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Abstract—Transferable adversarial attacks against Deep neu-
ral networks (DNNs) have received broad attention in recent
years. An adversarial example can be crafted by a surrogate
model and then attack the unknown target model successfully,
which brings a severe threat to DNNs. The exact underlying
reasons for the transferability are still not completely un-
derstood. Previous work mostly explores the causes from the
model perspective, e.g., decision boundary, model architecture,
and model capacity. adversarial attacks against Deep neural
networks (DNNs) have received broad attention in recent years.
An adversarial example can be crafted by a surrogate model
and then attack the unknown target model successfully, which
brings a severe threat to DNNs. The exact underlying reasons for
the transferability are still not completely understood. Previous
work mostly explores the causes from the model perspective,
e.g., decision boundary, model architecture, and model capacity.
Here, we investigate the transferability from the data distribution
perspective and hypothesize that pushing the image away from its
original distribution can enhance the adversarial transferability.
To be specific, moving the image out of its original distribution
makes different models hardly classify the image correctly, which
benefits the untargeted attack, and dragging the image into the
target distribution misleads the models to classify the image as
the target class, which benefits the targeted attack. Towards
this end, we propose a novel method that crafts adversarial
examples by manipulating the distribution of the image. We
conduct comprehensive transferable attacks against multiple
DNNs to demonstrate the effectiveness of the proposed method.
Our method can significantly improve the transferability of the
crafted attacks and achieves state-of-the-art performance in both
untargeted and targeted scenarios, surpassing the previous best
method by up to 40% in some cases. In summary, our work
provides new insight into studying adversarial transferability and
provides a strong counterpart for future research on adversarial
defense 1.
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I. INTRODUCTION

DEEP neural networks (DNNs) have achieved great suc-
cess in many fields, such as face recognition [1, 2, 3],

autonomous driving [4, 5, 6], and speaker verification [7, 8, 9].
However, Szegedy et al. [10] and [11] found that the impercep-
tible adversarial examples can be catastrophic for the DNNs.
Even worse, researchers found that adversarial examples can
even transfer between the models with different architectures
and parameters [11, 12], which allows the attackers to attack
unknown target models using adversarial examples generated
by the surrogate models. Adversarial transferability has re-
ceived more and more attention in recent years. On the one
hand, such a phenomenon raises severe concerns about the
security and safety of DNNs when deployed in real-world
scenarios from both academia and industry. On the other hand,
exploring the adversarial transferability would benefit many
aspects, including understanding the deep learning models, de-
veloping stronger defenses and robust models, and evaluating
the vulnerability of the modern DNNs [11].

Various understandings of adversarial transferability have
been proposed in the past years and led to effective adver-
sarial attacks. Most works explain such transferability from a
model perspective, claiming that the decision boundary [12],
model architecture [13, 14], and the test accuracy [15, 16]
of the surrogate model have a significant influence on the
adversarial transferability. These understandings of adversarial
transferability from a model perspective motivate various
methods to improve adversarial transferability by investigating
models’ properties. Some works introduce data augmentation
[17, 18, 19] into the generation of adversarial examples or
training generators [20, 21] to perform attacks to reduce the
reliance on the decision boundary of the surrogate classifier.
Wu et al. [13] propose to modify the architecture of the model
to enhance the adversarial transferability and Huang et al. [22]
propose to fine-tune the adversarial examples using the mid
features of the surrogate model. Though these methods are
effective in untargeted scenarios, their performance is highly
limited in targeted attack scenarios.

To fully understand adversarial transferability, especially
in targeted attack scenarios, we propose a novel perspective
from the data distribution. Recall the classical assumption
in machine learning that the validation data that are inde-
pendent and identically distributed with the training dataset
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can be classified correctly by different models, while the
out-of-distribution examples can cause difficulty for models
to classify [23, 24]. Our hypothesis is also built on such
assumption. To be specific, we denote the distribution of the
training dataset as pD(x|y), where y represents the class label,
and x represents the image. Different models tend to predict
the validation data that are identically distributed with pD(x|y)
as y and can hardly classify the data that is not identically
distributed with pD(x|y) as y. Therefore, moving the image
out of its original distribution causes difficulties for different
models to classify this out-of-distribution example, which can
enhance the transferability of the untargeted attack. Dragging
the image into the target distribution misleads different models
to classify the image as the target class, which can enhance
the transferability of the targeted attack.

(a) PGD

(b) Ours

Fig. 1. Comparison between the targeted adversarial example generated by the
normal PGD attack and our distribution-relevant attack. We set the maximum
allowable adversarial perturbation as ε = 32/255 with respect to a pixel value
in [0, 1] for visibility. The leftmost column of each figure shows the original
image (tree frog), while the other column shows the adversarial images (target
class: corn) under different attack strengths. The rightmost column amplifies
the square patch in the adversarial examples.

Towards this end, we propose a method named Distribution-
Relevant Attack (DRA) to demonstrate our hypothesis. We
attempt to push the input image away from its original distri-
bution to generate transferable adversarial examples. However,
as we do not have access to the ground truth data distribution,
it is technically challenging to push the images away from its
original distribution directly.

We borrow the idea from the score-matching generative
models [25, 26, 27, 28], which propose to estimate the gradient
of the ground truth data distribution ∇x log pD(x|y) and
generate the image of the certain distribution iteratively using
the estimated gradient of the ground truth data distribution
through Langevin dynamics [25, 27]. Previous attacks iter-
atively minimize (maximize) the conditional density of the
model pθ(y|x) along the gradient of the conditional density of
the model ∇x log pθ(y|x) to perform the untargeted (targeted)
attacks. Thus, to estimate the gradient of the ground truth data
distribution in the transfer attack scenarios, we fine-tune the
surrogate classifier to match the gradient of the conditional
density of the model and the gradient of ground truth data
distribution. Thereby, the gradient of the fine-tuned model can
approximate the gradient of the ground truth data distribution
and the process of generating the adversarial examples with the
gradient of our fine-tuned models can approximate the process
of the Langevin dynamics, which enables us to manipulate
the distribution of the image. We name the attack that uses
our fine-tuned models to push the image away from the

original distribution while generating the adversarial examples
Distribution-Relevant Attack (DRA). What’s more, DRA is
compatible with existing transfer attacks and can greatly
improve the performance of these attacks.

Visually, targeted adversarial perturbation generated by our
method, which can drag the image into the target distribution,
reflects vivid semantic features of the target class (See Fig.1:
Turning the tree frog to corn). In Fig.2, we use the out-of-
distribution (OOD) detection method Energy [29] to evaluate
that our DRA can indeed move the image out of its original
distribution, performing better than the normal PGD attack.

(a) ResNet-50 (b) DenseNet-121

Fig. 2. The distribution of the Energy OOD scores [29] for the in-distribution
images (ImageNet) and the untargeted adversarial examples generated by the
original PGD attack and our DRA on ResNet-50 (a) and DenseNet-121 (b).
Examples with lower OOD scores than the clean images are regarded as the
out-of-distribution (OOD) examples and examples with higher energy scores
are regarded as the in-distribution (ID) examples.

We have conducted extensive evaluations and established
state-of-the-art performance in both untargeted and targeted
attack scenarios, improving the targeted attack success rate
by up to 40% in some cases. This work provides new insight
into the understanding of adversarial transferability from a data
distribution perspective and provides a strong counterpart for
future research on defense.

The main contributions of our paper are summarized as
follows:
• We provide a new understanding of adversarial transfer-

ability from the perspective of data distribution, advocat-
ing that adversarial transferability can be enhanced by
pushing the images away from its original distribution.

• We introduce a method to match the gradient of the model
and the gradient of the data distribution, which enables
us to push the image away from its original distribution
using the gradient of the model.

• Extensive experiments demonstrate that our DRA outper-
forms state-of-the-art approaches a lot in both untargeted
and targeted attack scenarios (even up to 40% in most
cases).

The rest of the paper is organized as follows. Section II
summarizes the literature related to adversarial attacks. In
Section III, we firstly present some preliminaries and the
motivation of our method. Then we introduce the optimization
of the distance between the gradient of the model and the
gradient of the data distribution. After that, we propose the
Algorithm of our DRA, which fine-tunes the original surrogate
model and use the fine-tuned model to generate adversarial
examples. In Section IV, we firstly conduct untargeted transfer
attack experiments to demonstrate the superiority of DRA
against various target models, including both normal models
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and secured models. Then, we evaluate the effectiveness of
DRA in the targeted attack scenario which is more difficult
than the untargeted scenario. Section V provides some discus-
sion to further understand our method. Section VI gives some
conclusive results.

II. RELATED WORK

In this section, we briefly review the literature related to
adversarial attacks.

