
ar
X

iv
:0

90
6.

15
65

v2
  [

cs
.IT

]  
27

 O
ct

 2
01

0

1

Correcting a Fraction of Errors in Nonbinary
Expander Codes with Linear Programming

Vitaly Skachek,Member, IEEE

Abstract—A linear-programming decoder for nonbi-
nary expander codes is presented. It is shown that the
proposed decoder has the nearest-neighbor certificate
properties. It is also shown that this decoder corrects any
pattern of errors of a relative weight up to approximately
1
4
δAδB (where δA and δB are the relative minimum

distances of the constituent codes).

Index Terms—Expander Codes, Low-Density Parity-
Check Codes, Linear-Programming Decoding, Nonbi-
nary Codes.

I. I NTRODUCTION

Low-density parity check (LDPC) codes have be-
come very popular in recent years due to their excellent
performance under message-passing (MP) decoders.
Yet, our understanding of LDPC codes and their
decoders is still limited. While most of the research
to date was devoted to binary LDPC codes, there
are works suggesting that nonbinary LDPC codes
combined with high-order modulation schemes can
possibly outperform their binary counterparts (at a
price of higher decoding complexity) [12], [18].

For a binary case, a new approach toward un-
derstanding of LDPC codes was suggested in [4]
and [7]: it was proposed to decode binary LDPC codes
using linear-programming (LP) decoder, and important
connections between the linear-programming decoding
and the message-passing decoding were established
(see also [11], [20]). In particular, it was shown that
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the events of LP decoder failures are caused by so-
called pseudocodewords, and those pseudocodewords
are, in turn, related to the failure events of the message-
passing decoders.

These results were generalized in [9], [10] toward
nonbinary LDPC codes and coded modulations, and
in particular to codes over finite quasi-Frobenius rings
(see also [8]). It was shown that the connections
between LP decoding and MP decoding are preserved
in the nonbinary settings as well.

A promising approach for constructing LDPC codes
using graphs goes back to [19]. The construction was
modified in [17], whereexpander graphwas used as
an ingredient in a construction of linear-time decodable
codes that correct a constant fraction of errors under a
variation of an MP decoder. This result was improved
in the works [2], [3], [15], [16], [21]. It was shown
in [1] that expander codes achieve capacity of a binary
symmetric channel under a variation of MP decoder.
Explicit constructions of regular expander graphs can
be found, for instance, in [13], [14].

In [5], the performance of expander codes in [17]
under the LP decoding was investigated. It was shown,
that the LP decoder corrects a similar fraction of
errors as the MP decoder in [17] does. This research
direction was extended in [6], where it was shown that
the expander codes achieve the capacity of a variety
of binary memoryless channels. It was also shown
in [6], that the LP decoder applied to the codes in [21]
corrects a similar fraction of errors as the decoder
therein, which is approximately a quarter of the lower
bound on their relative minimum distance.

In this work, we generalize several results in [6]
towardnonbinarysettings. There are some additional
differences between [6] and our work. First, we use
a slightly different definition of a (bipartite) expander
graph and corresponding code. Second, the analysis
in [6] assumes that the all-zero codeword was trans-
mitted, while we do not make such an assumption.
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Finally, we present a more accurate analysis of the
correctable fraction of errors, and, in particular, we
elaborate on theo(1)-term in the bound on a fraction
of correctable errors.

The manuscript is structured as follows. In Sec-
tion II, we redefine (nonbinary) expander codes. In
Section III we define a linear-programming decoder for
these codes and discuss some of its basic properties. In
Section IV, we present the dual problem and discuss
the criteria for the decoding success. In Section V, we
present a feasible solution to the dual problem and
show that the LP decoder corrects a constant fraction
of errors. In Section VI, we present a concept of
error pattern orientation. By using this concept, we
show that the LP decoder corrects even higher fraction
of errors. Finally, in Section VII, we summarize the
results presented in this paper and compare them with
some known works.

II. CODE CONSTRUCTION

Below, we revisit the construction in [1].

Let G = (A ∪B,E) be a bipartite∆-regular undi-
rected connected graph with a vertex setV = A ∪ B
such thatA ∩ B = ∅, and an edge setE such that
every edge has one endpoint inA and one endpoint
in B. We denote|A| = |B| = n and thus|E| = ∆n.
We assume an ordering onV , thereby inducing an
ordering onE = {ei}|E|

i=1. Let F be the fieldFq. For
every vertexv ∈ V , we denote byE(v) the set of
edges that are incident withv. For a wordz = (ze)e∈E

(whose entries are indexed byE) in F
|E|, we denote

by (z)E(v) the sub-block ofz that is indexed byE(v).

For eachv ∈ V , let C(v) be a linear code of length
∆ over F. The expander codeC is defined as the
following linear code of length|E| overF:

C =
{

c ∈ F
|E| : (c)E(v) ∈ C(v) for everyv ∈ V

}

.

Suppose thatCA andCB are linear[∆, rA∆, δA∆]
and [∆, rB∆, δB∆] codes overF, respectively. In the
sequel, we consider the codeC with

C(v) =
{

CA for everyv ∈ A
CB for everyv ∈ B

.

This code was first studied in [1]. In particular, it was
shown therein that the rate ofC is at leastrA+rB−1.

