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Bits Through Deterministic Relay Cascades with
Half-Duplex Constraint

Tobias Lutz, Christoph Hausl,Student Member, IEEE,and Ralf Kötter,Fellow, IEEE

Abstract—Consider a relay cascade, i.e. a network where a
source node, a sink node and a certain number of intermediate
source/relay nodes are arranged on a line and where adjacent
node pairs are connected by error-free(q+1)-ary pipes. Suppose
the source and a subset of the relays wish to communicate
independent information to the sink under the condition that each
relay in the cascade is half-duplex constrained. A coding scheme
is developed which transfers information by an information-
dependent allocation of the transmission and reception slots of
the relays. The coding scheme requires synchronization on the
symbol level through a shared clock. The coding strategy achieves
capacity for a single source. Numerical values for the capacity of
cascades of various lengths are provided, and the capacities are
significantly higher than the rates which are achievable with a
predetermined time-sharing approach. If the cascade includes a
source and a certain number of relays with their own information,
the strategy achieves the cut-set bound when the rates of therelay
sources fall below certain thresholds. For cascades composed of
an infinite number of half-duplex constrained relays and a single
source, we derive an explicit capacity expression. Remarkably,
the capacity in bits/use forq = 1 is equal to the logarithm of the
golden ratio, and the capacity for q = 2 is 1 bit/use.

Index Terms— Half-duplex constraint, relay networks, network
coding, timing, constrained coding, capacity, capacity region,
method of types, golden ratio.

I. I NTRODUCTION

A Relay cascade is a network where a source node, a sink
node and a certain number of intermediate source/relay

nodes are arranged on a line. We consider the problem where
a source node and certain relay nodes wish to communicate
independent messages to the sink under the condition that
each relay is half-duplex constrained, i.e. is not able to
transmit and receive simultaneously. Throughout the paper,
we assume that adjacent node pairs are connected by error-free
(q+1)-ary pipes. This approach lets us understand half-duplex
constrained transmission without having to consider channel
noise. Moreover, we may use combinatorial arguments instead
of stochastic arguments.

A natural strategy for half-duplex devices is to define a time-
division schedule a priori. Under this assumption, the capacity
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or rate region of various half-duplex constrained relay channels
[2], [3] and networks [4] has been determined. We will, how-
ever, show that predetermined time-sharing falls considerably
short of the theoretical optimum or, conversely, higher rates
are possible by an information-dependent allocation of the
transmission and reception slots of the relays.

The meaning of information-dependent allocation scheme
is illustrated in the following example. LetW0 = {0, . . . , 7}
be a message set. In each blocki = 1, 2, . . . of length4, the
source wishes to communicate a randomly chosen message
w0(i) ∈ W0 to the destination via a single half-duplex
constrained relay node. A direct link between source and
destination does not exist. Suppose the alphabet of both source
and relay equals{0, 1,N} where “N” indicates a channel use
without transmission and{0, 1} is a q = 2-ary transmission
alphabet. The half-duplex constraint is modeled as follows.
When the relay uses symbol “N”, i.e. the relay is quiet, it is
able to listen to the source and otherwise not. Letx0(i) be
the codeword chosen by the source encoder to representw0(i)
in block i and letx1(i) indicate the codeword chosen by the
relay encoder for representingw0(i−1) in block i. The coding
scheme is illustrated in Table I. The source encoder maps
each messagew0(i) to x0(i) by allocating the corresponding
binary representation ofw0(i), i.e. three bits, to four time
slots. The precise allocation of the three bits to four time slots
is determined by the following protocol. In the first block,
the source allocates three bits to the first three time slots of
x0(1). Now assume that the source has already sent codeword
x0(i) to the relay. Based on the first two binary digits of
the noiselessly received codewordx0(i), the relay encoder
determines which of the four time slots to use for transmission
in x1(i + 1) according to the following rule:00, 01, 10, 11
in x0(i) tells the relay to send in the first, the second, the
third or the fourth time slot ofx1(i + 1). The binary value
to be transmitted inx1(i + 1) is equal to the third bit in
x0(i). Since the source encoder knows the scheme used by
the relay, it can allocate its three new bits inx0(i + 1) to
those slots in which the relay is able to listen. Hence, the
relay encodes a part of its information in the timing of the
transmission symbols. The sink estimates messagew0(i − 1)
from the received relay codewordx1(i) using both the position
of the transmission symbol and its value and obtainsŵ0(i).
In this example, a rate of0.75 bit per use is asymptotically
achievable if the number of blocks becomes large. By allowing
arbitrarily long codewords, we will show that an extension of
the strategy approaches1.1389 b/u which is also the capacity
of the single relay cascade with half-duplex constraint when
the transmission alphabet is binary. The example suggests
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TABLE I
THE RELAY ENCODES A PART OF THE INFORMATION BY THE POSITION OF

THE TRANSMISSION SYMBOLS

block i w0(i) x0(i) x1(i) ŵ0(i)

i = 1 1 (001) 001N NNNN -

i = 2 2 (010) N010 1NNN 1

i = 3 4 (100) 1N00 N0NN 2

i = 4 7 (111) 11N1 NN0N 4

...
...

...
...

...

that information encoding by means of timing is beneficial in
the context of half-duplex constrained transmission. A similar
example forq = 1 was shown in [5], [6].

In Section II we provide a snapshot of related literature. In
Section III we introduce a channel model which captures the
half-duplex constraint in a simple way. We introduce a capacity
achieving coding strategy in Section IV. The strategy is based
on allocating the transmission and reception time slots of a
node in dependence of the node’s previously received data.
The proposed strategy requires synchronization on the symbol
level through a shared clock. In Section V, the performance
of the coding strategy is analyzed yielding several capacity
results. In the case of a relay cascade with a single source,
it is shown that the coding strategy is capacity achieving, i.e.
approaches a rate equal to

Cm−1(q) = max
pX0...Xm

min
1≤i≤m

H(Yi|Xi) (I.1)

wherem − 1 indicates the number of relays in the cascade
and Xi and Yi are the sent and received symbol of theith
relay. If the cascade includes a source and a certain number
of relays with their own information, the strategy achieves
the cut-set bound given that the rates of the relay sources
fall below certain thresholds. Hence, a partial characterization
of the boundary of the capacity region follows. For cascades
composed of an infinite number of half-duplex constrained
relays, we show that the capacity in bits/use (abbreviated as
b/u in the remainder) is given by

C∞(q) = log

(

1 +
√
4q + 1

2

)

. (I.2)

Remarkably,C∞(1) is equal to the logarithm of the golden
ratio andC∞(2) is 1 b/u. In Section VI the capacity results
are applied to various special cases. In particular, we transform
(I.1) into a convex optimization program with linear objective
and provide numerical solutions forCm−1(q) for different
values ofm and q. Further, the single relay channel with a
source and a relay source and binary transmission alphabet is
considered and an explicit expression of the cut-set bound and
of the achievable segment on the cut-set bound is computed.
We finally show that the proposed coding strategy can be
applied to wireless trees and to the half-duplex constrained
butterfly network. In the latter case the proposed timing strat-
egy outperforms the well-known XOR-based network coding
strategy.

II. RELATED L ITERATURE

The classical relay channel goes back to van der Meulen [7].
Further significant results concerning capacity and coding
were obtained by Cover and El Gamal in [8]. A comprehensive
literature survey as well as a classification of variousdecode-
and-forward and compress-and-forwardstrategies for relay
channels and small multiple relay networks is given in [9].
General relay networks are very difficult to analyze (even the
capacity of the non-degraded single relay channel is an open
question). Motivated by the fact that line networks are often
more accessible for analysis and, further, are fundamental
building blocks of general communications systems, various
source and channel coding problems have been examined
without the assumption of half-duplex constrained nodes.

