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Abstract

In this paper, we propose a novel class of Nash problems for Cognitive Radio (CR) networks, modeled as

Gaussian frequency-selective interference channels, wherein each secondary user (SU) competes against

the others to maximize his own opportunistic throughput by choosing jointly the sensing duration,

the detection thresholds, and the vector power allocation. The proposed general formulation allows

to accommodate several (transmit) power and (deterministic/probabilistic) interference constraints,

such as constraints on the maximum individual and/or aggregate (probabilistic) interference tolerable

at the primary receivers. To keep the optimization as decentralized as possible, global (coupling)

interference constraints are imposed by penalizing each SU with a set of time-varying prices based

upon his contribution to the total interference; the prices are thus additional variable to optimize. The

resulting players’ optimization problems are nonconvex ; moreover, there are possibly price clearing

conditions associated with the global constraints to be satisfied by the solution. All this makes the

analysis of the proposed games a challenging task; none of classical results in the game theory literature

can be successfully applied.

The main contribution of this paper is to develop a novel optimization-based theory for studying the

proposed nonconvex games; we provide a comprehensive analysis of the existence and uniqueness of

a standard Nash equilibrium, devise alternative best-response based algorithms, and establish their

convergence. Some of the proposed algorithms are totally distributed and asynchronous, whereas some

others require limited signaling among the SUs (in the form of consensus algorithms) in favor of better

performance; overall, they are thus applicable to a variety of CR scenarios, either cooperative or non-

cooperative, which allows the SUs to explore the existing trade-off between signaling and performance.

1 Introduction

Over the past decade, there has been a growing interest in Cognitive Radio (CR) as an emerging paradigm

to address the de jure shortage of allocated spectrum that contrasts with the de facto abundance of unused

spectrum in virtually any spatial location at almost any given time. The paradigm posits that so-called
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cognitive radios [also termed as secondary users (SUs)] would use licensed spectrum in an ad-hoc fashion

in such a way as to cause no harmful interference to the primary spectrum license holders [also termed as

primary users (PUs)]. Evidently, such an opportunistic spectrum access is intertwined with the design of

multiple secondary system components, such as (but not limited to) spectrum sensing and transmission

parameters adaptation. Indeed, the choice of the sensing parameters (e.g., the detection thresholds and

the sensing duration) as well as the consequent design of the physical layer transmission strategies (e.g.,

the transmission rate, the power allocation) have both a direct impact on the performance of primary and

secondary systems. The interplay between these two interacting components calls for a joint optimization

of the sensing and transmission parameters of the SUs, which is the main focus of this paper.

1.1 Motivation and related work

The joint optimization of the sensing and transmission strategies has been only partially addressed in

the literature, even for simple CR scenarios composed of one PU and one SU. For example, in [1, 2],

the authors proposed alternative centralized schemes that optimize the detection thresholds for a bank of

energy detectors, in order to maximize the opportunistic throughput of a SU, for a given sensing time and

constant-rate/power transmissions. The optimization of the sensing time and the sensing time/detection

thresholds for a given missed detection probability and constant rate of one SU was addressed in [3, 4]

and [5], respectively. A throughput-sensing trade-off for a fixed transmission rate was studied in [6]. In [7]

(or [8]) the authors focused on the joint optimization of the power allocation and the equi-false alarm rate

(or the sensing time) of a SU over multi-channel links, for a fixed sensing time (or detection probability).

All the aforementioned schemes however are not applicable to scenarios composed of multiple SUs (and

PUs). The case of multiple SUs and one PU was considered in [9] (and more recently in [10]), under the

same assumptions of [7]; however no formal analysis of the proposed formulation was provided.

The transceiver design of OFDM-based CR systems composed of multiple primary and secondary

users have been largely studied in the literature of power control problems over the interference channel,

and have been traditionally approached from two very different perspectives: a holistic design of the

system and an individual selfish design of each of the users. The former is also referred to as Network

Utility Maximization (NUM) (other approaches within this perspective are based on Nash bargaining

formulations) and has the potential of obtaining the best of the network at the expense of a centralized

computation or heavy signaling/cooperation among the users; examples are [11, 12, 13, 14, 15, 16, 17]. The

latter fits perfectly within the mathematical framework of Game Theory and usually leads to distributed

algorithms at the expense of a loss of global performance; related papers are [18, 19, 20, 21, 22, 23], and

two recent overviews are [24, 25]. In both the aforementioned approaches and classes of papers the sensing

process is not considered as part of the optimization ; in fact the SUs do not perform any sensing but

they are allowed to transmit over the licensed spectrum provided that they satisfy interference constraints

imposed by the PUs, no matter if the PUs are active of not.

When the sensing comes explicitly into the system design, the application of the holistic approach

mentioned above leads to nonconvex NP hard optimization problems. These cases cannot be globally solved

by efficient algorithms in polynomial time; one typically can design (centralized) sub-optimal algorithms

that converge just to a stationary solution. Their implementation however would require heavy signaling
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among the users (or the presence of a centralized network controller having the knowledge of all the

system parameters); which strongly limits the range of applicability of such formulations to practical CR

networks. For these reasons, in this paper, we attack the multi-agent decision making problem from a

different perspective; we concentrate on optimization strategies where the SUs are able to self-enforce the

negotiated agreements on the usage of the licensed spectrum either in a totally decentralized way or by

requiring limited and local signaling among the SUs (in the form of consensus algorithms). Aiming at

exploring the trade-off between signaling and performance, the proposed approach is then expected to be

more flexible than classical optimization techniques and applicable to a wider range of CR scenarios.

1.2 Main contributions

This paper along with our companion work [26] advances the current approaches (based on the optimization

of specific components of a CR system in isolation), in the direction of a joint and distributed design of

sensing and transmission parameters of a CR network, composed of multiple PUs and SUs.

