
1

Windowed Decoding of Protograph-based
LDPC Convolutional Codes over Erasure Channels

Aravind R. Iyengar, Marco Papaleo, Paul H. Siegel, Fellow, IEEE, Jack K. Wolf, Life Fellow, IEEE,
Alessandro Vanelli-Coralli and Giovanni E. Corazza

Abstract—We consider a windowed decoding scheme for LDPC
convolutional codes that is based on the belief-propagation (BP)
algorithm. We discuss the advantages of this decoding scheme
and identify certain characteristics of LDPC convolutional code
ensembles that exhibit good performance with the windowed
decoder. We will consider the performance of these ensembles
and codes over erasure channels with and without memory. We
show that the structure of LDPC convolutional code ensembles
is suitable to obtain performance close to the theoretical limits
over the memoryless erasure channel, both for the BP decoder
and windowed decoding. However, the same structure imposes
limitations on the performance over erasure channels with
memory.

Index Terms—Low-density parity-check codes, Convolutional
codes, Iterative decoding, Windowed decoding, Belief propaga-
tion, Erasure channels, Decoding thresholds, Stopping sets.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes, although in-
troduced in the early 1960’s [4], were established as state-

of-the-art codes only in the late 1990’s with the application
of statistical inference techniques [5] to graphical models
representing these codes [6], [7]. The promising results from
LDPC block codes encouraged the development of convolu-
tional codes defined by sparse parity-check matrices.

LDPC convolutional codes (LDPC-CC) were first intro-
duced in [8]. Ensembles of LDPC-CC have several attractive
characteristics, such as thresholds approaching capacity with
belief-propagation (BP) decoding [9], and BP thresholds close
to the maximum a-posteriori (MAP) thresholds of random
ensembles with the same degree distribution [10]. Whereas
irregular LDPC block codes have also been shown to have BP
thresholds close to capacity [11], the advantage with convo-
lutional counterparts is that good performance is achieved by
relatively simple regular ensembles. Also, the construction of
finite-length codes from LDPC-CC ensembles can be readily

A. R. Iyengar and P. H. Siegel are with the Department of Electrical and
Computer Engineering and the Center for Magnetic Recording Research,
University of California, San Diego, La Jolla, CA 92093 USA (e-mail:
aravind@ucsd.edu, psiegel@ucsd.edu). J. K. Wolf (deceased) was with the
Department of Electrical and Computer Engineering and the Center for
Magnetic Recording Research, University of California, San Diego, La Jolla,
CA 92093 USA. The work of A. R. Iyengar is supported by the National
Science Foundation under the Grant CCF-0829865.

M. Papaleo is with Qualcomm Inc., San Diego, CA USA (e-mail: mpapa-
leo@qualcomm.com). A. Vanelli-Coralli and G. E. Corazza are with the Uni-
versity of Bologna, DEIS-ARCES, Viale Risorgimento, 2 - 40136 Bologna,
Italy (e-mail: avanelli@arces.unibo.it, gecorazza@arces.unibo.it)

Parts of this work were presented at the 2010 Information Theory Workshop
(ITW), Cairo, Egypt [1]; the 2010 International Communications Conference
(ICC), Cape Town, South Africa [2]; and as an invited paper at the 2010 Int’l
Symp. on Turbo Codes & Iterative Information Processing, Brest, France [3].

optimized to ensure desirable properties, e.g. large girths
and fewer cycles, using well-known techniques of LDPC
code design. Most of these attractive features of LDPC-CC
are pronounced when the blocklengths are large. However,
BP decoding for these long codes might be computationally
impractical. By implementing a windowed decoder, one can
get around this problem.

In this paper, a windowed decoding scheme brought to
the attention of the authors by Liva [12] is considered. This
scheme exploits the convolutional structure of the parity-check
matrix of the LDPC-CC to decode non-terminated codes,
while maintaining many of the key advantages of iterative
decoding schemes like the BP decoder, especially the low
complexity and superior performance. Note that although
similar decoding schemes were proposed in [13], [14], the
aim in these papers was not to reduce the decoding latency or
complexity. When used to decode terminated (block) LDPC-
CC, the windowed decoder provides a simple, yet efficient
way to trade-off decoding performance for reduced latency.
Moreover, the proposed scheme provides the flexibility to set
and change the decoding latency on the fly. This proves to
be an extremely useful feature when the scheme is used to
decode codes over upper layers of the internet protocol.

Our contributions in this paper are to study the requirements
of LDPC-CC ensembles for good performance over erasure
channels with windowed decoding (WD). We are interested
in identifying characteristics of ensembles that present a good
performance-latency trade-off. Further we seek to find such
ensembles that are able to withstand not just random erasures
but also long bursts of erasures. We reiterate that we will be
interested in designing ensembles that have the aforementioned
properties, rather than designing codes themselves. Although
the channels considered here are erasure channels, we note that
the WD scheme can be used when the transmission happens
over any channel.

This paper is organized as follows. Section II introduces
LDPC convolutional codes and the notation and terminology
that will be used throughout the paper. In Section III we de-
scribe the decoding algorithms that will be considered. Along
with a brief description of the belief-propagation algorithm, we
will introduce the windowed decoding scheme that is based
on BP. Possible variants of the scheme will also be discussed.
Section IV deals with the performance of LDPC-CC on the
binary erasure channel. Starting with a short recapitulation of
known results for BP decoding, we will discuss the asymptotic
analysis of the WD scheme in detail. Finite-length analysis
will include performance evaluation using simulations that
reinforce the observations made in the analysis. For erasure

ar
X

iv
:1

01
0.

45
48

v2
 [

cs
.I

T
]

 2
2

O
ct

 2
01

1

2

channels with memory, we analyse LDPC-CC ensembles both
in the asymptotic setting and for finite lengths in Section V. We
also include simulations illustrating the good performance of
codes derived from the designed protographs over the Gilbert-
Elliott channel. Finally, we summarize our findings in Section
VI.

II. LDPC CONVOLUTIONAL CODES

In the following, we will define LDPC-CC, give a construc-
tion starting from protographs, and discuss various ways of
specifying ensembles of these codes.

A. Definition
A rate R = b/c binary, time-varying LDPC-CC is defined

as the set of semi-infinite binary row vectors v[∞], satisfying
H[∞]v

T
[∞] = 0T

[∞], where H[∞] is the parity-check matrix

H[∞] =

H0(1)
H1(1) H0(2)

... H1(2)
. . .

Hms
(1)

...
. . . H0(t)

Hms
(2)

. . . H1(t)
. . .

. . .
...

. . .

Hms(t)
. . .
. . .

(1)

and 0[∞] is the semi-infinite all-zero row vector. The elements
Hi(t), i = 0, 1, · · · ,ms in (1) are binary matrices of size
(c− b)× c that satisfy [15]
• Hi(t) = 0, for i < 0 and i > ms, ∀ t ≥ 1
• ∃ t > 0 such that Hms

(t) 6= 0
• H0(t) has full rank ∀ t ≥ 1.

The parameter ms is called the memory of the code and νs =
(ms + 1)c is referred to as the constraint length. The first
two conditions above guarantee that the code has memory ms

and the third condition ensures that the parity-check matrix
is full-rank. In order to get sparse graph codes, the Hamming
weight of each column h of H[∞] must be very low, i.e.,
wH(h)� νs. Based on the matrices Hi(t), LDPC-CC can be
classified as follows [8]. An LDPC-CC is said to be periodic
if Hi(t) = Hi(t + τ) ∀ i = 0, 1, · · · ,ms, ∀ t and for some
τ > 1. When τ = 1, the LDPC-CC is said to be time-invariant,
in which case the time dependence can be dropped from the
notation, i.e. Hi(t) = Hi ∀ i = 0, 1, · · · ,ms, ∀ t. If neither
of these conditions holds, it is said to be time-variant.

Terminated LDPC-CC have a finite parity-check matrix

H[L] =

H0(1)
H1(1) H0(2)

... H1(2)
. . .

Hms(1)
...

. . . H0(L)

Hms
(2)

. . . H1(L)

. . .
...

Hms(L)

where we say that the convolutional code has been terminated
after L instants. Such a code is said to be (J,K) regular if
H[L] has exactly J 1’s in every column and K 1’s in every row
excluding the first and the last ms(c − b) rows, i.e. ignoring
the terminated portion of the code. It follows that for a given
J , the parity-check matrix can be made sparse by increasing c
or ms or both, leading to different code constructions [16]. In
this paper, we will consider LDPC-CC characterized by large
c and small ms. As in [9], we will focus on regular LDPC-CC
which can be constructed from a protograph.

B. Protograph-based LDPC-CC

A protograph [17] is a relatively small bipartite graph from
which a larger graph can be obtained by a copy-and-permute
procedure—the protograph is copied M times, and then the
edges of the individual replicas are permuted among the M
replicas to obtain a single, large bipartite graph referred to as
the derived graph. We will refer to M as the expansion factor.
M is also referred to as the lifting factor in literature [11].
Suppose the protograph possesses NP variable nodes (VNs)
and MP check nodes (CNs), with degrees Jj , j = 1, · · · , NP ,
and Ki, i = 1, · · · ,MP , respectively. Then the derived graph
will consist of n = NPM VNs and m = MPM CNs. The
nodes of the protograph are labeled so that if the VN Vj is
connected to the CN Ci in the protograph, then Vj in a replica
can only connect to one of the M replicated Ci’s.

Protographs can be represented by means of an MP×NP bi-
adjacency matrix B, called the base matrix of the protograph
where the entry Bi,j represents the number of edges between
CN Ci and VN Vj (a non-negative integer, since parallel edges
are permitted). The degrees of the VNs (CNs respectively) of
the protograph are then equal to the sum of the corresponding
column (row, respectively) of B. A (J,K) regular protograph-
based code is then one with a base matrix where all VNs
have degree J and all CNs, excluding those in the terminated
portion of the code, have degree K.

In terms of the base matrix, the copy-and-permute operation
is equivalent to replacing each entry Bi,j in the base matrix
with the sum of Bi,j distinct size-M permutation matrices.
This replacement is done ensuring that the degrees are main-
tained, e.g., a 2 in the matrix B is replaced by a matrix
H

(M)
2 = P

(M)
1 ⊕ P

(M)
2 where P

(M)
1 and P

(M)
2 are two

permutation matrices of size M chosen to ensure that each
row and column of H(M)

2 has two ones. The resulting matrix
after the above transformation for each element of B, which
is the biadjacency matrix of the derived graph, corresponds
to the parity-check matrix H of the code. The derived graph
therefore is nothing but the Tanner graph corresponding to the
parity-check matrix H of the code.

For different values of the expansion factor M , different
blocklengths of the derived Tanner graph can be achieved,
keeping the original graph structure imposed by the pro-
tograph. We can hence think of protographs as defining
code ensembles that are themselves subsets of random LDPC
code ensembles. We will henceforth refer to a protograph
B and the ensemble C it represents interchangeably. This
means that the density evolution analysis for the ensemble

3

of codes represented by the protograph can be performed
within the protograph. Furthermore, the structure imposed
by a protograph on the derived graph can be exploited to
design fast decoders and efficient encoders. Protographs give
the code designer a refined control on the derived graph edge
connections, facilitating good code design.

Analogous to LDPC block codes, LDPC-CC can also be
derived by a protograph expansion. As for block codes,
the parity-check matrices of these convolutional codes are
composed of blocks of size-M square matrices. We now give
two constructions of (J,K) regular LDPC-CC ensembles.

1) Classical construction: We briefly describe the con-
struction introduced in [18]. For convenience, we will refer to
this construction as the classical construction of (J,K) regular
LDPC-CC ensembles. Let a be the greatest common divisor
(gcd) of J and K. Then there exist positive integers J ′ and K ′

such that J = aJ ′, K = aK ′, and gcd(J ′,K ′) = 1. Assuming
we terminate the convolutional code after L instants, we obtain
a block code, described by the base matrix

B[L] =

L︷ ︸︸ ︷

B0

B1 B0

... B1
. . .

