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Abstract—A linear-programming decoder for nonbi-
nary expander codes is presented. It is shown that the
proposed decoder has the nearest-neighbor certificate
properties. It is also shown that this decoder corrects any
pattern of errors of a relative weight up to approximately
%6,453 (where 64 and 6z are the relative minimum
distances of the constituent codes).

Index Terms—Expander Codes, Low-Density Parity-
Check Codes, Linear-Programming Decoding, Nonbi-
nary Codes.

I. INTRODUCTION

Low-density parity check (LDPC) codes have be-
come very popular in recent years due to their excellent

the events of LP decoder failures are caused by so-
called pseudocodewordsind those pseudocodewords
are, in turn, related to the failure events of the message-
passing decoders.

These results were generalized fin [9],1[10] toward
nonbinary LDPC codes and coded modulations, and
in particular to codes over finite quasi-Frobenius rings
(see also[[8]). It was shown that the connections
between LP decoding and MP decoding are preserved
in the nonbinary settings as well.

A promising approach for constructing LDPC codes
using graphs goes back {0 [19]. The construction was
modified in [17], whereexpander graptwas used as
an ingredientin a construction of linear-time decodable
codes that correct a constant fraction of errors under a

performance under message-passing (MP) decoders. variation of an MP decoder. This result was improved

Yet, our understanding of LDPC codes and their
decoders is still limited. While most of the research
to date was devoted to binary LDPC codes, there
are works suggesting that nonbinary LDPC codes
combined with high-order modulation schemes can
possibly outperform their binary counterparts (at a
price of higher decoding complexity) [12], [18].

For a binary case, a new approach toward un-
derstanding of LDPC codes was suggested [in [4]
and [7]: it was proposed to decode binary LDPC codes
using linear-programming (LP) decoder, and important
connections between the linear-programming decoding

in the works [2], [3], [15], [16], [21]. It was shown

in [1] that expander codes achieve capacity of a binary
symmetric channel under a variation of MP decoder.
Explicit constructions of regular expander graphs can
be found, for instance, in_[13], [14].

In [5], the performance of expander codes[in|[17]
under the LP decoding was investigated. It was shown,
that the LP decoder corrects a similar fraction of
errors as the MP decoder in_[17] does. This research
direction was extended inl[6], where it was shown that
the expander codes achieve the capacity of a variety
of binary memoryless channels. It was also shown

and the message-passing decoding were establishedin [6], that the LP decoder applied to the code<in [21]

(see alsol[11],[120]). In particular, it was shown that

This work was supported in part by the Claude Shannon Insti-
tute for Discrete Mathematics, Coding and Cryptographyie(8e
Foundation Ireland Grant 06/MI/006), and in part by the Oizdi
Research Foundation of Singapore (Research Grant NRF-CRP2
2007-03). Part of this work was presentedIBEE International
Symposium on Information Theory 20@&eoul, Korea.

V. Skachek was with the Claude Shannon Institute and the dbcho
of Mathematical Sciences, University College Dublin, B
Dublin 4, Ireland. He is now with the Division of Mathematica
Sciences, School of Physical and Mathematical Sciencesydwg
Technological University, 21 Nanyang Link, Singapore 6RT,3e-
mail: Vitaly.Skachek@ntu.edu.sg.

corrects a similar fraction of errors as the decoder
therein, which is approximately a quarter of the lower
bound on their relative minimum distance.

In this work, we generalize several results in [6]
toward nonbinarysettings. There are some additional
differences betweer [6] and our work. First, we use
a slightly different definition of a (bipartite) expander
graph and corresponding code. Second, the analysis
in [6] assumes that the all-zero codeword was trans-
mitted, while we do not make such an assumption.
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Finally, we present a more accurate analysis of the
correctable fraction of errors, and, in particular, we
elaborate on the(1)-term in the bound on a fraction
of correctable errors.

The manuscript is structured as follows. In Sec-
tion [l we redefine (nonbinary) expander codes. In
Sectior Il we define a linear-programming decoder for

Denote byAg the adjacency matrix off; namely,
Ag is a|V| x |V] real symmetric matrix whose rows
and columns are indexed by the 3ét and for every
u,v € V, the entry inAg that is indexed byu, v) is
given by

1 if {u,v} €F
(Ag)uv = { 0 otherwise

these codes and discuss some of its basic properties. In |t js known thatA is the largest eigenvalue ofg.