We study a novel class of Nash equilibrium problems as proposed in [26], wherein each SU aims at

maximizing his own opportunistic throughput by jointly optimizing the sensing parameters−the sensing

time and the false alarm rate (and thus the decision thresholds) of a bank of energy detectors−and the

power allocation over the multi-channel links. Because of sensing errors, the SUs might access the licensed

spectrum when it is still occupied by active PUs, thus causing harmful interference. This motivates the

introduction of probabilistic interference constraints that are imposed to control the power radiated over

the licensed spectrum whenever a missed detection event occurs (in a probabilistic sense). The proposed

formulation accommodates alternative combinations of power/interference constraints. For instance, on

top of classical (deterministic) transmit power (and possibly spectral masks) constraints, we envisage the

use of average individual (i.e., on each SU) and/or global (i.e., over all the SUs) interference tolerable at

the primary receivers. The former class of constraints is more suitable for scenarios where the SUs are

not willing to cooperate; whereas the latter constraints, which are less conservative, seem more realistic

in settings where SUs may want to trade some limited signaling for better performance. By imposing a

coupling among the transmit and sensing strategies of the SUs, global interference constraints introduce

a new challenge in the system design: how to enforce global interference constraints without requiring

a centralized optimization but possibly only limited signaling among the SUs? We address this issue by

introducing a pricing mechanism in the game, through a penalization in the players’ objective functions.

The prices need to be chosen so that the interference constraints are satisfied at any solution of the game

and a clearing condition holds; they are thus additional variables to be determined.

The resulting class of games is nonconvex (because of the nonconvexity of the players’ payoff functions

and constraints), lacks boundedness in the price variables, and there are side constraints with associated

price equilibration that are required to be satisfied by the equilibrium; all these features make the analysis

a challenging task. The convexity of the players’ individual optimization problems is, in fact, one indis-

pensable assumption under which noncooperative games have traditionally been studied and analyzed.

The classical case where a NE exists is indeed when the players’ objective functions are (quasi-)convex in

their own variables with the other players’ strategies fixed, and the players’ constraint sets are compact

and convex and independent of their rivals’ strategies (see, e.g., [27, 28]). Without such convexity, a NE
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may not exist (as in the well-known case of a matrix game with pure strategies); analytically, abstract

mathematical theories granting its existence, like those in [29, 30], are difficult to be applied to games

arising from realistic applications such as those occurred in the present paper.

The main contribution of this work is to develop a novel optimization-based theory for the solution

analysis of the proposed class of nonconvex games (possibly) with side constraints and price clearing con-

ditions, and to design distributed best-response based algorithms for computing the Nash equilibria, along

with their convergence properties. Building on [31], the solution analysis is addressed by introducing a

“best-response” map (including price variables) defined on a proper convex and compact set, whose fixed-

points, if they exist, are Nash equilibria of the original nonconvex games; the obtained conditions are in

fact sufficient for such a map to be a single-valued continuous map; this enables the application of the

Brouwer fixed-point theorem to deduce the existence of a fixed-point of the best-response map, thus of a

NE of the whole class of proposed games. While seemingly very simple, the technical details lie in deriving

(reasonable) conditions for which the best-response map is single-valued and for the boundedness of the

prices in order for the existence of a compact set on which the Brouwer result can be based. Interestingly,

the obtained conditions have the same physical interpretation of those obtained for the convergence of

the renowned iterative waterfilling algorithm solving the power control game over interference channels

[18, 19, 20, 21, 22]. We then focus on solutions schemes for the proposed class of games; we design alterna-

tive distributed (possibly) asynchronous best-response based algorithms that differ in performance, level

of protection of the PUs, computational effort and degree of cooperation/signaling among the SUs, and

convergence speed; which makes them applicable to a variety of CR scenarios (either cooperative or nonco-

operative). For each algorithm, we establish its convergence and also quantify the time and communication

costs for its implementation. Our numerical results show that: i) the proposed joint sensing/transmission

optimization outperforms current centralized and decentralized state-of-the-art results based on separated

optimization of the sensing and the transmission parts; ii) our algorithms exhibit a fast convergence behav-

ior; and iii) as expected, some (limited) cooperation among the SUs (in the form of consensus algorithms)

yields a significant improvement in the system performance. The proposed solution schemes can also be

used to compute the so-called Quasi-NE of the associated games, a relaxed equilibrium concept introduced

and studied in our companion paper [26].

The paper is organized as follows. Sec. 2 briefly introduces the system model, as proposed in [26];

Sec. 3 focuses on the system design and formulates the joint optimization of the sensing parameters and

the power allocation of the SUs within the framework of game theory; several games are introduced. The

solution analysis of the proposed games is addressed in Sec. 4, where sufficient conditions for the existence

and uniqueness of a standard NE along with their interpretation are derived. Distributed algorithms

solving the proposed games along with their convergence properties and computational/communication

complexity are studied in Sec. 5. Numerical experiments are reported in Sec. 6, whereas Sec. 7 draws

the conclusions. Proofs of our results are given in Appendix A-F. The paper requires a background

on Variational Inequalities (VIs); we refer to [32, 33] for an introductory overview of the subject and its

application to equilibrium problems in signal processing and communications. A comprehensive treatment

of VIs can be found in the two monographs [34, 35]; a detailed study of convex games based on the VI

and complementarity approach is addressed in [36, 22]. The main properties of Z and P matrices, which

are widely used in the paper, can be found in [34, 37].

4



2 System Model

We consider a scenario composed of Q active SUs, each consisting of a transmitter-receiver pair, coexisting

in the same area and sharing the same band with PUs. The network of the SUs is modeled as an N -

frequency-selective SISO Interference Channel (IC), where N is the number of subcarriers available to

the cognitive users. We focus on multicarrier block-transmissions without loss of generality. In order not

to interfere with on-going PU transmissions, before transmitting, the SUs sense periodically the licensed

spectrum looking for the subcarriers that are temporarily not occupied by the PUs. A brief description of

the sensing mechanism and transmission phase performed by the SUs as proposed in the companion paper

[26] is given in the following, where we introduce the basic definitions and notation used throughout the

paper; we refer the reader to [26] for details and the assumptions underlying the proposed model.

