. A considerable

improvement for [19] was proposed by [20], by adding loop

constraints to the piece reorganization process. Yu et al.

combined the advantages of greedy methods and loop prop-

agation algorithms to introduce a linear programming-based

solver [30]. Huroyan et al. applied the graph connection Lapla-

cian to better understand the reconstruction mechanism [13].

However, these methods are limited by the boundary detection

step, which will lead to the randomness of their results.

Paumard et al. [12] applied the shortest path optimization

algorithm to reorganize the pieces, whose boundary relation-

ship is predicted by a neural network. Their pruning strategy

for the shortest path algorithm may affect the performance.

Compared to these methods, our JigsawGAN achieves the best

scores, which improves the performance against [12], [19],

[20] with a relatively large margin and has more than 4 point

improvements compared with [13], [30].

C. Qualitative Comparisons

In this section, we first show some reorganization results

generated by JigsawGAN in Fig. 6. Our method can reassem-

ble the inputs and generate high-quality results. Then, qualita-

tive comparisons with aforementioned methods are presented

in Fig. 7, which shows the reassembled pieces according to

corresponding predicted labels. The top two rows show the

results when the hyper-parameter n = 2, the middle two rows

present the results when n = 3, and the bottom two rows

are results when n = 4. In the first elephant example, the

top two pieces can be easily confused if the methods do not

consider the semantic content information. Results of [19],

[30] and [12] fail to solve the case. The guitar example has

weak boundary constraints between the pieces, which leads

to the failure of [20] and [12]. The strategy of Son et al.

aims to recover the complete shape from pieces based on a

dissimilarity metric [20]. The two musical note pieces have a

small contribution to construct the guitar structure and confuse

Son et al.’s method. Paumard et al. reassemble pieces with

boundary erosion, which directly determine the relationships

of pieces through a neural network and ignore the useful

boundary information [12]. In the first house example, results

of [19], [20] and [30] fail to solve the tree and roof pieces,

while the result of [12] cannot distinguish two road pieces.

In the second elephant example, they all fail to discriminate

the leg pieces. We noted that puzzles with low percentages

of recovery by these algorithms have large portions of pieces

with the same uniform texture and color. The global semantic

information and the strict boundary detection are indispensable

to obtain better reassemble results. The failure of the last two

house examples of other methods when n = 4 is caused by

the similar texture and the unobvious boundary. Note that,

the results of [12] are the same as the inputs when n = 4
because their method can only handle puzzles when n ≤ 3. In

comparison, by considering the global information (GAN loss)

and the boundary information (boundary loss) simultaneously,

our method recovers these cases well.

D. Computational Times

Computing efficiency is also important for evaluating the

reassemble performance. We conduct comparisons of compu-

tational times with the aforementioned methods. The results

for solving 3 × 3 puzzles on the test set are reported in

Table IV. Gallagher et al.’s method [19] is the fastest algorithm

and our method is a bit slower than [19]. However, introducing

a useful network with a little more running time is advisable in

exchange for better results. Methods [30] and [13] are slower

than JigsawGAN due to the linear programming algorithm

and the optimized iteration, respectively. As for [20], most

of the time is spent in the pairwise matching, the unoptimized

merging, the trimming and the filling steps. Paumard et al.’s

method [12] is the slowest due to the complicated network

architecture and the reassemble graph. Although our method

takes approximately 4 hours on the training process, the
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(a) Inputs (b) Results of [19] (c) Results of [20] (d) Results of [30] (e) Results of [13] (f) Results of [12] (g) Ours

Fig. 7. Qualitative comparisons with Gallagher et al.’s method [19], Son et al.’s method [20], Yu et al.’s method [30], Huroyan et al.’s method [13] and
Paumard et al.’s method [12]. The top two rows show the results when the hyper-parameter n = 2, the middle two rows present the results when n = 3, and
the bottom two rows are results when n = 4. The proposed method assembles both the boundary and the semantic information in order to generate more
accurate results. The results of [12] are the same as the inputs when n = 4 because their method can only handle puzzles when n ≤ 3.

TABLE IV
COMPUTATIONAL TIMES OF JIGSAWGAN AND THE COMPARISON METHODS WHEN SOLVING 3× 3 PUZZLES.

Methods Gallagher2012 [19] Son2014 [20] Yu2015 [30] Huroyan2020 [13] Paumard2020 [12] Ours

Time (s) 0.274 1.121 0.525 0.496 3.054 0.293

PSNR-based reference label and the GAN network are not

used in the test process, which take less running time on the

test set. The simple yet effective classification network can

provide satisfactory reassemble results.