Section[1V, we present the dual problem and discuss
the criteria for the decoding success. In Secfidn V, we
present a feasible solution to the dual problem and
show that the LP decoder corrects a constant fraction
of errors. In Sectior_VI, we present a concept of
error pattern orientation. By using this concept, we
show that the LP decoder corrects even higher fraction
of errors. Finally, in Sectioi_Vll, we summarize the
results presented in this paper and compare them with
some known works.

II. CoODE CONSTRUCTION

Below, we revisit the construction inl[1].

Let G = (AU B, E) be a bipartiteA-regular undi-
rected connected graph with a vertex §et= AU B
such thatA N B = ), and an edge seb such that
every edge has one endpoint #h and one endpoint
in B. We denotd A| = |B| = n and thus|E| = An.
We assume an ordering owi, thereby inducing an
ordering onE = {ei}‘iﬂ. Let F be the fieldF,. For
every vertexv € V, we denote byE(v) the set of
edges that are incident with For a wordz = (z).cx
(whose entries are indexed ) in FIZ!, we denote
by (2)e,) the sub-block of that is indexed by (v).

For eachv € V, let C(v) be a linear code of length
A over F. The expander cod€ is defined as the
following linear code of lengthE| overF:

C= {c e Il . (€)p(, € C(v) for everyv € V} .
Suppose thaf€4 andCp are linear[A,ra A, §4 A

and[A,rgA, épA] codes ovelf, respectively. In the
sequel, we consider the codewith

C(v) = { Ca

Cp
This code was first studied ihl[1]. In particular, it was
shown therein that the rate @fis at leastr, +rg —1.

for everyv € A
for everyv € B

We denote byyg the ratio between the second largest
eigenvalue ofAg and A. The constructions ofA-
regular bipartite expander graphs [n_[13], [[14] have

vg < 2vVA —1/A.

The relative minimum distance @, ¢, was shown
in [15] to satisfy
S 040 — YV 040B

dc
1—1g

(1)

In the sequel, we use the notatid(w, z) to denote
the Hamming distance between the vectorand z.

I1l. L INEAR-PROGRAMMING DECODER

In this section, we introduce an LP decoder for the
codeC. Suppose that the codewoed= (c.)ecr € C
is transmitted through the adversarial channel and the
word y = (ye)eer € FIFl is received.

We define the mapping
& F—{0,1}9CRY,
by
£B) = = (2')aer ,

such that, for eacly € T,

x<a>:{(1)

The mapping is one-to-one, and its image is the set
of binary vectors of lengtly with Hamming weight

1. Please note that this mapping is slightly different
from its counterpart in[[9], where the image of the
mapping was the set of binary vectors of length 1

of Hamming weight O or 1.

if a=p
otherwise.

We also define
= . FIEl {0’1}q\E\ c RIEI
according to

E(C) = (S(cel) | S(cez) | | 5(06\15\)) .



We note thatE is also one-to-one.

For vectorsf € R4”I, we adopt the notation

.f:(fel |f€2| |fe‘E‘)’
where
Ve € E, fo=(f{*)aer -

We can write the inverse && as

BN = € o) 6 (Fo) € (Fep)) -

[

Below, we define the variables that will be used
in the decoder. For alke € E, « € F, we use
the variablesfe(o‘) > 0. The objective function is
Seen Sace 1 117, wherey(™ is a function of the
channel output.

For eacha € I we set
(@ _ ) —1
Ve - { 1

Assume thatf, = £(8) for somee € E, § € F.
Then, it is straightforward to verify that

Z (@) ) _ J =1 i B=uye
’Ye fe _{ i
= 1 if B#ye

if a=ye
if o # ye

Suppose now thaf = Z(z) for somez € FIZI. It
follows that

DD A 1B = 2d(y, 2) -
ecE aclF
(Recall that the notatiod(y, z) is used for the Ham-

ming distance betweeg and z.) Therefore, finding
z € C such thatf = Z(z) minimizes the left-

)

hand side of[(R) is equivalent to the nearest-neighbor

decoding ofy. Instead, however, we will equivalently

maximize
IIETES

ecE acF

®3)

In the sequel, we use the variables,, for all
v € V and all b € C(v). These variables can
be viewed agelative weightsof local codewordsh
associated with the edges incident with the vertex
v. The corresponding linear-programming problem is
presented in Figurel 1.

Constraints[(5)E(9) form a polytope which we denote
by Q. In particular, it follows from constraint§](5)4(9)

that
Vee B : > fi=1.
a€elR

(10)

Next, we define the decoding algorithm for the code
C. The decoder optimizes the objective functigh (4)
subject to constraintd J(5)3(9). If the resuft is in
{0,1}9/71, then the decoder outpuB '(f) (as it is
shown below, this output is then a codeword ©f
Otherwise, the decoder declaresiecoding failure

We have the following proposition.