Bms

...
. . . B0

Bms

. . . B1

. . .
...

Bms

where ms = a−1 is the memory of the LDPC-CC and Bi, i =
0, · · · ,ms are J ′ ×K ′ submatrices that are all identical and
have all entries equal to 1. Note that an LDPC-CC constructed
from the protograph with base matrix B[L] could be time-
varying or not depending on the expansion of the protograph
into the parity-check matrix.

The protograph of the terminated code has NP = LK ′

VNs and MP = (L+ms)J
′ CNs. The rate of the LDPC-CC

is therefore

RL = 1−
(
L+ms

L

)
J ′

K ′
= 1−

(
1 +

ms

L

)
(1−R) (2)

where R = 1 − J′

K′ is the rate of the non-terminated code.
Note that RL → R and the LDPC-CC has a regular degree
distribution [9] when L → ∞. We will assume that the
parameters satisfy K ′ > J ′ and L ≥ 1−R

R ms so that the
rates R and RL of the non-terminated and terminated codes,
respectively, are in the proper range.

The classical construction was proposed in [18] and it
produces protographs for some (J,K) regular LDPC-CC
ensembles. However, not all (J,K) regular LDPC-CC can be
constructed, e.g. ms becomes zero if J and K are relatively
prime and consequently the resulting code has no memory. In
[9], the authors addressed this problem by proposing a con-
struction rule based on edge spreading. We denote an ensemble
of (J,K) regular LDPC-CC constructed as described here as
Cc(J,K) with the subscript c for “classical” construction.

2) Modified construction: We propose a modified con-
struction that is similar to the classical construction except
that we do not require that ms = a − 1, i.e. the memory
of the LDPC-CC is independent of its degree distribution.
We further disregard the requirement that the Bi matrices
are identical and have only ones, i.e. parallel edges in the
protograph are allowed. However, the sizes of the submatrices
Bi, i = 0, 1, · · · ,ms will still be J ′ ×K ′. We will denote a
(J,K) regular LDPC-CC ensemble constructed in this manner
as Cm(J,K), with subscript m for “modified” construction.
Note that the rate of the Cm(J,K) ensemble is still given by
Equation (2). Further, the independence of the code memory
and the degree distribution allows us to construct LDPC-CC
even when J and K are co-primes. This is illustrated in the
following example.

Example 1: Let J = 3 and K = 4. Clearly, a classical
construction of this ensemble is not possible. However, with
the modified construction, we can set ms = 1 and define the
ensemble Cm(J,K) given by

B0 =

 1 0 1 1
0 1 0 1
1 1 1 0

 ,B1 =

 1 0 0 0
0 1 0 1
0 0 1 0

with design rate RL = 1− 3

4

(
L+1
L

)
for a termination length L.

Note that these submatrices are by no means the only possible
ones. Another set of submatrices satisfying the constraints is

B̂0 =

 2 0 0 1
0 2 0 1
0 0 2 0

 , B̂1 =

 0 0 1 0
0 0 0 1
1 1 0 0

 .

�

The above example brings out the similarity between the
proposed modified construction and the technique of edge
spreading employed in [9], wherein the edges of the proto-
graph defined by the matrix

B′0 =

 2 0 1 1
0 2 0 2
1 1 2 0

are “spread” between the matrices B0 and B1 (or between B̂0

and B̂1) to obtain a (3, 4) regular LDPC-CC ensemble with
memory ms = 1. The advantage of the modified construction
is thus clear—it gives us more degrees of freedom to design the
protographs in comparison with the classical construction. In
particular, the ensemble specified by the classical construction
is contained in the set of ensembles allowed by the modified
construction, meaning that the best performing Cm(J,K)
ensemble (with memory the same as that of the Cc(J,K)
ensemble) is at least as good as the Cc(J,K) ensemble. Note
that in [9], there was no indication as to how edges are to be
spread between matrices. With windowed decoding, we will
shortly show that different protographs (edge spreadings) have
different performances. We will also identify certain design
criteria for efficient modified constructions that suit windowed
decoding.

4

C. Polynomial representation of LDPC-CC ensembles

We have thus far specified LDPC-CC ensembles by giving
the parameter L and the matrices Bi, i = 0, 1, · · · ,ms. An al-
ternative specification of terminated protograph-based LDPC-
CC ensembles using polynomials is useful in establishing
certain properties of (J,K) regular ensembles and is described
below.

Instead of specifying (ms+1) matrices Bi of size J ′ × K ′,
we can specify the K ′ columns of the (ms+1)J ′×K ′ matrix

B[1] =

B0

B1

...
Bms

using a polynomial of degree no more than d = (ms+1)J ′−1
for each column. The polynomial of the jth column

pj(x) = p
(0)
j + p

(1)
j x+ p

(2)
j x2 + · · ·+ p

(d)
j xd (3)

is defined so that the coefficient of xi, p(i)
j , is the (i+1, j) entry

of B[1] for all i = 0, 1, · · · , d and j = 1, 2, · · · ,K ′. Therefore,
an equivalent way of specifying the LDPC-CC ensemble is by
giving L and the set of polynomials {pj(x), j = 1, 2, · · · ,K ′}.
With this notation, the lth column of B[L] is specified by
the polynomial xJ

′ipj(x) where l = iK ′ + j for unique
0 ≤ i ≤ L − 1 and 1 ≤ j ≤ K ′. We can hence use “the
column index” and “the column polynomial” interchangeably.
Further, to define (J,K) regular ensembles, we will need the
constraints

pj(1) = J ∀ 1 ≤ j ≤ K ′

and
K′∑
j=1

p
[m]
j (1) = K ∀ 0 ≤ m ≤ J ′ − 1,

where p[m]
j (x) is the polynomial of degree no larger than ms

obtained from pj(x) by collecting the coefficients of terms
with degrees l where l = hJ ′ +m for some 0 ≤ h ≤ ms, i.e.
l = m(mod J ′):

p
[m]
j (x) = p

(m)
j + p

(J′+m)
j x+ · · ·+ p

(msJ
′+m)

j xms

=

ms∑
h=0

p
(hJ′+m)
j xh. (4)

We will refer to these polynomials as the modulo polyno-
mials. Let us denote the set of polynomials defining an
LDPC-CC ensemble as P = {pj(x), j ∈ [K ′]}, where
[K ′] = {1, 2, · · · ,K ′}, and the modulo polynomials as
Pl = {p[l]

j (x), j ∈ [K ′]}, l = 0, 1, · · · , J ′ − 1. Later in the
paper, we will say “the summation of polynomials pi(x) and
pj(x)” to mean the collection of the ith and the jth columns
of B[1]. The following example illustrates the notation.

Example 2: For (J, 2J) codes, we have J ′ = 1 and K ′ = 2,
the component base matrices Bi, i = 0, ...,ms are 1 × 2
matrices. With the first column of the protograph B[1], we
associate a polynomial p1(x) = p

(0)
1 +p

(1)
1 x+ · · ·+p

(ms)
1 xms

of degree at most ms. Similarly, with the second column we

associate a polynomial p2(x) = p
(0)
2 +p

(1)
2 x+ · · ·+p(ms)

2 xms ,
also of degree at most ms. Then, the (2i + 1)th column of
B[L] can be associated with the polynomial xip1(x), and the
(2i + 2)th column with the polynomial xip2(x). As noted
earlier, we will use the polynomial of a column and its index
interchangeably, e.g. when we say “choosing the polynomial
xip1(x),” we mean that we choose the (2i + 1)th column of
B[L]. Similarly, by “summations of polynomials p1(x) and
p2(x),” we mean the collection of the corresponding columns
of B[L]. In order to define (J, 2J) regular ensembles, we will
further have the constraint p1(1) = p2(1) = J . In this case,
since J ′ = 1, p[0]

1 (1)+p
[0]
2 (1) = 2J is the same as the previous

constraint, because p[0]
1 (1) + p

[0]
2 (1) = p1(1) + p2(1). �

We define the minimum degree of a polynomial a(x) as the
least exponent of x with a positive coefficient and denote it as
min deg(a(x)). Clearly, 0 ≤ min deg(a(x)) ≤ deg(a(x)). Let
us define a partial ordering of polynomials with non-negative
integer coefficients as follows. We write a(x) � b(x) if
min deg(a(x)) = min deg(b(x)), deg(a(x)) = deg(b(x)) and
the coefficients of a(x) are no larger than the corresponding
ones of b(x). The ordering � satisfies the following properties
over polynomials with non-negative integer coefficients: if
a(x) � b(x) and c(x) � d(x), then

a(x) + c(x) � b(x) + d(x)

a(x)c(x) � b(x)d(x).

We define the boundary polynomial β(a(x)) of a polynomial
a(x) to be β(a(x)) = xi + xj where i = min deg(a(x)) and
j = deg(a(x)). Note that when i = j, we define β(a(x)) =
xi. We have for any polynomial a(x), β(a(x)) � a(x).

III. DECODING ALGORITHMS

LDPC-CC are characterized by a very large constraint
length νs = (ms + 1)K ′M . Since the Viterbi decoder has a
complexity that scales exponentially in the constraint length,
it is impractical for this kind of code. However, the sparsity
of the parity-check matrix can be exploited and an iterative
message passing algorithm can be adopted for decoding. We
consider two specific iterative decoders here—a conventional
belief-propagation decoder [6], [19] and a variant called a
windowed decoder.

A. Belief-Propagation (BP)

For terminated LDPC-CC, decoding can be performed as
in the case of an LDPC block code, meaning that each frame
carrying a codeword obtained through the termination can be
decoded with the sum-product algorithm (SPA) [19].

Note that since the BP decoder can start decoding only after
the entire codeword is received, the total decoding latency
ΛBP is given by ΛBP = Tcw + Tdec, where Tcw is the time
taken to receive the entire codeword and Tdec is the time
needed to decode the codeword. In many practical applications
this latency is large and undesirable. Moreover, for non-
terminated LDPC-CC, a BP decoder cannot be employed.

5

WK ′M

WJ ′M

msK
′M

(L+ms)J
′M

LK ′M

Fig. 1. Illustration of windowed decoding (WD) with window of size W = 4 for a Cm(J, 2J) LDPC-CC with ms = 2 and L = 16 at the fourth decoding
instant. This window configuration consists of JW = WJ ′M = 4M rows of the parity-check matrix and all the (W +ms)K′M = 12M columns involved
in these equations: this comprises the red (vertically hatched) and the blue (hatched) edges shown within the matrix. Note that the symbols shown in green
(backhatched) above the parity-check matrix have all been processed. The targeted symbols are shown in blue (hatched) above the parity-check matrix and
the symbols that are yet to be decoded are shown in gray above the parity-check matrix.

B. Windowed Decoding (WD)

The convolutional structure of the code imposes a constraint
on the VNs connected to the same parity-check equations—
two VNs of the protograph that are at least (ms + 1)K ′

columns apart cannot be involved in the same parity-check
equation. This characteristic can be exploited in order to
perform continuous decoding of the received stream through
a “window” that slides along the bit sequence. Moreover,
this structure allows for the possiblity of parallelizing the
iterations of the message passing decoder through several
processors working in different regions of the Tanner graph.
A pipeline decoder based on this idea was proposed in [8].
In this paper we consider a windowed decoder to decode
terminated codes with reduced latency. Note that whereas
a similar sliding window decoder was used to bound the
performance of BP decoding in [14], we are interested in
evaluating the performance of the windowed decoder from a
perspective of reducing the decoding complexity and latency.