Denote byAG the adjacency matrix ofG; namely,
AG is a |V | × |V | real symmetric matrix whose rows
and columns are indexed by the setV , and for every
u, v ∈ V , the entry inAG that is indexed by(u, v) is
given by

(AG)u,v =

{

1 if {u, v} ∈ E
0 otherwise

.

It is known that∆ is the largest eigenvalue ofAG .
We denote byγG the ratio between the second largest
eigenvalue ofAG and ∆. The constructions of∆-
regular bipartite expander graphs in [13], [14] have
γG ≤ 2

√
∆− 1/∆.

The relative minimum distance ofC, δC, was shown
in [15] to satisfy

δC ≥ δAδB − γG
√
δAδB

1− γG
. (1)

In the sequel, we use the notationd(x, z) to denote
the Hamming distance between the vectorsx andz.

III. L INEAR-PROGRAMMING DECODER

In this section, we introduce an LP decoder for the
codeC. Suppose that the codewordc = (ce)e∈E ∈ C

is transmitted through the adversarial channel and the
word y = (ye)e∈E ∈ F

|E| is received.

We define the mapping

ξ : F −→ {0, 1}q ⊂ R
q ,

by
ξ(β) = x = (x(α))α∈F ,

such that, for eachα ∈ F,

x(α) =

{

1 if α = β
0 otherwise.

The mappingξ is one-to-one, and its image is the set
of binary vectors of lengthq with Hamming weight
1. Please note that this mapping is slightly different
from its counterpart in [9], where the image of the
mapping was the set of binary vectors of lengthq− 1
of Hamming weight 0 or 1.

We also define

Ξ : F
|E| −→ {0, 1}q|E| ⊂ R

q|E| ,

according to

Ξ(c) = (ξ(ce1) | ξ(ce2) | · · · | ξ(ce|E|
)) .

2



We note thatΞ is also one-to-one.

For vectorsf ∈ R
q|E|, we adopt the notation

f = (fe1
| fe2

| · · · | fe|E|
) ,

where
∀e ∈ E, f e = (f (α)

e )α∈F .

We can write the inverse ofΞ as

Ξ
−1(f) = (ξ−1(f e1

), ξ−1(f e2
), · · · , ξ−1(f e|E|

)) .

Below, we define the variables that will be used
in the decoder. For alle ∈ E, α ∈ F, we use
the variablesf (α)

e ≥ 0. The objective function is
∑

e∈E

∑

α∈F
γ
(α)
e f

(α)
e , whereγ(α)

e is a function of the
channel output.

For eachα ∈ F we set

γ(α)
e =

{

−1 if α = ye
1 if α 6= ye

.

Assume thatfe = ξ(β) for somee ∈ E, β ∈ F.
Then, it is straightforward to verify that

∑

α∈F

γ(α)
e f (α)

e =

{

−1 if β = ye
1 if β 6= ye

.

Suppose now thatf = Ξ(z) for somez ∈ F
|E|. It

follows that
∑

e∈E

∑

α∈F

γ(α)
e f (α)

e + |E| = 2d(y, z) . (2)

(Recall that the notationd(y, z) is used for the Ham-
ming distance betweeny and z.) Therefore, finding
z ∈ C such thatf = Ξ(z) minimizes the left-
hand side of (2) is equivalent to the nearest-neighbor
decoding ofy. Instead, however, we will equivalently
maximize

−
∑

e∈E

∑

α∈F

γ(α)
e f (α)

e . (3)

In the sequel, we use the variableswv,b for all
v ∈ V and all b ∈ C(v). These variables can
be viewed asrelative weightsof local codewordsb
associated with the edges incident with the vertex
v. The corresponding linear-programming problem is
presented in Figure 1.

Constraints (5)-(9) form a polytope which we denote
by Q. In particular, it follows from constraints (5)-(9)
that

∀e ∈ E :
∑

α∈F

f (α)
e = 1 . (10)

Next, we define the decoding algorithm for the code
C. The decoder optimizes the objective function (4)
subject to constraints (5)-(9). If the resultf is in
{0, 1}q|E|, then the decoder outputsΞ−1(f ) (as it is
shown below, this output is then a codeword ofC).
Otherwise, the decoder declares adecoding failure.

We have the following proposition.

Proposition 3.1:

1) Let (f ,w) ∈ Q andf ∈ {0, 1}q|E|. Then

Ξ
−1(f) ∈ C .

2) If c ∈ C then there existsw such that(f ,w) ∈
Q andf = Ξ(c) ∈ {0, 1}q|E|.

Proof:

1) Suppose(f ,w) ∈ Q and f ∈ {0, 1}q|E|. Let
c = Ξ−1(f ). By (10), c is well defined. Next,
fix somev ∈ V and leta = (c)E(v) (for a =
(ae)e∈E(v)). It follows that for anye ∈ E(v),

α ∈ F, f
(α)
e = 1 if and only if ae = α. Let

d ∈ C(v), d 6= a. Sincea andd are different,
there existsβ ∈ F and e′ ∈ E(v) such that
ae′ 6= β andde′ = β. Then, it follows from (10)
and either from (6) or from (7) that

0 = f
(β)
e′ =

∑

b∈C(v) : be′=β

wv,b ,

and thereforewv,d = 0.
It follows thatwv,d = 0 for all d ∈ C(v), d 6= a,
and thatwv,a = 1. Applying this argument for
everyv ∈ V implies c ∈ C.

