
A family of asymptotically good quantum codes based on 

code concatenation 

Zhuo Li,  ∗ Li-Juan Xing,  and † Xin-Mei Wang

State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, 

Shannxi 710071, China 

 

We explicitly construct an infinite family of asymptotically good concatenated 

quantum stabilizer codes where the outer code uses CSS-type quantum Reed-Solomon 

code and the inner code uses a set of special quantum codes. In the field of quantum 

error-correcting codes, this is the first time that a family of asymptotically good 

quantum codes is derived from bad codes. Its occurrence supplies a gap in quantum 

coding theory. 
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Quantum error correction is a basic technique for transmitting quantum information 

reliably over a noisy quantum channel. Many explicit constructions of quantum 

error-correcting codes have been proposed so far [1-12]. Some of the best-known 

code constructions are the CSS code construction of Calderbank and Shor [1] and 

Steane [2] and the stabilizer code construction of Gottesman [3] and Calderbank et al. 

[4, 5]. 

As in classical coding theory, we want to construct quantum codes with large 

minimum distance. More generally, we want to construct asymptotically good 
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quantum codes with both rate and distance/length bounded away from zero. 

Ashikhmin et al. [13] and Chen et al. [14] constructed asymptotically good quantum 

codes based on algebraic geometry codes. Later, Matsumoto [15] improved the bound 

of Ashikhmin et al. [13]. 

In classical coding theory, code concatenation [16] is a basic method for 

constructing good error-correcting codes and most of the known asymptotically good 

binary codes are constructed by code concatenation [17]. In the quantum setting, code 

concatenation is also effectively used to construct good quantum error-correcting 

codes, although concatenation is mainly used for fault-tolerant quantum computation 

[18]. Gottesman states code concatenation in his PhD thesis and gives the stabilizer of 

a quantum code constructed by concatenating the five-qubit code with itself. 

Calderbank et al. [5] also remark concatenated codes and Rains [19] proves the 

so-called product bound of concatenated codes. 

In this paper we derive an infinite family of asymptotically good binary quantum 

stabilizer codes from quantum Reed-Solomon (RS) codes, which may be thought of 

as concatenated quantum codes where the outer code is CSS-type quantum RS code 

and the inner codes use  distinct quantum codes. Firstly we give the structures of 

the stabilizer and normalizer. Then we show that this family of codes is 

asymptotically good. These codes are distinguished by being the first family of codes 

we have seen with the property that good quantum codes are obtained from bad codes. 

For this we first show that the long binary quantum codes obtained from RS codes are 

bad briefly. Let  be an 

N

C , ( 2 ), 1mN m N K K− +a b  binary quantum code obtained 
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from RS code [20]. If the rate ( 2 ) ( 2 )m N K mN N K N= − = −  is held fixed, the ratio 

distance length ( 1)K m= + N

C

 approaches zero as . However, by a very 

clever construction it is possible to obtain an infinite family of good binary quantum 

codes from RS codes, as we now show. 

m →∞

Lemma 1 [12]. (CSS codes) Let  be an [ ,  weakly self-dual code over 

 and let . Then there exists a quantum stabilizer 

code encoding 

C ]qn k

( )GF q min{ ( ) : \ }d wgt v v C⊥= ∈

2n k−  qudits into  qudits with minimum distance , denoted by 

 with stabilizer 

n d

, 2 , qn n k d−a b C C= ×S  and normalizer C C⊥ ⊥= ×N . 

The starting point is a CSS-type quantum RS code 22
, 2 , 1 mN N K K− +a b  with 

stabilizer  and normalizer RS = ×S R R RS
⊥ ⊥= ×N R R  where 

 and  are classical RS codes over 

 with  for 

22
[ , , 1] mN K N K= − +R� 22

[ , , 1] mN N K K⊥ = − +R �

2(2 )mGF ⊥⊆R R 22 mN 1= −  and 2K N≤ ⎢ ⎥⎣ ⎦ . Let α  be a primitive 

element of  and let 2(2 )mGF 1, , m2β β…  be a self-dual basis of  over 

. Let , , be a typical codeword of 

 with 

2(2 )mGF

(2)GF 0 1 2 1( , , | , , )N N Na a a a a− −= … … 2(2 )m
ia GF∈

j
a aRSS

2

,
1

m

i i j jβ
=

=∑ , (2)i ja GF∈

)