Proposition 3.1:

1) Let(f,w) e Q and f € {0,1}%Fl. Then
2 (f)ecC.

2) If ¢ € C then there existsv such that(f, w) €
Q and f = Z(c) € {0,1}9F1,

Proof:

1) Suppose(f,w) € Q and f € {0,1}97l. Let
c = =7 1(f). By (@0Q), c is well defined. Next,
fix somev € V and leta = (¢)g., (for a =
(@e)eck(v))- It follows that for anye € E(v),
a €T, £ = 1if and only if a. = a. Let
d € C(v), d # a. Sincea andd are different,
there existsg € F ande¢’ € E(v) such that
aer # B andd., = B. Then, it follows from [1D)
and either from[{6) or fron{7) that

0=f"= 3
beC(v) : b=

and thereforev, 4 = 0.
It follows thatw, 4 = 0 foralld € C(v), d # a,
and thatw, , = 1. Applying this argument for
everyv € V impliesc € C.

2) Assume thatc € C. Let f = E(c¢). For each
v eV, we set

{ 1
Wy,b = 0

The reader can easily verify thgt< {0, 1}9/7
and the correspondingf, w) is in Q.

Wy,b

otherwise

The following theorem is an equivalent of the
nearest-neighbor certificate

Theorem 3.2:Suppose that the LP solver applied
to the LP problem in Figuré]1l outputs a codeword
c € C. Then,c is the nearest-neighbor codeword.

The proof follows from the previous proposition

and [2).



Maximize
subject to YveV

Ve ={v,u} € E, Va €F

Vee EF, a el
Yv eV, beC(v)

S () @)
ecE,a€F
> wep=1; (5)
becC(v)
f= 3w, 6)
beC(v) : be=«
S N o
beC(u) : be=a
f=0; 8)
Wy b 2 0. (9)

Fig. 1. Primal LP problem

IV. DUAL WITNESS AND UNIQUE SOLUTION

We aim to show that the decoder succeeds given
that the number of adversarial errors is bounded from
above by a certain constant. We use thml witness
approach proposed inl[5]. This technique was extended
in [6] toward binary expander code. We further extend
this technique toward nonbinary settings.

Recall that the codeword € C was transmitted.
If that is the case, the decoder succeeds if it outputs
the samec. It follows from Propositioi 311 that there
is only one feasible combination of values of the
variablesw, ; that corresponds to the codewos
namely

1 if b= ()

Vo EV : wyp = { 0 otherwise

The sufficient criteria for the decoder success is that
this solution is theiniqueoptimum of the LP decoding
problem in Figurd L.

To prove the optimality, we show the existence of
a dual feasible solution, such that the value of the
objective function of the dual problem is equal to the
value of the objective functions of the primal problem.
The dual LP problem makes use of the following
variables. For eaclv € F, ¢ € E, andv € V, such
thatv is an endpoint ok, there is a variablenf,og). In
addition, for eachy € V, there is a variable,,.

The dual LP problem is presented in Figlte 2. We
set the objective value to H&’| — 2d(y, ¢), which is
the value in [[(B) under the substitution = ¢ (this
fact easily follows from[{R)). This can be achieved by
setting, for allv € V, 0, = 2A — d((Y)5), (s

In order to show the uniqueness of the solution, we
slightly modify the dual LP problem. More specifi-
cally, we enforce strict inequalities if_(12), such that
the corresponding dual polytope (denoted By be-
comes as in Figuid 3. Generally speaking, the polytope
‘P can be unbounded, and thus, sometimes we use the
term “open polytope”.

The uniqueness of the solution for the primal LP
problem now follows from the following proposition.

Proposition 4.1:If there is a feasible point in the
polytope P, then there is ainique optimum for the
primal LP problem in Figuré]l.

Proof: First, it is straight-forward to see that any
feasible pointr = {réf?}veV’eeE’aeF in P is also a
feasible point in the polytope in Figufé 2 with, =
TA—d((Y)pw): (€)s), forallv € V. Then, it follows
from (@) that (f,w) is an optimal solution for the
primal problem in Figur&ll, where

Vee E : f,=¢&(c) .

Assume thath, s) is another optimal solution for the
LP problem in Figuréll.