2) Assume thatc ∈ C. Let f = Ξ(c). For each
v ∈ V , we set

wv,b =

{

1 if b = (c)E(v)

0 otherwise
.

The reader can easily verify thatf ∈ {0, 1}q|E|

and the corresponding(f ,w) is in Q.

The following theorem is an equivalent of the
nearest-neighbor certificate.

Theorem 3.2:Suppose that the LP solver applied
to the LP problem in Figure 1 outputs a codeword
c ∈ C. Then,c is the nearest-neighbor codeword.

The proof follows from the previous proposition
and (2).
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Maximize
∑

e∈E,α∈F

(

−γ
(α)
e

)

· f (α)
e (4)

subject to ∀v ∈ V :
∑

b∈C(v)

wv,b = 1 ; (5)

∀e = {v, u} ∈ E, ∀α ∈ F : f
(α)
e =

∑

b∈C(v) : be=α

wv,b , (6)

f
(α)
e =

∑

b∈C(u) : be=α

wu,b ; (7)

∀e ∈ E, α ∈ F : f
(α)
e ≥ 0 ; (8)

∀v ∈ V, b ∈ C(v) : wv,b ≥ 0 . (9)

Fig. 1. Primal LP problem

IV. D UAL WITNESS AND UNIQUE SOLUTION

We aim to show that the decoder succeeds given
that the number of adversarial errors is bounded from
above by a certain constant. We use thedual witness
approach proposed in [5]. This technique was extended
in [6] toward binary expander code. We further extend
this technique toward nonbinary settings.

Recall that the codewordc ∈ C was transmitted.
If that is the case, the decoder succeeds if it outputs
the samec. It follows from Proposition 3.1 that there
is only one feasible combination of values of the
variableswv,b that corresponds to the codewordc,
namely

∀v ∈ V : wv,b =

{

1 if b = (c)E(v)

0 otherwise
.

The sufficient criteria for the decoder success is that
this solution is theuniqueoptimum of the LP decoding
problem in Figure 1.

To prove the optimality, we show the existence of
a dual feasible solution, such that the value of the
objective function of the dual problem is equal to the
value of the objective functions of the primal problem.
The dual LP problem makes use of the following
variables. For eachα ∈ F, e ∈ E, and v ∈ V , such
that v is an endpoint ofe, there is a variableτ (α)v,e . In
addition, for eachv ∈ V , there is a variableσv.

The dual LP problem is presented in Figure 2. We
set the objective value to be|E| − 2d(y, c), which is
the value in (3) under the substitutionz = c (this
fact easily follows from (2)). This can be achieved by
setting, for allv ∈ V , σv = 1

2∆− d((y)E(v), (c)E(v)).

In order to show the uniqueness of the solution, we
slightly modify the dual LP problem. More specifi-
cally, we enforce strict inequalities in (12), such that
the corresponding dual polytope (denoted byP) be-
comes as in Figure 3. Generally speaking, the polytope
P can be unbounded, and thus, sometimes we use the
term “open polytope”.

The uniqueness of the solution for the primal LP
problem now follows from the following proposition.

Proposition 4.1: If there is a feasible point in the
polytopeP , then there is aunique optimum for the
primal LP problem in Figure 1.

Proof: First, it is straight-forward to see that any
feasible pointτ = {τ (α)v,e }v∈V,e∈E,α∈F in P is also a
feasible point in the polytope in Figure 2 withσv =
1
2∆−d((y)E(v), (c)E(v)), for all v ∈ V . Then, it follows
from (2) that (f ,w) is an optimal solution for the
primal problem in Figure 1, where

∀e ∈ E : f e = ξ(ce) .

Assume that(h, s) is another optimal solution for the
LP problem in Figure 1.

Inequality (14) implies that

τ (α)v,e + τ (α)u,e ≤ γ(α)
e − ε ,

for some smallε > 0, for all e = {v, u} ∈ E,
α ∈ F\{ce}. We define a new cost function̂γ =

{γ̂(α)
e }e∈E,α∈F for the problem in Figure 1 as follows:

γ̂(α)
e =

{

γ
(α)
e − ε if f

(α)
e = 0

γ
(α)
e otherwise

.
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Minimize
∑

v∈V

σv (11)

subject to ∀e = {v, u} ∈ E, ∀α ∈ F : τ
(α)
v,e + τ

(α)
u,e ≤ γ

(α)
e ; (12)

∀v ∈ V, ∀b ∈ C(v) :
∑

e∈E(v)

τ
(be)
v,e + σv ≥ 0 . (13)

Fig. 2. Dual LP problem

∀e = {v, u} ∈ E, ∀α ∈ F\{ce} : τ
(α)
v,e + τ

(α)
u,e < γ

(α)
e ; (14)

∀e = {v, u} ∈ E : τ
(ce)
v,e + τ

(ce)
u,e ≤ γ

(ce)
e ; (15)

∀v ∈ V, ∀b ∈ C(v) :
∑

e∈E(v)

τ
(be)
v,e ≥ − 1

2
∆+ d((y)E(v), (c)E(v)) . (16)

Fig. 3. Dual (open) polytopeP

Observe, that
∑

e∈E,α∈F

(

−γ̂(α)
e

)

· f (α)
e =

∑

e∈E,α∈F

(

−γ(α)
e

)

· f (α)
e .