Deep neural networks (DNNs) obtained by normal training
are vulnerable to adversarial examples [10]. This phenomenon
has drawn wide concern and affected the deployment of DNNs
in many safety-critical fields, such as face recognition [30,
31, 32], medical diagnosis [33, 34], speaker recognition [35,
36], and autonomous driving [37, 38]. According to the access
rights to the target model, adversarial attacks can be classified
as white-box attacks and black-box attacks.

White-box attacks assume that the attacker can completely
access the structure and parameters of the target model. Typi-
cal examples of white-box attacks are FGSM [11], BIM [39],
PGD [40], DeepFool [41], JSM [42], and CW [43]. The widely
used PGD attack builds an adversarial example by performing
multi-step gradient updating along the direction of the gradient
at each pixel and projecting the perturbation into the specified
range.

Black-box attacks assume that the attacker only knows the
output of the target model (prediction or confidence), including
query-based attacks and transfer attacks. Query-based attacks
perform the black-box attack by estimating gradient with
queries to the target model [44, 45, 46, 47]. In this paper,
we assume that the attacker can only generate adversarial
perturbation using a surrogate model without any queries
on the target model. This method is much more efficient
and is relatively harder to detect by the target system than
query-based attacks. Thus, many existing works focused on
leveraging the transferability of adversarial examples.

Iterative Methods: Liu et al. [12] show that adversarial
attacks can be transferred between different models. Iterative
methods attack a surrogate model and update the perturbation
iteratively using gradient information [48, 17, 18, 49, 13,
50, 51, 52]. The iterative attack methods such as BIM [39]
and PGD [40] could achieve good performance in white-box
attack scenarios, but they often suffer from low transferability.
Recently, many methods have been proposed to improve the
adversarial transferability of the iterative methods.

Some methods suggest stabilizing update directions for the
iterative algorithms. Dong et al. [48] propose to improve
the adversarial transferability by integrating the momentum of
gradients into the update of perturbation. Lin et al. [18] adapt
Nesterov accelerated gradient into the update of perturbation
to enhance the adversarial transferability. Data augmentation,
which plays an important role in improving model general-
ization and mitigating over-fitting, also contributes to adver-
sarial transferability. Xie et al. [17] suggest applying random
transformations (resizing and padding) to the input images at
each iteration during attacking. Lin et al. [18] take the scale
copies of the input images into attack in order to mitigate

overfitting on the surrogate model. Wang et al. [19] propose
Admix, which attacks the input image admixed with a group of
images randomly sampled from other categories. Wang et al.
[50] propose a loss to decrease interactions between pertur-
bation units during attacking. There are also some model-
specific methods to improve adversarial transferability. Huang
et al. [22] fine-tune the adversarial examples by increasing
perturbation on a pre-specified layer. Wu et al. [13] propose
to reduce the gradients from the residual modules and pay
attention to the architectural vulnerability of DNNs. Guo et al.
[51] show that properly increasing the linearity of DNNs can
enhance adversarial transferability.

These methods perform well in untargeted attacks, but their
performance degrades severely in targeted attacks.

Generative Methods: The methods generating the targeted
adversarial perturbations by generative models always per-
form better than iterative methods at the expense of training
the same number of generative models as the labels [53,
54, 55, 20, 21]. Poursaeed et al. [54] propose to train the
generative model against the surrogate classifier via cross-
entropy loss. Naseer et al. [20] show that the relativistic cross-
entropy loss can improve the performance of the generative
model. Naseer et al. [21] propose to match the ‘distribution’
of perturbed images with that of the target class within latent
space of the surrogate classifier in generative training so as
to reduce the reliance on class-boundary information from the
surrogate classifier. This method can successfully imprint the
features of the target distribution to the image and achieves
satisfactory targeted attack performance but needs to train
generators for every class which is nontrivial on large-scale
datasets.

Compared with the existing iterative methods, our DRA
pays attention to the distribution-relevant information in the
surrogate model rather than improving the iterative algorithm
or performing data augmentation. DRA overcomes the low
transferability of iterative attacks in targeted attack scenarios.
The generative methods aim to learn the distribution of the
adversarial perturbation, while our DRA focuses on the ground
truth distribution. As we show in our experiments, our DRA
greatly improves the adversarial transferability and surpasses
existing methods in both untargeted and targeted scenarios.

III. METHOD

A. Preliminary

Given a surrogate classifier fθ parameterized by θ, and
image x, label y, total possible classes n, then fθ(x)[k]
represents the kth output of the last layer.

The conditional density pθ(y|x) can be expressed as:

pθ(y|x) =
exp(fθ(x)[y])∑n
k=1 exp(fθ(x)[k])

. (1)

The adversarial perturbation is usually based on the gradient
of the classification loss L. The untargeted attack aims to
minimize the conditional density pθ(y|x) and can be expressed
as [11, 40]:

x′ = x+∇xL(fθ(x), y) = x−∇x log pθ(y|x), (2)
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where x′ means the adversarial example of the image x.
The targeted attack aims to maximize the conditional density
pθ(ytarget|x) and can be expressed as:

x′ = x−∇xL(fθ(x), ytarget) = x+∇x log pθ(ytarget|x).
(3)

The goal of the transfer attack is to mislead the target model
using the adversarial examples generated by the surrogate
model.

B. Motivation

The existing transfer attacks iteratively minimize
pθ(ylabel|x) (untargeted attack) or maximize pθ(ytarget|x)
(targeted attack) of the surrogate model to generate adversarial
examples and then use these adversarial examples to attack
the target models. However, the existing transfer attacks
can hardly perform targeted attacks successfully and lack
the explanation why minimizing pθ(y|x) of the surrogate
model can also fool the target model with different model
parameters and architectures from the surrogate model.

In this paper, we propose to understand and improve the
adversarial transferability from a data distribution perspective,
which builds on the classical assumption in machine learning
methods [23, 24] that the deep models can properly classify the
validation data that is independent and identically distributed
with the training dataset but can hardly classify the out-of-
distribution examples. Specifically, the models tend to predict
the label of the image that is identically distributed with
pD(x|y) as y, but can not handle the out of distribution images
properly. We hypothesize that moving the image out of its
original distribution can achieve high untargeted adversarial
transferability and dragging the image into the target distri-
bution pD(x|ytarget) can achieve high targeted adversarial
transferability. The challenge comes from how to push the
image away from its original distribution as we don’t have
access to the ground truth class-conditional data distribution
pD(x|y).

We borrow the idea from the score-matching generative
models [25, 26, 27] which propose to estimate the gradient
of the ground truth data distribution and then move the
initial image from its original distribution pD(x|y0) to the
target distribution pD(x|y) iteratively through the Stochastic
Gradient Langevin Dynamics (SGLD) [28, 56, 57]:

xt = xt−1 + α · ∇xt−1
log pD(xt−1|y) +

√
2α · ε. (4)

The ε ∼ N (0, I) and α is a fixed step size. When α→ 0 and
T →∞, xT is exactly an sample from pD(x|y). Updating the
SGLD process along the opposite direction of ∇x log pD(x|y)
can move the image away from the distribution pD(x|y).
Based on the above reasoning, the gradient of the data distri-
bution can be used to manipulate the distribution of the input
via iterative methods.

In this paper, we propose to match the gradient of the
log conditional density ∇x log pθ(y|x) (the direction of the
normal adversarial attack) and the gradient of the log ground
truth class-conditional data distribution ∇x log pD(x|y). In
this way, the adversarial attack can approximate the direction

of the gradient of the ground truth class-conditional data
distribution.

To be specific, if ∇x log pθ(y|x) matches ∇x log pD(x|y)
well, the untargeted attack x′ = x − η · ∇x log pθ(ylabel|x)
can be regarded as an approximation of the opposite process
of SGLD sampling xt = xt−1−α·∇xt−1 log pD(xt−1|ylabel),
which moves the images out of its original distribution
pD(x|ylabel). Fig.2 shows that our untargeted attack indeed
moves the image out of its original distribution, which causes
difficulties for different models to classify this image.

Similarly, if ∇x log pθ(y|x) matches ∇x log pD(x|y) well,
our targeted attack x′ = x + η · ∇x log pθ(ytarget|x) can
be regarded as an approximation of the process of SGLD
sampling xt = xt−1 + α · ∇xt−1

log pD(xt−1|ytarget), which
drags the image to the target distribution pD(x|ytarget). Fig.1
shows that our method can imprint the features of the target
distribution to the image and semantically change the tree-frog
to corn, which can mislead the models to classify the image as
the target class. Compared with the existing transfer attacks,
our method aims to intrinsically manipulate the distribution
of the image rather than just minimizing or maximizing the
classification loss.

In the next subsection, we provide an appealingly sim-
ple and generic technique to match the ∇x log pθ(y|x) and
∇x log pD(x|y). The last subsection instructs how to generate
high transferable adversarial examples with our method.