Yamamoto [10] considers a deterministic three node line
network where the first node generates two random sequences.
The region of achievable rates is found such that the second
node is able to reconstruct the first sequence and the third node
the second sequence within prescribed distortion tolerances.
These results are extended to longer lines and branching
communication systems in the same paper. A related version
of the three node source coding problem is investigated in [11].
The encoder at the first node intends to communicate a random
sequence within certain distortion constraints to the relay and
the destination under the assumption that the relay and the
destination have access to individual side information about
the source. The authors derive inner and outer bounds for the
rate-distortion region and characterize scenarios where both
bounds coincide. Adistributedsource coding problem for the
three node line network is examined in [12]. In contrast to the
cases before, the relay acts as a source which is correlated to
the source at the first node. The task of the destination is to
estimate a function of the output of the two sources. Inner and
outer bounds on the achievable rate region are provided such
that an arbitrarily chosen distortion constraint is satisfied.

The channel capacity of three node line networks composed
of two identical binary channels where no processing is
allowed at the middle terminal was examined in an early
work [13]. The author asks which channel of the infinite set of
binary channels with equal capacity has to be cascaded with
itself in order to achieve the largest end-to-end capacity.The
answer is that a symmetric binary channel has a higher capac-
ity under cascade than an asymmetric channel with the same
capacity, unless the channels have very low capacity. Finite
length cascades ofidenticaldiscrete memoryless channels are
considered in [14] under the assumption that the intermediate
terminals do not possess any processing capability and that
the transition matrix of the subchannels is nonsingular. By
means of the eigenvalue decomposition of the transition ma-
trix, the channel capacity is derived. Another work in which
cascades composed ofidenticaldiscrete memoryless channels
are investigated is [15]. However, it is assumed that the
intermediate relay nodes are able to process blocks of a fixed
length. It is then shown that the capacity of the infinite length
cascade equals the rate of the zero-error code of the underlying
channel and that the capacity is always upper-bounded by
the zero-error capacity of the underlying channel. In [16] the
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problem of finding the optimal ordering of a set ofn (distinct)
binary channels is analyzed such that the capacity of the
resulting cascade is maximized. The question results from the
observation that ordering has a strong influence on the capacity
because matrix multiplication is not commutative. In the case
of binary channels with positive determinants the authors are
able to specify the optimal ordering. A line network composed
of erasure channels is considered in [17] for a single source-
destination pair. The authors propose coding schemes which
are based on fountain codes.

In the work at hand we apply the idea of timing to
half-duplex line networks. Timing is not a new idea in the
information theoretical literature and has already been used
in conjunction with queuing channels. Anantharam and Verd´u
showed [18] that encoding information into the time differ-
ences of arrival to the queue achieves the capacity of the
single server queue with exponential service distribution. The
discrete-time version of this problem was analyzed in [19].
In [20], Kramer developed a memoryless half-duplex relay
channel model and computed decode and forward rates due
to Cover and El Gamal [8]. He noticed that higher rates are
possible when the transmission and reception time slots of the
relay are random since one can send information through the
timing of operating modes.

III. N ETWORK MODEL AND INFORMATION FLOW

A. Network Model

Consider the discrete memoryless relay cascade as depicted
in Fig. 1. The underlying topology corresponds to a directed
path graph in which each node is labeled by a distinct number
from V = {0, . . . ,m} with m > 1. The integers0 and m
belong to the first source and the sink, respectively, while all
remaining integers1 tom−1 represent half-duplex constrained
relays, i.e. relays which cannot transmit and receive at the
same time. The connectivity within the network is described
by the set of edgesE = {i × (i + 1) : 0 ≤ i ≤ m − 1},
i.e. the ordered pairi× (i+1) represents the communications
link from node i to nodei + 1. The output of theith node,
which is the input to channeli× (i+1) is denoted asXi and
takes values on the alphabetX = {0, . . . , q− 1}∪{N} where
Q = {0, . . . , q − 1} denotes theq-ary transmission alphabet
while “N” is meant to signify a channel use in which nodei
is not transmitting. The input of theith node, which is the
output of channel(i− 1)× i is denoted asYi and is given by

Yi =

{

Xi−1, if Xi = N
Xi, if Xi ∈ Q (III.1)

where1 ≤ i ≤ m. Channel model (III.1) captures the half-
duplex constraint as follows. Assume relayi is in transmission
mode, i.e.Xi ∈ Q. Then relayi hears itself (Yi = Xi) but
cannot listen to nodei−1 or, equivalently, relayi and nodei−1
are disconnected. However, if relayi is not transmitting, i.e.
Xi = N, it is able to listen to relayi − 1 via a noise-free
(q + 1)-ary pipe (Yi = Xi−1). The sink listens all the time,
i.e. Xm is always equal to N, and therefore its input is given
by Ym = Xm−1. Another interpretation of the channel model
is that the outputXi of relayi controls the position of a switch

which is placed at its input. If relayi is transmitting, the switch
is in position1 otherwise it is in position2 (see Fig. 1). Since
a pair of nodes is either perfectly connected or disconnected,
we obtain a deterministic network withpY1...Ym|X0...Xm

∈
{0, 1} that factors as

[

∏m−1

i=1
pYi|XiXi−1

]

pYm|Xm−1
where

pYi|XiXi−1
is defined by (III.1).

B. Information Flow

Every node v ∈ {0, . . . ,m − 1} draws its messages
uniformly and independently from the message setWv =
{

1, . . . , 2nRv
}

where wv(b) denotes the message sent by
node v to nodev + 1 in block b. Each block has a length
of n. Observe that this setup includes the case that only
a subset of the relays communicate own information to the
sink by setting the rate of the remaining relays to zero. The
relays allocate information to the codewords as follows. At
the end of blockb − 1, each relayv with a rateRv > 0
carries out two tasks. It draws a new messagewv(b) and
it decodes the messages{w0(b − v), . . . , wv−1(b − 1)} from
the received codewordyv(b − 1). The new message together
with the decoded messages are forwarded to nodev + 1 in
block b by means of the sequencexv(b). Similarly, each relay
v without own information, i.e.Rv = 0, decodes the messages
{w0(b − v), . . . , wv−1(b − 1)} at the end of blockb − 1 and
forwards the decoded messages to the next nodev+1 by means
of xv(b). Source node0 sends one messagew0(b) per block
represented throughx0(b). We assume an initialization period
of m−1 blocks. In the first block node0 forwards information,
in the second block nodes0 and 1 forward information and
so forth. From themth block onwards all nodes (except of
the sink) forward information. Thus, the sink does not decode
until the end of themth block. Since a very large number of
transmission blocks is considered, it is allowed to neglectthe
initial delay in an asymptotic analysis. In the next paragraph,
a coding strategy is introduced which realizes the outlined
information flow.

IV. A T IMING CODE FORL INE NETWORKS WITH

MULTIPLE SOURCES

A. General Idea and Codebook Sizes

A coding strategy is introduced which relies on the observa-
tion that information can be represented not only by the value
of code symbols but also by the position of code symbols,
i.e. by timing the transmission and reception slots of the relay
nodes. The strategy requires synchronization on the symbol
level through a shared clock. The codebook construction is
recursive and guarantees that adjacent nodes do not transmit at
the same time. The following encoding techniques are applied
at the source and the relays whereni denotes the number of
transmitted symbols of nodei within one block ofn symbols.