Inequality [14) implies that
T+ <Al -,

for some smalle > 0, for all e = {v,u} € E,

a € F\{c.}. We define a new cost functioy =

{ﬁéa)}eeﬂaey for the problem in Figurgl1 as follows:
N if £=0
© otherwise

R

(@)

Ve



Minimize Z v (112)
veV

subject to Ve ={v,u} € E, Va € F quf;) + quae) <Al (12)
Yo €V, Vb e C(v) > o o >0. (13)

ecE(v)

Fig. 2. Dual LP problem

Ve = {v,u} € E, Yo € F\{c.} 78 4 78 < A (14)
Ve={v,u} € B : 7 470 <Al (15)
YoeV,YbeC(v) Y w2 —3A+d(Wew (Qsw) - (16)

ecE(v)

Fig. 3. Dual (open) polytop&

Observe, that

S ()= Y () g

ee E,a€lF eeE,a€lF

It follows that (f,w) is an optimal solution for the
LP problem in Figuréll under the cost functign

Note that(f,w) corresponds to a codewotdq and
So its entries are either or 1. Moreover, (f,w) #
(h,s), and so in particulatf # h. Therefore, there
must exist at least one< E such thatf, # h.. For
suche, due to [[(ID) (with respect th.), there exists
at least one5 € F such thatfe(ﬂ) =0andh > 0.
Therefore,

3 (_%co). pe > 3 (_75a>). B

ee E,a€lF eeE,a€elF

S ()

ecE,acF

> () pe

ecE,acF

and this makes a contradiction to the fact thftw)

is an optimal solution to the primal problem under the

cost function4. The contradiction follows from the

(false) assumption that there is more than one optimal

solution for the original primal problem. ]

The following corollary follows immediately from
Propositio 4.11.

Corollary 4.2: If there is a feasible point in the
polytopeP, then the decoder in Figufé 1 succeeds.

V. CORRECTING ACONSTANT FRACTION OF
ERRORS

Recall that the word: = (c.).cr € C was trans-
mitted andy = (y.).c» € FI”| was received. Suppose
thatG = (AU B, FE) is a A-regular bipartite graph
defined as in Sectidnlll.

In this section, we will define a notion of error
core. Building on that, we will show that if there is
no error core in the grapf, then the dual solution
can be always found for the appropriate nonbinary LP
decoding problem.

Definition: The graphG has an({4, (g)-error core
(where (4,(p € [0,1]) associated with the worg
if there exists a subset of edges in eridr C {e €
E : y. # c.} and two subsets of verticed’ C A
and B’ C B such thatd’ U B’ is the set of all the
endpoints of the edges iA’, and:

o foranyv e A: [{E(w)NE'}| > Cal;
o foranyv e B": [{E(v)NE'}| > (gA.

Below, we inductively define the sets of verticEs
(for:=0,1,--- ,t, wheret will be defined later) and
the sets of edge®; (fori =1,2,--- ,t) as follows.

« Basis.The edge sef’; will be the set of all edges
corresponding to the erroneous symbolgjrand
the vertex setd, and V; will be the endpoints



of edges inFy:

Ei = {e€E :y.H#ce};
Vo = {veA: E(w)NE;#0};
Vi = {veB: EW)NE #0}.

o Step.Fori > 2:
V; = {v eVi_a: ‘{e € E(v) ﬁEi_l}’ > %},

whered = 04 if 7 is even, and = dp if 7 is odd,
and

E;, = {e:{v,u}EEi_l v e Vi, uEVi}.

Lemma 5.1:If E; = () for some finitei, then the
decoder in Figur€ll succeeds.

Proof: We show that the decoder succeeds by
constructing a feasible point in the polytofe We
usee > 0 to denote the quantity, which can be made
as small as desired. The precise valuecofill be
discussed later. We set the variab’ré%) as follows.

e Lete = {v,u} ¢ E;. Then, by definition ofE},
Ce = Ye. Assume that, = 8. We set,nff? =
78 = _1/2, and soﬂf? A G —
We also setr!” = (% = 1/2 — ¢ for all o €
F\{B}. In that caser(a) 7 < 4l =1
Therefore, [(TH) and:(15) are satisfied.

e Let e = {v,u} € E,. Denotec. = (. By
definition of £, y. # c.. Leti* be the value such
thate € E;+\E;+4+1. In addition, without loss of
generality assume that € V;«_; andu € Vi«
(and sov ¢ V;- 1 and |[E(v) N B | < 16A).
Then, we set(?) = (%) = 1. Inthat casepf@Jr

7552 < éﬁ) =1,and so) is sat|sf|ed. We also
set for alla. € F\{3}, Ty V= _5_¢ andru ¢ =

, which yields7{% + Tﬁ) < v(a) e {-1,1}.
Thus all inequalities[(14) are also sat|sf|ed

Tablel] summarlzes the assignments of the values to
varlablesT )forallec E, v e e anda € F.