C. Decreasing the Distance Between Gradients

In this section, we propose a novel method to decrease the
distance between the gradients, which enables us to use the
gradient of the model to estimate the gradient of the ground
truth data distribution. In this way, adversarial attack can push
the image away from its original distribution through Langevin
Dynamics (Eq.(4)).

We define the Distance between the gradient of log
Conditional density and the gradient of log Ground truth class-
conditional data distribution (DCG) as :

DCG , EpD(y)EpD(x|y)‖∇x log pθ(y|x)−∇x log pD(x|y)‖22

=

∫ ∫
‖∇x log pθ(y|x)−∇x log pD(x|y)‖22pD(x|y)pD(y)dxdy

=

∫ ∫
‖∇x log pD(x|y)‖22pD(x|y)pD(y)dxdy

+

∫ ∫
‖∇x log pθ(y|x)‖22pD(x|y)pD(y)dxdy

− 2

∫ ∫
(∇x log pθ(y|x)T · ∇x log pD(x|y))pD(x|y)pD(y)dxdy.

(5)
We omit the integration domain here for simplicity. The

first term is a constant which does not depend on the
model’s parameters θ. The middle term can be expressed
as EpD(y)EpD(x|y) ‖∇x log pθ(y|x)‖22 is tractable since this
term does not contain the unknown score of the ground truth
distribution. The last term is not directly computable, because
the score of the ground truth distribution ∇x log pD(x|y) is
unknown. Score matching methods [26, 27, 58] eliminate the
score of the ground truth distribution using integration by



5

parts. Inspired by these methods, we apply integration by parts
to the last term in Eq.(5) as:

∫ +∞

−∞
pD(y)dy

∫
x∈Rn

(∇x log pθ(y|x)T · ∇x log pD(x|y))pD(x|y)dx

(I)
=

∫ +∞

−∞
pD(y)dy

∫
x∈Rn

(∇x log pθ(y|x)T · ∇xpD(x|y))dx

(II)
=

∫ +∞

−∞
pD(y)dy

n∑
i=1

∫
x∈Rn

∇xi log pθ(y|x)∇xipD(x|y)dx

(III)
=

∫ +∞

−∞
pD(y)dy

n∑
i=1

∫
x̃i∈Rn−1

[ lim
M→∞

pD(x|y)∇xi log pθ(y|x)|
+Mi
−Mi

]dx̃i

−
∫ +∞

−∞
pD(y)dy

n∑
i=1

∫
x̃i∈Rn−1

[

∫ +∞

−∞
pD(x|y)∇2

xi
log pθ(y|x)dxi]dx̃i

(IV)
= −EpD(y)EpD(x|y)

[
tr(∇2

x log pθ(y|x))
]
,

(6)
where ∇2

x denotes the Hessian with respect to x.
“+M i” represents the vector [x1, ..., xi−1,+M,xi+1, ..., xn].
“-M i” represents the vector [x1, ..., xi−1,−M,xi+1, ..., xn].
x = [x1, ..., xn] is an n-dimensional vector. x̃i =
[x1, ..., xi−1, xi+1, ..., xn]. See Appendix for detailed deriva-
tion.

We use the formula: ∇x log f(x) = f(x)−1∇xf(x)
for equality (I). In equality (I), ∇x log pθ(y|x)T and
∇x log pD(x|y) are n-dimensional vectors, and their product
result is a scalar. We use the formula: uT ·v =

∑n
i=1 uivi for

equality (II), where n represents the dimension of the data. As
for equality (III), we use the integration by parts formula (See
Appendix for proof):∫ +∞

−∞
∇xif(x)∇xig(x)dxi = lim

M→∞
g(x)∇xif(x)|

+Mi
−Mi

−
∫ +∞

−∞
g(x)∇2

xi
f(x)dxi.

(7)

The equality (IV) holds for that we assume pD(x|y) → 0
when ||x||2 →∞.

Thus, substituting the results of integration by parts into
Eq.(5), the DCG loss can be reformulated as:

DCG , EpD(y)EpD(x|y)‖∇x log pθ(y|x)−∇x log pD(x|y)‖22
= EpD(y)EpD(x|y) ‖∇x log pθ(y|x)‖22
+ 2 · EpD(y)EpD(x|y)[tr(∇2

x log pθ(y|x))] + const.
(8)

We ignore the const in Eq.(8) that does not depend on the
model parameters and denote the DCG loss as LDCG:

LDCG , EpD(y)EpD(x|y) ‖∇x log pθ(y|x)‖22
+ 2 · EpD(y)EpD(x|y)[tr(∇2

x log pθ(y|x))].
(9)

Computing the Hessian trace term in Eq.9 requires a number
of backpropagations that is proportional to the data dimension,
which is intractable for high-dimensional data. Hutchinson’s
trick [59] is a stochastic algorithm to approximate tr(A)
for any square matrix A. For a distribution of a random
vector v such that Ep(v)[vvT] = I , Hutchinson’s trick
approximate tr(A) as : tr(A) = Ep(v)[vTAv]. Hence, us-
ing Hutchinson’s trick, we can replace tr(∇2

x log pθ(y|x))
with Ep(v)[vT∇2

x log pθ(y|x)v]. Thus we can reformulate the
LDCG as:

LDCG , EpD(y)EpD(x|y) ‖∇x log pθ(y|x)‖22
+ 2 · EpD(y)EpD(x|y)Ep(v)[vT∇2

x log pθ(y|x)v].
(10)

In practice, we can tune the number of samples v to trade
off the performance of estimation and computational cost.
With reference to the existing methods [25, 26], we sample
one random vector v independently for each input during the
training process. The first term in Eq.(10) can be computed
by one backpropagation. The second term involves Hessian,
but it is in the form of Hessian-vector products, which can
be computed within O(1) backpropagations. Therefore, the
computation of Eq.(10) does not depend on the dimension
of data and is scalable for training deep models on high-
dimensional datasets.

We propose fine-tuning the surrogate model by optimizing
the classification loss and the DCG loss jointly during training.
The optimization objective can be formulated as:

minimize
θ

[L(fθ(x), y) + λ LDCG], (11)

where λ represents the regularization strength.
In this way, we can obtain a fine-tuned surrogate model

whose gradient of log conditional density ∇x log pθ(y|x)
aligns with the gradient of log ground truth class-conditional
data distribution ∇x log pD(x|y) better than the original sur-
rogate model. Moreover, we can manipulate the distribution
information of the image through the iterative adversarial
attack with the fine-tuned model.

D. Distribution-Relevant Attack

We named the attack using our distribution-relevant fine-
tuned surrogate models as Distribution-Relevant Attack
(DRA). DRA consists of two steps: fine-tuning the surrogate
model to decrease the distance between the gradient of the
model and the gradient of the ground truth data distribution,
and using the fine-tuned surrogate model to generate adversar-
ial perturbation with the guidance of the approximate gradient
of the ground truth distribution. Alg. 1 details our method.

We jointly optimize the DCG loss LDCG and the classifica-
tion loss L to fine-tune the surrogate model. This optimization
process encourages the direction of the gradient of the surro-
gate model to match the direction of the gradient of the ground
truth data distribution.

Our proposed fine-tuned method aims to enable the attackers
to push the image away from its original distribution using
the gradient of the model. With the fine-tuned surrogate
model, we can use most existing transfer attack methods to
conduct attacks. We mainly choose the widely used iterative
attack method, projected gradient descent (PGD) [39, 40] to
generate adversarial examples. Our fine-tuning method is also
compatible with other advanced transfer attacks.

1) Untargeted attack: The untargeted attack can be formu-
lated as:{

xn = xn−1 + η · sign(∇xn−1
L(fθ(xn−1), ylabel),

xn = clip(xn,x0 − ε,x0 + ε),
(12)

where xn is the generated adversarial example after n steps,
and x0 is the clean image. L is the classification loss, η is the
perturbation step size, and ylabel is the original label for the
clean image. The clip operation aims to make the perturbation
bounded in the budget ε.
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Algorithm 1 Distribution-Relevant Attack DRA: Given net-
work fθ parameterized by θ, regularization constant λ, epochs
T , total batches M , learning rate η, the classification loss
L, the DCG loss LDCG. Adversarial perturbation δ, original
image x, `∞ perturbation radius ε; step size α; iterations N .
I Fine-tuning:
for i = 1, 2..., T do

for j = 1, 2...,M do
Updating model parameters:
θ = θ − η · (∇θL(fθ(xj), yj) + λ · ∇θLDCG)

end for
end for
return Fine-tuned network fθ

I Untargeted Attack:
Initialize δ = Uniform(−ε, ε).
for i = 1, 2, ..., N do
δ = δ + α · sign(∇xL(fθ(x+ δ), ylabel),
δ = max(min(δ, ε),−ε)

end for
return δ

I Targeted Attack:
Initialize δ = Uniform(−ε, ε).
for i = 1, 2, ..., N do
δ = δ − α · sign(∇xL(fθ(x+ δ), ytarget),
δ = max(min(δ, ε),−ε)

end for
return δ

Although DRA and other iterative methods are similar in
expression when generating untargeted attacks, the direction
of the DRA attack is better aligned with the gradient of
the data distribution. In other words, DRA moves the image
out of its original distribution to generate untargeted attacks,
while the other iterative methods pay attention to dragging the
inputs across the decision boundary of the classifier. As shown
in Fig.2, the adversarial examples generated by our DRA
are regarded as the out-of-distribution examples. Fig.3 shows
the difference between the adversarial examples generated by
DRA and PGD. The adversarial perturbation of the untargeted
attack generated by DRA concentrates on the semantic fea-
tures of the image while the adversarial perturbation generated
by the PGD attack seems irregular.

