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Abstract—Few-shot object detection (FSOD) identifies objects
from extremely few annotated samples. Most existing FSOD
methods, recently, apply the two-stage learning paradigm, which
transfers the knowledge learned from abundant base classes to
assist the few-shot detectors by learning the global features.
However, such existing FSOD approaches seldom consider the
localization of objects from local to global. Limited by the
scarce training data in FSOD, the training samples of novel
classes typically capture part of objects, resulting in such FSOD
methods cannot detect the completely unseen object during
testing. To tackle this problem, we propose an Extensible Co-
Existing Attention (ECEA) module to enable the model to infer
the global object according to the local parts. Essentially, the
proposed module continuously learns the extensible ability on
the base stage with abundant samples and transfers it to the
novel stage, which can assist the few-shot model to quickly adapt
in extending local regions to co-existing regions. Specifically, we
first devise an extensible attention mechanism that starts with a
local region and extends attention to co-existing regions that are
similar and adjacent to the given local region. We then implement
the extensible attention mechanism in different feature scales to
progressively discover the full object in various receptive fields.
Extensive experiments on the PASCAL VOC and COCO datasets
show that our ECEA module can assist the few-shot detector
to completely predict the object despite some regions failing to
appear in the training samples and achieve the new state of the
art compared with existing FSOD methods.

Index Terms—Few-shot object detection, extensible attention,
co-existing regions

I. INTRODUCTION

FEW-SHOT object detection (FSOD) pertinent to object
detection has recently emerged as an area of particular

interest [1]. The motivation of such a line of research is that
FSOD improves the performance of object detection in few-
shot annotated samples since it combines object detection [2],
[3], [4], [5] and few-shot learning [6], [7], [8], [9], [10], [11] to
rapidly adapt novel concepts. These studies may complement
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Fig. 1. Motivation illustration. Limited by scarce training data, novel classes
are highly possible to provide training samples that only capture part of
objects, making it hard for the existing FSOD models to detect the complete
objects during testing. We consider that base classes contain adequate training
samples to capture the complete semantic object, even though each training
sample may contain only part of the objects. Therefore, we propose an
extension mechanism to gradually associate object parts to infer the complete
object and transfer the extensible ability from base classes to novel classes to
infer the co-existing features that are unseen object parts in the training stage.

previous studies and reduce the limitation of the over-reliance
on large-scale annotated samples [12], [13], [14].

Most existing FSOD methods, recently, apply the two-stage
learning paradigm, which transfers the knowledge learned
from abundant base classes to assist the few-shot detectors
by learning the global features. Such methods could be di-
vided into meta-learning-based approaches [15], [16], [17] and
transfer-learning-based methods [18], [19], [20]. Meta-learners
learn a set of initialization parameters to improve performance
by serving each task as a unit in iterative training. The transfer-
learning-based methods freeze the pre-trained parameters to
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only fine-tune the last layers of the detector in the novel stage
to reach or outperform the existing meta-based strategies.

However, such FSOD approaches [20], [17] seldom consider
the localization of objects from local to global. Limited by
the scarce training data in FSOD, novel classes are highly
possible to provide training samples that only capture part
of objects, resulting in the existing FSOD methods [18], [16],
[20], [17] cannot detect the complete object during testing. As
shown in Fig. 1 (top), only the head of the dog can be seen in
three novel class training samples, but the model is required
to predict the dog’s body and tail which are unseen in the
scarce training samples. This inevitably causes the model to
excessively focus on the head of the dog and ignore the unseen
object parts, resulting in only the dog’s head can be detected
for test samples. As such, properly designing effective methods
to tackle such problems is very necessary for advancing FSOD.

In this paper, we consider transferring information from
base classes to novel classes. Unlike novel classes, base classes
contain adequate training samples to capture the complete
semantic object, even though each training sample may contain
only part of the objects. As shown in Fig. 1, base classes
contain a large number of training samples for zebra. Although
each sample may only capture parts of the zebra, all training
samples together represent the whole zebra, if the model with
extensible ability can effectively detect the complete zebra
during testing. Extensible models trained with sufficient data
have such ability because the model learns to associate object
parts that co-exist within the same semantic class. Therefore,
even though some parts of the object are hard to be detected
during testing, the Extensible model can extend the easily
detected region to co-existing regions to detect the complete
object, as shown in Fig. 1 (bottom).

In light of these observations, we propose an Extensible
Co-Existing Attention (ECEA) module to enable the model to
infer the global object according to the local parts. Essentially,
the model continuously learns the extensible ability on the
base stage with abundant samples and transfers it to the novel
stage, which can assist the few-shot model to quickly adapt
in extending local regions to co-existing regions. Specifically,
we first design the extensible attention mechanism that starts
with a local region and extends attention to co-existing regions
that are similar and adjacent to the given local region. The
extension operation is repeated on the extended regions until
all co-existing regions are covered. We then implement the
extensible attention mechanism in different feature scales to
progressively discover the full object in various receptive
fields, as shown in Fig. 2(a). Extensive experiments on the
PASCAL VOC and COCO datasets show that the ECEA
module can assist the few-shot detector to completely predict
the object despite some regions failing to appear in the training
samples and greatly improve the performance of few-shot
detectors.

Our main contributions can be summarized as follows:
• We propose an Extensible Co-Existing Attention (ECEA)

module, which assists the model to infer co-existing
unseen features according to the provided local part.