• At relay m − 1: Relaym− 1 represents information by
choosingnm−1 transmission symbols per block from the
q-ary transmission alphabetQ combined with allocat-
ing the nm−1 symbols to the transmission block ofn
symbols. Thus,qnm−1

(

n
nm−1

)

different sequencesxm−1

of length n are available at relaym − 1. Observe that
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Fig. 1. A noiseless relay cascade and the link model illustrated by means of feedback. If relayi is transmitting, the switch is in position1 otherwise in
position2.

qnm−1 equals the number of possible distinct sequences
when theq-ary symbols are located at fixed slots while
(

n
nm−1

)

equals the number of possible transmission-listen
patterns.

• At relay i, 1 ≤ i ≤ m − 2: Observe that the effective
codeword length of relayi reduces ton − ni+1 since
relay i + 1 cannot listen to relayi when it (relayi + 1)
transmits. For each transmission-listen pattern used by
node i + 1, node i generatesqni

(

n−ni+1

ni

)

different se-
quences by allocatingni transmission symbols from the
alphabetQ in all possible ways to then − ni+1 listen
slots of the pattern. The remaining slots of the pattern,
i.e. the slots in which nodei+1 transmits, are filled with
idle symbols “N”. As before,qni equals the number of
possible distinct sequences when theq-ary symbols are
located at fixed slots while

(

n−ni+1

ni

)

equals the number
of possible transmission-listen patterns. The procedure
generates a certain number of transmission-listen patterns
used by nodei.

• At source node0: The source uses the(q + 1)-ary
alphabetX = Q∪{N} for encoding without transmitting
information in the timing of the symbols. Hence, the non-
transmission symbol “N” is used as a regular alphabet
symbol. Due to the half-duplex constraint at relay1, the
effective codeword length of the source reduces ton−n1

what results from the fact that relay1 cannot pay attention
to the source when it (relay1) transmits. Thus, the source
is able to generate(q + 1)n−n1 different sequencesx0.

Next, the maximum size ofW0, W1, . . . , Wm−1 is given.
From the previous paragraph, we immediately obtain

|W0| ≤ (q + 1)n−n1 . (IV.1)

Both the source and the relays choose their messages uni-
formly and independently of each other. Hence, relayv is
required to reserve

∏v−1

i=0
|Wi| sequences in order to repre-

sent an arbitrary combination of arriving messages{w0(b −
v), . . . , wv−1(b − 1)}. Arriving messages are encoded by
each relayv with transmission patterns and a fixed number
kv ∈ {0, . . . , nv} of transmission symbols. To be more
precise, each combination of arriving messages is assigned
injectively to a subset of the set of all the sequencesxv. The
subset comprises those sequencesxv such that all transmission
patterns occur and such that the firstkv transmission symbols
of each transmission pattern take all possible values. The
remaining nv − kv transmission symbols per transmission
pattern are used by relayv for encoding own messageswv(b).

With the foregoing explanation in mind, we have for all
v ∈ V \ {0,m}

v−1
∏

i=0

|Wi| ≤ qkv

(

n− nv+1

nv

)

(IV.2)

and
|Wv| ≤ qnv−kv . (IV.3)

If relay v does not have own information, thenkv = nv.
As a final remark, transmission patterns can only be used for
encoding arriving messages. Otherwise, if relayv would en-
code own messageswv(b) by means of transmission patterns,
nodev− 1 would not know when nodev listens in blockb as
wv(b) (hence the transmission pattern used by nodev) is not
known by nodev − 1.

B. Example

We now illustrate the ideas introduced in the previous
section by constructing a code for a relay cascade with four
nodes, i.e.V = {0, . . . , 3}, where nodes0 and2 act as sources
with a rate greater than zero. The transmission alphabet is
binary, i.e.q = 2, and the code parameters aren = 4, n1 = 1,
n2 = 2 (andn3 = 0 of course). According to (IV.1) to (IV.3),
the maximum size of the message sets is|W0| = |W2| = 4
obtained fork1 = 1 andk2 = 0, which corresponds to a sum
rate of1 b/u. Table II(a) depicts possible codebooksC0, C1, C2
for nodes0, 1 and2, respectively, and Table II(b) shows how
to use the codebooks in order to send a particular message
sequence.

Let us first considerC2 which consists of16 different code-
words. The four underlying transmission patterns (arbitrarily
chosen from the

(

4

2

)

possible patterns) are shown in the last
column of Table II(a). Each transmission pattern is identified
with a unique colorr ∈ {a, b, c, d} and then2 = 2 binary
transmission slots within each pattern are marked with B,C∈
{0, 1}. Node2 uses the transmission patterns for representing
source messagesw0. In detail, patterna representsw0 = 0,
patternb representsw0 = 1 and so forth. Own messagesw2

are encoded by the transmission symbols B and C according to
w2 7→ (B,C): 0 7→ (0, 0), 1 7→ (0, 1), 2 7→ (1, 0), 3 7→ (1, 1).

Next,C1 is considered. Recall thatC1 has to be constructed
such that node1 is able to represent one out of four possible
source node0 messages per block independently from the
transmission pattern used by node2 in the same block. Hence,
four codewords per transmission patterna, b, c andd have to
be constructed. Take, for instance, patterna. When node2
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TABLE II

(a) Example codebooks for source, relay and relay source

w0 C0 C1 C2

0 N0NN e 0NNN f 0NNN g 0NNN (a, e) N0NN (b, f) 0NNN (c, e) N0NN (d, f) NBNC a

1 N1NN e 1NNN f 1NNN g 1NNN (a, e) N1NN (b, f) 1NNN (c, e) N1NN (d, f) BNCN b

2 NN0N e NN0N f N0NN g NN0N (a, g) NNN0 (b, g) NNN0 (c, g) NN0N (d, g) NBCN c

3 NN1N e NN1N f N1NN g NN1N (a, g) NNN1 (b, g) NNN1 (c, g) NN1N (d, g) BNNC d

(b) Illustration how to use the code

block i w0(i) w2(i) x0(i) x1(i) x2(i) ŵ0(i) ŵ2(i)

i = 1 3 - NN1N NNNN NNNN - -

i = 2 1 - 1NNN NN1N NNNN - -

i = 3 2 0 NN0N N1NN 0NN0 3 0

i = 4 - 2 NNNN NNN0 1N0N 1 2

i = 5 - 3 NNNN NNNN N11N 2 3

uses patterna, node 1 can encode its information in slots
one and three. The following mappingw0 7→ (x1,1, x1,3) is
chosen for encoding wherex1,1, x1,3 ∈ {0, 1,N} indicate the
symbols used by node1 in slots one and three:0 7→ (0,N),
1 7→ (1,N), 2 7→ (N, 0), 3 7→ (N, 1). Note that this mapping
includes timing. By allocating each of the four values of
(x1,1, x1,3) to the listen slots of patterna and, further, by
requiring that node1 is quiet when node2 transmits (i.e.
allocating “N” to slots2 and 4), we obtain the codewords
in the first column ofC1. Applying the same procedure to
patternb, c and d yields column two, three and four ofC1.
The label(r, s) ∈ {a, b, c, d}×{e, f, g} next to each codeword
in C1 has the following meaning. The first color indicates
the transmission pattern inC2 from which the codeword was
constructed while the second color indicates the transmission
pattern of the codeword inC1.