2) Targeted attack: Similar to the untargeted DRA, the
targeted version of DRA can be formulated as:{

xn = xn−1 − η · sign(∇xn−1
L(fθ(xn−1), ytarget),

xn = clip(xn,x0 − ε,x0 + ε),
(13)

where attackers aim to make the DNNs misclassify the input
as the target class ytarget. We generate the targeted attack
starting from the mean image2 and show the perturbation
in Fig. 4. The perturbation generated by DRA represents
recognizable features of the target distribution, while the
perturbation generated by the PGD attack does not show

2All pixel values of the mean image are set as 0.5 out of [0, 1]

(a) Original (b) PGD (c) PGD Perturbation (d) DRA (e) DRA Perturbation

Fig. 3. Comparison between the untargeted adversarial examples generated
by PGD attack and our DRA. (a) The original images. (b) The adversarial
examples generated by the PGD attack. (c) Normalizing the PGD perturbation
to [0,1] for visibility. (d) The adversarial examples generated by DRA. (e)
Normalizing the DRA perturbation to [0,1]. These adversarial examples are
projected within a small distance (e.g., `∞ ε ≤ 16/255) during inference.

DRA

PGD

cock house finch loggerhead turtle trilobite koala bear Maltese dog

Fig. 4. The targeted perturbation (unbounded perturbation for visibility)
generated from the mean image. The perturbation generated by our DRA
can reflect the semantic features of the target category while the perturbation
generated by the PGD attack seems more noisy.

obvious features. The targeted adversarial perturbation, which
contains the sufficient features of the target category, may
dominate the classification and the original features act like
noise with respect to perturbations.

Compared with the prior research on adversarial transfer-
ability by improving the attack optimization procedure, we
focus on the ground truth data distribution and match the
gradient of the surrogate model to the gradient of the data
distribution. We use the fine-tuned surrogate model to generate
the iterative attack. In the following section, we try to validate
the effectiveness of the proposed DRA in both untargeted and
targeted attack scenarios quantitatively.

IV. EXPERIMENT

A. Implementation

DRA consists of two steps: fine-tuning the surrogate model
to decrease the distance between its gradient and the gradient
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TABLE I
TRANSFERABILITY AGAINST NORMAL MODELS: THE SUCCESS RATES OF BLACK-BOX ATTACKS (UNTARGETED) CRAFTED ON RN50, RN152, DN121

AND DN201. THE MAXIMUM STANDARD DEVIATION OF THIS EXPERIMENT IS 0.92% WHICH IS MUCH LESS THAN OUR IMPROVEMENT. THE BEST
RESULTS ARE IN BOLD.

Model Attack VGG19 RN152 DN121 DN201 SE154 IncV3 IncV4 IncRes ViT

RN50

PGD [40] 53.00% 61.26% 55.62% 53.56% 24.78% 20.86% 21.96% 17.60% 3.82%
DI [17] 75.06% 81.65% 81.98% 74.80% 52.42% 42.58% 44.30% 27.12% 7.12%
MI [48] 64.86% 73.22% 73.50% 64.33% 47.20% 39.08% 37.35% 25.26% 13.34%
ILA [22] 83.56% 92.46% 88.40% 85.24% 61.44% 49.94% 48.34% 35.74% 11.26%

SGM [13] 82.72% 88.40% 83.56% 80.34% 61.30% 53.72% 49.83% 42.86% 18.82%
IR [50] 82.46% 85.24% 84.35% 82.10% 64.20% 54.60% 51.05% 46.78% 17.76%

DRA+PGD 98.26% 99.24% 99.56% 99.28% 93.92% 95.56% 92.66% 92.56% 58.46%
Model Attack VGG19 RN50 DN121 DN201 SE154 IncV3 IncV4 IncRes ViT

RN152

PGD [40] 49.32% 72.72% 53.44% 51.00% 26.32% 23.50% 22.58% 18.72% 5.10%
DI [17] 74.01% 88.18% 79.46% 77.81% 57.49% 50.28% 47.16% 35.10% 10.40%
MI [48] 65.42% 83.40% 77.60% 75.79% 53.00% 46.50% 43.32% 33.08% 15.28%
ILA [22] 66.20% 90.44% 75.48% 73.80% 50.32% 42.32% 41.30% 29.98% 12.26%

SGM [13] 80.40% 96.10% 85.80% 82.76% 61.90% 53.16% 49.24% 43.30% 11.72%
IR [50] 73.20% 92.70% 83.43% 80.60% 64.00% 53.60% 50.30% 48.00% 10.24%

DRA+PGD 96.36% 99.62% 99.28% 98.92% 92.98% 95.00% 91.00% 91.52% 52.08%
Model Attack VGG19 RN50 RN152 DN201 SE154 IncV3 IncV4 IncRes ViT

DN121

PGD [40] 56.78% 63.22% 52.76% 71.98% 31.46% 24.92% 26.82% 20.64% 4.62%
DI [17] 73.68% 79.56% 74.72% 89.40% 53.34% 53.65% 47.94% 37.72% 7.54%
MI [48] 68.36% 74.18% 72.88% 89.56% 58.58% 52.22% 45.35% 35.24% 14.84%
ILA [22] 87.76% 90.38% 83.42% 95.32% 65.02% 58.64% 57.36% 40.76% 9.60%

SGM [13] 80.18% 88.54% 80.54% 92.70% 64.92% 54.62% 49.82% 37.76% 12.80%
IR [50] 82.56% 86.14% 85.20% 95.30% 72.20% 62.22% 62.10% 56.00% 11.58%

DRA+PGD 98.32% 99.46% 98.78% 99.22% 94.80% 95.52% 93.60% 92.24% 58.04%
Model Attack VGG19 RN50 RN152 DN121 SE154 IncV3 IncV4 IncRes ViT

DN201

PGD [40] 57.76% 70.68% 59.08% 83.06% 40.60% 33.80% 32.46% 23.80% 6.54%
DI [17] 78.11% 85.34% 78.18% 90.20% 61.75% 60.04% 56.15% 40.56% 10.80%
MI [48] 75.09% 82.46% 76.39% 88.18% 64.38% 59.62% 54.85% 39.40% 17.84%
ILA [22] 88.56% 94.78% 90.02% 98.02% 76.34% 67.78% 65.36% 49.50% 11.62%

SGM [13] 82.72% 91.72% 86.60% 96.40% 72.20% 62.34% 56.36% 45.42% 17.66%
IR [50] 76.74% 90.46% 85.40% 95.39% 73.60% 59.80% 63.00% 56.60% 15.36%

DRA+PGD 98.30% 99.66% 99.50% 99.86% 96.24% 95.74% 92.16% 91.78% 57.14%

of the ground truth data distribution and then using the fine-
tuned surrogate model to generate adversarial perturbation. We
mainly choose the widely used PGD [40] attack to generate
perturbation in our DRA in experiments. We also evaluate
the compatibility of our method with the existing advanced
transfer attacks in subsection D. All experiments in this paper
are run on Tesla V100.

Fine-tuning Details. We fine-tune the pre-trained classifiers
provided by PyTorch (version 1.8.0) with the SGD optimizer
for 20 epochs. The learning rate is 0.001 and decays by a
factor of 10 at epochs 10. The size of mini-batch is 32. We
set the hyperparameter λ = 6 in our method. We fine-tune the
pre-trained classifiers on the training dataset of the ImageNet
which is also used to train these classifiers by PyTorch to avoid
data leakage problems. The training images are randomly
cropped to 3×224×224. The computation cost of fine-tuning
the surrogate model for one epoch requires 8 hours on Tesla
V100 using ResNet-50 on ImageNet.