• We design an extensible attention mechanism to extend
co-existing regions and implement it in different feature

scales to progressively discover the full object in various
receptive fields.

• Extensive experiments on the PASCAL VOC and COCO
datasets demonstrate that our method achieves the new
state of the art (SOAT). We further qualitatively show
that our ECEA module can assist the few-shot detector to
completely predict the object despite some regions failing
to appear in the training samples.

The remainder of this article is organized as follows. Re-
lated works are discussed in Section II. The proposed ECEA
module is illustrated in Section III. Experimental results and
analysis are provided in Section IV. Finally, we summarize the
discussions and conclusions in Section V and VI, respectively.

II. RELATED WORK

A. General Object Detection

Extensive works have investigated mainstream object de-
tection methods [22], [23], [4], [24] from different perspec-
tives that could be grouped into two categories of one-stage
detectors and two-stage. In general, one-stage-based object
detection methods, e.g., YOLO [25], [2] and SSD [26],
only need to predict the anchors in a batch of images once
before the regression and classification layer to achieve ideal
performance. In contrast, two-stage object detectors, e.g.,
Faster R-CNN [3] and Fast R-CNN [27], first generate a series
of anchors by using region proposal network (RPN) from the
feature images and then perform region proposals classifica-
tion and regression. Such two-stage detectors supplement RPN
modules which negatively impact detection speed but tend to
have higher detection performance compared with the former
methods [2], [26]. However, these mainstream researches rely
on abundant annotated data, which may not bring a positive
influence in data-scarce scenarios.

B. Few-Shot Object Detection

To solve the negative detection effects of scarce annotated
samples, FSOD methods have increasingly received attention.
They are roughly categorized into two types, namely, [15],
[28], [29], [30], [31], [16], [17], [32] being the meta-learning-
based methods and [18], [19], [20], [33], [13] being the
transfer-learning-based methods.

As for meta-learning-based methods, FSRW [15] introduces
a meta-feature learner and a lightweight feature reweighting
module to reorganize the detector which enables the model to
quickly adapt to novel categories. Different from FSRW, Meta
R-CNN [31] only uses the meta-learning paradigm in the re-
gion of interest (ROI) features which are fused with the support
branch to obtain the category attention vectors. Xiao et al. [34]
further improved the fusion network based on Meta R-CNN
to obtain better detection performance. Furthermore, compared
with the above CNN-based methods, some transformer-based
meta-learning FSOD methods achieve better performance. For
instance, Zhang et al. [35] proposed Meta-DETR based on
Deformable DETR [36], which combines with transformer and
meta-learning to ease the dependence on RoI. Han et al. [16]
proposed a Fully Cross-Transformer based model to optimize
the few-shot similarity learning between the two branches.
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Fig. 2. The framework of our proposed ECEA. (a) The output of the last three stages (Res3, Res4, and Res5) from ResNet101 [21], combined with positional
encoding are separately input to the extensible attention module. Then the output of extensible attention fuses with the adjacent previous extensible attention
stage by upsample. We finally concatenate the output of three stages input into the anchor generation layers. (b) Extensible attention splits the feature map into
a series of patches and extends from a certain patch to adjacent relevant patches by extensible linear layers. In the two feature maps following the extensible
Linear layer, the blue circle represents a certain point, while the yellow and green circles represent the extensible points. L is the number of extensible attention
layer.

Concerning transfer-learning-based FSOD, TFA uses cosine
similarity to measure the relevance between the candidate
anchors and the ground truth bounding boxes in the fine-
tuning stage. There have many followed-up kinds of research
based on this simple and effective method. Sun et al. [19]
considered that the candidate boxes with different scores of
Intersection over Union (IoU) [37] are similar to intra-class
data augmentation. Based on this fact, they proposed FSCE
which doubles the maximum number of candidate boxes
processed by NMS [38] and halves the number of boxes
used for loss calculation in ROI. According to the existing
semantic relations between different categories, Zhu et al. [39]
proposed SRR-FSD based on TFA [18], which integrates
semantic relations augmented by relational reasoning into the
fine-tuning stage. Qiao et al. [20] found that the entire FSOD
model may suffer from being dominated by one of three
components, including backbone, RPN, and RCNN, in the
transfer learning-based detector, i.e., Faster R-CNN. They thus
developed DeFRCN to alleviate the problem. Yang et al. [40]
proposed an efficient pre-train-transfer framework to enhance
the adaptation speed which determines the efficiency of the
few-shot transfer process. On the other hand, the directly fine-
tuning approaches may lead to catastrophic forgetting of the

base class in the training novel stage. To avoid forgetting, [41]
and [33] proposed Retentive R-CNN by utilizing consistency
loss and a constraint-based method by adapting continual
learning, respectively. Yet, these approaches seldom consider
the localization of objects from local to global, i.e., neglect
extended co-existing regions. Coupled with the limitation of
the data-scarce scenario, some complex scenarios cannot be
provided in the training stage, resulting in existing few-shot
detectors incompletely predicting the box or even missing it
in the test stage.