2.1 The spectrum sensing phase

In [26], we formulated the sensing problem as a binary hypothesis testing; the decision rule of SU q over

carrier k = 1, . . . , N based on the energy detector is

Dq,k ,
1

Kq

Kq∑

n=1

|yq,k[n]|2
H1,k

><
H0,k

γq,k (1)

where yq,k[n] is the received baseband complex signal over carrier k; Kq = ⌊τq fq⌋ ⋍ τq fq is the number

of samples, with τq and fq denoting the sensing time and the sampling frequency, respectively; γq,k is the

decision threshold for the carrier k; H0,k represents the absence of any primary signal over the subcarrier

k, whereas H1,k represents the presence of the primary signaling.

The performance of the energy detection performed by SU q over carrier k is measured in terms of the

detection probability P d
q,k(γq,k, τq) , Prob {Dq,k > γq,k |H1,k} and false alarm probability P fa

q,k(γq,k, τq) ,

Prob{Dq,k > γq,k |H0,k}. Under standard assumptions in decision theory, these probabilities are given by

[26]

P fa
q,k (γq,k, τq) = Q

(√
τq fq

γq,k − µq,k|0

σq,k|0

)
and P d

q,k (γq,k, τq) = Q
(√

τq fq
γq,k − µq,k|1

σq,k|1

)
, (2)

where Q(x) , (1/
√
2π)
´∞
x e−t2/2dt is the Q-function, and µq,k|0, µq,k|1, σq,k|0, and σq,k|1 are constant

parameters, whose explicit expressions are given in [26]. The detection probability P d
q,k can also be

rewritten as a function of the false alarm rate P fa
q,k as:

P d
q,k

(
P fa
q,k, τq

)
= Q

(
σq,k|0

σq,k|1
Q−1

(
P fa
q,k

)
−
√
τq fq

µq,k|1 − µq,k|0

σq,k|1

)
, 1− Pmiss

q,k

(
τq, P

fa
q,k

)
, (3)

where we also introduced the definition of the missed detection probability Pmiss
q,k (τq, P

fa
q,k) , 1−P d

q,k(τq, P
fa
q,k).

The interpretation of P fa
q,k (γq,k, τq) and P d

q,k (γq,k, τq) within the CR scenario is the following: 1−P fa
q,k

signifies the probability of successfully identifying from the SU q a spectral hole over carrier k, whereas the

missed detection probability P miss
q,k represents the probability of SU q failing to detect the presence of the

PUs on the subchannel k and thus generating interference against the PUs. The free variables to optimize

are the detection thresholds γq,k’s and the sensing times τq’s; ideally, we would like to choose γq,k’s and
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τq’s in order to minimize both P fa
q,k and P

(q,k)
miss , but (3) shows that there exists a trade-off between these

two quantities that will affect both primary and secondary performance. It turns out that, γq,k’s and τq’s

can not be chosen by focusing only on the detection problem (as in classical decision theory), but the

optimal choice of γq,k and τq must be the result of a joint optimization of the sensing and transmission

strategies over the two phases; such an optimization is introduced in Sec. 3.

Robust sensing model. The proposed sensing model can be generalized in several directions; see

[38, 26]. For instance, one can explicitly take into account device-level uncertainties (e.g., uncertainty in

the power spectral density of the PUs’ signals and thermal noise) as well as system level uncertainties

(e.g., the current number of active PUs) by modeling the detection process of the primary signals as a

composite hypothesis testing. This leads to a uniformly most-powerful detector scheme that is robust

against device-level and system-level uncertainties; detailed can be found in [38, 26] and are omitted here.

It is important however to remark that the resulting detection probability and false alarm rate of the

aforementioned robust scheme are still given by (2) and (3), but with a different expression for µq,k|i’s

and σ2
q,k|i’s [38]. This means that analysis and results developed in the next sections are valid also for this

more general model.

2.2 The transmission phase

The transmission strategy of each SU q is the power allocation vector pq = {pq,k}Nk=1 over the N subcar-

riers, subject to the following (local) transmit power constraints

Pq ,
{
pq , (pq,k)

N
k=1 ∈ R

N :

N∑

k=1

pq,k ≤ Pq, 0 ≤ pq ≤ pmax
q

}
, (4)

where pmax
q = (pmax

q,k )Nk=1 denotes possibly spectral mask [the vector inequality in (4) is component-wise].

According to the opportunistic transmission paradigm, each subcarrier k is available for the transmis-

sion of SU q if no primary signal is detected over that frequency band, which happens with probability

1 − P fa
q,k. This motivates the use of the aggregate opportunistic throughput as a measure of the spectrum

efficiency of each SU q. Given the power allocation profile p = (pq)
Q
q=1 of the SUs, the target false alarm

rate P fa
q (assumed to be equal over the whole licensed spectrum), the sensing time τq, and taking the log

of the opportunistic throughput, the payoff function of each SU q is then (see [26] for more details)

Rq

(
τq, p, P

fa
q

)
= log

((
1− τq

Tq

) (
1− P fa

q

) N∑

k=1

rq,k (p)

)
(5)

where 1 − τq/Tq, with τq ≤ Tq, is the portion of the frame duration Tq available for opportunistic trans-

missions and rq,k(p) is the maximum information rate achievable on link q over carrier k when no primary

signal is detected and the power allocation profile of the SUs is p1,k, . . . , pQ,k:

rq,k(p) = log

(
1 +

pq,k

σ̂2
q,k +

∑
r 6=q |Ĥqr(k)|2pr,k

)
, (6)

with Ĥqr(k) , Hqr(k)/Hqq(k) and σ̂2
q,k , σ2

q,k/|Hqq(k)|2, where {Hqq(k)}Nk=1 is the channel transfer

function of the direct link q and {Hqr(k)}Nk=1 is the cross-channel transfer function between the secondary
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transmitter r and the secondary receiver q; and σ2
q,k is the power spectral density (PSD) of the background

noise over carrier k at the receiver q (assumed to be Gaussian zero-mean distributed).

As a final remark note that the throughput defined in (5) is not the average throughput experienced by

the SUs, which instead would include an additional rate contribution resulting from the erroneous decision

of the SUs to transmit over the licensed spectrum still occupied by the PUs. We have not included this

contribution in the objective functions of the SUs because in maximizing the function we do not want

to “incentivize” the undue usage of the licensed spectrum. Moreover, differently from the opportunistic

throughput in (5), the maximization of the average throughput would require the knowledge from the SUs

of the a-priori probabilities of the PUs’ spectrum occupancy, which is in general not available.