Attack Setting. For untargeted attack scenarios, we choose
the baseline attack PGD [40] and 7 state-of-the-art transfer
attacks: MI attack [48], DI attack [17], TI attack [49], ILA
attack [22], SGM attack [13] and IR attack [50]. These meth-
ods achieve high adversarial transferability in the untargeted
attack scenario, but their performance drops severely in the
targeted attack scenario. We consider the state-of-the-art meth-

ods specially designed for the targeted attack in targeted attack
scenarios, one of which is the generative method TTP [21],
and the other is the iteration method Simple [52]. We mainly
evaluate these attacks on the randomly selected 5000 ImageNet
[60] validation images that are correctly classified by all source
models. We also evaluate the performance of our method on
ImageNet V2 [61] and CIFAR-10 in Sec.IV-F.

Threat Model. We firstly generate adversarial examples
using the surrogate models and then use these adversarial
examples to attack different target models. As for the attack
strength, we follow the standard attack setting for all attack
methods [13, 17]. We set the maximum allowable adversarial
perturbation as ε = 16/255 with respect to a pixel value in
[0, 1] by default. In untargeted attack scenarios, we set the step
size α to 2/255 and set the iteration steps to N = 10. With
reference to [52], the targeted attack needs more iterations to
achieve convergence and we set the iteration steps to N = 300.
The targeted attack success rate results are averaged on 10
different target classes [21].

Target Models and Surrogate Models. We conduct experi-
ments on both normal target models and secured target models.
For normal target models, we choose 12 convolutional neural
networks (CNNs): VGG16 (with batch normalization), VGG19
(with batch normalization)[62], ResNet-50 (RN50), ResNet-
152 (RN152) [63], DenseNet-121 (DN121), DenseNet-
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201 (DN201) [64], 154 layers Squeeze-and-Excitation net-
work (SE154) [65], Wide ResNet 50 2 (WRN50-2) [66],
Squeezenet1 0 (SQN)[67], shufflenet v2 x1 0 (SFN)[68], In-
ception V3 (IncV3) [69], Inception V4 (IncV4), and Inception-
ResNet V2 (IncRes) [70], and we use the pretrained models in
PyTorch [71]. We also choose the officially released ViT-B/16
[72] as the target model. We consider 4 adversarially trained
models, including adversarial training with `2 perturbation and
`∞ perturbation [73], and 3 other robust training methods,
including training with Styled ImageNet (SIN) [74], Aug-
mix [75], the mixture of Styled and natural ImageNet (SIN-
IN), as secured methods. We choose 5 models as surrogate
models: DNNs with skip connection (ResNet-50, ResNet-152),
DNNs with dense connection (DenseNet-121, DenseNet-201)
and DNNs without skip connection (VGG19).

B. The Evaluation of Untargeted Attack

In this section, we focus on untargeted attacks. We first
conduct experiments to compare our DRA with other baseline
methods and show the results in Tab. I. For transfer ResNet-
50 → VGG19, DRA achieves a success rate of 98.26%,
which is 45.26% and 15.54% higher than PGD and SGM,
respectively. For transfer ResNet-50→ IncRes, DRA achieves
a success rate of 92.56%, which is 74.96% and 45.78%
higher than PGD and IR, respectively. Moreover, our proposed
method can not only improve the adversarial transferability
from the convolutional neural network (CNN) to CNN but
also improve the adversarial transferability from CNN to the
vision transformer. When transferring from ResNet-50 to the
ViT-B/16 [72], our DRA achieves the success rate of 58.46%
which is 39.64% better than the previous best method SGM
and 54.64% better than the baseline method PGD. DRA
outperforms existing methods by a large margin in all transfer
scenarios. We think that generating adversarial perturbation
from the perspective of data distribution is a key factor in the
success of DRA. As shown in Fig.2 and Fig.3, DRA corrupts
the features of the original distribution and moves the data out
of its original distribution. Thus, different models cannot give
correct predictions.

VGG16 VGG19 SE154 IncV3 IncV4 IncRes
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Fig. 5. Transferability against different models: the success rates of black-box
attacks (untargeted) crafted on an ensemble of 3 models (RN50, RN152 and
DN121). The horizontal axis represents different target models.

As shown in Tab. I, the performance of the existing methods
is unsatisfactory in some cases. Some works show that the
ensemble-based strategy [12] can improve the performance of

transfer attacks [13, 50]. Fig. 5 shows the results of the en-
semble strategy. We use the ensemble of ResNet-50, ResNet-
152 and DenseNet-121 to generate the adversarial attack. The
ensemble strategy can enhance the adversarial transferability
of different methods, and our DRA still performs the best
among the existing methods.

The existing works always evaluate the adversarial trans-
ferability with the perturbation restricted by `∞ = 16/255. In
Fig.6, we compare our DRA with the existing methods with
different attack strengths. DRA achieves the best performance
with different attack strengths.

(a) ResNet-152 (c) SE154(b) DenseNet-201

Fig. 6. The attack success rate of untargeted transfer attacks on ImageNet.
We use the ResNet-50 as the surrogate model and choose three different target
models. The horizontal axis represents different attack strengths. Our DRA
surpasses the other methods against different target models.

TABLE II
TRANSFERABILITY AGAINST SECURED MODELS. WE GENERATE

ADVERSARIAL PERTURBATION (UNTARGETED) BY DIFFERENT METHODS.
AND THEN TRANSFER THE PERTURBATION TO RESNET-50 TRAINED

USING DIFFERENT SECURED METHODS INCLUDING AUGMIX [75],
STYLIZED IMAGENET[74] AND ADVERSARIAL EXAMPLES[73]. THE BEST

RESULTS ARE IN BOLD.

Attack SIN SIN-IN Augmix `2=0.05 `2=0.1 `∞=0.5 `∞=1

R
N

50

PGD[40] 34.44 84.32 39.64 24.38 12.74 3.64 2.88
MI [48] 56.98 88.74 64.32 61.78 46.38 27.52 17.88
TI [49] 38.46 80.28 38.74 26.74 14.12 4.16 3.12

SGM [13] 49.72 96.18 72.58 58.12 37.02 9.34 5.40
DRA+PGD 98.08 98.86 98.34 98.70 98.54 88.90 63.16

D
N

12
1

PGD[40] 30.74 45.36 32.46 20.5 12.20 4.08 3.06
MI [48] 40.26 46.22 39.88 27.54 20.48 10.27 4.20
TI [49] 32.58 45.74 32.22 22.98 14.26 4.54 4.68

SGM[13] 43.00 58.52 53.40 44.00 34.06 13.14 8.04
DRA+PGD 97.52 98.54 97.7 98.40 98.14 89.04 66.62

R
N

15
2

PGD[40] 29.84 50.76 35.18 22.16 12.48 3.92 3.00
MI [48] 29.76 50.16 35.10 21.66 12.30 3.96 2.98
TI [49] 29.74 50.96 35.22 21.8 12.58 3.94 2.98

SGM[13] 47.62 84.28 69.98 59.92 40.34 11.48 6.12
DRA+PGD 97.42 98.5 97.62 97.56 77.36 79.82 50.66

D
N

20
1

PGD[40] 34.02 50.76 39.08 24.56 14.52 4.46 3.16
MI [48] 35.11 50.26 38.82 22.46 14.12 4.46 3.14
TI [49] 34.62 50.83 40.11 22.25 14.28 4.35 3.06

SGM[13] 49.14 76.32 63.66 52.76 43.12 17.32 10.08
DRA+PGD 95.42 98.46 97.72 96.54 58.58 65.94 33.10

In Tab. II, we provide experiments to show that the ad-
versarial examples generated by DRA can also effectively
penetrate the advanced secured models. Augmix [75] is an
augmentation-based training in order to make the model robust
to natural corruptions. Training on Stylized ImageNet [74]
can increase shape bias and decrease bias towards texture.
Adversarial training is considered the most effective way to
defend against attacks[73]. As shown in Tab. II, we generate
the adversarial perturbation by different methods and then
transfer the perturbation to ResNet-50 trained using differ-
ent secured methods. “`2=0.05” represents the adversarially
trained ResNet-50 using perturbation constrained in `2 ball
with radius ε = 0.05. The performance of the existing methods
will severely degrade when attacking against the robust target
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TABLE III
TRANSFERABILITY AGAINST NORMAL MODELS: THE SUCCESS RATES OF BLACK-BOX ATTACKS (TARGETED) CRAFTED ON VGG19, RN50 AND DN121.

THE MAXIMUM STANDARD DEVIATION OF THIS EXPERIMENT IS 0.88% WHICH IS MUCH LESS THAN OUR IMPROVEMENT. THE BEST RESULTS ARE IN
BOLD.