Consider a terminated (J,K) regular parity-check matrix
H built from a base matrix B. The windowed decoder works
on sub-protographs of the code and the window size W is
defined as the number of sets of J ′ CNs of the protograph B
considered within each window. In the parity-check matrix H,
the window thus consists of JW = WJ ′M = W (c− b) rows
of H and all columns that are involved in the check equations
corresponding to these rows. We will henceforth refer to the
size of the window only in terms of the protograph with the
corresponding size in the parity-check matrix implied. The
window size W ranges between (ms+1) and (L−1) because
each VN in the protograph is involved in at most J ′(ms + 1)
check equations; and, although there are a total of MP =
J ′(L+ms) CNs in B, the decoder can perform BP when all
the VN symbols are received, i.e. when L ≤ W ≤ L + ms.

Apart from the window size, the decoder also has a (typically
small) target erasure probability δ ≥ 0 as a parameter1. The
aim of the WD is to reduce the erasure probability of every
symbol in the codeword to a value no larger than δ.

At the first decoding instant, the decoder performs belief-
propagation over the edges within the window with the aim
of decoding all of the first K ′ symbols in the window, called
the targeted symbols. The window slides down J ′ rows and
right K ′ columns in B after at least a fraction (1 − δ) of
the targeted symbols are recovered (or, in general, after a
maximum number of belief-propagation iterations have been
performed), and continues decoding at the new position at the
next decoding time instant.

We refer to the set of edges included in the window at
any particular decoding time instant as the window config-
uration. In the terminated portion of the code, the window
configuration will have fewer edges than other configurations
within the code. Since the WD aims to recover only the
targeted symbols within each window configuration, the entire
codeword is recovered in L decoding time instants. Fig. 1
shows a schematic representation of the WD for W = 4.

The decoding latency of the K ′ targeted symbols with WD
is therefore given by ΛWD = TW + Tdec(W), where TW is
the time taken to receive all the symbols required to decode
the K ′ targeted symbols, and Tdec(W) is the time taken to
decode the targeted symbols. The parameters Tcw and TW are
related as

TW =
(W +ms)K

′

LK ′
Tcw =

W +ms

L
Tcw,

since at most (W + ms)K
′ symbols are to be received to

process the targeted symbols. The relation between Tdec and

1We will see shortly that setting δ = 0 is not necessarily the most efficient
use of the WD scheme.

6

Tdec(W) is given by

Tdec(W) =
W

L
Tdec,

since the complexity of BP decoding scales linearly in block-
length and the WD uses BP decoding over WK ′ symbols
in each window configuration. We assume that the number
of iterations of message passing performed is fixed to be the
same for the BP decoder and the WD. Thus, in latency-limited
scenarios, we can use the WD to obtain a latency reduction
of

ΛWD ≤
W +ms

L
ΛBP

∆
= wΛBP .

The smallest latency supported by the code-decoder system
is therefore at most a fraction wmin = 2ms+1

L that of the
BP decoder. As pointed out earlier, the only choice for non-
terminated codes is to use some sort of a windowed decoder.
For the sequence of ensembles indexed by L, with the choice
of the proposed WD with a fixed finite window size W ,
the decoding latency vanishes as O(1

L). We will typically be
interested in small values of W where large gains in decoding
latencies are achievable. Since the decoding latency increases
as W increases, the trade-off between decoding performance
and latency can be studied by analyzing the performance of
the WD for the entire range of window sizes.

Latency Flexibility: Although reduced latency is an impor-
tant characteristic of WD, what is perhaps more useful practi-
cally is the flexibility to alter the latency with suitable changes
in the code performance. The latency can be controlled by
varying the parameter W as required. If a large latency can be
handled, W can be kept large ensuring good code performance
and if a small latency is required, W can be made small while
paying a price with the code performance (We will see shortly
that the performance of WD is monotonic in the window size).

One possible variant of WD is a decoding scheme which
starts with the smallest possible window size and the size
is increased whenever targeted symbols cannot be decoded,
i.e., the target erasure probability cannot be met within the
fixed maximum number of iterations. Other schemes where
the window size is either increased or decreased based on the
performance of the last few window configurations are also
possible.

IV. MEMORYLESS ERASURE CHANNELS

In this section, we confine our attention to the performance
of the LDPC-CC when the transmission occurs over a mem-
oryless erasure channel, i.e. a binary erasure channel (BEC)
parameterized by the channel erasure rate ε.

A. Asymptotic analysis

We consider the performance of the LDPC-CC in terms of
the average performance of the codes belonging to ensembles
defined by protographs in the limit of infinite blocklengths
and in the limit of infinite iterations of the decoder. As in the
case of LDPC block codes, the ensemble average performance
is a good estimate of the performance of a code in the

ensemble with high probability. We will therefore concentrate
on the erasure rate thresholds [11] of the code ensembles
as a performance metric in our search for good LDPC-CC
ensembles.

1) BP: The asymptotic analysis of LDPC block codes with
the BP decoder over the BEC has been well studied [20]–[23].
For LDPC-CC based on protographs, the BP decoding thresh-
olds can be numerically estimated using the Protograph-EXIT
(P-EXIT) analysis [24]. This method is similar to the standard
EXIT analysis in that it tracks the mutual information between
the message on an edge and the bit value corresponding to the
VN on which the edge is incident, while maintaining the graph
structure dictated by the protograph2.

The processing at a CN of degree dC results in an updating
of the mutual information on the dth

C edge as

Iout,dC
= C (Iin,1, · · · , Iin,dC−1) =

dC−1∏
i=1

Iin,i (5)

and the corresponding update at a VN of degree dV gives

Iout,dV
= V (Ich, Iin,1, · · · , Iin,dV −1) = 1− ε

dV −1∏
i=1

(1− Iin,i)

(6)
where Ich = 1−ε is the mutual information obtained from the
channel. Note that the edge multiplicities are included in the
above check and variable node computations. The a-posteriori
mutual information I at a VN is found using

I = 1− ε
dV∏
i=1

(1− Iin,i) = 1− (1− Iout,dV
)(1− Iin,dV

)

where the second equality follows from (6). The decoder is
said to be successful when the a-posteriori mutual information
at all the VNs of the protograph converges to 1 as the
number of iterations of message passing goes to infinity.
The BP threshold ε∗BP (B) of the ensemble described by the
protograph with base matrix B is defined as the supremum of
all erasure rates for which the decoder is successful.

Example 3: The protograph B3,6 = (3 3) has a BP
threshold of ε∗BP ≈ 0.4294. Note that all the CNs in the
protograph are of degree 6 while all the VNs are of degree
3. This BP threshold is expected because B3,6 corresponds to
the (3, 6) regular LDPC block code ensemble. The following
protograph B′3,6 has a BP threshold ε∗BP ≈ 0.4879 for L = 40.
Note that, as before, all VNs are of degree 3 and all the CNs
except the ones in the terminated portion of the code are of

2We will use the phrase “mutual information on an edge” to mean the mu-
tual information between the message on the edge and the bit corresponding
to the adjacent VN.

7

degree 6.

B′3,6 =

1 1 0 0 0 0 · · · 0 0

1 1 1 1 0 0 · · ·
...

...
1 1 1 1 1 1 · · · 0 0
0 0 1 1 1 1 · · · 0 0
0 0 0 0 1 1 · · · 0 0
0 0 0 0 0 0 · · · 1 1
...

...
...

...
...

...
. . . 1 1

0 0 0 0 0 0 · · · 1 1

This is the Cc(3, 6) ensemble constructed in [18]. In terms of
the notation introduced, this is given as B0 = B1 = B2 =
[1 1]; or equivalently as p1(x) = p2(x) = 1 + x+ x2. �

The above example illustrates the strength of protographs—
they allow us to choose structures within an ensemble defined
by a pair of degree distributions that may perform better than
the ensemble average. In fact, the BP performance of regular
LDPC-CC ensembles has been related to the maximum-a-
posteriori (MAP) decoder performance of the corresponding
unstructured ensemble [10].

2) WD: We now analyze the performance of the WD
described in Section III-B in the limit of infinite blocklengths
and the limit of infinite iterations of belief-propagation within
each window.

Remark: In the limit of infinite blocklength, each term in
the base protograph B is replaced by a permutation matrix of
infinite size to obtain the parity-check matrix, and therefore the
latency of any window size is infinite, apparently defeating the
purpose of WD. Our interest in the asymptotic performance,
however, is justified as it allows us to establish lower bounds
on the probability of failure of the windowed decoder to
recover the symbols of the finite length code. In practice, it
is to be expected that the gap between the performance of
a finite length code with WD and the asymptotic ensemble
performance of the ensemble to which the code belongs
increases as the window size reduces due to the reduction
in the blocklength of the subcode defined by the window.

The asymptotic analysis for WD is very similar to that of the
BP decoder owing to the fact that the part of the code within a
window is itself a protograph-based code. However, the main
distinction in this case is the definition of decoding success. In
the case of BP decoding, the decoding is considered a success
only when, for any symbol in the codeword, the probability
of failing to recover the symbol goes to 0 (or equivalently,
the a-posteriori mutual information goes to 1) as the number
of rounds of message-passing goes to infinity. On the other
hand, the decoding within a window is successful as long
as the probability of failing to recover the targeted symbols
becomes smaller than a predecided small value δ. The decoder
performance therefore depends on two parameters: the window
size W and the target erasure probability δ.

We define the threshold ε∗(i)(B,W, δ) of the ith window
configuration to be the supremum of the channel erasure rates
for which the WD succeeds in retrieving the targeted symbols

of the ith window with a probability at least (1 − δ), given
that each of the targeted symbols corresponding to the first
(i−1) window configurations is known with probability 1−δ.
Fig. 2 illustrates the threshold ε∗(i)(B,W, δ) of the ith window
configuration. The windowed threshold ε∗(B,W, δ) is then

WK ′M

WJ ′M

1− ε

msK
′M

1− δ

Fig. 2. Illustration of the threshold of the ith window configuration
ε∗
(i)

(B,W, δ). The targeted symbols of the previous window configurations
are known with probability 1−δ. The targeted symbols within the window are
highlighted with a solid blue bar on top of the window. The symbols within
the blue (hatched) region in the window are initially known with probability
1− ε. The task of the decoder is to perform BP within this window until the
erasure probability of the targeted symbols is smaller than δ. The window is
then slid to the next configuration.

defined as the supremum of channel erasure rates for which the
windowed decoder can decode each symbol in the codeword
with probability at least 1− δ.

We assume that between decoding time instants, no infor-
mation apart from the targeted symbols is carried forward, i.e.
when a particular window configuration has been decoded,
all the present processing information apart from the decoded
targeted symbols themselves is discarded. With this assump-
tion, it is clear that the windowed threshold of a protograph-
based LDPC-CC ensemble is given by the minimum of the
thresholds of its window configurations. For the classical
and modified constructions of LDPC-CC described in Section
II-B, all window configurations are similar except the ones
at the terminated portion of the code. Since the window
configurations at the terminated portions can only perform
better, the windowed threshold is determined by the threshold
of a window configuration not in the terminated portion of the
code. Note that the performance of WD when the information
from processing the previous window configurations is made
use of in successive window configurations, e.g. when symbols
other than the targeted symbols that were decoded previously
are also retained, can only be better than what we obtain here.

We now state a monotonicity property of the WD the proof
of which is relegated to Appendix I.

Proposition 1 (Monotonicity of WD performance in W):
For any Cm(J,K) ensemble B,

ε∗(B,W, δ) ≤ ε∗(B,W + 1, δ).