2.3 Probabilistic interference constraints

Due to the inherent trade-off between P fa
q and Pmiss

q,k (P
(q)
fa ) [see (2) and (3)], maximizing the aggregate

opportunistic throughput (5) of SUs will result in low P fa
q and thus large Pmiss

q,k , hence causing harmful

interference to PUs. To allow the SUs’ transmissions while preserving the QoS of the PUs, we envisage

the use of probabilistic interference constraints that limit the interference generated by the SUs whenever

they misdetect the presence of a PU. Examples of these constraints are the following:

- Individual overall bandwidth interference constraint : for each SU q,

N∑

k=1

Pmiss
q,k

(
τq, P

fa
q

)
· wq,k · pq,k ≤ Imax

q , (7)

- Global overall bandwidth interference constraints:

Q∑

q=1

∑

k∈Kp

Pmiss
q,k

(
τq, P

fa
q

)
· wq,k · pq,k ≤ Imax, (8)

where Imax
q [or Imax] are the maximum average interference allowed to be generated by the SU q [or all the

SU’s] that is tolerable at the primary receiver; and wq,k’s are a given set of positive weights. If an estimate

of the cross-channel transfer functions {GP,q(k)}Nk=1 between the secondary transmitters and the primary

receiver is available, then the natural choice for wq,k is wq,k = |GP,q(k)|2, so that (7) and (8) become

the average interference experienced at the primary receiver. Methods to obtain the interference limits

along with some implementation aspects related to this issue and alternative interference constraints are

discussed in Sec. 5.1.1.

We wish to point out that other interference constraints, like per-carrier interference constraints, as

well as multiple PUs can be readily accommodated, without affecting the analysis and results that will be

presented in the forthcoming sections. For notational simplicity, we stay within the above setting.

3 System Design based on Game Theory

We focus now on the system design and formulate the joint optimization of the sensing parameters and

the power allocation of the SUs within the framework of game theory. We consider next two classes of

equilibrium problems: i) games with individual constraints only (Sec. 3.1 below); and ii) games with
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individual and global constraints (Sec. 3.1 and Sec. 3.3 below). The former formulation is suitable for

modeling scenarios where the SUs are selfish users who are not willing to cooperate, whereas the latter

class of games is applicable to the design of systems where the SUs can exchange limited signaling in favor

of better performance. Indeed, being less conservative than individual interference constraints, global

interference constraints are expected to yield better performance of the SUs at the cost of more signaling.

The aforementioned formulations are thus applicable to complementary CR scenarios.

3.1 Game with local interference constraints

In the proposed game, each SU is modeled as a player who aims to maximize his own opportunistic

throughput Rq

(
τq, p, P

fa
q

)
by choosing jointly a proper power allocation strategy pq = (pq,k)

N
k=1, sensing

time τq, and false alarm rate P fa
q , subject to power and individual probabilistic interference constraints.

Stated in mathematical terms we have the following formulation.

Player q’s optimization problem is to determine, for given p−q , ((pr(k)
N
k=1)

Q
q 6=r=1 ≥ 0, a

tuple
(
τq, pq, P

fa
q

)
in order to

maximize
τq ,pq,P fa

q

Rq

(
τq, p, P

fa
q

)

subject to

(a)

N∑

k=1

Pmiss
q,k (P fa

q , τq) · wq,k · pq,k ≤ Imax
q ,

(b) P fa
q ≤ βq, and Pmiss

q,k (P fa
q , τq) ≤ αq,k, ∀k = 1, · · · , N,

(c) pq ∈ Pq and τmin
q ≤ τq ≤ τmax

q .

(9)

In (9) we also included additional lower and upper bounds of τq satisfying 0 < τmin
q < τmax

q < Tq

and upper bounds on detection and missed detection probabilities 0 < αq,k ≤ 1/2 and 0 < βq ≤ 1/2,

respectively. These bounds provide additional degrees of freedom to limit the probability of interference

to the PUs as well as to maintain a certain level of opportunistic spectrum utilization from the SUs

[1 − P fa
q ≥ 1 − βq]. Note that the constraints αq,k ≤ 1/2 and βq ≤ 1/2 do not represent a real loss of

generality, because practical CR systems are required to satisfy even stronger constraints on false alarm

and detection probabilities; for instance, in the WRAN standard, αq,k = βq,k = 0.1.

3.2 Game with global interference constraints

We add now global interference constraints to the game theoretical formulation in (9). This introduces

a new challenge: how to enforce global interference constraints in a distributed way? By imposing a

coupling among the transmissions and the sensing strategies of all the SUs, global interference constraints

in principle would call for a centralized optimization. To overcome this issue, we introduce a pricing

mechanism in the game, based on the relaxation of the coupling interference constraints as penalty term

in the SUs’ objective functions, so that the interference generated by all the SUs will depend on these

prices. Prices are thus addition variables to be optimized (there is one common price associated with any
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of the global interference constraints); they must be chosen so that any solution of the game will satisfy

the global interference constraints, which requires the introduction of additional constraints on the prices,

in the form of price clearance conditions. Denoting by π the price variable associated with the global

interference constraint (8), we have the following formulation.

Player q’s optimization problem is to determine, for given p−q ≥ 0 and π, a tuple
(
τq, pq, P

fa
q

)
such

that

maximize
τq,pq ,P fa

q

Rq

(
τq, p, P

fa
q

)
− π ·

N∑

k=1

Pmiss
q,k (P fa

q , τq) · wq,k · pq,k

subject to constraints (a), (b), (c) as in (9).

(10)

Price equilibrium: The price π obeys the following complementarity condition:

0 ≤ π ⊥ Imax −
N∑

k=1

Q∑

q=1

Pmiss
q,k (P fa

q , τq) · wq,k · pq,k ≥ 0. (11)

In (11), the compact notation 0 ≤ a ⊥ b ≥ 0 means a ≥ 0, b ≥ 0, and a · b = 0. The price clearance

conditions (11) state that global interference constraints (8) must be satisfied together with nonnegative

price; in addition, they imply that if the global interference constraint holds with strict inequality then

the price should be zero (no penalty is needed). Thus, at any solution of the game, the optimal price is

such that the global interference constraint is satisfied.