C. Extensible Learning
To capture the global features, some studies [42], [43]

straightforwardly or indirectly put forward the concept of
extensible learning. For example, Aditya et al. [43] directly
proposed scalable feature learning for nodes in graph net-
works, but it is difficult to extract features from the graph
structure in the supervised tasks. On the contrary, the self-
attention mechanism can capture all dependencies between
image patches in a feature map to appropriately aggregate
the input signal from the local to global in the supervised
tasks. Inspired by this, some self-attention-based methods [36],
[44], [45], [5] expand the receptive field to directly capture
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the complete regions of the object. Yet, these approaches rely
on abundant annotated samples. To solve the problem, the
self-attention mechanism has also made certain progress in
FSOD tasks [35], [16]. For example, based on meta-learning,
Han et al. proposed FCT that aligns the extracted features in
all network layers between the support set and query set to
improve their similarity. Although FCT allows the model to
acquire many features, it still cannot infer the unseen regions
from the existing feature. In view of this, we propose an
ECEA module that not only allows the model to learn the
relationships between co-existing regions but infer the global
object from part regions of the object in FSOD.

III. METHOD

In this section, we first introduce the formulation setting of
FSOD in Section III-A. We then propose an ECEA module
to alleviate the data scarcity problem for FSOD by detecting
the unseen object parts that are not provided in the few-shot
training data in Section III-B. We finally analyze the proposed
model optimization in Section III-C.

A. Formulation Setting

1) Problem Definition: We follow the present
FSOD settings [18], [19] in this paper. Denote
D = {(x, y) , x ∈ X, y ∈ Y } as a dateset with a series
of categories C, where x represents the input image and
y = {ci, bi}Ki=1 is the corresponding manual information
with class c and bounding box b. We then split D into the
sufficient annotated base dataset Db with its categories Cb

and only a few amounts of labeled novel dataset Dn with its
classes Cn (usually less than 10), where Cb ∪ Cn = C and
Cb ∩ Cn = ∅.

As for the training, we adopt the two-stage fine-tuning
paradigm. In the first stage, Db is used to train the initializing
model Minit to obtain the base model Mbase. In the novel
stage, only Dn is utilized for training the FSOD model Mfsod.
Besides that, if the dataset is Cb ∪Cn to compose a balanced
dataset Df that only has a few annotated categories C, which
is called generalized few-shot object detection (G-FSOD).
Therefore, in this paper, the training process of FSOD or G-
FSOD can be given by

Minit
Db=⇒ Mbase

Dn/Df
=⇒ Mfsod/Mg−fsod, (1)

where =⇒ indicates the training process and Mg−fsod repre-
sents the G-FSOD model. With regard to evaluation, there is
to calculate the results of each class, i.e., C, in G-FSOD [20]
and only to assess the results of Cn in FSOD.

2) Transfer-Learning Based Framework: Faster R-CNN
[27] is a commonly used architecture with excellent perfor-
mance in most transfer-learning-based FSOD methods [18],
[19], [20], [33]. We also take Faster R-CNN as the basic
architecture to demonstrate the performance of our proposed
ECEA module, which assists the detector to extend the detec-
tion capability of features from local to global. As for a two-
stage stacking framework, Faster R-CNN [27] is composed
of three independent functional modules which include back-
bone, RPN, and ROI. To be specific, the generalized features

extracted by the backbone are respectively input into RPN
used to generate class-independent proposals and ROI used
to perform specific tasks related to class-related classification
and localization.

B. Extensible Co-Existing Attention

To enable the model to infer the global object according to
the local parts in data-scarce scenarios, we propose a transfer-
learning-based method, i.e., the ECEA module. Specifically,
we develop extensible attention which lets the current object
region from the input feature map extend to several co-existing
regions and the obtained regions continue to extend outward.
Then, we combine the feature extractor and the proposed
extensible attention in the ECEA module as shown in Fig. 2(a).
Following previous works [18], [19], we use ResNet101 [21]
as the backbone (including five stages) for feature extraction.
Experiments show that the combination of the last three stages
with extensible attention can obtain the best performance in
FSOD. Therefore, the output of the last three stages with
the positional encoding is input into the proposed extensible
attention that can learn the feature relationships in different
feature scales to progressively discover the full object in
various receptive fields. Furthermore, the outputs of attention
layers in different scales are fused with each other through
upsampling, which can help the high-level stage to correct the
extensible unseen regions of former stages and the output of
ECEA module to recover the high spatial resolution. Finally,
we aggregate the fused stages to enrich the extensible feature
information and promote the performance of the model in
FSOD. The process of feature fusion can be given by

fBlock4 = Ψup (ΦBlock5) + ΦBlock4

fBlock4 = Ψup (fBlock4) + ΦBlock3

foutput = ΦBlock5 ⊕ fBlock4 ⊕ fBlock3,

(2)

where, ΦBlock represents the output of Res combined with
extensible attention, Ψup(·) represents upsampling, and ⊕ is
matrix concat.

1) Extensible Attention: Fig. 2(b) illustrates the processing
of extensible learning. Give the input feature map x ∈
RC×H×W from the feature extractor, where H and W are
the height and width of the map. In extensible attention, x
is divided into a series of region patches. A current patch
from x extends surrounding to learn the co-existing region
patches. The obtained patches continue to learn the extensible
region patches until the complete feature image is traversed.
Furthermore, each region patch in the feature map is equivalent
to the corresponding pixel point in x, one of which denotes
xq . And meanwhile, N extensible region points of xq would
be obtained by using the offset weight calculation [44], [46]
in an extensible linear layer. Denote W q as the linear layer
to calculate the weight of xq corresponding to the current
patch in Fig. 2(b). Let W k

n and W v
n respectively represent

the extensible linear layers to obtain key and value points of
xq . the relevance of xq and key points is determined by the
dot product layer. We use softmax to normalize the similarity
score to aggregate the value points. Therefore, once extensible
attention calculation for xq can be given by
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Fig. 3. Illustration of the extensible attention from support set to query. Each
line represents once extensible attention layer.