Since E; = () for some finite: (we sett = i + 1,
wherei is this value), the values of all the variables
7-5?2) are defined. We already showed that all inequal-
ities (I4) and[(Ib) are satisfied. Next, we show that
inequalities[(IB) are satisfied. It will be enough to show
that for allv € V, b € C(v),

3 7l > LA+ d(Y)ses (o) -
e€E(v)

(17)

o= Ce a # ce
ye is correct || 7$%) = -1 ) = 1
ye isinerror || (%) = 1 %) = -5 —cor % = 3
depends on the structure
of the error
TABLE |

ASSIGNMENTS OF THE VALUES TO THE VARIABLESF(Q) .

For a vertexv € V and a codeword € C(v), we

define five sets of indices (edges) as follows:

& = {eeE() : y.is correct anth, = c.} ,
& = {ee E(v) : y.is correct anth, # c.} ,
& = {e€ E{w) : y.isin error andb. = c.} ,
& = {e€ E() : y.isin error,

be # c. andr’) = -5 — ¢} |
& = {ee€eE() : y.isin error,

be # ce and 7l = 21

(These sets depend anand b, in addition to their
dependence on andy. However, we write£; rather

than&; (v, b) for the sake of simplicity.)
Then,
S Al = YA Yl
e€E(v) ecéy e€&s e€€s
+ZT(b)+ ZT(b)
ec&) ec&y
= 2D+ G-9+ > 3
ecé e€és ec&s
DNCEEED W
ec€ ec€y

%
—

— 1A+ d( s (Do) + D (1 =)

ec&s
+> (- +> 1.
€€} ec€y

In order to prove[(7), it will be enough to show that

[E2| + 1| = Bl€4| + e(|Ea] +[E4]) . (18)

We observe several cases.



« Consider a vertex € (A\Vp) U (B\11).
Then,

{e€ B(v) @ ye #ce}

=& + &l + &1 =0, (19)

and so[(IB) is satisfied for any< 1.

o Consider a vertew € Vo U Vy. Letd = 64 if
v A, andd = dp if v € B. SinceE; = () for
somei € N, we have that € V;-_1\V;-4, for
somei* € N. Therefore,

|E(v) N Eq»

< $0A.

We can write, with respect to this and anyb,
that
|gé/1| < %(6 - 6/)A )

or,

SA > 41E) + €A, (20)

for some smalk’ > 0.

— If b = (¢)sw), then obviously|&;| = |&)] =
|€Y] = 0, and so[(IB) holds.

— If b # (¢)s(), then recall that the relative
minimum distance ofC(v) is at leastd.
Therefore,|&| + |&4| + |E] > 6A, and by
using [20):

|Ea| + €Y 2 0A — |€4] > 3lE + €A
We see that (18) holds for adl< €.

We have shown that that in all cases, for sufficiently
smalle, (I8) holds, and therefore there exists a feasible
point in P. ]

Lemma 5.2:If there is no(14.4, $65)-error core,
thenE; = () for somei € N.

Proof: Suppose that there is noe N such that
E; = (. Since for alli € N, E;v; C E;, we have
that there exists some eveh € N, such that for
any ¢ > i*, E;y1 = E; # (. This, in turn, means
that V;»,o = Vi« and Vj».3 = Vi-41. However,
this implies (without loss of generality) that every
v € Vi-y1 andu € Vi-yo has at leastiosA and
%6BA incident edges irt;- 11, respectively. It follows
that the set of edgeE);-; together with the set¥;-
andV;. 1, forms a(4d., 365)-error core. ]

Corollary 5.3: If the LP decoder in Figurg 1 fails,
then there exists ab}I(SA, i&B)-error core associated
with the wordy in the graphgG.

The proof follows immediately from Lemmas 5.1
and[5.2.

Next, we show that the LP decoder in Figlite 1
corrects all the errors iny if the amount of errors
in it is at most a fraction of the code length. Consider
a subgraphH = (U4 U Upg, €) of G with Uy C A,

Up C Band€& C E. For a vertexv € Uy UUp
denote bydeg,, (v) its degree in the grapk. We use
the following known result.

Proposition 5.4:Let U4 and Ug be subsets of
sizes|Uy4| = a|A| and|Ug| = b|B|, respectively, such
thata + b > 0. Let & be the edge set induced by the
vertex setU4 U Ug, and denote{ = (U4 U Ug, €).
Then,

2|¢|

S degy(v)

veUaUUB

< 2 (ab +vg+v/a(l —a)b(1 — b)) An
< 2((1 - yg)ab+gVab)An.  (21)

This statement is equivalent to Proposition 3.31n [15].
The first inequality is obtained when the tighter in-
equality in Lemma 3.2 in [15] is used in the proof of
Proposition 3.3. If the graph is a Ramanujan expander
as in [13], [14], then for fixedh andb, by increasing

A (and so by reducingyg), it is possible to make
|€|/(An) as close toab) as desired.