3.3 The equi-sensing case

The decision model proposed in Sec. 2.1 is based on the assumption that the SUs are somehow able to

distinguish between primary and secondary signaling. This can be naturally accomplished if there is a

common sensing time (still to optimize) during which all the SUs stay silent while sensing the spectrum.

However, the formulation (10), in general, leads to different optimal sensing times of the SUs, implying

that some SU may start transmitting while some others are still in the sensing phase. To overcome this

issue, several directions have been explored in the companion paper [26], under the model (10)-(11). Here

we follow the approach of modifying the formulation in (10) in order to “force” in a distributed way the

same optimal sensing time for all the SUs. Roughly speaking, the idea is to perturb the payoff functions of

the players by a penalty term that discourages the players to deviate from equi-sensing strategies. Stated

in mathematical terms, we have the following formulation.

Player q’s optimization problem is to determine, for given c ≥ 0, p−q ≥ 0, (τr)
Q
q 6=r=1 ≥ 0 and π ≥ 0,

a tuple
(
τq, pq, P

fa
q

)
in order to

maximize
τq ,pq,P

q

fa

Rq

(
τq, p, P

fa
q

)
− π ·

N∑

k=1

Pmiss
q,k (P fa

q , τq) · wq,k · pq,k −
c

2
·
(
τq −

1

Q

Q∑

r=1

τr

)2

subject to constraints (a), (b), (c) as in (9).

(12)

Price equilibrium: The price π obeys the complementarity condition (11).
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The third term in the objective function of each SU in (12) helps to induce the same optimal sensing

time for all the SUs. Roughly speaking, one expects that for sufficiently large c, the aforementioned term

will become the dominant term in the objective functions of the SUs, leading thus to solutions of the game

having sensing times that differ from their average by any prescribed accuracy. This intuition has been

made formal in our companion paper [26] for stationary solutions of the game (12), and it can be similarly

extended to the Nash equilibria; we omit the details because of space limitation.

3.4 Unified formulation and summary of notation

In this section, we introduce a compact and unified formulation of the proposed games that simplifies

their analysis. Let us start by separating the convex constraints in the feasible set of the players from

the nonconvex ones. The interference constraints (a) in (9) are bi-convex and thus not convex, whereas

constraints (b) are convex in P fa
q and

√
τq. This motivates the following change of variables:

τq 7→ τ̂q ,
√

τq fq q = 1, . . . , Q, (13)

so that the constraints on Pmiss
q,k (P fa

q , τq) in each player’s feasible set become convex in the tuple (P fa
q , τ̂q)

[with P fa
q ≤ βq ]. Indeed, for each k = 1, . . . , N , we have

Pmiss
q,k (P fa

q , τq) ≤ αq,k ⇔ σq,k|0

σq,k|1
Q−1

(
P fa
q

)
− τ̂q

µq,k|1 − µq,k|0

σq,k|1
≤ Q−1 (1− αq,k) , (14)

where Q−1 (·) denotes the inverse of the Q-function [Q(x) is a strictly decreasing function on R], which

are convex constraints in (P fa
q , τ̂q) [provided that P fa

q ≤ βq ]. Using the above transformation, we can

equivalently rewrite the missed detection probability Pmiss
q,k (P fa

q , τq) and the throughput Rq(τq, p, P
fa
q )

of each player q in terms of the tuples
(
τ̂q, pq, P

fa
q

)
’s, denoted by P̂miss

q,k (P fa
q , τ̂q) and R̂q(τ̂q, p, P

fa
q ),

respectively; the explicit expression of these quantities is:

Pmiss
q,k (P fa

q , τq) = P̂miss
q,k (P fa

q , τ̂q) , Q
(
σq,k|0Q−1

(
P fa
q

)
− (µq,k|1 − µq,k|0 ) τ̂q

σq,k|1

)
(15)

Rq

(
τq, p, P

fa
q

)
= R̂q

(
τ̂q, p, P

fa
q

)
, log

((
1−

τ̂2q
fq Tq

)
N∑

k=1

(
1− P fa

q,k

)
rq,k (p)

)
. (16)

To incorporate the equi-sensing case in our unified formulation, we introduce the functions θq(xq, x−q),

which represent the objective functions of the users including the equi-sensing term, with (τ̂ , p, P fa) ,(
(τ̂q, pq, P

fa
q )
)Q
q=1

denoting the strategy profile of all the players:

θq(τ̂ , p, P
fa) , R̂q(τ̂q, p, P

fa
q )− c

2

(
τ̂q√
fq
− 1

Q

Q∑

r=1

τ̂r√
fr

)2

. (17)

We can now rewrite the feasible set of each player’s optimization problem in terms of the new variables(
τ̂q, pq, P

fa
q

)
, denoted by Xq: for each q = 1, . . . , Q, let

Xq ,
{(

τ̂q, pq, P
fa
q

)
∈ Yq | Iq

(
τ̂q, pq, P

fa
q

)
≤ 0
}

(18)
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where we have separated the convex part and the nonconvex part; the convex part is given by the poly-

hedron Yq corresponding to the constraints (b) and (c) in (9) under the transformation (13) [cf. (14)]:

Yq ,





(
τ̂q, pq, P

fa
q

)
| P fa

q ≤ βq,
σq,k|0

σq,k|1
Q−1

(
P fa
q

)
− τ̂q

µq,k|1 − µq,k|0

σq,k|1
≤ α̂q,k, ∀k = 1, . . . , N

pq ∈ Pq, τ̂ min
q ≤ τ̂q ≤ τ̂ max

q



 ,

(19)

with

α̂q,k , Q−1 (1− αq,k) , τ̂ max
q ,

√
τ max
q fq, and τ̂ min

q ,

√
τ min
q fq, (20)

whereas the nonconvex part in (18) is given by the constraint (a) that we have rewritten as Iq(τ̂q, pq, P
fa
q ) ≤

0 by introducing the local interference violation function

Iq
(
τ̂q, pq, P

fa
q

)
,

N∑

k=1

P̂miss
q,k

(
P fa
q , τ̂q

)
· wq,k · pq,k − Imax

q . (21)

This measures the violation of the local interference constraint (a) at (τ̂q, pq, P
fa
q ). Similarly, it is con-

venient to introduce also the global interference violation function I(τ̂ , p, P fa), which depends on the

strategy profile (τ̂ , p, P fa) of all the players:

I(τ̂ , p, P fa) ,

N∑

k=1

Q∑

q=1

P̂miss
q,k

(
P fa
q , τ̂q

)
· wq,k · pq,k − Imax; (22)

I(τ̂ , p, P fa) measures the violation of the global interference constraint (8) at (τ̂ , p, P fa); global inter-

ference constraints (8) can be then rewritten in terms of I(τ̂ , p, P fa) as I(τ̂ , p, P fa) ≤ 0.