EA (xq) =

N∑
n=1

exqW
q·(xqW

k
n)

T∑N
n=1 e

xqW q·(xqWk
n )T

· xqW
v
n , (3)

where N is usually less than 10 in extensible attention. Thus,
each q only needs to pay attention to N points.

After xq extending, extensible attention does not directly
calculate the attention of the obtained points by this location.
It computes the attention of the point adjacent to xq until the
entire feature map is traversed. The whole process belongs to
parallel operation. This not only allows the model to extend
the regions of a certain xq , but also relates the whole feature
map to xq . The purpose is to make each feature point not only
determine which feature points co-exist in the same object, but
also which feature points are the background or other objects.
By this, the computational complexity of EA (x) could be
given by O

(
NqC

2 +NC2 +NNqC
)
, where Nq represents

the number of the pixel points of x and Nq >> N >> C.
Thus, the complexity can be simplified as O(NNqC) which is
equivalent to O(NHWC) in a feature map at the pixel level.

2) Multi-Head and Multi-Layer Extensible Attention: To
ensure the generalization ability of the model, we adopt the
multi-head and multi-layer trick from transformer [42]. The
multi-head extensible attention of an input image x can be
given by

MHEA(x) =

M∑
m=1

Wm EA(x), (4)

where Wm represents weight vectors aggregation and M is
the number of multi-head.

Increasing the extensible attention layer, the discriminant
analysis of object features would be strengthened, which

improve the robustness of object regression in the data-scarce
scenario. For example, Fig. 3 shows the model learning
performance on the support and query samples in different
extensible attention layers and respectively lists the learning
performance of the model at each layer, where the output of
the former layer is the input of the latter layer. Although the
input image only contains part of the object information, with
the deepening of the layers, the extensible ability of the model
is gradually stimulated to completely cover the localization of
the query object. Denoting L as the number of multi-layer,
thus multi-head and multi-layer extensible attention Φ(·) can
be expressed as:

Φ(1) = MHEA(x)

Φ(2) = MHEA(Φ(1))

. . .

Φ(L) = MHEA(Φ(L− 1)).

(5)

Furthermore, in a batch feature map, multi-layer ECEA
enables the sample location of a certain map to indirectly
learn several extensible co-existing regions from other feature
maps and the obtained regions could correlate with co-existing
regions from different images.

C. Model Optimization

Faster R-CNN is not directly designed for FSOD. Based on
this fact, as shown in Fig. 2, we propose a novel architecture
based on Faster R-CNN by ECEA module suitable for few-
shot object location recognition. Specifically, the annotation-
scarce sample input to the ECEA module generates a series
of high-level feature maps. The output feature maps from
the ECEA module with the extensible ability are parallelly
provided in the next two modules, i.e., RPN and ROI. In ad-
dition, under the repeated learning of extensible attention, RPN
can get rid of the constraint of anchor fixed size to generate
sparse high-quality region proposals sets in the box regression
task. Based on sharing extensible part feature vectors and
RNP proposals, ROI fine-tunes the box boundaries to contain
complete regions of the object. In order to ensure that the
detection network will not be dominated by Backbone, RPN,
and ROI, we also adopt the decoupled Faster R-CNN strategy
[20] to restrict the backward gradient from RPN and ROI to
the backbone. Therefore, the loss function from the optimized
FSOD architecture can be given by:

L(x) = Lrpn ((Frpn (Fecea(x); θecea) ; ηθrpn) , yrpn)

+ λLroi ((Froi ((Fecea(x); θecea)) ; γθroi) , yroi) .
(6)

Here, θecea, θrpn, and θroi represent learnable parameters for
the ECEA, RPN, and ROI module, respectively. Lrpn and
Lroi are the loss of RNP and ROI module. η and γ are
decoupling coefficients for RPN and ROI. F(·) represents
learnable function, yrpn and yroi are ground truth, and λ is a
balanced hyper-parameter for different tasks.

To implement model optimization, the ECEA module needs
to be trained in both the base and novel stages. To be specific,
in the base stage, the model fully learns feature extension
during sufficient samples to be equipped with the extensible
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TABLE I
PERFORMANCE COMPARISON AMONG ECEA AND MAINSTREAM METHODS BASED ON PASCAL VOC WITH THREE RANDOM NOVEL SPLITS. THE

RESULTS ARE REPORTED BY AVERAGING OVER MULTIPLE RUNS. BOLD FONT INDICATES THE SOTA RESULT IN THE GROUP.