By using Propositioli 514, we obtain the following
theorem.

Theorem 5.5:Assume that the size of error i
is less than

CaCB — Y6V CaCB A
. n
1—1g
for some{a,(s € (0,1], such thatyg < /Ca(s.

Then, the graphg contains no({4, (p)-error core
associated with thig.

)

The proof of this theorem is along the same lines
as the proof of Theorem 3.1 if_[15]. For the sake of
completeness of the presentation, we place the sketch
of the proof in Appendix.

The main result of this section follows from Corol-
lary 5.3 and Theoreni 8.5, and it appears in the
following corollary.



Corollary 5.6: If the size of error iny is less than
6A§B/16 — Vg\/(SAéB/lG . An
=g

and~yg < V0405, then the LP decoder in Figuké 1
will correct all errors iny.

)

Observe, that the proposed LP decoder corrects any
error pattern of size approximatelyds An /16, when
the value ofA is large enough.

V1. USING ERRORPATTERN ORIENTATION

In this section, we present more powerful decoder
analysis than its counterpart in Sectigd V. More
specifically, by usingerror pattern orientationwe are
able to improve the fraction of correctable errors in
Sectior\Y by approximately a factor df The idea of
using error pattern orientation was proposed_in [6].

Let G = (AU B, E) be aA-regular bipartite graph
as before, and le = (U4 U Up, €) be a subgraph
with U4 C A, U C B and¢ C E. We start with the
following definition.

Definition: The assignment of the directions to the
edges of the subgrapi = (U4 U Up, €) is called
an (pa, pp)-orientation (for some pa,pp € (0,1])
if each vertexv € Uy and each vertew € Ugp
has at mostp4A and ppA incoming edges in¢,
respectively. We will say that for the given assignment
of the edge directionsM edges areviolating the
(pa, pp)-orientation property at the vertex € Uy
(v e Up) if vhaspaA+ M (ppA+ M, respectively)
incoming edges in€. We will also say that for the
given assignment of the edge directiond, edges
are violating the (p4, pp)-orientation property inH
if M is the smallest integer such that by removihg
edges from¢, the resultingH will have a(pa, pg)-
orientation.

Lemma 6.1:Let H = (Us U Up, €) be a sub-
graph ofG = (AU B, E) with U4y C A, Ug C B and
¢ C E. Assume that

€ < ,UA,UBl_'YQ\/,UA,UB An.
— %

for somepa, up € (0,1], such thatyg < /maps,
and$paA, 1upA are both integers. Ther, contains
an (ua/2, pp/2)-orientation.

Proof: Assign directions to the edges i such
that the number of violations of afya/2,up/2)-
orientation inH is minimal. We will show that if
for somewv € Uy (v € Up) there are more than
uwalA/2 (upA/2, respectively) incoming edges, then
it is possible to change the directions of the edges
in the graph such that the number of edges violating
the orientation property will decrease. This will make
a contradiction to the minimality of the number of
orientation violations in the current assignment of the
edge directions.

Denote bydeg;,(v) the number of incoming edges
(in H) of the vertexv. Recall thatu4 A andupA are
even integers. We will use the following definitions.

Definition: A vertexv € U4 UUg is called aheavy
vertex if it satisfies one of the following:

1) v € Ua anddegi,(v) > LuaA;
2) v € Up anddeg,(v) > suBA.

Definition: A vertexv € U4 U Up is called afull
vertex if it satisfies one of the following:

1) v € Uy anddeg,(v) = %/LAA;
2) v € Up anddeg,(v) = suBA.

Definition: A vertexv € U4 U Ug is called alight
vertex if it satisfies one of the following:

1) v € Ua anddeg;,(v) < LuaA;
2) v € Up anddeg,(v) < suBA.

Observe that the orientation property is not violated
at the full and at the light vertices. Assume, by
contrary, that there exists a heavy vertexip U Up.

We show that it is possible to change the directions
of the edges ir¢ such that the total number of edges
violating the orientation property it will decrease.

Define a set of vertice& to be the maximal set as
follows:

e If v e Uy UUg is heavy therw € U.
o If ue Uy UUg is full and there is a direct edge
from u to v for somev € U, thenu € U.

The setU is well defined.