Finally, we considerC0. In each transmission block, source
node 0 can use three time slotst1, t2 and t3 for encoding
since node1 sends once per block. Letx0,t1 , x0,t2 , x0,t3 ∈
{0, 1,N} denote the symbols used by node0 for encod-
ing a particular messagew0 ∈ W0. We use the mapping
w0 7→ (x0,t1 , x0,t2 , x0,t3) for encoding where0 7→ (0,N,N),
1 7→ (1,N,N), 2 7→ (N, 0,N), 3 7→ (N, 1,N). Again, the
mapping includes timing. Now, by allocating all possible
values of(x0,t1 , x0,t2 , x0,t3) to the listen slots of codewords
in C1 whose second color iss ∈ {e, f, g} and, further, by
requiring that node0 is quiet when node1 transmits, we obtain
all codewords inC0 which are colored withs. It should be
noted that merely four from27 possible sequences are used
in the mappingw0 7→ (x0,t1 , x0,t2 , x0,t3). Hence,C0 could be
designed such that node0 is able to send⌊27/4⌋ additional
messages to a sink at node1 at a rate of0.6462 b/u.

Observe that adjacent nodes are able to cooperate since each
node knows the message(s) to be forwarded by the next node
as well as the coding strategy applied by the next node. Hence,
a node is always aware of the codeword used by the next node
and, therefore, can pick a codeword from the correct column
of its codebook. In particular, the codewords for blocki are
picked as follows. The encoder at node0 determines, based

on messagew0(i − 2), the color of x2(i) and, therefore,
knows the first colorr of codewordx1(i). Then, based on
this information, the encoder at node0 determines the second
color s of x1(i) by means ofw0(i−1). This color tells node0
from which column inC0 x0(i) has to be picked, namely from
a column whose codewords are colored withs. The precise
choice within the picked column depends on the new source
messagew0(i). Similarly, the encoder at node1 determines,
based on messagew0(i− 2), color r of x2(i) and, therefore,
knows thatx1(i) has to be picked from a column ofC1 whose
entries haver as their first color. The precise choice within
the column depends on messagew0(i − 1). The encoder at
node2 knows{w0(i − 2), w2(i)} at the beginning of blocki.
Messagew0(i−2) tells him which transmission pattern to use
in x2(i) while w2(i) determines the transmission symbols.

We conclude the example by demonstrating how the code-
booksC0, C1 andC2 have to be used such that source node0
is able to transmit messages3, 1, 2 to the sink while relay
source2 transmits messages0, 2, 3 to the sink. Note that the
transmission strategy includes the arrangement that a node
picks its very first codeword from the first column of its
codebook. The result is shown in Table II(b).

C. Rate Region

We now determine an achievable rate regionR from the
expressions derived in section IV-A. All logarithms which
will be used in the following are to base2. As usual,
Ri = log |Wi|/n. In order to avoid tedious case distinctions
we assumeR0 > 0 in the remainder. Hence,0 < ni < n for
all 1 ≤ i ≤ m − 1. This is without loss of generality since
the rate region of a cascade withR0 = 0 is equal to the rate
region of the shortened cascade where the first node with a rate
greater zero is made to node0. The following abbreviations
are used for the portion of time in which relayi listens or
transmits:pi ≡ n−1(n−ni) andp̄i ≡ 1−pi. Observe that for
1 ≤ i ≤ m− 1

0 < pi < 1 (IV.4)

pi + pi+1 ≥ 1 (IV.5)
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pm = 1 (IV.6)

sinceni ≤ n−ni+1 andnm = 0 due to the code construction.
The set of points characterized by (IV.4) to (IV.6) will be
denoted asP⋆ ⊂ R

m. By identifying pi with pXi
(N), we

can regardP⋆ as a subset of the joint probability distribu-
tions pX0...Xm

. Obviously, all distributions inP⋆ factorize as
pX0

pX1|X0
. . . pXm|Xm−1

.
The method of types [21] provides important tools for

relating combinatorial expressions to information theoretic
expressions. An example which will be useful for the problem
considered here is [22, Th. 1.4.5]

n−1 log

(

n

ni

)

= H (pi) + o(1) for n → ∞ (IV.7)

whereH(pi) denotes the binary entropy function evaluated
at pi = n−1(n − ni). Using (IV.7), we obtain from (IV.1) to
(IV.3) for n → ∞

R0 ≤ p1 log(q + 1) (IV.8)
v

∑

i=0

Ri ≤ p̄v log q + pv+1H
(

p̄vp
−1

v+1

)

+ o(1) (IV.9)

Rv ≤ p̄v log q (IV.10)

wherev ∈ V \{0,m}. As an aside, (IV.9) results from adding
the logarithm of (IV.2) to the logarithm of (IV.3), dividing
the result byn and applying (IV.7). Inequality (IV.9) is well-
defined sincepv+1 6= 0 and p̄vp

−1

v+1 ∈ (0, 1] due to (IV.4) to
(IV.6).

The achievable rate region forn → ∞ is given by

R = Co





⋃

p∈P⋆

Rp



 (IV.11)

whereRp indicates the region resulting from (IV.8) to (IV.10)
for a particular pointp ∈ P⋆ while the convex hullCo(·)
takes time-sharing between different regionsRp into account.

Conditions (IV.8) to (IV.10) are merely another formulation
of conditions (IV.1) to (IV.3) for n → ∞. Since we can
construct codebooks of the size stated in (IV.1) to (IV.3) by
means of the outlined procedure, it immediately follows that
the rates due to (IV.8) to (IV.10) are achievable and, thus, the
conditions are sufficient.

V. CAPACITY RESULTS

In this section we shall investigate the optimality of the
coding strategy. We will make use of the following notation.
The complement of a setS within an ambient set is denoted
asSc, the power set of a setS is denoted asP(S) andXS :=
{Xi : i ∈ S} indicates a set of random variables. Further,R

is a |V| − 1-dimensional rate vector withRv as itsvth entry.
We will use pmf as acronym for probability mass function.

A well-known result, which bounds the rate of information
flow from nodes inSc to nodes inS is the so-calledcut-set
bound.

Lemma1 (Cut-Set Bound): [23, chap. 14.10] Consider a
general multiterminal network composed ofm+ 1 nodes and
channelpY0...Ym|X0...Xm

. Rij denotes the transmission rate

between two nodesi and j. If the information rate(Rij) is
achievable, then there is some joint probability distribution
pX0...Xm

, such that
∑

i∈Sc,j∈S

Rij ≤ I (XSc ;YS |XS) , (V.1)

for all S ⊂ {0, . . . ,m}.

Lemma2: Consider a noise-free relay cascade as described
in section III-A. If the information rate(Rv) is achievable,
then there is some joint probability distributionpXv ...Xm

, such
that

v
∑

k=0

Rk ≤ max
pXv...Xm

min
v+1≤i≤m

H(Yi|Xi) (V.2)

for all v ∈ V \ {m}.

Proof: We determine a sufficient subset from the set of
all possible network cuts. An upper bound on the sum rate
∑v

k=0
Rk due to Lemma 1 is given by

v
∑

k=0

Rk ≤ max
pXv...Xm

min
S∈M

I(Xv, XSc ;YS , Ym|XS), (V.3)

whereM = P ({v + 1, . . . ,m− 1}) and Sc is the comple-
ment ofS in {v + 1, . . . ,m− 1}. We further have

I(Xv, XSc ;YS , Ym|XS) = H(YS , Ym|XS) (V.4)

since the network is deterministic. Now suppose thatS is
nonempty and leti ∈ {v + 1, . . . ,m− 1} denote the smallest
integer inS. By the chain rule for entropy, we can expand
H(YS , Ym|XS) as

H(YS , Ym|XS) = H(Yi|XS) +H(YS\{i}|XS , Yi)

+H(Ym|XS , YS) (V.5)

≥ H(Yi|XS).