E. Ablation Studies

1) Ablation Study of Loss Terms: We perform the ablation

study on the variants of the loss function to understand how

these main modules contribute to the final results. Table V

displays the ablation results, which demonstrates that each

component contributes to the objective function. We have

illustrated the importance of the jigsaw loss Ljigsaw in Sec-

tion III-C1. Directly training the classification network without

the jigsaw loss is impossible. The network tends to assign

results randomly, achieving 30-40% classification accuracy for

three-class tasks and 20-30% for four-class tasks. Table V
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TABLE V
ABLATION EXPERIMENTS OF DIFFERENT LOSS TERMS.

pref w/o. LGAN w/o. Lboundary Ours

Accuracy 66.4% 68.1% 75.8% 79.0%

TABLE VI
ABLATION EXPERIMENTS OF DIFFERENT DATASETS. P, H, G AND E
MEANS THE PERSON, HOUSE, GUITAR AND ELEPHANT DATASETS,
RESPECTIVELY. ‘H.G.E AND P’ REPRESENTS THAT WE TRAIN OUR

NETWORK ON HOUSE, GUITAR AND ELEPHANT DATASETS, AND THEN

TEST ON THE PERSON DATASET.

P and P H.P.G.E and P H.G.E and P
Accuracy 79.9% 72.4% 66.9%

H and H H.P.G.E and H P.G.E and H
Accuracy 80.2% 74.6% 69.7%

G and G H.P.G.E and G H.P.E and G
Accuracy 77.4% 69.8% 63.1%

E and E H.P.G.E and E H.P.G and E
Accuracy 78.5% 72.2% 65.5%

further shows the importance of the adversarial loss LGAN and

the boundary loss Lboundary. As shown in Table V, remov-

ing LGAN degrades the results substantially, so as removing

the Lboundary. The third column shows the reorganization

accuracy without LGAN, which indicates the discriminator

and corresponding loss are removed. The accuracy of without

LGAN is apparently inferior to the final result. The fourth

column displays the result without Lboundary, which means

the decoder is only constrained by the adversarial loss. The

result is also not as good as our final result. We also conduct

the experiment that removes both LGAN and Lboundary, which

represents the GAN branch is not involved, where the final

classification accuracy only depends on the reference labels

pref . The result in the second column is worse than the final

result. We conclude that all three loss terms are critical.

2) Ablation Study of Different Training Sets: This ablation

study aims to demonstrate the effectiveness of the semantic

information provided by the GAN branch. In Table VI, ‘P’

is the ‘Person’ dataset, ‘H’ means the ‘House’ dataset, ‘G’

represents the ‘Guitar’ dataset and ‘E’ indicates the ‘Elephant’

dataset. For each item in Table VI, the capital letter before

‘and’ means we train our network on corresponding datasets,

and the capital letter after ‘and’ means we test the model on

corresponding datasets. For example, ‘H.G.E and P’ represents

that we train the network on House, Guitar and Elephant

datasets, and then test on the Person dataset. Table VI exhibits

four groups of experiments according to different datasets.

We first select ‘P’ as the test dataset and set ‘P’, ‘H.P.G.E’

and ‘H.G.E’ as the training dataset, respectively. When the

training and the test dataset belong to the same category,

the network can learn the semantic information and obtain

the best performance (79.9%). Then, if we set all datasets

as the training set, the performance is inferior to the result

when the network is trained on a single dataset because

the mixed semantic information will influence the judgment

of the discriminator (72.4%). To explore the effectiveness

of the semantic information deeply, we further conduct the

TABLE VII
THE REORGANIZATION ACCURACY WHEN SELECT DIFFERENT n AND P .

P = 10 P = 100 P = 1000

n = 2 91.9% 87.0% 83.2%
n = 3 85.6% 83.3% 79.0%

experiment when selecting ‘H.G.E’ as the training dataset

while the test set is ‘P’. The result shows that the network can

hardly obtain the correct semantic information if the training

set and the test set were less correlated. Therefore, the result

(66.9%) is similar to the result when we removing the GAN

branch (66.4%). For example, as for the ‘Person’ category,

if the generated image exchanges the arm and leg pieces,

the GAN network can judge that it is irrational according

to the semantic information acquired from the real ‘Person’

dataset, and give more penalties to the case. Otherwise, if the

real dataset contains images coming from other datasets, the

composition of ‘Person’ cannot be detected accurately. The

trend of other three datasets is the same as the Person dataset

(row 3 to row 8), which demonstrate the semantic information

provided by the GAN branch is important.