Based on the above definitions, throughout the paper, we will use the following notation. The convex

part of the joint strategy set is denoted by Y ,
∏Q

q=1 Yq, whereas the set containing all the (convex

part of) players’ strategy sets except the q-th one is denoted by Y−q ,
∏

r 6=q Yr; similarly, we define

X ,
∏Q

q=1 Xq and X−q ,
∏

r 6=q Xr. For notational simplicity, when it is needed, we will use interchangeably

either (τ̂q, pq, P
fa
q ) or xq , (τ̂q, pq, P

fa
q ) to denote the strategy tuple of player q; similarly, the strategy

profile of all the players will be denoted either by x , (xq)
Q
q=1 or (τ̂ , p, P fa), with τ̂ , (τ̂ q)

Q
q=1, p ,

(pq)
Q
q=1, and Pfa , (P fa

q )Qq=1, whereas x−q , (xr)
Q
q 6=r=1 is the strategy profile of all the players except

the q-th one. All the tuples above are intended to be column vectors; for instance, (τ̂ , p, P fa) signifies

(τ̂ , p, P fa) = [τ̂ T , pT , P faT ]T , with τ̂ , (τ̂ q)
Q
q=1 = [τ̂1, . . . , τ̂Q]

T , p , (pq)
Q
q=1 = [pT

1 , . . . ,p
T
Q]

T , where

each pq = (pq,k)
N
k=1 = [pq,1, . . . , pq,N ]T , and P fa = (P fa

q )Qq=1 = [P fa
1 , . . . , P fa

Q ]T . For future convenience,

Table 1 collects the above definitions and symbols. Using the above notation, the games introduced in the

previous sections can be unified under the following reformulation.

Players’ optimization. The optimization problem of player q is:

maximize
xq

θq(xq, x−q)− π · I(x)
subject to xq ,

(
τ̂q, pq, P

fa
q

)
∈ Xq.

(23)

Price equilibrium. The price obeys the following complementarity condition:

0 ≤ π ⊥ −I(x) ≥ 0. (24)
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Throughout the paper, we will refer to the game (23) along with the side constraint (24) as game

G(X , θ), where θ , (θq(xq,x−q, π))
Q
q=1.

Table 1: Glossary of notation of game G(X , θ) [cf. (23)-(24)]

Symbol Meaning

τq sensing time of SU q

pq , (pq,k)
N
k=1 power allocation vector of SU q

π scalar price variable

P fa
q false alarm probability of SU q

Pmiss
q,k missed detection probability of SU q on carrier k [cf. (3)]

τ̂q ,
√

τqfq normalized sensing time of SU q [cf. (13)]

xq , (τ̂q, pq, P
fa
q ) strategy tuple of SU q

x−q , (τ̂r, pr, P
fa
r )r 6=q strategy profile of all the SUs except the q-th one

x , (xq)
Q
q=1 = (τ̂ , p, P fa) strategy profile of all the SUs

θq(xq, x−q) payoff function of SU q including the equisensing penalization [cf. (17)]

Iq(xq) local interference constraint violation of SU q [cf. (21)]

I(x) global interference constraint violation of SU q [cf. (22)]

Xq, X ,
∏Q

q=1Xq feasible set of SU q [cf. (18)], joint feasible strategy set of G(X , θ)
X−q ,

∏
r 6=q Xr joint strategy set of the SUs except the q-th one

Yq, Y ,
∏Q

q=1 Yq convex part of Xq [cf. (19)], Cartesian product of all Yq’s

Needless to say, when π = 0 and c = 0, G(X , θ) reduces to the game in (9) where there are only

individual interference constraints (7), whereas when c = 0, G(X , θ) coincides with the game in (10)-(11)

with local and global interference constraints.

As a final remark, we observe that the proposed formulations may be extended to cover more general

settings, without affecting the validity of the results we are going to present. For instance, the case of

multiple active PUs and additional local/global interference constraints (such as per-carrier constraints)

can be readily accommodated: Instead of having a single price variable, we associate a different price

to each global interference constraint and proceed similarly as in (23)-(24). Also, the sensing model

introduced in Sec. 2.1 can be generalized to the case of multiple active PUs, and the presence of device-

level uncertainties (e.g., uncertainty in the power spectral density of the PUs’ signals and thermal noise) as

well as system level uncertainties (e.g., lack of knowledge of the number of active PUs). The mathematical

details of these more general formulations can be found in our companion paper [26]; for notational

simplicity, here we will stay within the formulation (23)-(24), without loss of generality.

4 Solution Analysis: Nash Equilibria

This section is devoted to the solution analysis of the games introduced in the previous section. In order

to provide a unified analysis, we focus on the general game G(X , θ) with side constraints; results for the

other proposed formulations are obtained as special cases. We start our analysis by studying the feasibility
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of each optimization problem in (23) (cf. Sec. 4.1); we then extend the definitions of NE to a game with

side constraints and establish its main properties (cf. Sec. 4.2).