For each cutS with smallest entryi, a cut calledSi can
be found such thatH(YSi

, Ym|XSi
) is less than or equal to

H(YS , Ym|XS). Simply chooseSi := {i, . . . ,m − 1}. This
eliminates the second and third term on the right hand side
of (V.5) due to the underlying channel model (III.1). Further,
sinceS ⊆ Si we haveH(Yi|XS) ≥ H(Yi|XSi

). Thus, each
non-empty cutS with smallest elementi is dominated bySi

in terms of delivering a smaller entropy value. Finally,S = ∅
has to be considered in (V.4) which yieldsH(Ym). To sum
up,

∑v

k=0
Rk is upper bounded by1

v
∑

k=0

Rk ≤ max
pXv...Xm

min
v+1≤i≤m

H(Yi|XSi
) (V.6)

≤ max
pXv...Xm

min
v+1≤i≤m

H(Yi|Xi) (V.7)

where the last inequality follows from the fact that condition-
ing does not increase entropy.

1Note thatH(Ym) = H(Ym|Xm). For notational convenience, we will
always useH(Ym|Xm).
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Theorem1: The capacity of a noise-free relay cascade with
a single source-destination pair (namely nodes0 andm) and
m− 1 half-duplex constrained relays is given by

Cm−1(q) = max
pX0...Xm

min
1≤i≤m

H(Yi|Xi) (V.8)

where the maximization is over allpX0...Xm
as shown in

Table III(a) and III(b) andq equals the number of transmission
symbols. Under consideration of the optimal input distribution
stated in Table III(a) and III(b), (V.8) becomes (V.9) where
0 < pi < 1, pm = 1 and pi + pi+1 ≥ 1 for all
i ∈ {1, . . . ,m− 1}.

Proof: By Lemma 2 we have

Cm−1(q) ≤ max
pX0...Xm

min
1≤i≤m

H(Yi|Xi). (V.10)

The opposite direction of (V.10) is shown as follows. Consider
the marginal pmfpX0X1

, . . . , pXm−1Xm
given in Table III(a)

and III(b). We show that these functions are optimal in terms
of maximizing H(Yi|Xi), i ≥ 1. The zero probabilities in

TABLE III

(a) OptimalpXi−1Xi
for 2 ≤ i ≤ m

❳
❳
❳
❳
❳
❳
❳❳

Xi−1

Xi 0 · · · q − 1 N

0 0 · · · 0 p̄i−1/q

...
...

. . .
...

...

q − 1 0 · · · 0 p̄i−1/q

N p̄i/q · · · p̄i/q pi − p̄i−1

(b) OptimalpX0X1

P
P
P
P
P
P

X0

X1 0 · · · q − 1 N

0 0 · · · 0 p1/(q + 1)

...
...

. . .
... ...q − 1 0 · · · 0

N p̄1/q · · · p̄1/q p1/(q + 1)

Table III(a) and III(b) result from the following well-known
fact [24, Def. 3]: a channel input can be neglected if it
produces the same channel output as another channel input and
this with the same probabilities. Consider e.g. the first column
in Table III(a). For allk ∈ X , the inputs(Xi−1, Xi) = (k, 0)
produceYi = 0 with probability1. Hence, all but one input can
be neglected. Applying the same consideration to the second
till qth column yields that only one non-zero entry remains
in each of the firstq columns of Table III(a) and III(b). Let
us now address the last column of Table III(a). Recall that
a permutation of the transmission symbolsxi−1 ∈ Q still
yields the same information flow between two nodesi − 1
and i. Hence,pXi−1Xi

(k,N) = pXi−1Xi
(l,N) can be cho-

sen for all k, l ∈ Q. Considering the relative frequency

p̄i−1 of transmission symbols used by nodei − 1, we have
pXi−1Xi

(k,N) = p̄i−1/q for all k ∈ Q where2 ≤ i ≤ m.
In order to achieve the maximum information flow from

source node0 to relay 1, the source has to encode with
uniformly distributed input symbols when relay1 listens, i.e.
pX0X1

(k,N) = pX0X1
(l,N) for all k, l ∈ X . By taking this

additional constraint into account, we obtain the last column
of Table III(b).

The constraints onpi, which are stated in the last line of the
Theorem, are necessary in order to guarantee that Table III(a)
and III(b) are proper probability mass functions. It is now
fairly easy to check that the following equalities hold

H(Y1|X1) = p1 log(q + 1) (V.11)

H(Yi+1|Xi+1) = p̄i log q + pi+1H
(

p̄ip
−1

i+1

)

(V.12)

for all 1 ≤ i ≤ m−1. Observe that the set of probability mass
functions defined by Table III(a) and III(b) is equal toP⋆, i.e.
the set of empirical distributions due to the code construction
defined by (IV.4) to (IV.6). Further, by assumption,Ri = 0
for all i ∈ V \ {0}. Then, a comparison of (V.11) and (V.12)
with (IV.8) and (IV.9) reveals thatmin1≤i≤m H(Yi|Xi) is an
achievable rate. Hence, the capacity is lower bounded by

Cm−1(q) ≥ max
pX0...Xm

min
1≤i≤m

H(Yi|Xi) (V.13)

where the maximization is with respect to Table III(a) and
III(b). Inequality (V.13) together with (V.10) proves (V.8).
Replacing the conditional entropies in (V.8) by (V.11) and
(V.12) gives (V.9).

Remarks:

i) A more intuitive explanation of the zero probability
assignment in Table III(a) and III(b) is the following.
Assume relayi is transmitting, i.e.Xi ∈ Q. According
to the underlying channel model, relayi is not able to
listen to the input of nodei− 1 and, consequently, node
i− 1 should not transmit when nodei transmits.

ii) One could ask why the channel inputs(Xi−1, Xi) =
(k,N), k ∈ Q and (Xi−1, Xi) = (N,N) have equal
probability mass fori = 1 but not necessarily fori > 1
since fori > 1 the information flow between relayi− 1
and i should also be maximized. However, in contrast
to the source node, relayi−1 receives information. The
amount of received information depends on the fraction
of listening time provided by relayi−1. Thus, choosing
uniformly distributed inputs(Xi−1, Xi) = (k,N), k ∈
X , maximizes the rate on link(i− 1)× i but eventually
reduces the rate on link(i− 2)× (i − 1).

iii) Capacity expression (V.8) in Theorem 1 could also have
been obtained by applying the decode-forward rate of
Xie and Kumar [25] to the model considered in this
paper. However, we show achievability by a constructive

Cm−1(q) = max
p1,...,pm−1

min

{

p1 log(q + 1), min
1≤i≤m−1

{

p̄i log q + pi+1H
(

p̄ip
−1

i+1

)}

}

(V.9)
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argument while Xie and Kumar use a random coding
argument in their proof.

The capacity of a single source line network with an
infinite number of half-duplex constrained relays is statedin
Theorem 2.

Theorem2: For m → ∞, i.e. for an unbounded number of
relays, andq transmission symbols, the capacity of the noise-
free and half-duplex constrained relay cascade with a single
source-destination pair is equal to

C∞(q) = log

(

1 +
√
4q + 1

2

)

b/u. (V.14)

Proof: Theorem 2 is proved in the Appendix.

Remarks:

i) C∞(q) is achieved by the input pmf given in Table III(a)
where

pi =
1

2

(

1 +
1√

4q + 1

)

(V.15)

for all i ≥ 1. Another optimal input pmf is characterized
by Table III(b) and Table III(a) fori ≥ 2 when pi is
replaced by (V.15) for alli ≥ 1. This is proved in the
Appendix.

ii) C∞(1) = 0.6942 b/u is equal to the logarithm of the
golden ratio. Also remarkable,C∞(2) is exactly1 b/u.

iii) The maximum achievable rates with time-sharing and,
thus, no timing are given byRts(q) = 0.5 log(q+1) b/u.
For q = 1, 2 we have0.5 and0.7925 b/u, respectively.
SinceC∞(q) is obviously a lower bound on the capacity
of each finite length cascade, a comparison of the
time-sharing rates withC∞(1) andC∞(2) shows that
pre-determined time-sharing falls considerably short of
the capacity for small transmission alphabets. For very
large transmission alphabets the gap between the rates
due to time-sharing and timing becomes negligible, i.e.
limq→∞ (C∞(q)−Rts(q)) = 0.