Model Attack VGG19 DN121 RN50 RN152 WRN50-2 SQN SFN IncV3

RN50

PGD [40] 1.42% 2.68% 93.77% 2.16% 2.76% 2.05% 1.36% 0.60%
DI [17] 10.64% 17.54% 99.01% 13.80% 13.75% 1.43% 1.26% 4.12%

Simple [52] 70.77% 57.78% 100% 59.64% 68.03% 7.92% 6.84% 15.50%
CDA [20] 73.58% 75.42% 96.45% 72.14% 71.73% 48.62% 42.64% 35.24%
TTP [21] 81.11% 83.68% 98.13% 83.58% 81.27% 58.02% 54.18% 46.47%

DRA+PGD 87.80% 94.23% 97.03% 93.85% 91.65% 85.18% 92.14% 75.93%

DN121

PGD [40] 1.28% 97.40% 1.78% 1.01% 1.37% 2.50% 1.58% 0.72%
DI [17] 7.31% 98.81% 9.06% 5.78% 6.29% 1.28% 1.16% 1.10%

Simple [52] 50.10% 99.98% 41.74% 24.90% 35.09% 7.57% 4.13% 18.53%
CDA [20] 45.73% 97.22% 56.85% 46.14% 49.66% 44.62% 32.64% 33.61%
TTP [21] 60.71% 98.38% 71.00% 59.12% 59.95% 55.42% 36.15% 43.14%

DRA+PGD 84.83% 97.50% 92.36% 89.84% 88.70% 83.63% 85.68% 75.48%

VGG19

PGD [40] 95.67% 0.31% 0.30% 0.20% 0.25% 0.42% 0.82% 0.45%
DI [17] 99.38% 3.10% 2.08% 1.02% 1.29% 1.65% 1.14% 0.72%

Simple [52] 99.90% 13.79% 13.55% 5.16% 7.50% 4.45% 1.39% 7.01%
CDA [20] 98.30% 17.26% 18.83% 7.73% 10.35% 6.72% 4.25% 5.61%
TTP [21] 99.13% 46.58% 48.50% 28.55% 33.75% 28.32% 5.97% 14.79%

DRA+PGD 93.82% 85.65% 84.45% 80.48% 75.25% 87.25% 82.62% 70.58%

model. For transfer ResNet-50 → robust model `∞ = 1, the
attack success rate of SGM is 5.40% while our DRA can
still achieve a success rate of 63.16%. DRA outperforms the
existing methods in attacking the advanced defense models.

C. The Evaluation of Targeted Attack

In this section, we focus on targeted attacks. Generating
transferable targeted adversarial examples is much more chal-
lenging for current compared with untargeted attacks [12, 76].
Liu et al. [12] show that the decision boundaries for the
original class of the image of different models align well with
each other, which partially explains why untargeted adversarial
perturbation can transfer. However, the decision regions for
the other classes of different models are very different, which
causes the difficulty of obtaining high targeted adversarial
transferability by attacking the surrogate model. It is worth
noting that different models tend to give the same predictions
for images from the same distribution. As shown in Fig. 4, the
targeted perturbation generated by DRA contains the features
of the target distribution, which may dominate the prediction.

Tab.III shows that our DRA can surpass the previous best
targeted transfer attack TTP [21] by a large margin. For
transfer ResNet-50→ VGG19, DRA achieves a success rate of
87.80%, which is 17.03% and 6.69% higher than Simple [52]
and TTP, respectively. When transferring from the surrogate
model to the target model with quite different architecture, the
advantages of DRA are more significant. For transfer ResNet-
50→ IncV3, DRA achieves a success rate of 75.93%, which is
60.43% and 29.46% higher than Simple and TTP, respectively.
Meanwhile, we found that Simple [52] performs best when the
surrogate and target models have the same architecture. When
the architecture of the surrogate and target model is the same,
Simple [52] uses the same model to generate perturbation and
evaluates the attack performance, which is a white-box attack.
Our DRA uses the modified model to generate adversarial
perturbation and the target model shares the same architecture

with the surrogate model but has different parameters. Thus
the attack success rate of DRA is slightly lower than Simple
in the white box attack scenario. However, since we focus
more on the adversarial transferability between models with
different architectures, we argue that this is not a conspicuous
drawback of the proposed method.

To evaluate the effectiveness of our DRA comprehensively,
we also evaluate its targeted transferability against secured
models. Similar to the Sec. IV-B, we consider various types of
defense methods (augmented vs. stylized vs. adversarial). As
shown in Tab. IV, the secured models can effectively defend
the adversarial examples generated by the Simple [52] attack
that is a state-of-the-art iterative targeted attack, while our
DRA can still penetrate the defense model effectively. For
example, for transfer ResNet-50 → robust model `∞ = 1,
DRA achieves a success rate of 24.22%, which is 23.98% and
22.98% higher than Simple and TTP, respectively, validating
the superiority of DRA on transfer attacks.

TABLE IV
TRANSFERABILITY AGAINST SECURED MODELS. WE GENERATE

ADVERSARIAL PERTURBATION (TARGETED) BY DIFFERENT METHODS.
AND THEN TRANSFER THE PERTURBATION TO RESNET-50 TRAINED

USING DIFFERENT SECURED METHODS INCLUDING AUGMIX [75],
STYLIZED IMAGENET[74] AND ADVERSARIAL EXAMPLES[73]. THE BEST

RESULTS ARE IN BOLD.

Attack SIN SIN-IN Augmix `2=0.05 `2=0.1 `∞=0.5 `∞=1

V
G

G
19 Simple 0.78 4.60 2.64 0.83 0.22 0.23 0.19

TTP 47.32 61.52 77.52 68.42 7.14 10.34 0.56
DRA+PGD 80.00 89.31 79.73 82.93 41.88 48.45 15.34

D
N

12
1 Simple 2.27 17.78 10.37 3.70 0.31 0.35 0.24

TTP 50.48 77.32 78.86 69.08 7.08 12.78 0.65
DRA+PGD 78.83 92.92 86.74 90.22 52.52 58.43 18.01

R
N

50 Simple 4.29 67.11 23.08 7.08 0.34 0.53 0.24
TTP 57.75 92.96 88.79 74.95 7.62 14.23 1.24

DRA+PGD 88.62 97.41 92.21 94.92 59.42 67.00 24.22

D. The Compatibility of DRA with Other Attacks

Various techniques have been proposed to improve the
transferability of adversarial attacks, such as advanced gradient



10

TABLE V
THE ATTACK SUCCESS RATES OF UNTARGETED BLACK-BOX ATTACKS ON IMAGENET CRAFTED ON RN50 AND DN121. THE MAXIMUM STANDARD

DEVIATION OF THIS EXPERIMENT IS 0.96% WHICH IS MUCH LESS THAN OUR IMPROVEMENT. THE BEST RESULTS ARE IN BOLD.

Source Attack Vgg19 RN152 DN121 DN201 SE154 IncV3 IncV4 IncRes

ResNet50

PGD [40] 53.00 61.26 55.62 53.56 24.78 20.86 21.96 17.60
PGD+DRA 98.26 99.24 99.56 99.28 93.92 95.56 92.66 92.56

MI [48] 64.86 73.22 73.50 64.33 47.20 39.08 37.35 25.26
MI+DRA 96.36 97.88 98.68 92.28 92.16 94.06 91.94 91.78
NI [18] 79.20 84.20 81.56 78.20 55.62 47.96 50.14 39.56

NI+DRA 96.52 98.34 99.00 98.44 91.76 93.30 90.04 90.14
SGM [13] 82.87 88.40 83.56 80.34 61.30 53.72 49.83 42.86

SGM+DRA 97.52 98.58 99.00 98.40 93.04 94.56 91.42 90.42
SI [18] 75.22 86.46 83.56 79.30 46.46 42.68 41.68 31.50

SI+DRA 96.80 98.88 99.24 98.82 92.72 95.62 92.94 93.82
DI [17] 75.06 81.65 81.98 74.80 52.42 42.58 44.30 27.12

DI+DRA 98.88 98.94 99.34 99.06 96.28 96.80 95.02 94.02
Source Attack Vgg19 RN50 RN152 DN201 SE154 IncV3 IncV4 IncRes

DenseNet121

PGD [40] 56.78 58.22 43.76 65.98 23.46 21.92 23.82 17.64
PGD+DRA 98.32 99.46 98.78 99.22 94.80 95.52 93.60 92.24

MI [48] 68.36 74.18 67.88 79.56 55.58 49.22 42.35 32.24
MI+DRA 96.60 98.44 97.28 98.38 92.30 93.62 91.88 89.90
NI [18] 83.72 86.08 74.98 89.84 62.36 54.66 56.90 43.78

NI+DRA 96.98 98.88 97.96 98.76 92.62 92.78 90.40 88.18
SGM [13] 80.18 88.54 80.54 92.70 64.92 54.62 49.82 37.76

SGM+DRA 92.16 94.76 90.98 93.04 82.60 79.58 76.18 70.22
SI [18] 76.58 80.90 69.08 88.64 48.68 46.08 45.24 33.52

SI+DRA 97.64 99.28 98.66 99.34 94.74 95.90 94.06 93.68
DI [17] 73.68 79.56 71.72 80.40 53.34 49.65 43.94 31.72

DI+DRA 98.94 99.34 98.42 99.18 95.90 95.76 94.78 92.16

calculations [48, 18, 13], and input transformations [17, 18].
In the previous subsections, we mainly show that our DRA
method can significantly improve the performance of the
widely used baseline attack PGD[40]. Here, we delve into
the compatibility of our DRA method with other attack
methods. In Tab.V, we compare the adversarial transferability
of the original adversarial attacks and the DRA version of
these attacks. ”PGD” means the PGD attack generated with
the normal pre-trained surrogate models and ”PGD+DRA”
means the PGD attack generated by our DRA fine-tuned
surrogate models. Our DRA fine-tuning method can signifi-
cantly improve the performance of different baseline attacks.
Moreover, incorporating DRA with the input transformations
based attacks (SI, DI) achieves better performance than the
advanced gradient based attacks (MI, NI, SGM). We think the
advanced gradient based attacks somewhat change the gradient
of the model which may increase the DCG in our fine-tuned
models.