[( ) ]
m m

i
i j j N i i m N i j j i j m j

j j
b a s a s

, . Let  be the binary vector b

0,1 0,4 2 1,1 1,4 2 0,1 0,4 2 1,1 1,4 2( , , ; ; , , | , , ; ; , ,m N N m m N N mb b b b b c c c c+ − − + + − − += … … … … … …  

such that  

2 2

, ,1 , 1 1 , ,
1 2 1

m

j m
β α β β−

+ + + −
= =

= + + +∑ ∑ ,2 1 ,1 ,1i m i ib a s+ = +

[( ) ]
m m

i
i m j j N i m i m N i m j j i j m j

j j
b a t a t

β
= +
∑ , , 

2 2

,2 1 , 1 , 1 1 , ,
1 2 1

m

j m
β α β β−

+ + + + + + + −
= =

= + + +∑ ∑ ,4 2 , 1 ,1i m i m ib a t+ += +

1
1 1

( )
m m

i
i j j i j j i m m

j j
c a sβ α β β+ +

= =

= +∑ ∑ ,2 1 , 1i m i mc s

β
= +
∑ , , 

2

, , , 1 , 

3 

+ += , 



2

,2 1 , , 1 1
1 1

( )
m m

i
i m j j i m j j i m m

j j
c a tβ α β β+ + + + +

= =

= +∑ ∑ , ,4 2 , 1i m i mc t+ += , 

where  for 0 1 , , ,, (i j i js t GF∈ 2) i N≤ ≤ − 1 1j m≤ ≤ + . Let 

, , be a typical codeword of 0 1 2 1( , , | , , )N N Na a a a a∗ ∗ ∗ ∗ ∗
− −= … … 2(2 )m

ia GF∗ ∈ RSN  with 

2

,
1

m

i i j j
j

a a β∗ ∗

=

= ∑ , (2)i ja GF∗ ∈, . Let b∗  be the binary vector 

0,1 0,4 2 1,1 1,4 2 0,1 0,4 2 1,1 1,4( , , ; ; , , | , , ; ; , ,m N N m m N N mb b b b b c c c c∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
+ − − + + − −= … … … … … … 2 )+

[( ) ]
m m

i
i j j N i i m N i j j i j m j

j j

b a s a s

 

such that  

2 2

, ,1 , 1 1 , ,
1 2 1

m

j m

4 

β α β β∗ − ∗ ∗ ∗ ∗
+ + + −

= =

= + + +∑ ∑ ,2 1 ,1 ,1i m i ib a sβ
= +
∑ , ∗ ∗ ∗

+ = +

[( ) ]
m m

i
i m j j N i m i m N i m j j i j m j

j j

b a t a t

, 

2 2

,2 1 , 1 , 1 1 , ,
1 2 1

m

j m

β α β β∗ − ∗ ∗ ∗ ∗
+ + + + + + + −

= =

= + + +∑ ∑ ,4 2 , 1 ,1i m i m ib a tβ
= +
∑ , ∗ ∗ ∗

+ += +

1
1 1

( )
m m

i
i j j i j j i m m

j j

c a sβ α β β∗ ∗ ∗
+ +

= =

= +∑ ∑ ,2 1 , 1i m i mc s∗ ∗

, 

2

, , , 1 , += , +

2

,2 1 , , 1 1
1 1

( )
m m

i
i m j j i m j j i m m

j j

c a tβ α β β∗ ∗ ∗
+ + + + +

= =

= +∑ ∑ , ,4 2 , 1i m i mc t∗ ∗
+ += , 

where  for 0 1 , , ,, (i j i js t GF∗ ∗ ∈ 2) i N≤ ≤ − 1 1j m≤ ≤ + . Let  denote the code 

consisting of all such vectors  and let 

LS

b LN  denote the code consisting of all such 

vectors . b∗

Lemma 2.  is dual to LS LN  with respect to the symplectic inner product. 