If there is an edggw,u) for somew ¢ U and
u € U, thenw is light and there exists a path from
w to someheavyvertexv € U (vertexu can be full).
Then, it is possible to flip the directions of all edges in



the path, and thus to decrease the number of violations
of the orientation property by (at the vertex).

Below, we assume that there is no edge u) for
anyw ¢ U andu € U. DenoteU), = UNU,4 and
Up =UNUg. Let & be a set of edges i# having
one endpoint iU/, and one endpoint il/;. Leta =
|U|/n andb = |Ug|/n. We have

1(apa + bup)An < |€'| < |€|

< Hars — Yg\V/IALB An. @2)
I—ng

where the first inequality is correct since there are only

heavy and full vertices iy U Uj, and at least one

of these vertices is heavy. The last inequality is given
by the conditions of the lemma.

Assume that the ratio between the number of di-
rected edges i€’ from U, to Uy and the number of
directed edges it’ from Uy, to U/, is > 0. Then,

fapa(l+ k) - An < |€|

< ((1-1g)ab+75Vab) An, (23)
and

tbus(1+1/k)- An < |€

< ((1=yg)ab+7gvab) An, (24)

where the left-hand side inequalities follow from the
fact that every vertex it//; and every vertex i/ is
either full or heavy, and the right-hand side inequalities
follow from (210).

Inequalities[(2B) and_(24) yield

pa(l+ k) Y9 \/B
- -, 25
T 21-v) 1-7gVa (@3)
and
ps(1+1/k) g \/3
— - 26
2l-v) 1-v Vb (6)
respectively.

Consider two cases.

Case 1l:apa(l+k) > bup(141/k). Then, from[(Z5) we

have

pa(l+ k)
pe(l+1/k)’

pa(l+k) g
T 2(1-9g) l-9g

and, so,
papp(l+ k) §le
bup > - VHARBE -
2(1 —g) 1—1g
Finally,
1+1/k
> b
apa = bup Ttk
paps(L+1/6)  ~vg  [paps
- 2(1=1g) 1=y V &
Case 2:apa(1+k) < bup(1+1/k). Then, from [26) we
have
oo e+ 1/K)  qg  [ps(l+1/K)
21-79) 1-9g\ pa(l+rk) ’
and, so,
1+1
ain > paps(L+1/k) g [paps
2(1 —1g) 1—1g K

We also obtain:

b < 1+ k&
a —_—
KB ,UAl T 1/m
paps(l+ k) Yg
> - VHARBE .
2(1-1g) 1—1g

From [22), in both cases we have:

1
€] > S(apa+bus)An

2
s 1 paps(2+r+1/K)
T2 2(1—g)
Y6/ HAKB 1
- — <\/E+ \/;> )An.(Z?)
Denote
n=vVE+\1/k, ne€[2,+00).

Observe that the right-hand side bf{27) is a quadratic
function of . Sinceyg < \/laip, we have that
this function is nonnegative and monotonic increasing
for n > 2v¢/\/maps. Its minimum is obtained for
the smallest value ofy, which is achieved at = 1.
Therefore, [(2l7) becomes

€| > HAEB — VG HALB CAn
=g
We obtained a contradiction to the right-hand side

of (22).

The contradiction follows from the assumption that
there exists a heavy vertex iy U Ug, and it is im-
possible to flip the directions of the edges such that the




number of violations of the orientation property will
decrease. We conclude that there is(an /2, us/2)-
orientation in¢. ]

Define the numberg, andép as follows. Letd 4 >
0 (0 > 0) be the largest number such thtat < d4
(05 < 6p) and104A (305A, respectively) is integer.

The following theorem is the main result of this
paper.

Theorem 6.2:.Let C be defined as above, and
assume thatyg < %\/HAQB. Then, the decoder in
Figure[1 is able to correct any error pattern of a size
less than or equal to

0408 — 276V 040
4(1 =1g)
in a codeworde € C.

An

Proof: Let € be the set of edges in error (for a
received wordy), and assume that

040 — 276V 0405 An
4(1 —vg)

Then, by Lemma 6]1, there exists &4 /4,05/4)-
orientation ofé.

€| <

Therefore, we are able to construct a feasible solu-
tion for the dual LP problem, as follows.

» For the edges ¢ €, we set the values oféf‘e)
in the same way as we set the vaIues—ﬁ) for
e ¢ E; in the proof of Lemm&5]1.