�
It follows immediately from the definition of the windowed
threshold that

ε∗(B,W, δ) ≤ ε∗(B,W, δ′) ∀ δ ≤ δ′.
Furthermore, from the continuity of the density evolution
equations (6) and (5), we have that when we set δ = 0, we

8

decode not only the targeted symbols within the window but
all the remaining symbols also. Since the symbols in the right
end of the window are the “worst protected” ones within the
window (in the sense that these are the symbols for which the
least number of constraints are used to decode), we expect the
windowed thresholds ε∗(B,W, δ = 0) to be dictated mostly by
the behavior of the submatrix B0 under BP. In the following,
when the base matrix B of the protograph corresponding to
an ensemble C is unambiguous, we will write ε∗(B,W, δ) and
ε∗(C,W, δ) interchangeably.

We next turn to giving some properties of LDPC-CC
ensembles with good performance under WD. We start with
an example that illustrates the stark change in performance a
small difference in the structure of the protograph can produce.

Example 4: Consider WD with the ensemble Cc(3, 6) in
Example 3 with a window of size W = 3. The corresponding
protograph defining the first window configuration is 1 1 0 0 0 0

1 1 1 1 0 0
1 1 1 1 1 1

and we have ε∗(Cc(3, 6),W = 3, δ = 0) = 0. This is seen
readily by observing that there are VNs of degree 1 that are
connected to the same CNs. In fact, from this reasoning, we
see that ε∗(Cc(J,K ′J),W, δ = 0) = 0 ∀ J ≤W ≤ L.

As an alternative, we consider the modified construction of
Section II-B2 to obtain the Cm(J,K) ensemble B′ given by
B0 = [2 2],B1 = [1 1]. This ensemble has a BP threshold
ε∗BP (B′) ≈ 0.4875 for L = 40 which is quite close to that
of the ensemble Cc(3, 6), ε∗BP (Cc(3, 6)) ≈ 0.4879. WD with
a window of size 3 for this ensemble has the first window
configuration 2 2 0 0 0 0

1 1 2 2 0 0
0 0 1 1 2 2

which has a threshold ε∗(B′,W = 3, δ = 0) ≈ 0.3331, i.e.
we can theoretically get close to 68.3% of the BP threshold
with < 10% of the latency of the BP decoder. Note that
this improvement in threshold has been obtained while also
increasing the rate of the ensemble, since ms = 1 for the B′

ensemble in comparison with ms = 2 for Cc(3, 6). �

The above example illustrates the tremendous advantage
obtained by using Cm(J,K) ensembles for WD even under
the severe requirement of δ = 0. The following is a good
rule of thumb for constructing LDPC-CC ensembles that have
good performance with WD.

Design Rule 1: For Cm(J,K ′J) ensembles, set
p

(dj)
j ≥ 2 for all j ∈ [K ′] where dj = min deg(pj(x)).

The above design rule says that for (J,K ′J) ensembles, it
is better to avoid degree-1 VNs within a window. Note that
none of the Cc(J,K ′J) ensembles satisfy this design rule. We
now illustrate the performance of LDPC-CC ensembles with
WD when we allow δ > 0.

Example 5: We compare three LDPC-CC ensembles. The
first is the classical LDPC-CC ensemble C1 = Cc(3, 6). The
second and the third are LDPC-CC ensembles constructed as
described in Section II-B2. The ensemble C2 is defined by the
polynomials

p1(x) = 2 + x2, p2(x) = 2 + x

and C3 is defined by

q1(x) = q2(x) = 2 + x.

We first observe that all three ensembles have the same
asymptotic degree distribution, i.e. all are (3, 6) regular LDPC-
CC ensembles when L→∞. While C1 and C2 have a memory
ms = 2, C3 has a memory ms = 1. Therefore, for a fixed
L, while C1 and C2 have the same rate, C3 has a higher
rate. Another consequence of a smaller ms is that C3 can be
decoded with a window of size Wmin(C3) = 2. Further note
that whereas C2 and C3 satisfy Design Rule 1, C1 does not.
For a window of size 3, the subprotographs for ensembles C1
and C3 are as shown in Example 4, and that for ensemble C2
is as shown below 2 2 0 0 0 0

0 1 2 2 0 0
1 0 0 1 2 2

In Fig. 3, we show the windowed thresholds plotted against

the window size for the three ensembles C1, C2 and C3 by
fixing L = 100 for δ ∈ {10−6, 10−12}.

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

W

ε∗
(B

,W
,δ
)

ε∗(C1,W, 1e−6)
ε∗(C2,W, 1e−6)
ε∗(C3,W, 1e−6)
ε∗(C1,W, 1e−12)
ε∗(C2,W, 1e−12)
ε∗(C3,W, 1e−12)

Fig. 3. Windowed threshold as a function of the window size for the
ensembles Ci, i = 1, 2, 3 with δ ∈ {10−6, 10−12}. The rates of the
ensembles C1 and C2 are 0.49 whereas that of C3 is 0.495. The corresponding
Shannon limits are therefore 0.51 for C1 and C2, and 0.505 for C3.

A few observations are in order. The monotonicity of
ε∗(B,W, δ) in W as proven in Proposition 1 is evident. The
windowed thresholds ε∗(B,W, δ) for C2 and C3 are fairly close
to the maximum windowed threshold even when W = Wmin.
The windowed thresholds for ensembles C2 and C3 are robust
to changes in δ, i.e. the thresholds are almost the same (the
points overlap in the figure) for δ = 10−6 and δ = 10−12.
Further, the windowed thresholds ε∗(Ci,W, δ) are fairly close

9

to the BP thresholds ε∗BP (Ci), i = 1, 2, 3 for W ≥ 12. We will
see next that this last observation is not always true. �

Effect of termination: The better BP performance of the
Cc(J,K) ensemble in comparison with that of the (J,K)-
regular block code ensemble (cf. Example 3) is because of
the termination of the parity-check matrix of Cc(J,K) codes.
More precisely, the low-degree CNs at the terminated portion
of the protograph are more robust to erasures and their erasure-
correcting power is cascaded through the rest of the protograph
to give a better threshold for the convolutional ensemble
in comparison with that for the corresponding unstructured
ensemble [16]. From the definition of the WD, we can see that
the sub-protograph within a window does not have the lower-
degree checks if previous targeted symbols are not decoded.
Therefore, we would expect a deterioration in the performance.
Furthermore, the Design Rule 1 increases the degrees of the
CNs in the terminated portion. Therefore, the effect of different
termination on the WD performance is of interest.

Example 6: Tables I and II illustrate the WD thresholds for
Cm(J, 2J) ensembles that satisfy Design Rule 1 except when
J = ms + 1. These ensembles are defined by the polynomials

p1(x) = p2(x) = (J −ms) + x+ x2 + · · ·+ xms .

Note that J ≥ ms + 1. The ensembles are terminated so
that the rate is RL = 0.49. The worst threshold with WD
(corresponding to the least window size Wmin = ms + 1)
is denoted ε∗ms+1. The largest threshold with WD is denoted
ε∗L−ms

and the BP threshold as ε∗BP . The increase in the

TABLE I
ms = 1, RL = 0.49, Cm(J, 2J), δ = 10−12

J ε∗ms+1 ε∗L−ms
ε∗BP

2 0.0008 0.3162 0.3342
3 0.4499 0.4857 0.4872
4 0.4449 0.4469 0.4961
5 0.3915 0.3923 0.4969
6 0.3469 0.3475 0.4959
7 0.3115 0.3118 0.4891
8 0.2829 0.2832 0.4785
9 0.2595 0.2597 0.4666

TABLE II
ms = 2, RL = 0.49, Cm(J, 2J), δ = 10−12

J ε∗ms+1 ε∗L−ms
ε∗BP

3 0.0189 0.4882 0.4876
4 0.4875 0.4947 0.4958
5 0.4493 0.4501 0.4971
6 0.3941 0.3945 0.4972
7 0.3489 0.3492 0.4969
8 0.3131 0.3133 0.4967
9 0.2843 0.2845 0.4957
10 0.2607 0.2608 0.4937

gap between ε∗L−ms
and ε∗BP with increasing J illustrates the

loss due to edge multiplicities (“weaker” termination). This is
because the terminations at the beginning and at the end of
the code are different, i.e. the CN degrees in the terminated
portion at the beginning of the code are 2(J − ms) which
increases with J ; whereas those at the end of the code are 2,

a constant. Thus, much of the code performance is determined
by the “stronger” (smaller check-degree) termination, the one
at the end of the code for J > ms + 1. This is also seen by
the fact that the gap between ε∗ms+1 and ε∗L−ms

decreases as
J increases, meaning that the termination at the beginning of
the code is weak and increasing the window size helps little.
Note that the Cm(3, 6) ensemble in Table II is in fact the
Cc(3, 6) classical ensemble, and that ε∗L−ms

is larger than the
corresponding BP threshold. This is possible since WD only
demands that the erasure probability of the targeted symbols
is reduced to δ. In contrast, BP demands that the erasure
probability of all the symbols is reduced to 0. �

From the above discussion, we can add the following as
another design rule.

Design Rule 2: For Cm(J,K) ensembles, keep the ter-
mination at the beginning of the code strong, preferably
stronger than the one at the end of the code. That is, use
polynomials P = {pj(x), j ∈ [K ′]} such that each of the
sums

K′∑
j=1

p
(0)
j , · · · ,

K′∑
j=1

p
(J′−1)
j

is kept as small as possible.

Targeted symbols: We have thus far considered only the
first K ′ VNs in the sub-protograph contained within the
window to be the targeted symbols. However, as an alternative
way to trade-off performance for reduced latency, it is possible
to consider other VNs also as targeted symbols. In this
case, the window would be shifted beyond all the targeted
symbols after processing each window configuration. For a
window of size W , let us denote by ε∗i (B,W, δ) the windowed
threshold when the targeted symbols are the first iK ′ VNs,
1 ≤ i ≤W . Hence, ε∗(B,W, δ) = ε∗1(B,W, δ). By definition,
ε∗i (B,W, δ) ≤ ε∗(B,W, δ).

Example 7: Consider the Cm(6, 12) ensemble with ms = 1
defined by p1(x) = p2(x) = 3 + 3x, denoted C4; and the
Cm(4, 8) ensemble with ms = 1 defined by q1(x) = q2(x) =
2 + 2x, denoted C5. Also consider ensembles C6 and C7 given
by r1(x) = r2(x) = 2 + 4x and s1(x) = s2(x) = 2 + 2x +
2x2 respectively. Both C6 and C7 are Cm(6, 12) ensembles,
but with memory ms = 1 and 2 respectively. Table III gives
the windowed thresholds ε∗i (Cj ,W = 4, δ) with iK ′ targeted
symbols for a window of size 4 for j = 4, 5, 6, 7.

TABLE III
WINDOWED THRESHOLDS ε∗i (Cj ,W = 4, δ = 10−12), j = 4, 5, 6, 7

i C4 C5 C6 C7
1 0.4429 0.4912 0.4835 0.4924
2 0.4429 0.4905 0.4835 0.4919
3 0.4427 0.4824 0.4828 0.4824
4 0.4294 0.3331 0.3331 0.3331

One might expect the windowed threshold ε∗(B,W, δ)
to be higher for an ensemble for which ε∗W (B,W, δ) is

10

higher. This is not quite right: ε∗4(C4, 4, 10−12) ≈ 0.4294 >
0.3331 ≈ ε∗4(C5, 4, 10−12) whereas ε∗i (C5, 4, 10−12) >
ε∗i (C4, 4, 10−12) ∀ i < 4. This can again be explained as the
effect of stronger termination in C5 in comparison with C4.
This is also evident in the larger thresholds for the (6, 12)
ensemble C6 with same memory as C4, but stronger termina-
tion. Also, keeping the same termination and increasing the
memory improves the performance, as is exemplified by the
larger thresholds of C7 in comparison with those of C5. �

The windowed thresholds ε∗i (B,W, δ) quantify the unequal
erasure protection of different VNs in the sub-protograph
within the window. Furthermore, it is clear that for good per-
formance, it is advantageous to keep fewer targeted symbols
within a window.