Proof. Clearly  and LS LN  are binary linear codes. From definitions of  and 

 we have 

b

b∗

2 2 2 2

, , , , , , , ,
1 1 1 1
( ) Tr ( )( ) ( )( )

m m m m

i j i j i j i j i j j i j j i j j i j j
j j j j

b c b c b c c b
2

1

m

j
β β β∗ ∗ ∗ ∗

= = = =

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ β

=
∑

β +

 

2

,1 , 1 1 , , , , 1 1
2 1 1

Tr [( ) ]( )
m m m

N i i m N i j j i j m j i j j i m m
j j m j

a s a s a sβ β β β∗ ∗
+ + + − +

= = + =

⎛
= + + + +⎜

⎝
∑ ∑ ∑  
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,1 , 1 1 , , , , 1 1
2 1 1

[( ) ]( )
m m m

N i i m N i j j i j m j i j j i m m
j j m j

a s a s a sβ β β β β∗ ∗ ∗ ∗
+ + + − + +

= = + =

⎞
+ + + + + ⎟

⎠
∑ ∑ ∑  

, , , , ,1 , 1 ,1 , 1 ,1 , 1 ,1 , 1
1
( )

m

N i j i j N i j i j i i m i i m i i m i i m
j

a a a a a s a s s s s s∗ ∗ ∗ ∗ ∗ ∗
+ + + + +

=

= + + + + +∑ +

)

∗

, 

4 1

, , , , , , , ,
2 2 1

( ) (
m m

i j i j i j i j N i m j i m j N i m j i m j
j m j

b c b c a a a a
+

∗ ∗ ∗ ∗
+ + + + + +

= + =

+ = +∑ ∑  

, 1 , 1 , 1 , 1 ,1 , 1 ,1 , 1i m i m i m i m i i m i i ma t a t t t t t∗ ∗ ∗
+ + + + ++ + + + +

)

)]

0=

. 

Thus the symplectic inner product 

1 4 2 1 2

, , , , , , , , ,2 1 ,2 1 ,2 1 ,2 1
0 1 0 1

( ) [ ( ) (
N m N m

i j i j i j i j i j i j i j i j i m i m i m i m
i j i j

b c b c b c b c b c b c
− + −

∗ ∗ ∗ ∗ ∗ ∗
+ + + +

= = = =

+ = + + +∑ ∑ ∑ ∑  

4 1

, , , , ,4 2 ,4 2 ,4 2 ,4 2
2 2

( ) (
m

i j i j i j i j i m i m i m i m
j m

b c b c b c b c
+

∗ ∗ ∗ ∗
+ + + +

= +

+ + + +∑  

1 2

, , , ,
0 1

( )
N m

i j N i j i j N i j
i j

a a a a
−

∗ ∗
+ +

= =

= +∑∑ . 

Then the statement follows by a dimension argument.                    Q.E.D. 

Clearly LN  contains . Thus  is weakly self-dual under symplectic inner 

product by Lemma 2. Then a quantum stabilizer code can be derived from . 

LS LS

LS

Definition. For any  and , define  to be the quantum stabilizer code with 

stabilizer  and normalizer 

N K ,N KL

LS LN  which are obtained from the CSS-type quantum 

RS code . 22
, 2 , 1 mN N K K− +a b

Clearly  is a binary quantum stabilizer code with parameters 

. In the other hand,  may be thought of as 

concatenated quantum code where the outer code is CSS-type quantum RS code and 

the inner codes use  distinct quantum codes. 

,N KL

22 (2 1), 2 ( 2 )N m m N K+ −a b ,N KL

N

5 



Before proving the first theorem we need some lemmas. These involve the entropy 

function , defined by 4 ( )H x

4 4 4( ) log (1 ) log (1 )
3
xH x x x x= − − − −  

where 0 1x≤ ≤ . We shall also need the inverse function  defined by 1
4 ( )H y−

1
4 ( )x H y−=  iff 4 ( )y H x=  

for 3
40 x≤ ≤ . 

Lemma 3. Suppose nλ  is an integer, where 3
40 λ< < . Then 

4 ( )

0
3 4

n
nHk

k

n
k

λ
λ

=

⎛ ⎞
≤⎜ ⎟

⎝ ⎠
∑ . 

Proof. For any negative number  we have r

)⋅

}n

0 0 0
4 3 4 3 (3 4 ) (1 3 4

n n n
r n k rk k r k r n

k k k

n n n
k k k

λ λ
λ

= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
≤ ≤ ⋅ = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ . 

Thus 

(1 )

0
3 {4 3 4

n
k r r

k

n
k

λ
λ λ− −

=

⎛ ⎞
≤ + ⋅⎜ ⎟

⎝ ⎠
∑ . 

Choose 4log ( 3(1 ))r λ λ= −

4

. Then this sum is 

4 ( ) ( )4 (1 ) 4nH nHnλ λλ λ≤ − + = .                 Q.E.D. 