It follows that (f ,w) is an optimal solution for the
LP problem in Figure 1 under the cost functionγ̂.

Note that(f ,w) corresponds to a codewordc, and
so its entries are either0 or 1. Moreover,(f ,w) 6=
(h, s), and so in particularf 6= h. Therefore, there
must exist at least onee ∈ E such thatfe 6= he. For
suche, due to (10) (with respect tohe), there exists
at least oneβ ∈ F such thatf (β)

e = 0 andh
(β)
e > 0.

Therefore,
∑

e∈E,α∈F

(

−γ̂(α)
e

)

· h(α)
e >

∑

e∈E,α∈F

(

−γ(α)
e

)

· h(α)
e

=
∑

e∈E,α∈F

(

−γ(α)
e

)

· f (α)
e

=
∑

e∈E,α∈F

(

−γ̂(α)
e

)

· f (α)
e ,

and this makes a contradiction to the fact that(f ,w)
is an optimal solution to the primal problem under the
cost functionγ̂. The contradiction follows from the
(false) assumption that there is more than one optimal
solution for the original primal problem.

The following corollary follows immediately from
Proposition 4.1.

Corollary 4.2: If there is a feasible point in the
polytopeP , then the decoder in Figure 1 succeeds.

V. CORRECTING ACONSTANT FRACTION OF

ERRORS

Recall that the wordc = (ce)e∈E ∈ C was trans-
mitted andy = (ye)e∈E ∈ F

|E| was received. Suppose
that G = (A ∪ B,E) is a ∆-regular bipartite graph
defined as in Section II.

In this section, we will define a notion of error
core. Building on that, we will show that if there is
no error core in the graphG, then the dual solution
can be always found for the appropriate nonbinary LP
decoding problem.

Definition: The graphG has an(ζA, ζB)-error core
(where ζA, ζB ∈ [0, 1]) associated with the wordy
if there exists a subset of edges in errorE′ ⊆ {e ∈
E : ye 6= ce} and two subsets of verticesA′ ⊆ A
and B′ ⊆ B such thatA′ ∪ B′ is the set of all the
endpoints of the edges inE′, and:

• for any v ∈ A′: |{E(v) ∩E′}| ≥ ζA∆;
• for any v ∈ B′: |{E(v) ∩E′}| ≥ ζB∆.

Below, we inductively define the sets of verticesVi

(for i = 0, 1, · · · , t, wheret will be defined later) and
the sets of edgesEi (for i = 1, 2, · · · , t) as follows.

• Basis.The edge setE1 will be the set of all edges
corresponding to the erroneous symbols iny, and
the vertex setsV0 and V1 will be the endpoints
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of edges inE1:

E1 = {e ∈ E : ye 6= ce} ;

V0 = {v ∈ A : E(v) ∩ E1 6= ∅} ;

V1 = {v ∈ B : E(v) ∩ E1 6= ∅} .

• Step.For i ≥ 2:

Vi =
{

v ∈ Vi−2 :
∣

∣

∣
{e ∈ E(v) ∩ Ei−1}

∣

∣

∣
≥ δ∆

4

}

,

whereδ = δA if i is even, andδ = δB if i is odd,
and

Ei =
{

e = {v, u} ∈ Ei−1 : v ∈ Vi−1, u ∈ Vi

}

.

Lemma 5.1:If Ei = ∅ for some finitei, then the
decoder in Figure 1 succeeds.

Proof: We show that the decoder succeeds by
constructing a feasible point in the polytopeP . We
useǫ > 0 to denote the quantity, which can be made
as small as desired. The precise value ofǫ will be
discussed later. We set the variablesτ

(α)
u,e as follows.

• Let e = {v, u} /∈ E1. Then, by definition ofE1,
ce = ye. Assume thatce = β. We set,τ (β)v,e =

τ
(β)
u,e = −1/2, and soτ (β)v,e + τ

(β)
u,e ≤ γ

(β)
e = −1.

We also setτ (α)v,e = τ
(α)
u,e = 1/2 − ǫ for all α ∈

F\{β}. In that case,τ (α)v,e + τ
(α)
u,e < γ

(α)
e = 1.

Therefore, (14) and (15) are satisfied.
• Let e = {v, u} ∈ E1. Denote ce = β. By

definition ofE1, ye 6= ce. Let i∗ be the value such
that e ∈ Ei∗\Ei∗+1. In addition, without loss of
generality assume thatv ∈ Vi∗−1 and u ∈ Vi∗

(and sov /∈ Vi∗+1 and |E(v) ∩ Ei∗ | < 1
4δ∆).

Then, we setτ (β)v,e = τ
(β)
u,e = 1

2 . In that case,τ (β)v,e +

τ
(β)
u,e ≤ γ

(β)
e = 1, and so (15) is satisfied. We also

set, for allα ∈ F\{β}, τ (α)v,e = − 5
2−ǫ andτ (α)u,e =

3
2 , which yieldsτ (α)v,e + τ

(α)
u,e < γ

(α)
e ∈ {−1, 1}.

Thus, all inequalities (14) are also satisfied.

Table I summarizes the assignments of the values to
variablesτ (α)v,e for all e ∈ E, v ∈ e andα ∈ F.