E. Transfer-based Attack on Google Cloud Vision

In this section, we evaluate our DRA attack in the more
challenging case, attacking a real-world computer vision sys-
tem (the Google Cloud Vision API). Most existing works fool
real-world computer vision systems with query-based attacks,
which require a large number of queries [46, 77, 78]. In
contrast, we apply the transfer-based attack to fool the Google
Cloud Vision API. Specifically, we use the ResNet-50 as the
surrogate model to generate the adversarial examples and then
use the Google Cloud Vision API to predict these examples.

The API predicts a list of semantic labels along with confi-
dence scores. We measure both the targeted and untargeted
transferability. For the untargeted attack, we measure whether
or not the ground-truth class appeared in the returned list. For
the targeted attack, we measure whether or not the target class
appeared in the returned list. Since the predicted label space
of Google Cloud Vision API does not precisely correspond
to the 1000 ImageNet classes, we treated semantically similar
classes as the same, following the setting in [52]. We take the
evaluation on randomly selected 500 images that originally
yield correct predictions. Fig.7 shows the targeted adversarial
examples generated by our method and the top-5 predictions
made by the Google Cloud Vision API, the hamster and the
arctic fox are misclassified as corn by the Google Cloud
Vision API. We compare our method with the original PGD
and the previous best iterative transfer attack method Simple
[52] in Tab.VI. In particular, DRA achieves the best attack
performance compared with previous attack methods. This
demonstrates the high practicality of our method which can
even attack real-world computer vision systems with a high
success rate, e.g., Google Cloud Vision API.

TABLE VI
UNTARGETED AND TARGETED TRANSFER ATTACK SUCCESS RATES (%) OF

DIFFERENT ATTACKS ON GOOGLE CLOUD VISION.

PGD [40] Simple[52] DRA
Untargeted 50.6 51.8 86.6
Targeted 8.2 19.4 48.6
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TABLE VII
THE ATTACK SUCCESS RATES OF UNTARGETED BLACK-BOX ATTACKS ON IMAGENET V2 CRAFTED ON RN50 AND DN121. THE MAXIMUM STANDARD

DEVIATION OF THIS EXPERIMENT IS 0.84% WHICH IS MUCH LESS THAN OUR IMPROVEMENT. THE BEST RESULTS ARE IN BOLD.

Source Attack VGG19 RN152 DN121 DN201 SE154 IncV3 IncV4 IncRes

ResNet50

PGD [40] 83.34 86.20 84.04 80.29 65.51 59.47 59.43 52.45
DI [17] 95.44 89.95 90.72 87.91 79.29 74.16 74.47 62.47
MI [48] 92.67 94.34 94.30 93.18 82.87 75.98 74.34 67.25

SGM [13] 95.34 95.52 93.84 91.55 82.99 75.56 73.14 62.88
DRA+PGD 99.39 99.66 99.81 99.76 98.11 99.24 98.30 98.14

Source Attack VGG19 RN50 RN152 DN201 SE154 IncV3 IncV4 IncRes

DenseNet121

PGD [40] 86.23 87.13 80.21 90.07 68.57 63.02 63.58 54.71
DI [17] 95.35 91.41 84.41 91.89 80.16 73.85 76.17 63.96
MI [48] 93.77 93.99 89.71 96.41 83.92 77.22 76.38 68.93

SGM [13] 94.91 95.89 91.51 96.78 84.75 76.58 75.67 64.97
DRA+PGD 99.41 99.71 99.62 99.82 98.04 98.76 98.09 97.52

n02120079_ILSVRC20
12_val_00002447

n02342885_ILSVRC20
12_val_00042043

n02129165_ILSVRC20
12_val_00038186

n07860988_ILSVRC20
12_val_00032598

Label: Hamster  Target: Corn Label: Arctic fox  Target: Corn

Label: Dough  Target: Analog clock Label: Lion  Target: Analog clock

Fig. 7. We show that the adversarial perturbation generated by our DRA is
imperceptible to human observers but can successfully fool the Google Cloud
Vision with the target class.

F. Evaluation on the Other Datasets

1) The Evaluation on ImageNet-V2: In this subsection, we
evaluate our method on the ImageNet-V2 with 10000 images
[61] which are independent of existing pre-trained models.
As shown in Tab.VII, our DRA method surpasses the other
methods by a large margin. As for transfer from ResNet-50
to Inception-V3, DRA can improve the performance of the
baseline method PGD from 59.47% to 99.24%.

2) The Evaluation on CIFAR-10: Following the existing
works [13, 50, 52], we focus on addressing the transferability
on the ImageNet dataset in the previous subsection. In this sub-
section, we conduct experiments on another dataset (CIFAR-
10) to verify the effectiveness of the DRA algorithm further.
We use the ResNet-18 as the surrogate model and choose three
target models with different architecture (VGG19, DenseNet-
121 and ShuffleNetV2). We set the step size α to 2/255, and
set the iteration steps to N = 10. As shown in Fig. 8, our DRA
shows better transferability than existing transfer attacks. For
transfer ResNet-18→ VGG19 with attack strength ε = 4/255,
DRA can achieve a success rate of 61.97% which is 13.62%
higher than SGM [13] and 18.48% higher than PGD [40].
So far, we have evaluated the effectiveness of our DRA on
the large-scale datasets (ImageNet) and small-scale datasets
(CIFAR-10).

(a) VGG19 (c) ShuffleNetV2(b) DenseNet-121

Fig. 8. The attack success rate of transfer attacks on CIFAR-10. We illustrate
the attack success rate for different methods on CIFAR-10. We use the ResNet-
18 as the surrogate model and choose three different target models. The
horizontal axis represents different attack strengths. Our DRA surpass the
other methods against different target models.

V. DISCUSSION

A. Understanding the superiority of DRA

The superiority of DRA can be understood from two
aspects. First, DRA reduces the dependency on the surrogate
model. The existing transfer attacks usually regard the over-
fitting on the surrogate models as the hindering factor of
adversarial transferability and devote to alleviating the over-
fitting by improving the optimization algorithm. Our proposed
method seeks the commonality among different models from
the data distribution perspective for that the ground truth data
distribution is model-independent. Our method alleviates this
over-fitting by aligning the gradient of the model with the gra-
dient of the ground-truth data distribution. In this way, DRA
can effectively reduce the dependence on the surrogate model
and generate high transferable adversarial examples. Fig.9
illustrates the frequency histograms of Pearson Correlation
Coefficient (PCC) [79] between the adversarial perturbations
generated through different models with the same input. The
correlation of the adversarial perturbations generated through
different models using the PGD [40] attack is around zero,
which confirms that the perturbations generated by the original
PGD is specific to different surrogate models. The adversarial
perturbations generated by different models using our DRA
show a stronger correlation than other existing methods, which
means that our DRA can effectively reduce the dependency
of the perturbation on the surrogate model.

Second, our proposed method intrinsically changes the
distribution of input images, leading to more transferable
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(a) (b) (c)

Fig. 9. The frequency histogram of the Pearson correlation coefficient
(PCC) between adversarial perturbations of the same image generated by the
surrogate models ResNet-50 and ResNet-152 (a), ResNet-50 and DenseNet-
121 (b), and DenseNet-121 and DenseNet-201 (c). Higher PCC indicates a
greater positive correlation. The perturbations generated by our DRA method
are closer to each other with different surrogate models than perturbations
generated by other methods.

adversarial images. To be specific, our untargeted attack moves
the image out of its original distribution, making it difficult
for classifiers to classify the image correctly. Fig.2 shows
that the untargeted adversarial examples generated by our
DRA are regarded as the out-of-distribution examples by the
OOD detection method [29]. Out-of-distribution examples can
mislead the deep models and cause safety concerns [29, 80].
Our targeted attack can effectively iteratively imprint the fea-
tures of the target distribution on the image, leading different
classifiers to misclassify the image as the target class. For
example, Fig.1 shows that the targeted adversarial perturbation
generated by our method contains recognizable features of the
target distribution that dominates the classification. However,
the adversarial example generated by the normal PGD [40]
does not contain the semantic features of the target class.