Lemma 4. If we are given M  distinct nonzero quaternary  (vectors of 

length L over ), where 

-tuplesL

(4)GF

(4 1)LM δγ= − , 0 1γ< < , 0 1δ< < , 

then the sum of the weights of these  is at least -tuplesL

1
4(4 1)( ( ) ( ))LL H oδγ δ−− − L . 

Proof. The number of these  having weight -tuplesL Lλ≤  is at most 
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4 ( )

1
3 4

L
LHk

i

L
i

λ
λ

=

⎛ ⎞
≤⎜ ⎟

⎝ ⎠
∑ , 

by Lemma 3, for any 3
40 λ< < . 

So the total weight is at least 

4 4( ) ( )( 4 ) (1 4LH LHL M LM Mλ λλ λ− = − ) . 

Choose 1 1
4 4( 1 log ) ( ) (H L Hλ δ δ− −= − = − )o L , with 3

4λ < . Then the total weight is 

at least 

1
4(4 1)(1 ( ))( ( ) ( ))LL o L Hδγ δ−− − − o L

L

, 

1
4(4 1)( ( ) ( ))LL H oδγ δ−= − − .                 Q.E.D. 

Theorem 5. Let R  be fixed, 1
20 R< < . For each  choose m

21 2 1 1 2 1(1 ) (1 )(2 1)
2 2

mm mK R N R
m m
+ +⎢ ⎥ ⎢= − = − −⎢ ⎥ ⎢⎣ ⎦ ⎣

⎥
⎥⎦

. 

Then  is a binary stabilizer code of length ,N KL 2 (2 1)n N m= +  with rate 

( 2 )
(2 1)m

m N KR R
N m

−
= ≥

+
, 

and a lower bound on distance/length equal to 

1
4 (1 4) (1 2 )

4
H R

−

−  as . m →∞

Proof. Let  

be any nonzero codeword of 

0,1 0,4 2 1,1 1,4 2 0,1 0,4 2 1,1 1,4 2( , , ; ; , , | , , ; ; , , )m N N m m N N mc b b b b c c c c+ − − + + − −= … … … … … … +

L\LN S . As we saw earlier, there must exists a 

nonzero codeword 0 1 2 1( , , | , , )N N N Ra a a a a− −= S… … ∈
2

,
1

m

i i j j
j

a aN  with β
=

=∑

[( ) ]
m m

i
i j j N i i m N i j j i j m j

j j
b a s a s

, such 

that  

2 2

, ,1 , 1 1 , ,
1 2 1

m

j m
β α β β−

+ + + −
= =

= + + +∑ ∑ ,2 1 ,1 ,1i m i ib a s+ = +β
= +
∑ , , 
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[( ) ]
m m

i
i m j j N i m i m N i m j j i j m j

j j
b a t a t

2 2

,2 1 , 1 , 1 1 , ,
1 2 1

m

j m
β α β β−

+ + + + + + + −
= =

= + + +∑ ∑ ,4 2 , 1 ,1i m i m ib a t+ += +

1
1 1

( )
m m

i
i j j i j j i m m

j j
c a sβ α β β+ +

= =

= +∑ ∑ ,2 1 , 1i m i mc s

β
= +
∑ , , 

2

, , , 1 , + += , 

2

,2 1 , , 1 1
1 1

( )
m m

i
i m j j i m j j i m m

j j
c a tβ α β β+ + + + +

= =

= +∑ ∑ , ,4 2 , 1i m i mc t+ += . 

From the definition of LN  there are at least 1K +  nonzero pairs, saying 

, ( |
j ji N ia a + ) 0 j K≤ ≤ , in the codeword . Thus either 

 or  is nonzero. 

Without losing generalization, we suppose , 

a

,1 , ,1 ,( , , | , ,
j j j ji i m N i N ia a a a+ +… … )m )+

)m

, 1 ,2 , 1 ,2( , , | , ,
j j j ji m i m N i m N i ma a a a+ + +… …

,1 , ,1 ,( , , | , ,
j j j ji i m N i N ia a a a+ +… …

0 j K≤ ≤  are nonzero. Then let us study vectors ,1 ,2 1 ,1 ,2 1( , , | , ,
j j j ji i m i i mb b c c )+ +… … , 

 in the codeword . From the definition of  and , it is easy to 

prove that among these  nonzero vectors each vector may occur as many as 

 times. This is to say,  contains at least 

0 j K≤ ≤ c ,i jb ,i jc

1K +

2m c ( 1) 2mK +  distinct nonzero binary 

. Now let (4 2)-tuplesm + ω  be a primitive element of  and let c  be the 

quaternary vector 

(4)GF ′

0,1 0,1 0,4 2 0,4 2 1,1 1,1 1,4 2 1,4 2( , , ; ; , ,m m N N N m N mc b c b c b c b c )ω ω ω+ + − − − + − +′ = + + + +… … … ω . 