Methods / shots Novel Split1 Novel Split2 Novel Split3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FSOD
LSTD [47] 8.2 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3
TFA w/ cos [18] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
MetaDet [28] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
Meta R-CNN [31] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
FSCE [19] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5
QA-FewDet [29] 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5
Meta FRCN [30] 43.0 54.5 60.6 66.1 65.4 27.7 35.5 46.1 47.8 51.4 40.6 46.4 53.4 59.9 58.6
DeFRCE [20] 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4
FCT [16] 49.9 57.1 57.9 63.2 67.1 27.6 34.5 43.7 49.2 51.2 39.5 54.7 52.3 57.0 58.7
ECEA (Ours) 59.7 60.7 63.3 64.1 64.7 43.1 45.2 49.4 50.2 51.7 52.3 54.7 58.7 59.8 61.5
G-FSOD
FSRW [15] 14.8 15.5 26.7 33.9 47.2 15.7 15.2 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
Fan et al. [48] 37.8 43.6 51.6 56.5 58.6 22.5 30.6 40.7 43.1 47.6 31.0 37.9 43.7 51.3 49.8
FSCE [19] 32.9 44.0 46.8 52.9 59.7 23.7 30.6 38.4 43.0 48.5 22.6 33.4 39.5 47.3 54.0
Meta-DETR [35] 35.1 49.0 53.2 57.4 62.0 27.9 32.3 38.4 43.2 51.8 34.9 41.8 47.1 54.1 58.2
FCT [16] 38.5 49.6 53.5 59.8 64.3 25.9 34.2 40.1 44.9 47.4 34.7 43.9 49.3 53.1 56.3
DeFRCN [20] 40.2 53.6 58.2 63.6 66.5 29.5 39.7 43.4 48.1 52.8 35.0 38.3 52.9 57.7 60.8
ECEA (Ours) 55.1 60.5 62.5 63.7 64.0 42.1 47.6 48.4 53.0 57.7 39.5 47.5 60.7 62.8 66.3

TABLE II
PERFORMANCE COMPARISON AMONG ECEA AND MAINSTREAM

METHODS BASED ON COCO NOVEL SET OF 1, 2, 3, 5, 10, AND 30 SHOTS.
SYMBOL ‘-’ REPRESENTS UNREPORTED RESULTS IN THE ORIGINAL

WORK. THE RESULTS ARE REPORTED BY AVERAGING OVER MULTIPLE
RUNS. BOLD FONT INDICATES THE SOTA RESULT IN THE GROUP.

Methods/shots Shot Number
1 2 3 5 10 30

G-FSOD
FSRW [15] - - - - 5.6 9.1
Meta R-CNN [31] 1.0 1.8 2.8 4.0 6.5 11.1
Meta FRCN [30] 5.1 7.6 9.8 10.8 12.7 16.6
FCT [16] 5.1 7.2 9.8 12.0 15.3 20.2
DeFRCN [20] 4.8 8.5 10.7 13.6 16.8 21.2
ECEA (Ours) 6.1 10.5 12.5 14.9 18.6 22.8

FSOD
TFA w/cos [18] 1.9 3.9 5.1 7.0 9.1 12.1
FSCE [19] - - - - 11.9 16.4
FCT [16] 5.6 7.9 11.1 14.0 17.1 21.4
DeFRCN [20] 9.3 12.9 14.8 16.1 18.5 22.6
ECEA (Ours) 9.6 13.2 15.4 16.7 19.6 23.1

ability which will directly transfer to the novel stage. When
some unseen scenarios appear in the novel test sample, the
ECEA module can determine whether the appeared regions co-
exist with the current object according to extensible learning.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first introduce the experimental settings in
section IV-A. We then verify the performance of our proposed
ECEA module compared with multiple classical works on
the PASCAL VOC [49] and COCO [50] datasets in section
IV-B. Finally, we design comprehensive ablation studies on
the proposed model architecture in section IV-C.

A. Experimental Setting

Dataset Setting. Following previous benchmarks [18], [19],
[20], we use the PASCAL VOC and COCO datasets to
verify the performance of our method. As for PASCAL VOC,
we combine VOC2007 and VOC2012 to train the proposed
network, in which the combined dataset is split into three
groups same as [18], [19]. To be specific, each group in the
dataset includes 15 base classes and 5 novel classes, where
each novel class is randomly combined with 1, 2, 3, 5, and 10
shots for reporting accuracy. Furthermore, the VOC2007 test
set is used for evaluation. With regard to COCO, 60 categories
disjoint with VOC are marked as base classes, and meanwhile,
the remaining 20 classes are used as novel classes. We then
select 5,000 images from the val dataset for testing and the
rest combined with the training set for training. We follow the
validation strategy of the previous benchmarks [16], [20] to
report the detection accuracy under random shots 1, 2, 3, 5,
10, and 30.

Evaluation Setting. We consider two evaluation protocols,
i.e., FSOD and G-FOSD, to access the effectiveness of our
approach. Specifically, FSOD only focuses on the performance
of novel classes. In G-FSOD, considering both base and novel



7

TABLE III
PERFORMANCE COMPARISON AMONG ECEA AND EXISTING FSOD METHODS BASED ON ALL COCO STYLE AVERAGE PRECISION OF 10, AND 30 SHOTS.
APS, APM, AND APL REPRESENT AP FOR SMALL, MEDIUM, AND LARGE OBJECTS, RESPECTIVELY. BOLD FONT INDICATES THE SOTA RESULT IN THE

GROUP. SYMBOL ‘-’ REPRESENTS UNREPORTED RESULTS IN THE ORIGINAL WORK. THE RESULTS ARE REPORTED BY AVERAGING OVER MULTIPLE RUNS.