3) Ablation Study of Grids and Permutations: The selec-

tion of different n and P have significant influences on the

reorganization accuracy. As shown in Table VII, increasing

the permutation P obviously degrades the accuracy, so as

increasing the hyper-parameter n. Increasing P makes the

classification more complicated, while increasing n improves

the difficulty of detecting the relationships of pieces. With

the increase of P , the permutations become close to each

other and their features tend to be similar. It is challenging

for the classification network to recognize them correctly, and

therefore affecting the classification accuracy.

4) Ablation Study of Reference Labels: The proposed

method can be considered as an improvement technique of

existing methods, which can improve the reorganization ac-

curacy of them if we select their results as our reference

labels. As described in Section II, the jigsaw puzzle tasks can

be specifically divided into three categories: (1) conventional

methods that solve hundreds of pieces; (2) DL-based methods

which generally handle 3 × 3 pieces; (3) self-supervised

learning methods that consider solving jigsaw puzzles as pre-

text tasks. The first category methods concentrate on obtaining

better performance in detecting the neighbor pieces, whereas

ignoring the accuracy of reassembling the images correctly.

If we consider assigning each piece to the correct place as a

perfect reconstruction, the proportion of correct reconstruction

images in all test images of their methods only occupies

50%-60% approximately. The proposed method belongs to

the second category and considers solving jigsaw puzzles

as a classification task. We define homogeneous algorithms

to indicate the methods that can be applied to solve 3 × 3
puzzles, including the second category method [12] and some

first category methods [13], [19], [20], [30]. The proposed

JigsawGAN is compatible with homogeneous methods to

create considerable improvement, which is benefited from the

GAN branch and corresponding losses.
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TABLE VIII
THE IMPROVEMENT WHEN SELECT DIFFERENT METHODS AS OUR REFERENCE LABELS.

Gallagher2012 [19] Son2014 [20] Yu2015 [30] Huroyan2020 [13] Paumard2020 [12]

Original accuracy 62.1% 67.3% 71.0% 74.6% 60.9%
Ours 75.6% 78.4% 79.2% 81.0% 69.4%

Improvements +13.5% +11.1% +7.8% +6.4% +8.5%

Table VIII shows the improvements of aforementioned

methods if we choose their results as our reference labels,

respectively. As for our results, higher reference label accuracy

leads to higher reorganization accuracy because the reference

labels can better guide the network to learn useful information,

such as achieving 81.0% accuracy for method [13]. The

improvements of [19] and [20] are significant, while the

improvements of [30] and [13] are relatively smaller because

there is an upper bound of the network. As for reference

labels with lower accuracy, the GAN branch can promote them

significantly. Moreover, it is reasonable that the improvement

for [12] is small because [12] is mainly designed for their

proposed dataset with eroded boundaries. Overall, no matter

how the reference labels are obtained, it can be promoted by

utilizing our proposed architecture.

F. Discussion

Solving the jigsaw puzzle with deep learning methods is a

developing research area, especially when the inputs include

many pieces. Conventional DL-based methods concentrate on

solving puzzles with 3 × 3 pieces. The upper limit of the

proposed architecture is determined by the respective field.

Current architecture can handle a maximum of 16 pieces. If we

want to deal with images with more pieces, the classification

network should be deepened with more convolutional blocks

to get a larger respective field. Moreover, solving non-square

puzzles is still a challenging research problem. The proposed

method in the current version is constrained by the reference

label and the boundary loss, which are designed to optimize

straight boundaries. Applying a metric designed for matching

non-square pieces to compute the boundary loss and update

the reference label may be useful for solving arbitrary-size

puzzles. We consider them as future works.

V. CONCLUSION

We have proposed JigsawGAN, a GAN-based auxiliary

learning method for solving jigsaw puzzles when the prior

knowledge of the initial images is unavailable. The proposed

method can apply the boundary information of pieces and

the semantic information of generated images to solve jigsaw

puzzles more accurately. The architecture contains the classi-

fication branch and the GAN branch, which are connected by

an encoder and a flow-based warp module. The GAN branch

drives the encoder to generate more information features and

further improves the classification branch. GAN loss and a

novel boundary loss are introduced to constrain the network

to focus on the semantic information and the boundary in-

formation, respectively. We have conducted comprehensive

experiments to demonstrate the effectiveness of JigsawGAN.
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