Next we state an achievable rate region for a cascade with
more than one source. LetT denote the set of all rate vectors
R ∈ R

m
+ satisfying

T =

{

R ∈ R
m
+ : 0 ≤

v
∑

k=0

Rk ≤ H(Yv+1|Xv+1),

∀v ∈ V \ {m}
}

(V.16)

which becomes, taking into account Table III(a) and III(b),
(V.17) and letU denote the set of allR ∈ R

m
+ satisfying

U =

{

R ∈ R
m
+ : 0 < R0, 0 ≤ Rv ≤ p̄v log q,

∀v ∈ V \ {0,m}
}

(V.18)

wherepv ∈ (0, 1), pm = 1 andpv + pv+1 ≥ 1.

Theorem3: Consider a noise-free relay cascade withm−1
half-duplex constrained relays where each relay can act as a

source. The achievable rate regionR due to the timing strategy
(see section IV-A) is given by

R = Co





⋃

pX0...Xm

T ∩ U



 (V.19)

where the union is over all assignmentspX0...Xm
as shown in

Table III(a) and III(b).

Proof: The input pmf stated in Table III(a) and III(b) is
still optimal for the case considered here. Taking into account
the resulting entropy functions (V.11) and (V.12), it follows
that the achievable rate regionR due to (IV.8) to (IV.11) equals
(V.19) asn → ∞.

Remark: Observe that∪pX0...Xm
T with pX0...Xm

as shown
in Table III(a) and III(b) is equal to the cut-set region
(Lemma 2). Thus, all boundary points of∪pX0...Xm

T that are
achievable when the constraints stated in (V.18) are satisfied
are capacity points. This idea will be illustrated for an example
in paragraph VI-B.

VI. N UMERICAL EXAMPLES

In this section we shall provide numerical capacity results
for various scenarios by means of Theorem 1 and Theorem 3.
In particular, we show how to obtain the capacity of a half-
duplex constrained relay cascade with one source-destination
pair for an arbitrary number of relays. Further, in case of a
three node relay cascade with source and relay source, an
explicit expression of the region due to Theorem 3 is derived.

A. One Source

Let us first consider a relay cascade withV = {0, 1, 2},
q = 2 andR1 = 0, i.e. source node0 intends to communicate
with sink node2 via the half-duplex constrained relay1. By
Theorem 1 and the optimum input pmf stated in Table III(b),
we have

C1(2) = max
pX0X1X2

min {pX1
(N) log 3, H(X1)} . (VI.1)

Problem (VI.1) exhibits a single degree of freedom and is read-
ily solved by finding apX1

(N) which satisfiespX1
(N) log 3 =

H(X1) (see Fig. 2). The optimum value forpX1
(N) equals

0.7185 and results in

C1(2) = 1.1389 b/u. (VI.2)

Remarks:

i) Assume the relay does not have the capability to de-
cide whether the source has transmitted or not, i.e.
pX0X1

(N,N) = 0. In this case an identical approach
shows that the capacity equals0.8295 b/u, which is still
greater than the time-sharing rate of0.5 log 3 ≈ 0.7925
bit per use.

ii) For q = 1, the outlined procedure yieldsC1(1) =
0.7729 b/u achieved bypX1

(N) = 0.7729. The capacity
value of this specific case has also been obtained in
[24]. Therein, the focus was not on half-duplex con-
strained transmission but on finding the capacity of
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TABLE IV
CAPACITY RESULTS FOR CASCADES COMPOSED OFm− 1 HALF -DUPLEX

RELAYS. ROW “TS” SHOWS THE CORRESPONDING TIME-SHARING RATES

m− 1 Cm−1(1) Cm−1(2)

1 0.7729 b/u 1.1389 b/u

2 0.7324 b/u 1.0665 b/u

3 0.7173 b/u 1.0400 b/u

4 0.7099 b/u 1.0271 b/u

10 0.6981 b/u 1.0066 b/u

20 0.6954 b/u 1.0020 b/u

40 0.6946 b/u 1.0006 b/u

100 0.6943 b/u 1.0001 b/u

∞ 0.6942 b/u 1 b/u

TS 0.5 b/u 0.7925 b/u

certain classes of deterministic relay channels. In [6],
the same channel model was considered and the author
also noticed that the capacity equals0.7729 b/u. A
simple coding scheme was outlined which approaches
2/3 b/u, and extensions using Huffman or arithmetic
source coding are claimed.

In order to computeCm−1(q) for m > 2, we transform (V.8)
into a convex program with linear cost functionH(Y1|X1) and
convex equality constraintsH(Y1|X1) − H(Yi+1|Xi+1) = 0
for all i ∈ {1, . . . ,m− 1}. The resulting program reads as

maximize p1 log(q + 1)

subject to p1 log(q + 1)− p̄i log q − pi+1H
(

p̄ip
−1

i+1

)

= 0

1−
i+1
∑

j=i

pj ≤ 0

pi ∈ (0, 1)

By adopting a standard algorithm for constrained optimization
problems, the capacityCm−1(q) was computed for various
values ofm. A brief summary is given in Table IV.

B. Two Sources

The considered relay network is characterized byV =
{0, 1, 2} and q = 2. In contrast to the previous example,
the relay is allowed to send own information, i.e.R1 ≥ 0.
According to Theorem 3, the achievable rate regionR is given
by the convex hull of

0 ≤ R0 ≤ H(X0|X1) (VI.3)

0 ≤ R0 +R1 ≤ H(X1) (VI.4)

0 ≤ R1 ≤ p̄1 (VI.5)

R0 > 0 (VI.6)

together with(R0, R1) = (0, log 3) which follows by con-
sidering the shortened cascade from the relay to the source.

Observe that (VI.3) and (VI.4) correspond toT while (VI.5)
and (VI.6) correspond toU .

We will first derive an explicit expression for the boundary
of the cut-set regionT . Two cases have to be considered
depending on whether an optimum input pmf for the source
or the relay source is used. An optimum input pmf for the
relay source due to Table III(a) is shown in Table V. It yields
the maximum possible sum rateH(X1) = log 3 b/u for all
valid y (i.e. y ∈ [0, 1/6]). Wheny varies from0 to 1/6, we
have0 ≤ H(X0|X1) ≤ 1

3
log 3 where 1

3
log 3 corresponds to

y = 1/9. Thus, a part of the cut-set region boundary is given
by R1 = log 3 − R0 for 0 ≤ R0 ≤ 1

3
log 3. It remains to

TABLE V
OPTIMAL pX0X1

YIELDING A SUM RATE OF log 3 b/u

P
P
P
P
P
P

X0

X1 0 1 N

0 0 0 y

1 0 0 y

N 1/3 1/3 1/3− 2y

focus on the interval1
3
log 3 < R0 ≤ C1(2) = 1.1389 b/u.

Using the optimum input pmf for source node0 (Table III(b))
and (V.11), we can expressR1 = H(X1) − R0 as shown in
(VI.7b). Hence, the boundary of the cut-set region is given
by (VI.7) In order to determineR, (VI.5) must be taken
into account. We first check whether points on (VI.7a) are
achievable under constraint (VI.5). Using the probabilitymass
function of Table V, it follows from (VI.5) thatR1 ≤ 2

3
b/u.