Methods 10 shots 30 shots
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

FSRW [15] 5.6 12.3 4.6 0.9 3.5 10.5 9.1 19.0 7.6 0.8 4.9 16.8
MetaDet [28] 7.1 14.6 6.1 1.0 4.1 12.2 11.3 21.7 8.1 1.1 6.2 17.3

Meta R-CNN [31] 8.7 19.1 6.6 2.3 7.7 14.0 12.4 25.3 10.8 2.8 11.6 19.0
FSDetView [34] 10.3 25.1 6.1 3.5 11.3 14.6 14.2 31.4 10.3 4.7 15.0 21.5

MPSR [12] 9.8 17.9 9.7 3.3 11.3 14.6 14.1 25.4 14.2 4.0 12.9 23.0
TFA w/fc [18] 9.1 17.3 8.5 3.6 8.1 14.3 12.0 22.2 11.8 4.4 11.0 18.7

TFA w/cos [18] 9.1 17.1 8.8 3.7 8.0 14.3 12.1 22.0 12.0 4.7 10.8 18.6
FSCE [19] 11.4 23.3 10.1 4.5 10.8 18.7 15.8 29.9 14.7 6.1 10.8 18.6

SRR-FSD [13] 11.3 23.0 9.8 - - - 14.7 29.2 13.5 - - -
PTF [40] 11.7 22.6 10.9 5.1 12.2 16.5 15.7 30.4 14.4 7.3 16.3 21.4

PTF+KI [40] 13.0 24.0 12.6 6.0 13.1 18.4 16.8 30.9 16.2 8.0 17.1 23.0
CKPC [32] 16.6 34.4 17.2 5.9 18.3 27.5 19.9 38.1 19.7 7.8 20.9 31.3

ECEA (G-FSOD) 18.6 33.4 18.4 7.3 18.1 29.2 22.8 39.0 23.3 8.9 23.0 35.3
ECEA (FSOD) 19.6 34.6 19.2 8.6 19.6 29.3 23.1 39.5 23.8 9.7 23.1 34.6

TABLE IV
PERFORMANCE COMPARISON AMONG ECEA AND MAINSTREAM

METHODS ON PASCAL VOC AND COCO BASE SET. SYMBOL ‘*’
INDICATES THAT THE RESULTS ARE REPRODUCED BY US. SYMBOL ‘-’

REPRESENTS UNREPORTED RESULTS. BOLD FONT INDICATES THE SOTA
RESULT IN THE GROUP.

Dataset / methods TFA DeFRCN ECEA

bAP50

Base1 80.8 80.3 82.1
Base2 81.2* 81.7 82.4
Base3 81.4* 81.1 82.8
COCO - 59.2 60.2

bAP75

Base1 59.3* 60.2 62.3
Base2 60.9* 61.5 62.6
Base3 61.2* 60.9 63.9
COCO - 42.2 42.8

classes not only accesses the performance of the novel classes
but also can monitor the catastrophic forgetting of the base
classes [41], [33], which reports the overall performance more
comprehensively than FSOD. As for evaluation metrics, we
report AP50 (matching threshold is 0.5) on PASCAL VOC
and COCO style mean average precision (mAP). In addition,
the evaluation protocol of all reported results is averaged over
multiple repeated runs.

Implementation Details. We adopt Faster R-CNN [3] as
the basic detection framework, ResNet101 [21] pre-trained on
ImageNet [51] as the backbone. Furthermore, all experiments
use SGD to optimize our proposed model with the momentum
of 0.9 and weight decay of 5e−5, in which the learning rate is
set to 0.015 with the batch size of 6 based on one GPU (RTX
3090 Ti).
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Fig. 4. Performance comparison among various extensible points setting.

B. Comparison Results

1) Results on PASCAL VOC: We report the novel AP50
(nAP50) of three random novel splits on PASCAL VOC.
Table I lists the results of ECEA compared with existing
classical methods in G-FSOD and FSOD settings, respectively.
From the table, our approach achieves satisfactory perfor-
mance improvement over both protocols, where 11 group shots
reach the best results in FSOD and 14 groups in G-FSOD
among 15 group results. In addition, ECEA as a transfer-
learning-based method with a simple design concept achieves
better performance than FCT [16] as a meta-learning-based
approach. For example, compared with FCT, 14 groups results
achieve better results in the FSOD setting. The results on VOC
also verify that the performance of the model can be improved
by extending co-existing regions of few-shot objects.

2) Results on COCO: The COCO dataset covers more
novel categories than VOC and has more complex sample
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Input images Baseline Layer-3 Layer-5 Layer-7

Fig. 5. Performance of localization in different extensible attention layers.
Layer-3, Layer-5, and Layer-7 are the results in 7 extensible attention multi-
layers. Baseline represents the model without extensible attention.

scenarios, which can better illustrate the generalization ability
of various FSOD methods. Table II shows the comparison
results of recent classical FSOD approaches and ECEA on the
COCO dataset. From the table, all evaluation results of ECEA
outperform the classical methods in G-FSOD and FSOD
protocols, respectively. In addition, ECEA at FSOD protocol
achieves 10.4% and 10.6% improvement over the baseline of
fine-tuning-based TFA [18] in 10-shot and 30-shot settings,
respectively. And meanwhile, compared with FCT [16] based
on meta-learning and transformer, our approach achieves 2.5%
and 1.7% improvement, respectively. All results on COCO
indicate that the model with the ECEA module is equipped
with strong extension and generalization ability in FSOD.