« For the (directed) edgéy,v) € &, we set

Vo e F\{c.} : 7% =

v,e

—2—¢ and Téf’e):%,

and
1

(ce) — +(ce) —
Tu,é - Tu,ee - 32"

These settings clearly satisfy all the constraihis (14)
and [I5). Moreover, since for everye A (v € B)
there are less thagdaA (3654, respectively) in-
cident edges € € with the corresponding:f?é) =
—2 — ¢, using the same argument as in Lemimd 5.1,
for € small enough, we have thaf {16) is also satisfied.

[ |

VII. DISCUSSION

The relative minimum distance of the co@ewas
shown in [15] to satisfy[{1). By taking a sufficiently
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large A, this bound can be made arbitrarily close to
d40p. Thus, the analysis in Sectidn] V demonstrates
that the decoder in Figufé 1 is able to correct any error
pattern of size approximatel%é of this lower bound.
For comparison, the analysis in Sectiod VI shows that
the decoder is actually able to correct approximately
four times more errors, than it was shown in Secfiion V.
Consequently, the fraction of correctable errors under
the decoder in Figurgl 1l is (at least) approximately
56A5B.

It is interesting to compare this result with other
related works. Thus, in_[21] the code with 64 =
op = ¢ (for 0 < 6 < 1) was considered, and a bit-
flipping decoder was presented. This decoder corrects
approximately% - 62 fraction of errors. Similar result
for binary codes was also obtained in [6] by using
a linear-programmingdecoder and a slightly different
definition of expander graph.

However, the fraction of correctable errors@ncan
be boosted close té&A(SB by using more advanced
decoding techniques |[2], [15], [16]. It is still an
open question whether the similar fraction of errors
can be corrected by using decoder based on linear-
programming methods.

The fraction of correctable errors grows with the
size of the alphabet (as well as the relative minimum
distance does). For example, consider a binary code
C having the same constituent code= C(v) for
eachv € V. If C is a random code of relative
minimum distance) and rater, then we have (with
high probability)

r>1—hy(d) —o(1),

wherehs(+) is the binary entropy function. The rate of

C is at least2r — 1 and the fraction of the correctable
errors is arbitrarily close to}I - 62, In Table[, we
present the relations between the code rate and the
lower bound on the fraction of correctable errors.

Next, consider a cod€ over a large alphabet. Take
C = C(v) (for eachv € V) to be Generalized Reed-
Solomon code of relative minimum distancend rate
r > 1— 4. In this case, we also have to require that
q > A. Table[Il presents the relations between the
rate of suchC and the fraction of correctable errors.

APPENDIX

Sketch of the proof of Theordm b.5.



Rate ofC 0.1 0.2

0.4 0.5 0.6 0.7 0.8 0.9

Fraction of correctable errorsq10—% 22.14 | 15.76

10.82

7.086

4.346 | 2.422 | 1.160 | 0.4217 | 0.0786

TABLE Il
LOWER BOUND ON THE FRACTION OF CORRECTABLE ERRORS FOR VARIOWRRTES OFC, FOR BINARY ALPHABET.

Rate of C 0.1 0.2 0.4 05 0.6 0.7 0.8 0.9
Fraction of correctable errorsq10—2 5.0625| 4.0 | 3.0625| 2.250 | 1.5625| 1.0 | 0.5625 | 0.250 | 0.0625
TABLE Il

LOWER BOUND ON THE FRACTION OF CORRECTABLE ERRORS FOR VARIOWRATES OFC, FOR LARGE ALPHABET.

Assume, by contrary, thaf contains a(¢a,(p)-
error core associated with. Let £/ C E be the set
of edges in this error core, adf C A and B’ C B
such thatd’ U B’ is the set of all the endpoints of the
edges inE’. We have

o foranyv e A": {E(w) NE'}| > Cad;
o foranyv € B": {E(v) N E'}| > (gA.

Consider a subgrapi = (U4 U Ug, €) of G with
Ua=A,Up =B and€ = F'. Leta = |Ual|/|A|
andb = |Ug|/|B|. From Propositiof 5]4, we have

|E'| < ((1—g)ab+gVab)An.  (28)
On the other hand, sincg’ is the set of edges of
an (¢, (p)-error core, we have

|E'| >an-CaA and |E'|>bn-(gA. (29)

There are two possibilities:
Case 1l:aCs > b¢g. Then, from [(ZB)
and [29), we have
aCa < ((1—~g)ab + ygVab) ,

and so

s Ga—ravb/a | G -19VG/s
I e - I —1g

Case 2:als < b¢g. Then, from [2B)

and [29), similarly we have

Q> (B — Y6V CB/CaA _

1—g

In both cases,

ACB —1gVCaCE

|E'| >
1—"g

)

in contradiction with the assumption. This concludes

the proof.
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