B. Finite length performance evaluation

The finite length performance of LDPC codes under iterative
message-passing decoding over the BEC is dependent on the
number and the size of stopping sets present in the parity-
check matrix of the code [23], [25]. Thus, the performance
of the codes varies based on the parity-check matrix used
to represent the code and, consequently, the performance
of iterative decoding can be made to approach that of ML
decoding by adding redundant rows to the parity-check matrix
(See e.g. [26]). However, since we are exploiting the structure
of the parity-check matrix of the convolutional code, we
will not be interested in changing the parity-check matrix
by adding redundant rows as this destroys the convolutional
structure. The ensemble stopping set size distribution for some
protograph-based LDPC codes was evaluated in [27] where
it was shown that a minimum stopping set size that grows
linearly in blocklength is important for the good performance
of codes with short blocklengths. This analysis is similar to the
analysis of the minimum distance growth rate of LDPC-CC
ensembles—see [28] and references therein. It is worthwhile
to note that although the minimum stopping set size grows
linearly for protograph codes expanded using random permu-
tation matrices, the same is not true for codes expanded using
circulant permutation matrices [29]. In the following we will
evaluate the finite length performance of codes constructed
from Cm(J,K) ensembles with BP and WD through Monte
Carlo simulations. WD was considered with only the first
K ′M symbols as the targeted symbols.

In Figs. 4 and 5, the symbol error rate (SER) and the
codeword error rate (CER) performance are depicted for codes
C1 ∈ C1 and C2 ∈ C2, where the ensembles C1 and C2 were
defined in Example 5. The codes used were those constructed
by Liva [12] by expanding the protographs using circulant
matrices (and sums of circulant matrices) and techniques of
progressive edge growth (PEG) [30] and approximate cycle
extrinsic message degree (ACE) [31] to avoid small cycles in
the Tanner graphs of the codes. The girth of both the codes
C1 and C2 was 12. The parameters used for the construction
were L = 20 and M = 512 so that the blocklength
n = LK ′M = 20480 and RL = 0.45. The BP thresholds
for ensembles C1 and C2 with L = 20 were 0.4883 and
0.4882 respectively. As is clear from Figs. 4 and 5, code C2

0.1 0.2 0.3 0.4 0.5 0.6

10
−4

10
−3

10
−2

10
−1

10
0

ε

S
E
R

C1 - W = 3
C2 - W = 3
C1 - W = 5
C2 - W = 5
C1 - W = 10
C2 - W = 10
C1 - BP
C2 - BP

Fig. 4. SER performance for BP and Windowed Decoding over BEC.

0.1 0.2 0.3 0.4 0.5 0.6

10
−4

10
−3

10
−2

10
−1

10
0

"

C
E
R

C1 −W = 3
C2 −W = 3
C1 −W = 5
C2 −W = 5
C1 −W = 10
C2 −W = 10
C1 −BP
C2 −BP
SB

Fig. 5. CER performance for BP and Windowed Decoding over BEC. Also
shown is the (Singleton) lower bound PSB as SB.

outperforms code C1 for small window sizes (W = 3, 5),
confirming the effectiveness of the proposed design rules for
windowed decoding. For larger window sizes (W = 10),
there is no marked difference in the performance of the two
codes. It was also observed that for small M values (< 128),
the performance of codes constructed through circulant per-
mutation matrices was better than those constructed through
random permutation matrices. This difference in performance
diminished for larger M values.

We include in Fig. 5, for comparison, a lower bound on
the CER Pcw. The Singleton bound, PSB , represents the
performance achievable by an idealized (n, k) binary MDS
code. This bound for the BEC can be expressed as

Pcw ≥
n∑

j=n−k+1

(
n

j

)
εj(1− ε)n−j = PSB .

Note that by the idealized (n, k) binary MDS code, we mean
a binary linear code that achieves the Singleton bound dmin ≤

11

n−k+1 with equality. This code does not exist for all values
of k and n.

V. ERASURE CHANNELS WITH MEMORY

We now consider the performance of LDPC-CC ensembles
and codes over erasure channels with memory. We consider
the familiar two-state Gilbert-Elliott channel (GEC) [32], [33]
as a model of an erasure channel with memory. In this model,
the channel is either in a “good” state G, where we assume the
erasure probability is 0, or in an “erasure” state E, in which
the erasure probability is 1. The state process of the channel is
a first-order Markov process with the transition probabilities
P{E → G} = g and P{G→ E} = b. With these parameters,
we can easily deduce [34] that the average erasure rate ε and
the average burst length ∆ are given by

ε = P{E} =
b

b+ g
, ∆ =

1

g
.

We will consider the GEC to be parameterized by the pair
(ε,∆). Note that there is a one-to-one correspondence between
the two pairs (b, g) and (ε,∆).

Discussion: The channel capacity of a correlated binary
erasure channel with an average erasure rate of ε is given as
(1− ε), which is the same as that of the memoryless channel,
provided the channel is ergodic. Therefore, one can obtain
good performance on a correlated erasure channel through the
use of a capacity-achieving code for the memoryless channel
with an interleaver to randomize the erasures [27], [35]. This is
equivalent to permuting the columns of the parity-check matrix
of the original code. We are not interested in this approach
since such permutations destroy the convolutional structure of
the code and as a result, we are unable to use the WD for
such a scheme.

Construction of LDPC block codes for bursty erasure chan-
nels has been well studied. The performance metric of a
code over a bursty erasure channel is related to the maximum
resolvable erasure burst length (MBL) denoted ∆max [35],
which, as the name suggests, is the maximal length of a single
solid erasure burst that can be decoded by a BP decoder.
Methods of optimizing codes for such channels therefore focus
on permuting columns of parity-check matrices to maximize
∆max, e.g. [36]–[41]. Instead of permuting columns of the
parity-check matrix, in order to maintain the convolutional
structure of the code, we will consider designing Cm(J,K)
ensembles that maximize ∆max.

A. Asymptotic Analysis

1) BP: As noted earlier, the performance of LDPC-CC en-
sembles depends on stopping sets. The structure of protographs
imposes constraints on the code that limit the stopping set sizes
and locations, as will be shown shortly.

Let us define a protograph stopping set to be a subset
S(B) of the VNs of the protograph B whose neighboring
CNs are connected at least twice to S(B). These are also
denoted as S(P), in terms of the set of polynomials defining
the protograph. We define the size of the stopping set as

the cardinality of S(B), denoted |S(B)|. We call the least
number of consecutive columns of B that contain the stopping
set S(B) the span of the stopping set, denoted 〈S(B)〉. Let
us denote the size of the smallest protograph stopping set
of the protograph B by |S(B)|∗, and the minimum number
of consecutive columns of the protograph B that contain a
protograph stopping set by 〈S(B)〉∗. When the protograph
under consideration is clear from the context, we will drop it
from the notation and use |S|∗ and 〈S〉∗. The minimum span
of a stopping set is of interest because we can give simple
bounds for ∆max based on 〈S(B)〉∗. Note that the stopping
set of minimal size and the stopping set of minimal span are
not necessarily the same set of VNs. However, we always have

|S(B)|∗ ≤ 〈S(B)〉∗.

The following example clarifies the notation.

Example 8: Let us denote the base matrix corresponding to
the protograph of the ensembles Ci of Example 5 as B(i), i =
1, 2, 3. For ensembles C1 and C3, the first two columns of
B(i), i = 1, 3 form a protograph stopping set, i.e. S(B(i)) =
{V1, V2}, i = 1, 3 is a stopping set. This is clear from the
highlighted columns below

B(1) =

1 1 0 0 0 0 · · ·
1 1 1 1 0 0 · · ·
1 1 1 1 1 1 · · ·
0 0 1 1 1 1 · · ·
0 0 0 0 1 1 · · ·
...

...
...

...
...

...
. . .

,

B(3) =

2 2 0 0 0 0 · · ·
1 1 2 2 0 0 · · ·
0 0 1 1 2 2 · · ·
0 0 0 0 1 1 · · ·
...

...
...

...
...

...
. . .

 .

Therefore, |S(B(i))|∗ ≤ 2 and 〈S(B(i))〉∗ ≤ 2. Since no
single column forms a protograph stopping set, |S(B(i))|∗ ≥ 2
and 〈S(B(i))〉∗ ≥ 2, implying |S(B(i))|∗ = 〈S(B(i))〉∗ =
2, i = 1, 3.

For ensemble C2, the highlighted columns of B(2) in
the following matrix form a protograph stopping set, i.e.
S(B(2)) = {V1, V4} is a stopping set.

B(2) =

2 2 0 0 0 0 · · ·
0 1 2 2 0 0 · · ·
1 0 0 1 2 2 · · ·
0 0 1 0 0 1 · · ·
0 0 0 0 1 0 · · ·
...

...
...

...
...

...
. . .

.

Thus, |S(B(2))|∗ ≤ 2 and 〈S(B(2))〉∗ ≤ 4. As no single
column of B(2) is a protograph stopping set and no three
consecutive columns of B(2) contain a protograph stopping
set, it is clear that |S(B(2))|∗ ≥ 2 and 〈S(B(2))〉∗ ≥ 4, so
that

2 = |S(B(2))|∗ ≤ 〈S(B(2))〉∗ = 4.

12

〈Sl1,l2〉 =

K ′(ms(l1, l2)− 1) + (l2 − l1 + 1), i(l1, l2) = il2 ≤ il1 , jl2 ≤ jl1 = j(l1, l2)

K ′(ms(l1, l2)− 1) + 1, i(l1, l2) = il2 ≤ il1 , jl1 < jl2 = j(l1, l2)

K ′(ms(l1, l2)− 1) + 1, i(l1, l2) = il1 < il2 , jl2 ≤ jl1 = j(l1, l2)

K ′(ms(l1, l2)− 1)− (l2 − l1 − 1), i(l1, l2) = il1 < il2 , jl1 < jl2 = j(l1, l2).

(7)

In these cases, it so happened that the stopping set with the
minimal size and the stopping set with the minimal span were
the same. �

Our aim in the following will be to obtain bounds for the
maximal 〈S(B)〉∗ over Cm(J,K) ensembles with memory ms,
which we denote 〈S(J,K,ms)〉∗, and design protographs that
achieve minimal spans close to this optimal value.

The analysis of the minimal span of stopping sets for un-
structured LDPC ensembles was performed in [42]. However,
the structure of the protograph-based LDPC-CC allows us to
obtain 〈S(J,K,ms)〉∗ much more easily for some Cm(J,K)
ensembles.

We start by observing that if one of the VNs in the
protograph is connected multiple times to all its neighboring
CNs, then it forms a protograph stopping set by itself. In order
to obtain a larger minimum span of stopping sets, it is desirable
to avoid this case, and we include this as one of our design
criteria.

Design Rule 3: For a Cm(J,K) ensemble, choose the
polynomials pj(x) such that for every j ∈ [K ′], there
exists 0 ≤ ij ≤ (ms + 1)J ′ − 1 such that p(ij)

j = 1.

Using the polynomial representation of LDPC-CC ensem-
bles is helpful in this case since we can easily track stopping
sets as those subsets that have polynomials whose coefficients
are all larger than 1. From this fact, we can prove the
following.

Proposition 2 (〈S〉∗ for Cm(J, 2J) protographs): For
Cm(J, 2J) protographs of memory ms defined by polynomials
p1(x) and p2(x), 〈S〉∗ can be upper bounded as

〈S〉∗ ≤

2ms, 0 = i2 ≤ i1, j2 ≤ j1 = ms

2ms − 1, 0 = i2 ≤ i1, j1 < j2 = ms

2ms − 1, 0 = i1 < i2, j2 ≤ j1 = ms

2ms − 2, 0 = i1 < i2, j1 < j2 = ms

where il = min deg(pl(x)) and jl = deg(pl(x)), l = 1, 2. �

We give the proof in Appendix II. We see from the above
that 〈S(J, 2J,ms)〉∗ ≤ 2ms and a necessary condition for
achieving this span is the first of four possible cases listed
above, which we include as another design criterion.