SinceEi = ∅ for some finitei (we sett = i + 1,
where i is this value), the values of all the variables
τ
(α)
v,e are defined. We already showed that all inequal-

ities (14) and (15) are satisfied. Next, we show that
inequalities (16) are satisfied. It will be enough to show
that for all v ∈ V , b ∈ C(v),

∑

e∈E(v)

τ (be)v,e ≥ − 1
2∆+ d((y)E(v), (c)E(v)) . (17)

α = ce α 6= ce

ye is correct τ
(α)
v,e = − 1

2
τ
(α)
v,e = 1

2
− ǫ

ye is in error τ
(α)
v,e = 1

2
τ
(α)
v,e = − 5

2
− ǫ or τ (α)

v,e = 3
2

depends on the structure
of the error

TABLE I
ASSIGNMENTS OF THE VALUES TO THE VARIABLESτ

(α)
v,e .

For a vertexv ∈ V and a codewordb ∈ C(v), we
define five sets of indices (edges) as follows:

E1 = {e ∈ E(v) : ye is correct andbe = ce} ,

E2 = {e ∈ E(v) : ye is correct andbe 6= ce} ,

E3 = {e ∈ E(v) : ye is in error andbe = ce} ,

E ′
4 = {e ∈ E(v) : ye is in error,

be 6= ce andτ (be)v,e = − 5
2 − ǫ} ,

E ′′
4 = {e ∈ E(v) : ye is in error,

be 6= ce andτ (be)v,e = 3
2} .

(These sets depend onv and b, in addition to their
dependence onc andy. However, we writeEj rather
thanEj(v, b) for the sake of simplicity.)

Then,
∑

e∈E(v)

τ (be)v,e =
∑

e∈E1

τ (be)v,e +
∑

e∈E2

τ (be)v,e +
∑

e∈E3

τ (be)v,e

+
∑

e∈E′
4

τ (be)v,e +
∑

e∈E′′
4

τ (be)v,e

=
∑

e∈E1

(− 1
2 ) +

∑

e∈E2

(12 − ǫ) +
∑

e∈E3

1
2

+
∑

e∈E′
4

(− 5
2 − ǫ) +

∑

e∈E′′
4

3
2

≥
(

− 1
2∆+ d((y)E(v), (c)E(v))

)

+
∑

e∈E2

(1 − ǫ)

+
∑

e∈E′
4

(−3− ǫ) +
∑

e∈E′′
4

1 .

In order to prove (17), it will be enough to show that

|E2|+ |E ′′
4 | ≥ 3|E ′

4|+ ǫ(|E2|+ |E ′
4|) . (18)

We observe several cases.
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• Consider a vertexv ∈ (A\V0) ∪ (B\V1).
Then,
∣

∣

∣
{e ∈ E(v) : ye 6= ce}

∣

∣

∣

= |E3|+ |E ′
4|+ |E ′′

4 | = 0 , (19)

and so (18) is satisfied for anyǫ ≤ 1.
• Consider a vertexv ∈ V0 ∪ V1. Let δ = δA if

v ∈ A, andδ = δB if v ∈ B. SinceEi = ∅ for
somei ∈ N, we have thatv ∈ Vi∗−1\Vi∗+1 for
somei∗ ∈ N. Therefore,

|E(v) ∩ Ei∗ | < 1
4δ∆ .

We can write, with respect to thisv and anyb,
that

|E ′
4| ≤ 1

4 (δ − ǫ′)∆ ,

or,
δ∆ ≥ 4|E ′

4|+ ǫ′∆ , (20)

for some smallǫ′ > 0.

– If b = (c)E(v), then obviously|E2| = |E ′
4| =

|E ′′
4 | = 0, and so (18) holds.

– If b 6= (c)E(v), then recall that the relative
minimum distance ofC(v) is at least δ.
Therefore,|E2| + |E ′

4| + |E ′′
4 | ≥ δ∆, and by

using (20):

|E2|+ |E ′′
4 | ≥ δ∆− |E ′

4| ≥ 3|E ′
4|+ ǫ′∆ .

We see that (18) holds for allǫ ≤ ǫ′.

We have shown that that in all cases, for sufficiently
smallǫ, (16) holds, and therefore there exists a feasible
point in P .

Lemma 5.2:If there is no(14δA,
1
4δB)-error core,

thenEi = ∅ for somei ∈ N.

Proof: Suppose that there is noi ∈ N such that
Ei = ∅. Since for all i ∈ N, Ei+1 ⊆ Ei, we have
that there exists some eveni∗ ∈ N, such that for
any i ≥ i∗, Ei+1 = Ei 6= ∅. This, in turn, means
that Vi∗+2 = Vi∗ and Vi∗+3 = Vi∗+1. However,
this implies (without loss of generality) that every
v ∈ Vi∗+1 and u ∈ Vi∗+2 has at least14δA∆ and
1
4δB∆ incident edges inEi∗+1, respectively. It follows
that the set of edgesEi∗+1 together with the setsVi∗

andVi∗+1 forms a(14δA,
1
4δB)-error core.

Corollary 5.3: If the LP decoder in Figure 1 fails,
then there exists an(14δA,

1
4δB)-error core associated

with the wordy in the graphG.

The proof follows immediately from Lemmas 5.1
and 5.2.