Hence, no point (except of(0, log 3)) is achievable on (VI.7a)
since the range ofR0 implies thatR1 is always greater or
equal 2

3
log 3 b/u. Let us now focus on (VI.7b) and recall that

Table III(b) is the underlying probability function. Rate points
on (VI.7b) which satisfy

H(X0|X1) + p̄1 ≤ H(X1). (VI.8)

are achievable. Equality in (VI.8) results forp1 = 0.6091
which givesR0 = 0.9654 b/u andR1 = 0.3909 b/u. Since
H(X0|X1) + p̄1 is linear in p1 while H(X1) is concave in
p1, (VI.8) is satisfied for allp1 ≤ 0.6091. The corresponding
rate points areR0 ≥ 0.9654 and R1 ≤ 0.3909 b/u. Thus,
R is given by taking the convex hull of (VI.7b) for0.9654 ≤
R0 ≤ 1.1389 b/u and the rate vector(R0, R1) = (0, log 3) b/u.
The cut-set bound, the timing regionR and the region which
results from a deterministic time-division schedule (i.e.time-
sharing between(R0, R1) = (0.5 log 3, 0) and (0, log 3)) is
depicted in Fig. 3.

The derivation reveals that the cut-set bound is achievable
for R0 ≥ 0.9654. Moreover, we see that even when the source
transmits at a rate beyond the time-sharing rate of0.5 log 3 b/u,
the relay is still able to send its own information at a non-zero
rate.

T =

{

R ∈ R
m
+ :

{

R0 ≤ p1 log(q + 1)
∑v

k=0
Rk ≤ p̄v log q + pv+1H

(

p̄vp
−1
v+1

)

, ∀v ∈ V \ {0,m}

}}

(V.17)
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Fig. 2. Graphical solution of optimization problem (VI.1).

VII. E XTENSION TO OTHERNETWORKS

Relay cascades are fundamental building blocks in commu-
nication networks. The results derived in the previous sections
may be instrumental in order to determine the capacity of half-
duplex constrained networks with more elaborate topologies.

A. Wireless Trees

Consider, for instance, the tree structured network depicted
in Fig. 4. The root (node1) wants to multicast information
to all leaves (nodes2 to 8) via four half-duplex constrained
relays. We assume noise-free bit pipes (i.e.q = 1) and
broadcast behavior at nodes with more than one outgoing
arrow. The multicast capacity is limited by the capacity of the
longest path in the tree which goes from node1 to nodes7 and
8. Hence, the multicast capacity in the considered example is
equal to the capacity of a cascade containing two intermediate
relay nodes, which isC2(1) = 0.7324 b/u (see Table IV).

B. The Half-Duplex Butterfly Network

A half-duplex butterfly network [26] is shown in Fig. 5.
Nodes1 and2 intend to multicast information to sink nodes
4 and 5 via both a direct link and a half-duplex constrained
relay node3. Like before, broadcast transmission and bit pipes
are assumed. All nodes with two incoming arrows behave
according to a collision model, i.e. received information is
erased if there was a transmission on both incoming links.
By means of network coding (NC) with a bit-wise XOR,
2

3
b/u are achievable at the sink nodes. The (well-known)

PSfrag replacements
1

2

3
4

5
6

7 8

Fig. 4. A wireless binary tree. The multicast capacity is equal to C2(1) =
0.7324 b/u.

strategy is (see Fig. 5) to send in the first time slot a binary
symbol u1 via broadcasta to nodes3 and 4, in the second
time slot a binary symbolu2 via broadcastb to nodes3
and 5 and, subsequently, in the third time slotu1 ⊕ u2 via
broadcastc from the relay node to both sinks. However, under
the usage of timing, at least0.7729 b/u is achievable by
applying the proposed timing strategy as follows. Information
originating from node1 can be sent by means of timing at a
rate ofC1(1) = 0.7729 b/u concurrently on paths1, 1 × 4, 4
and 1, 1 × 3, 3, 3 × 5, 5. Similarly, information originating
from node2 can be sent by means of timing at a rate of
C1(1) = 0.7729 b/u concurrently on paths2, 2× 3, 3, 3× 4, 4
and2, 2×5, 5. Hence, time-sharing of both source nodes yields
a multicast rate of0.7729 b/u. Assume for the moment that
node1 is sending information. Decoding at sink nodes4 and5

R1 =







log 3− R0 0 ≤ R0 ≤ 1

3
log 3 b/u (VI.7a)

H

(

R0

log 3

)

+

(

1− R0

log 3

)

−R0
1

3
log 3 < R0 ≤ 1.1389 b/u (VI.7b)
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Fig. 3. The cut-set region is bounded by the solid curve,R is bounded by the dashed line and the the solid curve forR0 ≥ 0.9654 b/u. The time-sharing
region is bounded by the dotted line.

is done as follows. First observe that the sequence receivedat
sink node4 is a superposition of the sequence sent by source
node1 on the direct link1 × 4 and of the relay sequence on
3× 4. Due to the timing-strategy source node1 and the relay
never transmit in the same time slot. Hence, sink node4 is
able to extract the information sent by source node0 from the
received sequence by the following protocol. In the very first
block source node0 forwards a message to sink node4 and
the relay via broadcasta while the relay is quiet. Sink node4
and the relay are able to decode successfully. In the second
block the relay sends the decoded message to nodes4 and5
via broadcastc while source node0 sends a new message to
nodes3 and4 via broadcasta. Since sink node4 knows both
the strategy and, therefore, the current sequence used by the
relay for encoding the source message of the previous block,it
can determine the new source message by subtracting the relay
sequence from the received sequence. Sink node5 is also able
to decode the received relay sequence by applying the rules
for the proposed timing strategy. The outlined procedure is
repeated in the following blocks and is used in the same way
for transmitting information from source node2 to nodes4
and5.

VIII. C ONCLUSION

The half-duplex constraint is a property common to many
wireless networks. In order to overcome the half-duplex con-
straint, practical transmission protocols deterministically split
the time of each network node into transmission and reception
periods. However, this is not optimal from an information
theoretic point of view, as is demonstrated by means of noise-
free relay cascades of various lengths with one or multiple
sources. We show that significant rate gains are possible
when information is represented by an information-dependent
allocation of the transmission and reception slots of the relays.

PSfrag replacements

a b

c

d

1 2

3

4 5

Fig. 5. The binary half-duplex butterfly network. With network coding, 2
3

b/u
are achievable. Timing yieldsC1(1) = 0.7729 b/u.

Moreover, we provide a coding strategy which realizes this
idea and, based on the asymptotic behavior of the strategy,
we establish capacity expressions for three different scenarios.
These results may be instrumental in deriving the capacity
of half-duplex constrained networks with a more elaborate
topology.

APPENDIX

Lemma3: Consider a noise-free relay cascade with a single
source-destination pair (namely nodes0 andm) andm − 1
half-duplex constrained relays whereq denotes the number of
transmission symbols. There exists a capacity achieving input
pmf pX0...Xm

such thatCm−1(q) = H(Xm−1).