Design Rule 4: For Cm(J, 2J) ensembles with mem-
ory ms, set

min deg(p2(x)) = 0 and deg(p1(x)) = ms.

Corollary 3 (Optimal Cm(J, 2J) protographs): For
Cm(J, 2J) protographs with memory ms and J > 2,
〈S(J, 2J,ms)〉∗ = 2ms. �

The proof is given in Appendix III. Note that ensemble C2
in Example 5 achieves 〈S(J, 2J,ms)〉∗, as was observed in
Example 8. It also satisfies design rules 1, 3 and 4. We bring
to the reader’s attention here that constructions other than the
one given in the proof of the above corollary that achieve
〈S〉∗ = 2ms are also possible. These constructions allow us
to design Cm(J, 2J) ensembles for a wide range of required
〈S〉∗. We quickly see that a drawback of the convolutional
structure is that if ms is increased to obtain a larger 〈S〉∗, the
code rate RL decreases linearly for a fixed L.

We give without proof the following upper bound for 〈S〉∗
for Cm(J,K ′J) ensembles, as it follows from Proposition 2.

Proposition 4 (〈S〉∗ for Cm(J,K ′J) protographs):
For Cm(J,K ′J) protographs defined by polynomials
P = {pj(x), j ∈ [K ′]}, we have

〈S〉∗ ≤ min
(l1,l2)∈[K′]2,l1<l2

{〈Sl1,l2〉}

where 〈Sl1,l2〉 is the upper bound for the minimal span 〈Sl1,l2〉
of stopping sets Sl1,l2 confined within subsets of the form
rl1,l2(x) = a1(x)pl1(x) + a2(x)pl2(x) given in Equation (7),
where we have used the notation ilu = min deg(plu(x)), jlu =
deg(plu(x)), u = 1, 2, i(l1, l2) = min{il1 , il2}, j(l1, l2) =
max{jl1 , jl2} and ms(l1, l2) = j(l1, l2)− i(l1, l2). �

Discussion: By looking at the stopping sets confined within
columns corresponding to two polynomials only, we can use
Proposition 2 to upper bound the span of these stopping sets.
The minimal such span over all possible choices of the two
columns therefore gives an upper bound on the minimal span
of the (J,K ′J) protograph. Since 〈Sl1,l2〉 ≤ K ′ms ∀ l1, l2
from Equation (7), we have 〈S(J,K ′J,ms)〉∗ ≤ K ′ms, which
is similar to the result in Proposition 2. This bound is, however,
loose in general.

For terminated codes, we can give an upper bound for 〈S〉∗
that is tighter in some cases.

Corollary 5 (〈S〉∗ for Cm(J,K) protographs): For
Cm(J,K) protographs terminated after L instants,
〈S〉∗ ≤ K ′L.

Proof: From the Singleton bound for the protograph, we
have 〈S〉∗ ≤ J ′(L + ms). Since we need ms ≤ R

1−RL for a
positive code rate in (2), 〈S〉∗ ≤ J′L

1−R = K ′L.
Note that for Cm(J,K ′J) protographs, this is tighter than

the bound 〈S〉∗ ≤ K ′ms ≤ K ′(K ′−1)L, which, in the worst
case, is a factor (K ′− 1) times larger. However, since we are
interested mainly in ensembles for which ms � L, this bound

13

might be looser than the one in Proposition 4 for Cm(J,K ′J)
ensembles.

Example 9: Consider the Cm(J,K ′J) ensemble with mem-
ory ms = u(K ′ − 1) + 1,ms ≤ (K ′ − 1)L defined by the
polynomials

pl(x) = (J − 1) + xjl , l ∈ [K ′],

jl = ms − u(l − 1). It can be shown by an argument similar
to the one used to prove Corollary 3 that for the protograph
of this ensemble, 〈S〉∗ = K ′u+ 2. This is exactly the bound
in Proposition 4 since

min
l1<l2
{〈Sl1,l2〉} = 〈SK′−1,K′〉 = K ′u+ 2.

Thus, in this case

〈S〉∗ =
K ′

K ′ − 1
(ms − 1) + 2 =

⌈
K ′

K ′ − 1
ms

⌉
which is roughly only a fraction of the (loose) upper bound for
〈S(J,K ′J,ms)〉∗ suggested in the discussion of Proposition
4. The constructed Cm(J,K ′J) protographs are thus optimal
in the sense of maximizing the minimal span of stopping sets,
i.e.

〈S(J,K ′J, u(K ′ − 1) + 1)〉∗ = K ′u+ 2 ∀ u ∈ [L− 1].

They also satisfy Design Rules 1 and 3 for J > 2. Although
Proposition 4 gave a tight bound for 〈S〉∗ in this case, it is
loose in general. �

We can show that the Cm(J,K) protographs have minimal
spans at least as large as the corresponding spans of Cm(a,K)
protographs.

Proposition 6: 〈S(J,K,ms)〉∗ ≥ 〈S(a,K,ms)〉∗ where
a = gcd(J,K) ≥ 2.

Proof: The equality is trivial when a = J . When
2 ≤ a < J = aJ ′, one way of constructing the Cm(J,K)
ensembles with memory ms is to let each set of modulo
polynomials Pl themselves define Cm(a,K) ensembles with
memory ms. The result then follows by noting that a stopping
set for the polynomials P has to be a stopping set for every
set of polynomials Pl, l = 0, 1, · · · , J ′ − 1.

The construction proposed above often allows us to strictly
increase the minimal span of the Cm(J,K) ensemble in
comparison with the Cm(a,K) ensemble, as illustrated by the
following example.

Example 10: Consider the construction of a Cm(4, 6) en-
semble with memory 3. Let us call it C8. The different
parameters in this case are J = 4, K = 6, a = 2, J ′ = 2,
K ′ = 3 and ms = 3. Since ms = u(K ′ − 1) + 1 with
u = 1, we have for Cm(2, 6) protographs, 〈S(2, 6, 3)〉∗ = 5
from Example 9 and we will define the modulo polynomials
P0 to be the optimal construction that achieves this minimal
span, i.e. P0 = {1 + x3, 1 + x2, 1 + x}. Then, by defining
P1 = {1+x3, 1+x3, 1+x3}, we can show that 〈S(P)〉∗ = 6
and hence

〈S(4, 6, 3)〉∗ ≥ 6 > 5 = 〈S(2, 6, 3)〉∗.

Note that the protograph defined by P has no degree-1
VNs associated with the component matrix B0. In fact, the
constructed Cm(4, 6) ensemble has ε∗(C8,ms + 1, 10−12) ≈
0.6469, fairly close to the Shannon limit of εSh = 2

3 , even with
the smallest possible window size. Table IV lists the windowed

TABLE IV
ε∗i (C8,ms + 1, 10−12)

i 1 2 3 4
ε∗i 0.6469 0.6184 0.5803 0.4997

thresholds of this ensemble with different numbers of targeted
symbols within the smallest window for δ = 10−12. �

2) WD: The asymptotic analysis for WD is essentially
the same as that for BP. We will consider WD with only
the first K ′ symbols within each window as the targeted
symbols. We are now interested in the sub-protograph stopping
sets, denoted S(B,W), that include one or more of the
targeted symbols within a window. Let us denote the minimal
span of such stopping sets as 〈S(B,W)〉∗. Since stopping
sets of the protograph of the LDPC-CC are also stopping
sets of the sub-protograph within a window, and since such
stopping sets can be chosen to include some targeted symbols
within the window, we have 〈S(B,W)〉∗ ≤ 〈S(B)〉∗. In fact,
〈S(B,W)〉∗ = 〈S(B)〉∗ when

W ≥
⌈ 〈S〉∗
K ′

⌉
+ms

since in this case the first K ′
⌈
〈S〉∗
K′

⌉
columns are completely

contained in the window. Further, we have

〈S(B,W)〉∗ ≤ 〈S(B,W + 1)〉∗.
This is true because a stopping set for window size W
involving targeted symbols is not necessarily a stopping set
for window size W + 1, whereas a stopping set for window
size W + 1 is definitely a stopping set for window size W .

Remark: When the first iK ′ symbols within a window are
the targeted symbols, we have for i ≤W −ms

〈Si(B,W)〉∗ = 〈S(B,W − i+ 1)〉∗

where 〈Si(B,W)〉∗ denotes the minimal span of stopping sets
of the sub-protograph within the window of size W involving
at least one of the iK ′ targeted symbols, and 〈S1(B,W)〉∗ =
〈S(B,W)〉∗. Consequently, we have

〈Si(B,W)〉∗ ≤ 〈S(B,W)〉∗.
The definition of 〈Si(B,W)〉∗ can be extended to accommo-
date W−ms+1 ≤ i ≤W , as in the case of windowed thresh-
olds. In particular, we have 〈SW (B,W)〉∗ = 〈S(B0)〉∗ ≤ J ′,
where the last inequality is from the Singleton bound.

Example 11: Consider the ensemble C2 defined in Example
5. With a window of size W = ms + 1 = 3, we have
〈S(C2, 3)〉∗ = 2 with the corresponding stopping set S3 =
{V2, V3} highlighted below 2 2 0 0 0 0

0 1 2 2 0 0
1 0 0 1 2 2

14

and with a window size W = 4, we have 〈S(C2, 4)〉∗ =
〈S(C2)〉∗ = 4, and the corresponding stopping sets S4 =
{V1, V4} and S′4 = {V1, V2, V4} are as follows

2 2 0 0 0 0 0 0
0 1 2 2 0 0 0 0
1 0 0 1 2 2 0 0
0 0 1 0 0 1 2 2

 ,

2 2 0 0 0 0 0 0
0 1 2 2 0 0 0 0
1 0 0 1 2 2 0 0
0 0 1 0 0 1 2 2

 .

Note that for window size 3, whereas the minimal span of
a stopping set involving VN V2 is 2, that of a stopping set
involving V1 is 4. However, for window size 4, the stopping
set involving V1 with minimal span, denoted S4, and that
involving V2, S′4, each have a span of 4, although their
cardinalities are 2 and 3 respectively. We have in this case,
S4 ⊂ S′4. Notice that 〈S2(C2, 4)〉∗ = 〈S(C2, 3)〉∗ = 2. �

B. Finite length analysis

1) BP: We now show the relation between the parameters
∆max and 〈S(B)〉∗. We shall assume in the following that
〈S〉∗ ≥ 2, i.e. every column of the protograph has at least one
of the entries equal to 1. We will consider the expansion of
the protographs by a factor M to obtain codes.

Proposition 7: For any (J,K) regular LDPC-CC, ∆max ≤
M〈S〉∗ − 1.

Proof: Clearly, the set of the M〈S〉∗ columns of the
parity-check matrix corresponding to the 〈S〉∗ consecutive
columns of B that contain the protograph stopping set with
minimal span must contain a stopping set of the parity-
check matrix. Therefore, if all symbols corresponding to these
columns are erased, they cannot be retrieved.

Corollary 8: A terminated Cm(J,K ′J) LDPC-CC with
ms = u(K ′ − 1) + 1, u ∈ [L − 1] can never achieve the
MBL of an MDS code.

Proof: From the Singleton bound, we have ∆max ≤ n−
k = (L + ms)M , assuming that the parity-check matrix is
full-rank. From Proposition 7 we have,

∆max ≤M〈S(J,K ′J, u(K ′ − 1) + 1)〉∗ − 1

=

⌈
K ′

K ′ − 1
ms

⌉
M − 1

where the second equality follows from the discussion in
Example 9. Since we require ms ≤ R

1−RL = (K ′− 1)L for a
non-negative code rate in (2),

∆max ≤
⌈

(K ′ − 1)ms + (K ′ − 1)L

K ′ − 1

⌉
M − 1

< (L+ms)M

which shows that the MBL of an MDS code can never be
achieved.