Next, we show that the LP decoder in Figure 1
corrects all the errors iny if the amount of errors
in it is at most a fraction of the code length. Consider
a subgraphH = (UA ∪ UB,E) of G with UA ⊆ A,
UB ⊆ B and E ⊆ E. For a vertexv ∈ UA ∪ UB

denote bydegH(v) its degree in the graphH. We use
the following known result.

Proposition 5.4:Let UA and UB be subsets of
sizes|UA| = a|A| and|UB| = b|B|, respectively, such
that a+ b > 0. Let E be the edge set induced by the
vertex setUA ∪ UB, and denoteH = (UA ∪ UB,E).
Then,

2|E| =
∑

v∈UA∪UB

degH(v)

≤ 2
(

ab+ γG
√

a(1 − a)b(1− b)
)

∆n

≤ 2((1− γG)ab+ γG
√
ab)∆n . (21)

This statement is equivalent to Proposition 3.3 in [15].
The first inequality is obtained when the tighter in-
equality in Lemma 3.2 in [15] is used in the proof of
Proposition 3.3. If the graph is a Ramanujan expander
as in [13], [14], then for fixeda andb, by increasing
∆ (and so by reducingγG), it is possible to make
|E|/(∆n) as close to(ab) as desired.

By using Proposition 5.4, we obtain the following
theorem.

Theorem 5.5:Assume that the size of error iny
is less than

ζAζB − γG
√
ζAζB

1− γG
·∆n ,

for some ζA, ζB ∈ (0, 1], such thatγG ≤ √
ζAζB.

Then, the graphG contains no(ζA, ζB)-error core
associated with thisy.

The proof of this theorem is along the same lines
as the proof of Theorem 3.1 in [15]. For the sake of
completeness of the presentation, we place the sketch
of the proof in Appendix.

The main result of this section follows from Corol-
lary 5.3 and Theorem 5.5, and it appears in the
following corollary.
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Corollary 5.6: If the size of error iny is less than

δAδB/16− γG
√

δAδB/16

1− γG
·∆n ,

andγG ≤ 1
4

√
δAδB, then the LP decoder in Figure 1

will correct all errors iny.

Observe, that the proposed LP decoder corrects any
error pattern of size approximatelyδAδB∆n/16, when
the value of∆ is large enough.

VI. U SING ERROR PATTERN ORIENTATION

In this section, we present more powerful decoder
analysis than its counterpart in Section V. More
specifically, by usingerror pattern orientation, we are
able to improve the fraction of correctable errors in
Section V by approximately a factor of4. The idea of
using error pattern orientation was proposed in [6].

Let G = (A ∪B,E) be a∆-regular bipartite graph
as before, and letH = (UA ∪ UB,E) be a subgraph
with UA ⊆ A, UB ⊆ B andE ⊆ E. We start with the
following definition.

Definition: The assignment of the directions to the
edges of the subgraphH = (UA ∪ UB,E) is called
an (ρA, ρB)-orientation (for some ρA, ρB ∈ (0, 1])
if each vertexv ∈ UA and each vertexv ∈ UB

has at mostρA∆ and ρB∆ incoming edges inE,
respectively. We will say that for the given assignment
of the edge directions,M edges areviolating the
(ρA, ρB)-orientation property at the vertexv ∈ UA

(v ∈ UB) if v hasρA∆+M (ρB∆+M , respectively)
incoming edges inE. We will also say that for the
given assignment of the edge directions,M edges
are violating the (ρA, ρB)-orientation property inH
if M is the smallest integer such that by removingM
edges fromE, the resultingH will have a (ρA, ρB)-
orientation.

Lemma 6.1:Let H = (UA ∪ UB,E) be a sub-
graph ofG = (A∪B,E) with UA ⊆ A, UB ⊆ B and
E ⊆ E. Assume that

|E| ≤ µAµB − γG
√
µAµB

1− γG
·∆n ,

for someµA, µB ∈ (0, 1], such thatγG ≤ √
µAµB,

and 1
2µA∆, 1

2µB∆ are both integers. Then,E contains
an (µA/2, µB/2)-orientation.

Proof: Assign directions to the edges inE such
that the number of violations of an(µA/2, µB/2)-
orientation inH is minimal. We will show that if
for some v ∈ UA (v ∈ UB) there are more than
µA∆/2 (µB∆/2, respectively) incoming edges, then
it is possible to change the directions of the edges
in the graph such that the number of edges violating
the orientation property will decrease. This will make
a contradiction to the minimality of the number of
orientation violations in the current assignment of the
edge directions.

Denote bydegin(v) the number of incoming edges
(in H) of the vertexv. Recall thatµA∆ andµB∆ are
even integers. We will use the following definitions.

Definition: A vertexv ∈ UA ∪UB is called aheavy
vertex if it satisfies one of the following:

1) v ∈ UA anddegin(v) >
1
2µA∆;

2) v ∈ UB anddegin(v) >
1
2µB∆.

Definition: A vertex v ∈ UA ∪ UB is called afull
vertex if it satisfies one of the following:

1) v ∈ UA anddegin(v) =
1
2µA∆;

2) v ∈ UB anddegin(v) =
1
2µB∆.

Definition: A vertex v ∈ UA ∪ UB is called alight
vertex if it satisfies one of the following:

1) v ∈ UA anddegin(v) <
1
2µA∆;

2) v ∈ UB anddegin(v) <
1
2µB∆.