4.1 Feasibility conditions

Introducing the SNR detection snrd
q,k , σ2

Iq,k
/σ2

q,k experimented by SU q over carrier k and using the

definitions given in Sec. 2.1, sufficient conditions guaranteeing the existence of an optimal solution for

each player’s optimization problem (23) are the following: For all q = 1, . . . , Q and k = 1, . . . , N , there

must exist a common sensing time τ (corresponding to normalized sensing times τ̂q =
√
τ fq) such that

τ̂min
q√
fq
≤ √τ ≤

τ̂max
q√
fq

, and
√

fqτ ≥
Q−1(βq,k) + |Q−1(αq,k)|

(
σq,k|1/σq,k|0

)

snrdq,k
. (25)

The first set of conditions in (25) simply postulates the existence of an overlap among the (normalized)

sensing time intervals [τ̂min
q /

√
fq, τ̂

max
q /

√
fq] in (23), which is necessary to guarantee the existence of a

common value for the sensing times in the original variables τq’s. The second set of conditions guarantees

that the strategy sets Yq’s (and thus Xq’s) are not empty. Interestingly, they quantify the existing trade-off

between the sensing time (the product “time-bandwidth” fqτ of the system) and detection accuracy: the

smaller both false alarm and missed detection probability values, the larger the sensing time (the decision

process must be more accurate).

When the sensing times are not forced to be the same, as in the formulations (9) and (10)-(11), the

feasibility conditions (25) can be weakened by the following: For all q = 1, . . . , Q and k = 1, . . . , N ,

√
fqτmax

q ≥ Q
−1(βq,k) + |Q−1(αq,k)|

(
σq,k|1/σq,k|0

)

snrdq,k
. (26)

Throughout the paper, we tacitly assume that each user’s optimization problem under consideration has

a nonempty strategy set (the associated feasibility conditions above are satisfied).

4.2 Existence and uniqueness of the NE

We focus in this section on the NE of G(X , θ). The definition of NE for a game with price equilibrium

conditions such as G(X , θ) is the natural generalization of the same concept introduced for classical

noncooperative games having no side constraints (see, e.g., [27]) and is given next.

Definition. A Nash equilibrium of the game G(X , θ) is a strategy-price tuple (x⋆, π), such that

x⋆
q ∈ argmax

xq ∈Xq

{
θq(xq,x

⋆
−q)− π⋆ · I(xq,x

⋆
−q)
}
, ∀q = 1, . . . , Q, (27)

and

0 ≤ π⋆ ⊥ − I(x⋆) ≥ 0. (28)

A NE is said to be trivial if the power-component p⋆
q = 0 for all q = 1, . . . , Q. �

In words, the proposed notion of equilibrium is a stable state of the network consisting of an equilibrium

power/sensing profile x⋆ and price π⋆: at (x⋆, π⋆), the SUs have no incentive to change their power/sensing
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profiles x⋆ based on the current state of the network [represented by (27)], while the optimal value π⋆ of

the price is such that all global interference constraints are met [a situation represented by (28)]. Note

that, for a set of fixed price π⋆, the equilibrium power/sensing profile x⋆ can be interpreted as the NE of

a classical noncooperative game (having thus only local constraints), wherein the payoff function of each

player q is θq(•,x−q, π
⋆) and the strategy set is Xq. The proposed equilibrium concept is thus a NE of the

aforementioned game with an appropriately selected price.

The game G(X , θ) is nonconvex with the nonconvexity occurring in the players’ objective functions

and the local/global interference constraints; moreover, the feasible price [satisfying (28)] is not explicitly

bounded [note that this price cannot be normalized due to the lack of homogeneity in the players’ opti-

mization problem (23)]. Because of that, the existence of a NE is in jeopardy. The rest of this section is

then devoted to provide a detailed solution analysis of the game; we derive sufficient conditions for the

existence and the uniqueness of a NE.

Mathematically, a NE can be interpreted as a fixed-point of the players’ best-response map. When

this map is a continuous single valued function, the existence of a fixed-point can be proved by using

the renowned Brouwer fixed-point theorem1 (see, e.g., [35, Th. 2.1.18]), provided that one can identify

a convex compact set for the application of the theorem. Our goal is then to derive a set of sufficient

conditions under which the best-response map associated with G(X , θ) is a single-valued continuous map

over a proper compact and convex set; this is a nontrivial task, because of the nonconvexity of the players’

optimization problems and the potential unboundedness of the price. The new line of analysis we propose

is based on the following three steps:

Step 1 : To deal with the unboundedness of the price, we introduce an auxiliary price-truncated game

Gt(X , θ), where the price π is constrained to be upper bounded by a given positive constant t;

Step2 : We derive sufficient conditions for the nonconvex players’ optimization problems in the game

Gt(X , θ) to have unique optimal solutions; building on such solutions we introduce a continuous

single-value map−the best-response associated with the game Gt(X , θ)−defined on a convex and

compact set, whose fixed-points are the Nash equilibria of the game Gt(X , θ). We can then apply

the Brouwer fixed-point theorem to deduce that Gt(X , θ) has a NE;

Step3 : The final step is to demonstrate that there exists a sufficiently large t such that the price trun-

cation in the game Gt(X , θ) is not binding. This will allow us to deduce that a NE of Gt(X , θ) is

also a NE of the original, un-truncated, game G(X , θ).

Step 1: The price-truncated game Gt(X , θ)

To motivate the price-truncated game, observe first that the price complementarity condition in (28) is

equivalent to

π⋆ ∈ argmax
π≥0

{π · I(x⋆)} . (29)

1Brouwer fixed-point theorem states that every continuous (vector-valued) function Φ : C 7→ C defined over a nonempty

convex compact set C ⊆ R
n has a fixed point in C.

14



In order to bound the price π in (29), let us introduce the price interval defined as: given t > 0,

St , {π | 0 ≤ π ≤ t} , (30)

and truncate in (29) the nonnegative axis π ≥ 0 by St. We then replace (29) with the following price-

truncated optimization problem:

π⋆
t ∈ argmax

πt∈St

{πt · I(x⋆)} , (31)

where instead of π we used πt to make explicit the dependence of the optimal solution of (31) on t. Using

(31), the price-truncated game Gt(X , θ) can be defined as follows.

Game Gt(X , θ). The game is composed of Q+1 players’ optimization problems: the following nonconvex

optimization problems for the Q players

maximize
xq∈Xq

θq (xq, x−q)− πt · I(x), q = 1, . . . , Q, (32)

and the price-truncated optimization problem for the (Q+ 1)-st player

maximize
πt∈St

πt · I(x). (33)

Note that in the game Gt(X , θ) there are no side constraints, but the price complementarity condition

in (28) is treated as an additional player of the game, at the same level of the other Q players. In fact,

this formulation facilitates the solution analysis of the game, as detailed next.