Remark: Although the idealized binary (n, k) MDS code
does not exist, there are codes that achieve MDS performance

when used over a channel that introduces a single burst of
erasures in a codeword. For example, the (2n, n) code with a
parity-check matrix H = [In In] has an MBL of ∆max = n.

Despite the discouraging result from Corollary 8, we can
guarantee an MBL that linearly increases with 〈S〉∗ as follows.

Proposition 9: For any (J,K) regular LDPC-CC, ∆max ≥
M(〈S〉∗ − 2) + 1.

Proof: From the definition of 〈S〉∗, it is clear that if one of
the two extreme columns is completely known, all other sym-
bols can be recovered, for otherwise the remaining columns
within the span of the stopping set S will have to contain
another protograph stopping set, violating the minimality of
the stopping set span 〈S〉∗ (The two extreme columns are
pivots of the stopping set [41].) The largest solid burst that
is guaranteed to have at least one of the extreme columns
completely known is of length M(〈S〉∗ − 2) + 1. Therefore,
∆max ≥M(〈S〉∗ − 2) + 1.

Example 12: For the Cm(J,K ′J) ensemble with memory
ms = u(K ′ − 1) + 1, u ∈ [L− 1] in Example 9, we have

MK ′
(
ms − 1

K ′ − 1

)
+1 ≤ ∆max ≤MK ′

(
ms − 1

K ′ − 1

)
+2M −1

from Propositions 7 and 9. Thus, we can construct codes with
MBL proportional to ms. �

2) WD: The MBL for WD ∆max(W) can be bounded as
in the case of BP based on 〈S(B,W)〉∗. Assuming that the
window size is W ≥ ms+1, the targeted symbols are the first
K ′ symbols within the window, and the polynomials defining
the ensemble are chosen to satisfy Design Rule 3, we have
〈S(B,W)〉∗ ≥ 2. Propositions 7 and 9 in this case imply that

M(〈S(B,W)〉∗− 2) + 1 ≤ ∆max(W) ≤M〈S(B,W)〉∗− 1.

C. Numerical results

The MBL for codes C1 and C2 (the same codes used
in Section IV-B) was computed using an exhaustive search
algorithm, by feeding the decoder with a solid burst of erasures
and testing all the possible locations of the burst. The MBL
for the codes we considered was 1023 and 1751 for codes C1

and C2, respectively. Note that for code C1, the MBL ∆max =
1023 = 2M − 1, i.e., code C1 achieves the upper bound
from Proposition 7. More importantly, the maximum possible
∆max was achievable while maintaining good performance
over the BEC with the BP decoder. However, the MBL for
code C2, ∆max = 1751 < 2047 = 4M − 1, is much smaller
than the corresponding bound from Proposition 7. In this case,
although other code constructions with ∆max up to 2045 were
possible, a trade-off between the BEC performance and MBL
was observed, i.e. the code that achieved ∆max = 2045 was
found to be much worse over the BEC than both codes C1 and
C2 considered here. Such a trade-off has also been observed
by others, e.g. [40]. This could be because the codes that
achieve large ∆max are often those that have a very regular
structure in their parity-check matrices. Nevertheless, our code
design does give a large increase in MBL (> 70%) when
compared with the corresponding codes constructed from Cc

15

ensembles, without any decrease in code rate (same ms). The
MBL achieved as a fraction of the maximum possible MBL
∆max/(n − k) was roughly 9.1% and 15.5% for codes C1

and C2, respectively.
In Figs 6, 7 and 8, we show the CER performance obtained

for codes C1 and C2 over GEC channels with ∆ = 10, 50
and 100 respectively, and ε ∈ [0.1, 0.6]. As can be seen from

0.1 0.2 0.3 0.4 0.5 0.6

10
−4

10
−3

10
−2

10
−1

10
0

"

C
E
R

C1 −W = 3
C2 −W = 3
C1 −W = 5
C2 −W = 5
C1 −W = 10
C2 −W = 10
C1 −BP
C2 −BP
SB

Fig. 6. CER Performance on GEC with ∆ = 10 with Singleton bound (SB).

0.1 0.2 0.3 0.4 0.5 0.6

10
−4

10
−3

10
−2

10
−1

10
0

"

C
E
R

C1 −W = 3
C2 −W = 3
C1 −W = 5
C2 −W = 5
C1 −W = 10
C2 −W = 10
C1 −BP
C2 −BP
SB

Fig. 7. CER Performance on GEC with ∆ = 50 with Singleton bound (SB).

the figures, for W = 3, code C2 always outperforms code
C1, while for W = 5 there is no such gain when ∆ = 100.
However, for W = 10 and for BP decoding, code C1 slightly
outperforms C2.

Note that the code C2 outperforms C1 for small ε when the
average burst length ∆ = 100 for large window sizes and for
BP decoding. This can be explained because in this regime,
the probability of a burst is small but the average burst length
is large. Therefore, when a burst occurs, it is likely to resemble
a single burst in a codeword, and in this case we know that
the code C2 is stronger than C1. Also note the significant
gap between the BP decoder performance and the Singleton

0.1 0.2 0.3 0.4 0.5 0.6

10
−4

10
−3

10
−2

10
−1

10
0

"

C
E
R

C1 −W = 3
C2 −W = 3
C1 −W = 5
C2 −W = 5
C1 −W = 10
C2 −W = 10
C1 −BP
C2 −BP
SB

Fig. 8. CER Performance on GEC with ∆ = 100 with Singleton bound
(SB).

bound, suggesting that unlike some moderate length LDPC
block codes with ML decoding [38], LDPC-CC are far from
achieving MDS performance with BP or windowed decoding.

VI. CONCLUSIONS

We studied the performance of a windowed decoding
scheme for LDPC convolutional codes over erasure channels.
We showed that this scheme, when used to decode terminated
LDPC-CC, provides an efficient way to trade-off decoding
performance for reduced latency. Through asymptotic perfor-
mance analysis, several design rules were suggested to avoid
bad structures within protographs and, in turn, to ensure good
thresholds. For erasure channels with memory, the asymptotic
performance analysis led to design rules for protographs that
ensure large stopping set spans. Examples of LDPC-CC en-
sembles that satisfy design rules for the BEC as well as erasure
channels with memory were provided. Finite length codes
belonging to the constructed ensembles were simulated and the
validity of the design rules as markers of good performance
was verified. The windowed decoding scheme can be used to
decode LDPC-CC over other channels that introduce errors
and erasures, although in this case error propagation due to
wrong decoding within a window will have to be carefully
dealt with.

For erasure channels, while close-to-optimal performance
(in the sense of approaching capacity) was achievable for the
BEC, we showed that the structure of LDPC-CC imposed con-
straints that bounded the performance over erasure channels
with memory strictly away from the optimal performance (in
the sense of approaching MDS performance). Nevertheless, the
simple structure and good performance of these codes, as well
as the latency flexibility and low complexity of the decoding
algorithm, are attractive characteristics for practical systems.

ACKNOWLEDGMENT

The authors are very grateful to the anonymous reviewers
for their comments and suggestions for improving the presen-
tation of the paper. They would also like to thank Gianluigi

16

Liva who suggested the trade-off of decoding performance for
reduced latency through the use of a windowed decoder, and
Rüdiger Urbanke for pointing out an error in an earlier version
of the paper.

APPENDIX I
PROOF OF PROPOSITION 1

Consider the ith window configuration for window sizes W
and W + 1 shown in Fig. 9. We are interested in a window
configuration that is not at the terminated portion of the code.
Call the Tanner graphs of these windows A = (VA, CA, EA)

W

W + 1

Fig. 9. Sub-protographs of window sizes W and W+1. The edges connected
to targeted symbols from previous window configurations are shown in darker
shade of gray.

and B = (VB , CB , EB) respectively, where VA, VB and
CA, CB are the sets of VNs and CNs respectively and EA, EB

are the sets of edges. Clearly, VA ⊂ VB , CA ⊂ CB , and
EA ⊂ EB . Any VN in VA that is connected to some variable
in VB \VA has to be connected via some CN in CB \CA. The
edges between these CNs and VNs in VA are shown hatched
in Fig. 9. Consider the computation trees for the a-posteriori
message at a targeted symbol in VA and that for the same
symbol in VB . Call them TA and TB respectively. Then we
have TA ⊂ TB .

We now state two lemmas which will be made use of
subsequently. The proofs of these lemmas are straightforward
and have been omitted.

Lemma 10 (Monotonicity of C): The CN operation in (5) is
monotonic in its arguments, i.e.,

0 ≤ x ≤ x′ ≤ 1⇒ C(x, y) ≤ C(x′, y) ∀ y ∈ [0, 1],

where the two-argument function C(x, y) = xy. �

Lemma 11 (Monotonicity of V): The VN operation in (6) is
monotonic in its arguments, i.e.,

0 ≤ x ≤ x′ ≤ 1⇒ V(x, y) ≤ V(x′, y) ∀ y ∈ [0, 1],

where V(x, y) = 1− (1− x)(1− y). �

The operational significance of the above lemmas is the fol-
lowing: if we can upper (lower) bound the mutual information
on some incoming edge of a CN or a VN, and use the bound
to compute the outgoing mutual information from that node,
we get an upper (lower) bound on the actual outgoing mutual
information. Thus, by bounding the mutual information on
some edges of a computation tree and repetitively applying

Lemmas 10 and 11, one can obtain bounds for the a-posteriori
mutual information at the root of the tree.

We start by augmenting TA, creating another computation
tree T +

A that has the same structure as TB . In particular, T +
A

includes the additional edges corresponding to the hatched
region. In T +

A and TB , we denote the set of these edges
by Eu(T +

A) and Eu(TB) respectively. In T +
A , we assign zero

mutual information to each edge in Eu(T +
A).

Now, let ITA , IT
+
A and ITB be the a-posteriori mutual infor-

mation at the roots of the trees TA, T +
A and TB respectively.

Then it is clear that ITA = IT
+
A , since the messages on

edges in Eu(T +
A) are effectively erasures and zero out the

contributions from the checks in C+
A \ CA = CB \ CA.

On the other hand, if we denote by Ie(TB) the mutual infor-
mation associated with an edge e ∈ Eu(TB), and by Ie(T +

A)
the mutual information associated with the corresponding edge
in T +

A , we know that Ie(T +
A) = 0 so that Ie(T +

A) ≤ Ie(TB).
Hence, we have from Lemmas 10 and 11 that IT

+
A ≤ ITB .

Since ITA = IT
+
A , it follows that ITA ≤ ITB , as desired.

APPENDIX II
PROOF OF PROPOSITION 2

From the definitions made in the statement of Proposition 2,
we have 0 ≤ il < jl ≤ ms, l = 1, 2. We assume il < jl in
order to satisfy Design Rule 3. Since the code has memory ms,
we have i = min{i1, i2} = 0 and j = max{j1, j2} = ms.
Consider the subset of columns of B corresponding to the
polynomial r(x) = p1(x)b1(x) + p2(x)b2(x) where

b1(x) =

{
xi2 , i2 = j2 − 1

xi2 + xi2+1 + · · ·+ xj2−1, i2 < j2 − 1

and

b2(x) =

{
xi1 , i1 = j1 − 1

xi1 + xi1+1 + · · ·+ xj1−1, i1 < j1 − 1.