Observe that the orientation property is not violated
at the full and at the light vertices. Assume, by
contrary, that there exists a heavy vertex inUA ∪UB.
We show that it is possible to change the directions
of the edges inE such that the total number of edges
violating the orientation property inH will decrease.

Define a set of verticesU to be the maximal set as
follows:

• If v ∈ UA ∪ UB is heavy thenv ∈ U .
• If u ∈ UA ∪UB is full and there is a direct edge

from u to v for somev ∈ U , thenu ∈ U .

The setU is well defined.

If there is an edge(w, u) for somew /∈ U and
u ∈ U , thenw is light and there exists a path from
w to someheavyvertexv ∈ U (vertexu can be full).
Then, it is possible to flip the directions of all edges in
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the path, and thus to decrease the number of violations
of the orientation property by1 (at the vertexv).

Below, we assume that there is no edge(w, u) for
any w /∈ U and u ∈ U . DenoteU ′

A = U ∩ UA and
U ′
B = U ∩ UB. Let E′ be a set of edges inE having

one endpoint inU ′
A and one endpoint inU ′

B. Let a =
|U ′

A|/n andb = |U ′
B|/n. We have

1
2 (aµA + bµB)∆n < |E′| ≤ |E|

≤ µAµB − γG
√
µAµB

1− γG
·∆n , (22)

where the first inequality is correct since there are only
heavy and full vertices inU ′

A ∪ U ′
B, and at least one

of these vertices is heavy. The last inequality is given
by the conditions of the lemma.

Assume that the ratio between the number of di-
rected edges inE′ from U ′

A to U ′
B and the number of

directed edges inE′ from U ′
B to U ′

A is κ > 0. Then,

1
2aµA(1 + κ) ·∆n ≤ |E′|

≤
(

(1 − γG)ab+ γG
√
ab

)

∆n , (23)

and

1
2bµB(1 + 1/κ) ·∆n ≤ |E′|

≤
(

(1 − γG)ab+ γG
√
ab

)

∆n , (24)

where the left-hand side inequalities follow from the
fact that every vertex inU ′

A and every vertex inU ′
B is

either full or heavy, and the right-hand side inequalities
follow from (21).

Inequalities (23) and (24) yield

b ≥ µA(1 + κ)

2(1− γG)
− γG

1− γG

√

b

a
, (25)

and

a ≥ µB(1 + 1/κ)

2(1− γG)
− γG

1− γG

√

a

b
, (26)

respectively.

Consider two cases.

Case 1: aµA(1+κ) ≥ bµB(1+1/κ). Then, from (25) we
have

b ≥ µA(1 + κ)

2(1− γG)
− γG

1− γG

√

µA(1 + κ)

µB(1 + 1/κ)
,

and, so,

bµB ≥ µAµB(1 + κ)

2(1− γG)
− γG

1− γG

√
µAµBκ .

Finally,

aµA ≥ bµB

1 + 1/κ

1 + κ

≥ µAµB(1 + 1/κ)

2(1− γG)
− γG

1− γG

√

µAµB

κ
.

Case 2: aµA(1+κ) < bµB(1+1/κ). Then, from (26) we
have

a >
µB(1 + 1/κ)

2(1− γG)
− γG

1− γG

√

µB(1 + 1/κ)

µA(1 + κ)
,

and, so,

aµA >
µAµB(1 + 1/κ)

2(1− γG)
− γG

1− γG

√

µAµB

κ
.

We also obtain:

bµB > aµA

1 + κ

1 + 1/κ

>
µAµB(1 + κ)

2(1− γG)
− γG

1− γG

√
µAµBκ .

From (22), in both cases we have:

|E| >
1

2
(aµA + bµB)∆n

≥ 1

2

(

µAµB(2 + κ+ 1/κ)

2(1− γG)

− γG
√
µAµB

1− γG

(

√
κ+

√

1

κ

))

∆n . (27)

Denote

η =
√
κ+

√

1/κ , η ∈ [2,+∞) .

Observe that the right-hand side of (27) is a quadratic
function of η. Since γG ≤ √

µAµB, we have that
this function is nonnegative and monotonic increasing
for η ≥ 2γG/

√
µAµB. Its minimum is obtained for

the smallest value ofη, which is achieved atκ = 1.
Therefore, (27) becomes

|E| > µAµB − γG
√
µAµB

1− γG
·∆n .

We obtained a contradiction to the right-hand side
of (22).

The contradiction follows from the assumption that
there exists a heavy vertex inUA ∪ UB, and it is im-
possible to flip the directions of the edges such that the
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number of violations of the orientation property will
decrease. We conclude that there is an(µA/2, µB/2)-
orientation inE.

Define the numbersθA andθB as follows. LetθA >
0 (θB > 0) be the largest number such thatθA < δA
(θB < δB) and 1

4θA∆ ( 14θB∆, respectively) is integer.

The following theorem is the main result of this
paper.

Theorem 6.2:Let C be defined as above, and
assume thatγG ≤ 1

2

√
θAθB. Then, the decoder in

Figure 1 is able to correct any error pattern of a size
less than or equal to

θAθB − 2γG
√
θAθB

4(1− γG)
·∆n

in a codewordc ∈ C.

Proof: Let E be the set of edges in error (for a
received wordy), and assume that

|E| ≤ θAθB − 2γG
√
θAθB

4(1− γG)
·∆n .