B. Compared with Other Fine-tuning Methods

Our fine-tuning method aims to match the direction of
the adversarial attack to the gradient of the ground truth
data distribution, which is different from the other fine-tuning
methods that aim to improve the generalization of models.
In Tab.VIII, we compare the test accuracy and the adversar-
ial transferability of different ResNet-50 models. “AugMix”
means the ResNet-50 fine-tuned with the data processing tech-
nique AugMix [75], “AutoAug” means the ResNet-50 fine-
tuned with fast AutoAugment [81] and “MEALV2” means the
ResNet-50 fine-tuned with the knowledge distillation method
MEALV2 [82] that achieves 80%+ Top-1 accuracy on ResNet-
50. Our method reduces the test accuracy of the surrogate
model but greatly enhances the adversarial transferability. This
experiment shows that the generalization (test accuracy) of the
model may not the key factor for adversarial transferability.

TABLE VIII
THE TOP-1 TEST ACCURACY AND THE SUCCESS RATES OF UNTARGETED
PGD ATTACKS FOR DIFFERENT RESNET-50 MODELS. THE BEST RESULTS

ARE IN BOLD.

Model Acc VGG19 RN152 DN121 SE154 IncV3
Original 76.13 53.00 61.26 55.62 24.78 20.86
AugMix 77.53 55.90 56.46 54.18 34.10 27.72
AutoAug 77.60 50.18 45.76 39.14 19.12 16.48
MEALV2 80.67 42.40 35.32 39.16 25.56 19.38

DRA 61.06 98.26 99.24 99.56 93.92 95.56

C. The influence of the hyperparameter

In this subsection, we show that decreasing the distance
between the gradient of the surrogate model and the gradient
of the ground truth data distribution enhances adversarial trans-
ferability, whereas increasing this distance has the opposite ef-
fect. As shown in Eq. 11 and our Alg. 1, our proposed method
DRA has one hyperparameter λ. We optimize the classification
loss and the DCG loss jointly during fine-tuning and adjust the
strength of DCG loss through the hyperparameter λ. Fig. 10
shows the influence of λ. If λ is less than 0, the distance
between the input-gradients of the surrogate model and the
gradients of the ground truth data distribution is increased,
and the adversarial transferability drops dramatically. If λ is
greater than 0, the distance between the input-gradients of the
surrogate model and the gradients of the ground truth data
distribution is decreased, and the adversarial transferability is
improved. Meanwhile, the relationship between the adversarial
transferability and λ is not monotonic. Too large λ may
restrict the model’s capability of learning classification-related
features.

Fig. 10. We illustrate the attack success rate (untargeted) when generating ad-
versarial perturbation by different DRA fine-tuned models. “λ=1.0” represents
the model fine-tuned with hyperparameter λ=1. We also present a seagull’s
adversarial perturbation generated by different DRA fine-tuned models.

D. t-SNE visualizations

To find out whether the generated adversarial examples have
attacked the target model in the desired way. We visualize
the feature embeddings of both the clean images (red) and
their corresponding adversarial examples (green) using t-
SNE [83]. To be specific, we use the ResNet-50 (surrogate
model) to generate untargeted adversarial examples and use
the DenseNet-121 (target model) to obtain the final latent
representation. Further distance indicates better performance
for the untargeted attack. As shown in Fig. 11, though the final
latent representations of the adversarial examples generated by
SGM show more difference with the clean images than PGD,
our method yields features that clearly separate the clean and
adversarial images, compared with PGD [40] and SGM [13].
This further validates the superiority of our proposed DRA.
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(a) (b) (c)

Fig. 11. t-SNE visualizations. We illustrate the t-SNE plots for clean (red)
images and their adversarial (green) examples. (a) PGD. (b) SGM. (c) DRA
(Ours).

VI. CONCLUSION

In this paper, we propose a novel understanding of adver-
sarial transferability from the data distribution perspective. We
find that moving the image out of its original distribution
can enhance the untargeted adversarial transferability and
dragging the image toward the target distribution contributes to
high targeted adversarial transferability. We propose a method
named Distribution-Relevant Attack (DRA), which apply a
fine-tuned surrogate model to generate more transferable ad-
versarial images with data-distribution relevant information.
Technically, we propose to fine-tune the surrogate model with
a gradient matching method to match the gradient of the model
and the gradient of the data distribution, which enables us to
push the image away from its original distribution with the
gradient of the model. Extensive experiments demonstrate that
the proposed DRA establishes state-of-the-art performance
in both untargeted and targeted attack scenarios. Moreover,
DRA can also effectively fool the real-world computer vision
system (the Google Cloud Vision API). Our finding not only
motivates researchers to rethink the adversarial transferability
from a data distribution perspective but also provides a strong
counterpart for future research on adversarial defense.
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PROOF OF THE INTERGRATION BY PARTS FORMULA

We assume that g(x) and f(x) are differentiable in Eq. (7).
We can get the following equation:

∇xi [g(x)∇xif(x)] = ∇xig(x)∇xif(x) + g(x)∇2
xi
f(x). (14)

We consider this as a function of xi alone, all other variables
being fixed. Then, integrating over xi ∈ R, we get the
equation:

lim
M→∞

g(x)∇xif(x)|
+Mi
−Mi

=

∫ +∞

−∞
∇xif(x)∇xig(x)dxi

+

∫ +∞

−∞
g(x)∇2

xi
f(x)dxi,

(15)

which can prove the Eq. (7). “+M i” represents the vector
[x1, ..., xi−1,+M,xi+1, ..., xn]. “-M i” represents the vector
[x1, ..., xi−1,−M,xi+1, ..., xn].

DETAILED DERIVATION OF THE EQUATION (6)

∫ +∞

−∞
pD(y)dy

∫
x∈Rn

(∇x log pθ(y|x)T · ∇x log pD(x|y))pD(x|y)dx

(I)
=

∫ +∞

−∞
pD(y)dy

∫
x∈Rn

(∇x log pθ(y|x)T · ∇xpD(x|y))dx

(II)
=

∫ +∞

−∞
pD(y)dy

n∑
i=1

∫
x∈Rn

∇xi log pθ(y|x)∇xipD(x|y)dx

=

∫ +∞

−∞
pD(y)dy

n∑
i=1

∫
x̃i∈Rn−1

[

∫ +∞

−∞
∇xi log pθ(y|x)∇xipD(x|y)dxi]dx̃i

(III)
=

∫ +∞

−∞
pD(y)dy

n∑
i=1

∫
x̃i∈Rn−1

[ lim
M→∞

pD(x|y)∇xi log pθ(y|x)|
+Mi
−Mi

]dx̃i

−
∫ +∞

−∞
pD(y)dy

n∑
i=1

∫
x̃i∈Rn−1

[

∫ +∞

−∞
pD(x|y)∇2

xi
log pθ(y|x)dxi]dx̃i

=

∫ +∞

−∞
pD(y)dy

n∑
i=1

∫
x̃i∈Rn−1

[ lim
M→∞

pD(x|y)∇xi log pθ(y|x)|
+Mi
−Mi

]dx̃i

−
∫ +∞

−∞
pD(y)dy

n∑
i=1

∫
x∈Rn

[pD(x|y)∇2
xi

log pθ(y|x)]dx

=

∫ +∞

−∞
pD(y)dy

n∑
i=1

∫
x̃i∈Rn−1

[ lim
M→∞

pD(x|y)∇xi log pθ(y|x)|
+Mi
−Mi

]dx̃i

− EpD(y)EpD(x|y)[tr(∇2
x log pθ(y|x))]

(IV)
= −EpD(y)EpD(x|y)

[
tr(∇2

x log pθ(y|x))
]
,

(16)
where ∇2

x denotes the Hessian with respect to x.
“+M i” represents the vector [x1, ..., xi−1,+M,xi+1, ..., xn].
“-M i” represents the vector [x1, ..., xi−1,−M,xi+1, ..., xn].
x = [x1, ..., xn] is an n-dimensional vector. x̃i =
[x1, ..., xi−1, xi+1, ..., xn].

We use the formula: ∇x log f(x) = f(x)−1∇xf(x)
for equality (I). In equality (I), ∇x log pθ(y|x)T and
∇x log pD(x|y) are n-dimensional vectors, and their product
result is a scalar. We use the formula: uT ·v =

∑n
i=1 uivi for

equality (II), where n represents the dimension of the data. As
for equality (III), we use the integration by parts formula. The
equality (IV) holds for that we assume pD(x|y) → 0 when
||x||2 →∞.
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