We claim that this is a protograph stopping set. To see this,
consider the columns corresponding to the above subset with
β(p1(x)) and β(p2(x)) as the column polynomials defining
B. We have

r̂(x) = β(p1(x))b1(x) + β(p2(x))b2(x)

= (xi1 + xj1)(xi2 + xi2+1 + · · ·+ xj2−1)

+ (xi2 + xj2)(xi1 + xi1+1 + · · ·+ xj1−1)

= xi1+i2 + xi1+i2+1 + · · ·+ xi1+j2−1

+ xj1+i2 + xj1+i2+1 + · · ·+ xj1+j2−1

+ xi1+i2 + xi1+i2+1 + · · ·+ xj1+i2−1

+ xi1+j2 + xi1+j2+1 + · · ·+ xj1+j2−1

= 2xi1+i2 + · · ·+ 2xi1+j2−1

+ 2xi1+j2 + · · ·+ 2xj1+j2−1

when jl > il + 1, l = 1, 2. Similarly, it can be verified that
r̂(x) has all coefficients equal to 2 in all other cases also.
Clearly, r̂(x) � r(x) and thus r(x) can only differ from
r̂(x) in having larger coefficients. Therefore, r(x) also has
all coefficients greater than 1. This shows that the chosen

17

subset of columns form a protograph stopping set. Based on
the parameters il, jl, l = 1, 2, we can count the number of
columns included in the span of this stopping set and therefore
give upper bounds on 〈S〉∗ as claimed :

〈S〉∗ ≤

2(j1 − i2), 0 = i2 ≤ i1, j2 ≤ j1 = ms

2(j2 − i2)− 1, 0 = i2 ≤ i1, j1 < j2 = ms

2(j1 − i1)− 1, 0 = i1 < i2, j2 ≤ j1 = ms

2(j2 − i1 − 1), 0 = i1 < i2, j1 < j2 = ms.

APPENDIX III
PROOF OF COROLLARY 3

Consider the protograph of the ensemble given by p1(x) =
(J − 1) + xms and p2(x) = (J − 1) + x. Let the polynomial
r(x) = p1(x)a1(x)+p2(x)a2(x) represent an arbitrary subset
(chosen from the 22ms−1 − 1 non-empty subsets) of the first
(2ms−1) columns of B, for any choice of polynomials a1(x)
and a2(x) with coefficients in {0, 1} and maximal degrees
(ms − 1) and (ms − 2) respectively:

ai(x) =

di∑
j=0

a
(j)
i xj , i = 1, 2, d1 = ms − 1, d2 = ms − 2

where a(j)
i ∈ {0, 1} and not all a(j)

i s are zeros. When a1(x) 6=
0, let i1 = deg(a1(x)). Clearly, r(x) is a monic polynomial
of degree (ms + i1). When a1(x) = 0 and a2(x) 6= 0, let
i2 = deg(a2(x)). Then, r(x) is a monic polynomial of degree
(1+i2). Since in both these cases r(x) is a monic polynomial,
there is at least one coefficient equaling 1. Thus, 〈S〉∗ > 2ms−
1. Finally, notice that

p1(x) + xms−1p2(x) = (J − 1) + xms+

(J − 1)xms−1 + xms

= (J − 1) + (J − 1)xms−1 + 2xms ,

with all coefficients strictly larger than 1. Note that p1(x) cor-
responds to the first column of the protograph and xms−1p2(x)
to the 2mth

s column. Thus, we have 〈S〉∗ = 2ms. Since we
have 〈S(J, 2J,ms)〉∗ ≤ 2ms from Proposition 2, we conclude
that 〈S(J, 2J,ms)〉∗ = 2ms.

REFERENCES

[1] M. Papaleo, A. R. Iyengar, P. H. Siegel, J. K. Wolf, and G. Corazza,
“Windowed erasure decoding of LDPC convolutional codes,” in 2010
IEEE Information Theory Workshop, Cairo, Egypt, Jan. 2010, pp. 78–82.

[2] A. R. Iyengar, M. Papaleo, G. Liva, P. H. Siegel, J. K. Wolf, and G. E.
Corazza, “Protograph-based LDPC convolutional codes for correlated
erasure channels,” in Proc. IEEE Int. Conf. Comm., Cape Town, South
Africa, May 2010, pp. 1–6.

[3] G. E. Corazza, A. R. Iyengar, M. Papaleo, P. H. Siegel, A. Vanelli-
Coralli, and J. K. Wolf, “Latency constrained protograph-based LDPC-
CC,” in 6th International Symposium on Turbo Codes & Iterative
Information Processing, Brest, France, Sep. 2010, pp. 6–10.

[4] R. G. Gallager, Low Density Parity Check Codes. Cambridge, Mas-
sachusetts: MIT Press, 1963.

[5] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Francisco, 1988.

[6] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Linkoping University, Linkoping, Sweden, 1996.

[7] D. MacKay and R. Neal, “Near Shannon limit performance of low
density parity check codes,” Electronics Letters, vol. 33, no. 6, pp. 457–
458, Mar 1997.

[8] A. J. Felstrom and K. Zigangirov, “Time-varying periodic convolutional
codes with low-density parity-check matrix,” IEEE Trans. Inf. Theory,
vol. 45, no. 6, pp. 2181–2191, Sep. 1999.

[9] M. Lentmaier, G. P. Fettweis, K. S. Zigangirov, and D. J. Costello,
“Approaching capacity with asymptotically regular LDPC codes,” in
Proc. Inf. Theory and Applications, San Diego, California, 2009.

[10] S. Kudekar, T. Richardson, and R. L. Urbanke, “Threshold saturation
via spatial coupling: Why convolutional LDPC ensembles perform so
well over the BEC,” CoRR, vol. abs/1001.1826, 2010.

[11] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, New York, 2008.

[12] G. Liva, private communication, 2008.
[13] M. Lentmaier, A. Sridharan, K. S. Zigangirov, and D. J. Costello, “Ter-

minated LDPC convolutional codes with thresholds close to capacity,”
in Proc. IEEE Int. Symp. Inf. Theory, Sep. 4-9, 2005, pp. 1372–1376.

[14] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274–5289, Oct. 2010.

[15] A. Pusane, A. J. Feltstrom, A. Sridharan, M. Lentmaier, K. Zigangirov,
and D. J. Costello, “Implementation aspects of LDPC convolutional
codes,” IEEE Trans. Commun., vol. 56, no. 7, pp. 1060–1069, Jul. 2008.

[16] A. Sridharan, “Design and analysis of LDPC convolutional codes,” Ph.D.
dissertation, University of Notre Dame, Notre Dame, Indiana, 2005.

[17] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” JPL INP, Tech. Rep., Tech. Rep., Aug. 2003.

[18] A. Sridharan, D. V. Truhachev, M. Lentmaier, D. J. Costello, and K. S.
Zigangirov, “Distance bounds for an ensemble of LDPC convolutional
codes,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4537–4555, Dec.
2007.

[19] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb. 2001.

[20] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Efficient
erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
569–584, Feb 2001.

[21] ——, “Improved low-density parity-check codes using irregular graphs,”
IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 585 –598, Feb 2001.

[22] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599–618, Feb 2001.

[23] ——, “Efficient encoding of low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 638 –656, Feb 2001.

[24] G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT
analysis,” in Proc. IEEE Globecom, Washington, D.C., Nov. 27-30,
2007, pp. 3250–3254.

[25] C. Di, D. Proietti, I. Telatar, T. Richardson, and R. Urbanke, “Finite-
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570 –1579, Jun.
2002.

[26] J. Han and P. H. Siegel, “Improved upper bounds on stopping redun-
dancy,” IEEE Trans. Inf. Theory, vol. 53, no. 1, pp. 90 –104, Jan. 2007.

[27] D. Divsalar, S. Dolinar, and C. Jones, “Protograph LDPC codes over
burst erasure channels,” JPL INP, Tech. Rep., Tech. Rep., Oct. 2006.

[28] M. Lentmaier, D. G. M. Mitchell, G. P. Fettweis, and D. J. Costello,
“Asymptotically regular LDPC codes with linear distance growth and
thresholds close to capacity,” in Proc. Inf. Theory and Applications 2010,
San Diego, California, 2010.

[29] B. K. Butler and P. H. Siegel, “On distance properties of quasi-cyclic
protograph-based LDPC codes,” in Proc. IEEE Int. Symp. Inf. Theory,
Austin, TX, USA, Jun. 13-18, 2010, pp. 809–813.

[30] X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular pro-
gressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory, vol. 51,
no. 1, pp. 386–398, Jan. 2005.

[31] T. Tian, C. Jones, J. Villasenor, and R. Wesel, “Selective avoidance of
cycles in irregular LDPC code construction,” IEEE Trans. Commun.,
vol. 52, no. 8, pp. 1242–1247, Aug. 2004.

[32] E. Gilbert, “Capacity of a burst-noise channel,” Bell Syst. Tech. J, vol. 39,
pp. 1253–1265, Sep. 1960.

[33] E. Elliott, “Estimates of error rates for codes on burst-noise channels,”
Bell Syst. Tech. J, vol. 42, pp. 1977–1997, Sep. 1963.

[34] L. Wilhelmsson and L. B. Milstein, “On the effect of imperfect inter-
leaving for the Gilbert-Elliott channel,” IEEE Trans. Commun., vol. 47,
no. 5, pp. 681–688, May 1999.

[35] M. Yang and W. E. Ryan, “Design of LDPC codes for two-state
fading channel models,” in The 5th International Symposium on Wireless
Personal Multimedia Communications, vol. 3, Oct. 2002, pp. 986–990.

18

[36] S. J. Johnson and T. Pollock, “LDPC codes for the classic bursty
channel,” in Proc. IEEE Int. Symp. Inf. Theory, Aug. 2004, pp. 184–
189.

[37] E. Paolini and M. Chiani, “Improved low-density parity-check codes for
burst erasure channels,” in Proc. IEEE Int. Conf. Comm., Istanbul, Jun.
2006, pp. 1183–1188.

[38] G. Liva, B. Matuz, Z. Katona, E. Paolini, and M. Chiani, “On construc-
tion of moderate-length LDPC codes over correlated erasure channels,”
in Proc. IEEE Int. Conf. Comm., Dresden, Jun. 2009, pp. 1–5.

[39] G. Sridharan, A. Kumarasubramanian, A. Thangaraj, and S. Bhashyam,
“Optimizing burst erasure correction of LDPC codes by interleaving,”
in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2008, pp. 1143–1147.

[40] S. J. Johnson, “Burst erasure correcting LDPC codes,” IEEE Trans.
Commun., vol. 57, no. 3, pp. 641–652, Mar. 2009.

[41] E. Paolini and M. Chiani, “Construction of near-optimum burst erasure
correcting low-density parity-check codes,” IEEE Trans. Commun.,
vol. 57, no. 5, pp. 1320–1328, May 2009.

[42] T. Wadayama, “Ensemble analysis on minimum span of stopping sets,”
in Proc. Inf. Theory and Applications 2006, San Diego, California, 2006.

	I Introduction
	II LDPC Convolutional Codes
	II-A Definition
	II-B Protograph-based LDPC-CC
	II-B1 Classical construction
	II-B2 Modified construction

	II-C Polynomial representation of LDPC-CC ensembles

	III Decoding Algorithms
	III-A Belief-Propagation (BP)
	III-B Windowed Decoding (WD)

	IV Memoryless Erasure Channels
	IV-A Asymptotic analysis
	IV-A1 BP
	IV-A2 WD

	IV-B Finite length performance evaluation

	V Erasure Channels with Memory
	V-A Asymptotic Analysis
	V-A1 BP
	V-A2 WD

	V-B Finite length analysis
	V-B1 BP
	V-B2 WD

	V-C Numerical results

	VI Conclusions
	Appendix I: Proof of Proposition 1
	Appendix II: Proof of Proposition 2
	Appendix III: Proof of Corollary 3
	References