In addition, to further verify the performance of our pro-
posed method, Table III lists the results, based on all COCO
style average precision, of comparison among ECEA and
existing FSOD methods of 10-shot and 30-shot settings. As
can be seen from the table, our method achieves significant
improvement in AP75 (the matching threshold is 0.75). In 10-
shot setting, compared with the latest FSOD study [32], the
performance of ECEA is enhanced by 1.2 and 2 points in both
G-FSOD and FSOD protocols, respectively. And meanwhile,
3.6% and 4.1% improvements in both G-FSOD and FSOD
protocols are achieved over the CKPC [32] in 30 shot setting.
The results fully demonstrate that our proposed ECEA can
effectively assist the few-shot model to extend global co-
existing regions from the local part. From all comparison
results, our method significantly improves the performance of
the few-shot model in both FSOD and G-FSOD settings. In
the FSOD protocol, our method is higher than existing FSOD
methods in all indicators. It can be verified that enabling the
model to infer the global object according to the local parts can
significantly improve the performance of the few-shot model.

TABLE V
COMPARISON OF EXTENSIBLE ATTENTION WITH DIFFERENT RESNET101

STAGES. AVG REPRESENTS THE AVERAGE RESULTS OF FIVE GROUP OF
SHOTS. BOLD FONT INDICATES THE SOTA RESULT IN THE GROUP.

Stages Shot Number
Block3 Block4 Block5 1 2 3 5 10 Avg
" 15.1 17.7 15.1 20.9 18.7 17.5

" 37.1 42.5 39.7 49.5 49.9 43.7
" 41.5 45.5 49.0 58.4 52.4 49.4

" " 47.4 51.6 52.1 63.3 60.8 55.0
" " " 47.5 49.4 53.3 64.8 61.3 55.3

3) Effectiveness of ECEA Module on Base Classes: We
conjecture that the ECEA module may improve the base model
through extensible learning. To verify this speculation, based
on VOC and COCO datasets, we evaluate the performance of
ECEA compared with two classical works on base categories.
Table IV illustrates the results of base classes on AP50 and
AP75. As shown in the table, our ECEA is superior to the
previous works [18], [20] in both of AP50 and AP75. In
particular, our approach achieves SOAT performance in object
regression, e.g., 3.0% and 2.7% improvements in base AP75
are achieved over the classical DeFRCN and TFA on VOC
base3, respectively. Therefore, the ECEA module is as well as
effective in data-sufficient scenarios, which also indicates that
our method may have a wider application prospect.

C. Ablation Study

1) Combination Setting of Extensible Attention with
ResNet101 Hierarchies: In the ECEA module, extensible
attention can assist the few-shot detector to automatically cap-
ture co-existing regions in the feature map, while the residual
module in ResNet101 can effectively solve the problem of
gradient disappearance in deep networks to improve model ac-
curacy. The appropriate combination of these two approaches
in different feature scales can progressively discover the full
object in various receptive fields and significantly enhance the
generalization ability of the model. Therefore, we perform
comprehensive ablation experiments on VOC-Split1 to explore
the most reasonable combination of the different output stages
of ResNet101 and extensible attention. Furthermore, we refer
to the combination of a stage and extensible attention as a
block in this paper. As for the training details, the number of
extensible points is set to 4 and the number of multi-layers
of extensible attention is set to 7. Notably, we remove the
decoupling module to release a certain GPU memory to report
the base results in the G-FSOD setting.

Table V lists the experiment results for the three different
blocks, where a block is the combination of a ResNet101
stage with extensible attention. As can be seen from the
table, Block5 learns more high-level features to obtain the
best scalability and accuracy in the single block output. We
thus always consider Block5 to combine with other blocks.
From the table, Block5 with Block3 and Block4 reach the
best results. In view of this, we select the last three stages
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Fig. 6. Prediction of the single object in an image on the VOC2007 test dataset. The baseline FSOD method, limited by the number of training samples,
may only identify part features of the object. In contrast, our ECEA can enable the model to infer the global object according to the local parts.

TABLE VI
PERFORMANCE OF DIFFERENT EXTENSIBLE ATTENTION LAYERS. BOLD

FONT INDICATES THE SOTA RESULT IN THE GROUP.

Extensible- Shot Number
Layers 1 2 3 5 10 Avg

2 57.3 58.6 60.4 62.8 62.8 60.4
3 59.3 59.8 60.1 61.6 63.2 60.8
4 57.8 59.3 60.2 63.8 63.6 60.9
5 57.6 58.5 59.0 65.0 63.2 60.7
6 57.7 58.4 59.9 61.7 59.6 59.5
7 59.7 60.7 63.3 64.1 64.7 62.5
8 58.5 59.6 61.0 60.2 60.6 60.0
10 59.3 60.5 62.5 62.0 64.0 61.7

of ResNet101 combined with the extensible attention in the
ECEA module.

2) Extensible Points Setting: In extensible attention, a cer-
tain sample location with increasing key points can extend
more prominent regions, but the computational complexity
also grows. To ensure that the performance of ECEA with
the few attention calculations would not decline, we compare
the results between a series of groups of extensible points on
VOC-Split1. In this experiment, we take the results of 1-shot,
2-shot, and the average as our evaluation index. To be specific,
Fig. 4 shows the results of 13 groups of extensible points.
There are three groups of local maximum extensible points in
the figure, which are 4, 30, and 50, respectively. The first point
is also the absolute maximum point. On the other hand, as the
number of points increases, a lot of computational complexity
would be introduced, which consumes more training time than
the former setting, especially in over 1000 points. According
to the above analysis, we thus consider that a sample point
with 4 prominent extensible regions is most suitable for the
ECEA module. Meanwhile, the computational complexity of
extensible attention can be expressed as O(4HWC).