Proof: Consider the capacity expression of Theorem 1
and assume thatH(Ym|Xm) > Cm−1(q). It will be shown
thatH(Ym|Xm) can be decreased toCm−1(q) without forcing
H(Yi|Xi), 1 ≤ i ≤ m−1, to decrease. The optimal input pmf
given in Table III(a) and III(b) is assumed in the following.
Hence, H(Ym|Xm) = H(Xm−1|Xm) = H(Xm−1) and



12 ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY

H(Yi|Xi) = H(Xi−1|Xi) for all 1 ≤ i ≤ m−1. The assertion
is clear for m = 2 (see Fig. 2). Letm > 2. Recall that
H(X0|X1) = p1 log(q + 1) and

H(Xi−1|Xi) = p̄i−1 log q + piH
(

p̄i−1p
−1

i

)

(A.1)

where2 ≤ i ≤ m andpm = 1. A change ofH(Xm−1) does
not affectH(Xi−1|Xi), 1 ≤ i ≤ m−2, since both expressions
depend on different variables. Therefore, it is enough to
considerH(Xm−2|Xm−1). The maximum ofH(Xm−1) is at
pm−1 = 1/(q+1). Further,H(Xm−1) is (strictly) decreasing
to zero for1/(q + 1) ≤ pm−1 ≤ 1. Let pm−1 ≥ 1/(q + 1).
In order to decreaseH(Xm−1) to Cm−1(q), pm−1 has to be
increased which, in turn, does not decreaseH(Xm−2|Xm−1)
since

∂H(Xm−2|Xm−1)

∂pm−1

= log

(

pm−1

pm−1 + pm−2 − 1

)

. (A.2)

is non-negative. The assertion is proven since we do not
have to considerpm−1 < 1/(q + 1). Such a choice would
only decreaseH(Xm−2|Xm−1) but would not result in larger
values forH(Xm−1).

Proof of Theorem 2:The capacity series(Cm(q))m∈N is
bounded (e. g. by0 andC1(q)) and monotonically decreasing
(since each new relay causes an additional constraint in
the corresponding convex program of section VI-A). Hence,
(Cm(q))m∈N is convergent. Thus, for everyǫ > 0 there exists
anN ∈ N such that

|Cm−1(q)− Cm(q)| < ǫ (A.3)

for all m ≥ N . Assuming the capacity achieving input pmf,
we haveCm−1(q) = H(Xm−1) and Cm(q) = H(Xm)
(Lemma 3). Then, by (A.3)

|H(Xm−1)−H(Xm)| < ǫ (A.4)

for all m ≥ N . Two cases can appear in (A.4) whenǫ
approaches zero:pm−1 → p′, pm → p′′ as m → ∞ with
p′ 6= p′′ or p′ = p′′.

Consider the first case, i.e.p′ 6= p′′. By (IV.5), p′ + p′′ has
to be greater than or equal to1. However,p′ + p′′ is always
smaller than1 what can be seen as follows. First, note that the
maximum ofH(Xk) is at1/(q+1). Hence, without restriction
we can assume thatp′ < 0.5 and p′′ > 0.5 (otherwisep′ +
p′′ < 1 a priori). Since the first derivative ofH(Xk) is point
symmetric with respect to(0.5,− log q), we have0.5− p′ >
p′′ − 0.5 what yieldsp′ + p′′ < 1.

Hence, only the second case is valid, i.e.pm−1, pm → p
asm → ∞. But this implies, using Table III(a) and replacing
pm−1 and pm by p, that C∞(q) is smaller than or equal to
the maximum of

H(Xm−1|Xm) = p̄ log q + pH
(

p̄p−1
)

. (A.5)

Since the Table III(a) withpi − 1 and pi can be assumed
for all pXi−1Xi

, i ≥ 1, it follows thatC∞(q) is equal to the
maximum of (A.5) which is

max
p

H(Xm−1|Xm) = log

(

1 +
√
4q + 1

2

)

. (A.6)

Proof of Theorem 2 - Remark i):The maximum of (A.6)
is achieved at

p =
1

2

(

1 +
1√

4q + 1

)

. (A.7)

and an optimal input pmf is given by Table III(a) whenpi
is replaced by (A.7) for alli ≥ 1. Note thatpX0X1

is also
characterized by Table III(a) . Another optimal input pmf is
given by Table III(a) and Table III(b) whenpi is replaced by
(A.7) for all i ≥ 1. SincepX0X1

is the only part which differs
from the pmf considered before, it suffices to show that the
value ofH(X0|X1) under the claimed pmf is always greater
or equal to (A.6), i.e.

1

2

(

1 +
1√

4q + 1

)

log(q + 1) ≥ log

(

1 +
√
4q + 1

2

)

(A.8)

or, equivalently,

(q + 1)
1
2

(

1+ 1
√

4q+1

)

≥ 1 +
√
4q + 1

2
. (A.9)

Lowering the left hand side while increasing the right hand
side gives

(q + 1)
1
2

(

1+ 1

2
√

q+1

)

≥ 1 + 2
√
q + 1

2
. (A.10)

Using the substitution

q̃ =
1

2
√
q + 1

(A.11)

in (A.10), we obtain

(2q̃)−q̃ ≥ q̃ + 1. (A.12)

(A.12) is satisfied for allq̃ ∈ [0, 0.2] what can be seen as
follows. First note that (A.12) is satisfied for̃q = 0 and q̃ =
0.2. Since (2q̃)−q̃ is concave due to a non-positive second
derivative in the considered domain, (A.12) is valid for all
q̃ ∈ [0, 0.2]. Thus, (A.8) is true for allq > 5. The validity of
(A.8) for the remainingq ∈ {1, . . . , 5} is easily checked by
direct computation.
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University, Sweden, in 1996. From 1996 to 1997, he was a Visiting Scientist
at the IBM Almaden Research Center, San Jose, CA. He was a Visiting
Assistant Professor at the University of Illinois, Urbana-Champaign, and a
Visiting Scientist at CNRS in Sophia-Antipolis, France, from 1997 to 1998.
During 1999–2006, he was member of the faculty at the University of Illinois,
Urbana-Champaign. In 2006, he joined the faculty of the Technische Univer-
sität München, Germany, as the Head of the Institute for Communications
Engineering (Lehrstuhl für Nachrichtentechnik). He passed away on February
2, 2009.

His research interests were in coding theory and information theory, and
in their applications to communication systems.

During 1999–2001, Prof. Kötter was an Associate Editor forCoding
Theory and Techniques for the IEEE TRANSACTIONS ON COMMUNICA-
TIONS, and during 2000–2003, he served as an Associate Editor for Coding
Theory for the IEEE TRANSACTIONS ON INFORMATION THEORY. He
was Technical Program Co-Chair for the 2008 International Symposium on
Information Theory, and twice Co-Editor-in-Chief for special issues of the
IEEE TRANSACTIONS ON INFORMATION THEORY. During 2003–2008,
he was a member of the Board of Governors of the IEEE Information Theory
Society. He received an IBM Invention Achievement Award in 1997, an NSF
CAREER Award in 2000, an IBM Partnership Award in 2001, and a Xerox
Award for faculty research in 2006. He also received the IEEEInformation
Theory Society Paper Award in 2004, the Vodafone Innovationspreis in 2008,
the Best Paper Award from the IEEE Signal Processing Societyin 2008, and
the IEEE Communications Society & Information Theory Society Joint Paper
Award twice, in 2009 and in 2010.


	I Introduction
	II Related Literature
	III Network Model and Information Flow
	III-A Network Model
	III-B Information Flow

	IV A Timing Code for Line Networks with Multiple Sources
	IV-A General Idea and Codebook Sizes
	IV-B Example
	IV-C Rate Region

	V Capacity Results
	VI Numerical Examples
	VI-A One Source
	VI-B Two Sources

	VII Extension to other Networks
	VII-A Wireless Trees
	VII-B The Half-Duplex Butterfly Network

	VIII Conclusion
	Appendix
	References
	Biographies
	Tobias Lutz
	Christoph Hausl
	Ralf Kötter