Then, by Lemma 6.1, there exists an(θA/4, θB/4)-
orientation ofE.

Therefore, we are able to construct a feasible solu-
tion for the dual LP problem, as follows.

• For the edgese /∈ E, we set the values ofτ (α)v,e

in the same way as we set the values ofτ
(α)
v,e for

e /∈ E1 in the proof of Lemma 5.1.
• For the (directed) edge(u, v) ∈ E, we set

∀α ∈ F\{ce} : τ (α)v,e = − 5
2 − ǫ and τ (α)u,e = 3

2 ,

and
τ (ce)u,e = τ (ce)v,e = 1

2 .

These settings clearly satisfy all the constraints (14)
and (15). Moreover, since for everyv ∈ A (v ∈ B)
there are less than14δA∆ ( 14δB∆, respectively) in-
cident edgese ∈ E with the correspondingτ (α)v,e =
− 5

2 − ǫ, using the same argument as in Lemma 5.1,
for ǫ small enough, we have that (16) is also satisfied.

VII. D ISCUSSION

The relative minimum distance of the codeC was
shown in [15] to satisfy (1). By taking a sufficiently

large∆, this bound can be made arbitrarily close to
δAδB. Thus, the analysis in Section V demonstrates
that the decoder in Figure 1 is able to correct any error
pattern of size approximately116 of this lower bound.
For comparison, the analysis in Section VI shows that
the decoder is actually able to correct approximately
four times more errors, than it was shown in Section V.
Consequently, the fraction of correctable errors under
the decoder in Figure 1 is (at least) approximately
1
4δAδB.

It is interesting to compare this result with other
related works. Thus, in [21] the codeC with δA =
δB = δ (for 0 < δ < 1) was considered, and a bit-
flipping decoder was presented. This decoder corrects
approximately1

4 · δ2 fraction of errors. Similar result
for binary codes was also obtained in [6] by using
a linear-programmingdecoder and a slightly different
definition of expander graph.

However, the fraction of correctable errors inC can
be boosted close to12δAδB by using more advanced
decoding techniques [2], [15], [16]. It is still an
open question whether the similar fraction of errors
can be corrected by using decoder based on linear-
programming methods.

The fraction of correctable errors grows with the
size of the alphabet (as well as the relative minimum
distance does). For example, consider a binary code
C having the same constituent codeC = C(v) for
each v ∈ V . If C is a random code of relative
minimum distanceδ and rater, then we have (with
high probability)

r ≥ 1− h2(δ)− o(1) ,

whereh2(·) is the binary entropy function. The rate of
C is at least2r− 1 and the fraction of the correctable
errors is arbitrarily close to14 · δ2. In Table II, we
present the relations between the code rate and the
lower bound on the fraction of correctable errors.

Next, consider a codeC over a large alphabet. Take
C = C(v) (for eachv ∈ V ) to be Generalized Reed-
Solomon code of relative minimum distanceδ and rate
r ≥ 1 − δ. In this case, we also have to require that
q ≥ ∆. Table III presents the relations between the
rate of suchC and the fraction of correctable errors.

APPENDIX

Sketch of the proof of Theorem 5.5.
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Rate ofC 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of correctable errors,×10−4 22.14 15.76 10.82 7.086 4.346 2.422 1.160 0.4217 0.0786

TABLE II
LOWER BOUND ON THE FRACTION OF CORRECTABLE ERRORS FOR VARIOUSRATES OFC, FOR BINARY ALPHABET.

Rate ofC 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of correctable errors,×10−2 5.0625 4.0 3.0625 2.250 1.5625 1.0 0.5625 0.250 0.0625

TABLE III
LOWER BOUND ON THE FRACTION OF CORRECTABLE ERRORS FOR VARIOUSRATES OFC, FOR LARGE ALPHABET.

Assume, by contrary, thatG contains a(ζA, ζB)-
error core associated withy. Let E′ ⊆ E be the set
of edges in this error core, andA′ ⊆ A andB′ ⊆ B
such thatA′ ∪B′ is the set of all the endpoints of the
edges inE′. We have

• for any v ∈ A′: |{E(v) ∩E′}| ≥ ζA∆;
• for any v ∈ B′: |{E(v) ∩E′}| ≥ ζB∆.

Consider a subgraphH = (UA ∪ UB,E) of G with
UA = A′, UB = B′ andE = E′. Let a = |UA|/|A|
andb = |UB|/|B|. From Proposition 5.4, we have

|E′| ≤ ((1− γG)ab+ γG
√
ab)∆n . (28)

On the other hand, sinceE′ is the set of edges of
an (ζA, ζB)-error core, we have

|E′| ≥ an · ζA∆ and |E′| ≥ bn · ζB∆ . (29)

There are two possibilities:

Case 1: aζA ≥ bζB. Then, from (28)
and (29), we have

aζA ≤ ((1 − γG)ab+ γG
√
ab) ,

and so

b ≥ ζA − γG
√

b/a

1− γG
≥ ζA − γG

√

ζA/ζB
1− γG

.

Case 2: aζA < bζB. Then, from (28)
and (29), similarly we have

a ≥ ζB − γG
√

ζB/ζA
1− γG

.

In both cases,

|E′| ≥ ζAζB − γG
√
ζAζB

1− γG
·∆n ,

in contradiction with the assumption. This concludes
the proof.
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