It is worth noting that as the number of extensible points
in our method increases, the effect is closer to the normal

transformer [42], and when the extensible points are equal to
the pixels of the entire image, the effect is equal to the normal
transformer.

3) Effectiveness of Multi-Layer Extensible Attention: With
the increase of attention layers, the model can learn feature
extension repeatedly, but also enhance the network complexity
which would lead to overfitting. We evaluate the performance
of the model at different levels through a series of experiments
on the VOC-Split1 set. Table VI lists the results for the 8
groups of layers. From the table, the 7 multi-layer reach the
highest in the average results, and in the 5 groups of shot
results, three groups reach the SOTA, and two groups rank
second.

Furthermore, we have supplemented the running time of
each additional extensible attention layer in the paper. Specif-
ically, by counting the average running time of 4952 test
images on VOC, we found that each additional layer of
layer extensible attention consumes about 0.687 milliseconds.
while the average inference time per image is 50 milliseconds
without any extensible attention layer. Therefore, the increased
time consumption can be negligible.

In addition, Fig. 5 shows the performance of the model
extends objects in three extensible attention layers on VOC-
Split1 classes. We find an interesting phenomenon in this
figure that our approach can not only scale out from the
part feature to find relevant features, but also scale in from
misidentified features in the baseline to gradually eliminate
redundant features. For example, with the increase of exten-
sible attention layers, the cow, motorbike, bird, and sofa are
gradually recognized, completely. On the contrary, the bus and
class-unrelated features are together identified in the baseline.
With the increase of extensible attention layers, redundant
features are gradually removed.

D. One Object in the Test Image

Processing with a single-part object can effectively extend
co-existing parts in an image by our proposed method. For
example, Fig. 6 shows the results of one object in the test
image detection of ECEA with the 1-shot setting on VOC.
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Fig. 7. Prediction results of ECEA in an image with multiple occlusion objects. Since the first row belongs to different objects, each category can be
accurately predicted. Since the objects of the first image in the second row are the same, the prediction bounding boxes range is larger, but no object feature
is missed. Secondly, it could correctly predict the two dogs without occluding each other.

The novel training samples are randomly selected, in which
the results are detected by the best training models of three
splits. From the figure, each bounding box can completely
cover the corresponding object in ECEA results.

E. Multiple Objects in the Test Image

When the part object is blocked by the same category in
an image, our ECEA can assist models avoid missing feature
recognition. The advantage of our method lies in solving
incomplete object feature prediction, but might sometimes
scale the same objects into a single object which is also a
general problem in crowded object detection [52]. However,
if a part object is blocked by the other novel object in an
image, our method can assist the model to completely and
correctly predict them due to the given features of objects
being different. Our method can effectively extend the co-
existing features in different objects in the above scenarios.
Fig. 7 as an example lists the prediction results of ECEA in
an image with multiple occlusion objects.

V. DISCUSSION

As discussed, the existing FSOD approaches seldom con-
sider the localization of objects from local to global. Limited
by the scarce training data in FSOD, novel classes are highly
possible to provide training samples that only capture part of
objects, resulting in such methods cannot detect the complete
object during testing. We consider that the model can infer the
complete object from the abundant co-existing part features in

the base stage. We thus design the ECEA module to assist
the model learn the extensible ability from local to global and
transfer it from base classes to novel classes, which can assist
the few-shot model to completely detect the object during
testing.

We take extensive experiments to support our motivation
and demonstrate the effectiveness of our ECEA module.
Section IV-B presents the comparisons with state-of-the-art
methods both in G-FSOD and FSOD settings, which shows
that ECEA can achieve state-of-the-art performance compared
to the existing transfer-learning-based and meta-learning-based
approaches. We further conduct ablation studies in Section
IV-C to verify the effects of each component of ECEA.
Furthermore, in Section IV-D and IV-E, we provide the results
of one object and multiple objects in a test image, respectively,
to intuitively demonstrate that ECEA can assist the FSOD
model to effectively extend the co-existing features from local
to global.

Indeed, the ECEA module is limited in this condition. When
the part object is blocked by the same category in an image,
our ECEA can assist models avoid missing feature recognition,
but might sometimes scale the same objects into a single
object.

Fortunately, the proposal-based object detector [53]
equipped with EMD Loss and Set NMS lets each proposal
predict a set of correlated instances rather than a single one
to effectively detect highly overlapped objects. Adopting this
proposal can alleviate the limitation of ECEA.
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VI. CONCLUSION

In this paper, we have investigated an FSOD method,
namely the ECEA module, which alleviates the data scarcity
problem for FSOD to detect unseen object parts. Specifically,
we proposed the extensible attention mechanism which lets
the model from a current region infer all co-existing regions
of the common object. Furthermore, we combined the feature
extractor with the extensible attention mechanism at different
feature scales in the ECEA module, which progressively
discovered the full object in various receptive fields. Based
on the PASCAL VOC and COCO datasets, we have taken
extensive comparison and ablation experiments to evaluate the
effectiveness and expandability of our method, respectively.
The experiment results show that the ECEA module could
completely detect unseen object parts and achieved new states
of the arts in FSOD.
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