Then  contains at least c′ ( 1) 2mK +  distinct nonzero quaternary . 

From the choice of , 

(2 1)-tuplesm +

K

21 1 2 1 2 1 1 2 1(1 ) (1 )(2 1)
2 2 2 2

m
m

m m

K m mR R
m m

+ + − +
≥ − ≥ − − . 

We can now apply Lemma 4 with 2 1L m= + , (4 2)m mδ = + , 1
2 [1 (2 1) ]R m mγ = − + , 

and deduce that 

1
4

1 2 1( ) 2 (2 1) (1 )(2 1)( ( ) ( ))
2

m mmwt c m R H o m
m

δ−+′ ≥ + − − − , 



where the initial  is because each 2m (2 1)-tuplesm +  occurs  times (in the worst 

case). So 

2m

12
1 4

42

(1 4)distance 2 2 1 2 1(1 )( ( ) ( )) (1 2 )
length 2 1 4 4 2 4

m m

m

Hm mR H o m
m m

−
−− +

≥ − −
− +

� R−

m →∞

 

as .                                                      Q.E.D. 

To sum up, if let δ  and R  denote the lower bound to distance/length and rate of 

a family of quantum codes respectively as the length , we have found a family 

of asymptotically good concatenated quantum codes with 

n →∞

1
20 R< <  and 

11
44 (1 4)(1 2 )Hδ −= R− . In fact in 1996 Calderbank and Shor [1] have proven the 

existence of good quantum codes. Then Calderbank et al. [5] proved the quantum 

Gilbert-Varshamov bound. But these proofs are not constructive. Later, Ashikhmin et 

al. [13] explicitly constructed asymptotically good quantum codes with 1
180 δ< < , 

1 1 10
31 (2 1)mR mδ− −= − − −  and Chen et al. [14] with 0 tδ δ< <  where 

1 12
3 (2 3)(2 1) (2 1)t t

t tδ − −= − + −  for , 3t ≥ 3 ( )tR t δ δ= − . Then Matsumoto [15] 

improved the bound of Ashikhmin et al. [13] with 1 11
20 (2 ) [ (2 1)mmδ ]− −< ≤ − − , 

1 10
31 2(2 1)mR mδ−= − − −  for . But all these quantum codes are derived from 

good classical codes directly. Compared with above codes, although the performance 

of our code is not very excellent, this is the first time that good quantum codes are 

explicitly constructed from bad codes. Its occurrence supplies a gap in quantum 

coding theory. 

2m ≥
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Quantum error correction is a basic technique for transmitting quantum information reliably over a noisy quantum channel. Many explicit constructions of quantum error-correcting codes have been proposed so far [1-12]. Some of the best-known code constructions are the CSS code construction of Calderbank and Shor [1] and Steane [2] and the stabilizer code construction of Gottesman [3] and Calderbank et al. [4, 5].

As in classical coding theory, we want to construct quantum codes with large minimum distance. More generally, we want to construct asymptotically good quantum codes with both rate and distance/length bounded away from zero. Ashikhmin et al. [13] and Chen et al. [14] constructed asymptotically good quantum codes based on algebraic geometry codes. Later, Matsumoto [15] improved the bound of Ashikhmin et al. [13].


In classical coding theory, code concatenation [16] is a basic method for constructing good error-correcting codes and most of the known asymptotically good binary codes are constructed by code concatenation [17]. In the quantum setting, code concatenation is also effectively used to construct good quantum error-correcting codes, although concatenation is mainly used for fault-tolerant quantum computation [18]. Gottesman states code concatenation in his PhD thesis and gives the stabilizer of a quantum code constructed by concatenating the five-qubit code with itself. Calderbank et al. [5] also remark concatenated codes and Rains [19] proves the so-called product bound of concatenated codes.

In this paper we derive an infinite family of asymptotically good binary quantum stabilizer codes from quantum Reed-Solomon (RS) codes, which may be thought of as concatenated quantum codes where the outer code is CSS-type quantum RS code and the inner codes use 
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