Let us start our analysis by rewriting the NE of Gt(X , θ) as fixed-points of a proper best-response

map defined on a convex and compact set, which allows us to apply standard fixed-point arguments.

Given t ≥ 0, suppose that each optimization problem in (32) has a unique optimal solution for every fixed

x−q ∈ Y−q and πt ∈ St (we derive shortly conditions for this assumption to hold; see Proposition 2 below);

let denote such a solution by x⋆
q(x−q, πt), i.e.,

x⋆
q(x−q, πt) , argmax

zq∈Xq

{θq (zq, x−q)− πt · I(zq,x−q)} , (34)

where in (34) we made explicit the dependence of x⋆
q(x−q, πt) on the strategy profile x−q of the other

players and the price πt. In order to have a unique solution also of the price-truncated linear optimization

problem (33), we introduce the following proximal-based regularization in (33): given t ≥ 0, x ∈ Y, and

πt ∈ St, let

π⋆
t (x, πt) , argmax

µt∈St

{
µt · I(x)−

1

2
(µt − πt)

2

}
. (35)

Note that, thanks to the proximal regularization, the optimization problem in (35) becomes strongly

convex for any given (x, πt), and thus has a unique solution π⋆
t (x, πt), which depends on (x, πt). Building

on (34) and (35), we can introduce the following best-response map B : Y × St → Y × St associated with

the price-truncated game Gt(X , θ):

Y × St ∋ (x, πt) ,




x1

...

xQ

πt



7→ B(x, πt) ,




x⋆
1(x−1, πt)

...

x⋆
Q(x−q, πt)

π⋆
t (x, πt)




. (36)
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Note that, even though the feasible sets Xq of the players’ optimization problems in (32) are nonconvex,

the map B(•) is defined over the convex and compact set Y×St; which is a key point to apply the Brouwer

fixed-point theorem. Moreover, the set of fixed-points of B(•) coincides with that of the NE of the game

Gt(X , θ), establishing thus the desired connection between the map (36) and the game Gt(X , θ). More

formally, we have the following.

Lemma 1. Suppose that each optimization problem in (34) has a unique optimal solution for every given

x−q ∈ Y−q and πt ∈ St. A tuple (x⋆, π⋆
t ) is a NE of Gt(X , θ) if and only if it is a fixed-point of the map

B(•); that is (x⋆, π⋆
t ) = B (x⋆, π⋆

t ).

Based on Lemma 1, we can now study the existence of a NE of Gt(X , θ) by focusing on the fixed-points

of the map B.

Step 2: Existence of a NE of Gt(X , θ)

We provide now sufficient conditions guaranteeing that each nonconvex problem (32) has a unique optimal

solution, for every given x−q ∈ Y−q and πt ∈ St. Then, we show that these conditions are also sufficient

for the existence of a fixed-point of the map B in (36), and thus a NE of the game Gt(X , θ).
It is well-known that, under some Constraint Qualification (CQ), a locally/globally optimal solution of

a (possibly nonconvex) nonlinear program satisfies the Karush-Kuhn-Tucker (KKT) conditions associated

with the optimization problem; such solutions are called stationary solutions of the optimization problem.

It turns out that to establish the single-valuedness of the players’ best-response map it is enough to derive

conditions guaranteeing the uniqueness of the stationary solutions, provided that a suitable CQ holds. The

classical approach to write the KKT conditions of each player’s optimization problem would be introducing

multipliers associated with all the constraints in the set Xq−both the convex part Yq and the nonconvex

part Iq(xq) ≤ 0 [cf. (18)]−and then maximizing the resulting Lagrangian function over the whole space

(i.e., considering an unconstrained optimization problem for the Lagrangian maximization). The study

of the uniqueness of the stationary solutions based on the “standard” KKT conditions is however not an

easy task. To simplify the analysis, we propose here a different approach: instead of explicitly accounting

all the multipliers as variables of the KKT system, for each player’s optimization problem, we introduce

multipliers only for the nonconvex constraints Iq(xq) ≤ 0, and retain the convex part Yq as explicit

constraints in the maximization of the resulting Lagrangian function. More specifically, denoting by λq

the multiplier associated with the nonconvex constraint Iq(xq) ≤ 0 of player q, the Lagrangian function

associated with the optimization problem (32) of player q (rewritten as a minimization) is

Lq((xq, λq) , x−q, πt) , −θq(xq,x−q) + λq · Iq(xq) + πt · I(xq,x−q), (37)

which depends also on the strategies x−q of the other players and the price πt. Given x−q and πt, it is not

difficult to see that if x⋆
q is an optimal solution of the q-th player’s optimization problem in (23) and some

CQ holds at x⋆
q, there exists a multiplier λ⋆

q associated with the local nonconvex constraint Iq(xq) ≤ 0

such that the tuple
(
x⋆
q , λ

⋆
q

)
satisfies

(i) : x⋆
q ∈ argmin

xq ∈Yq

{
Lq
(
(xq, λ

⋆
q),x−q, πt

)}

(ii) : 0 ≤ λ⋆
q ⊥ − Iq(x

⋆
q) ≥ 0.

(38)
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Note that each Lagrangian minimization in (i) is constrained over the convex part Yq of the player’s local

constraints Xq. Since Yq is a convex set, we can invoke the variational principle for the optimality of x⋆
q

in (i), and obtain the following necessary conditions for (38) to hold:

(i
′

) :
(
xq − x⋆

q

)T ∇xqLq
(
(x⋆

q , λ
⋆
q), x−q, πt

)
≥ 0 ∀xq ∈ Yq

(ii
′

) : (λq − λ⋆
q) ·
(
− Iq(x

⋆
q)
)
≥ 0, ∀λq ∈ R+

(39)

where (i
′

) is just the aforementioned first-order (necessary) optimality condition of the (nonconvex) opti-

mization problem in (i), albeit with a convex feasible set Yq; and (ii
′

) is equivalent to (ii). Finally, since

there is no coupling in the constraints involving the variables xq and λq in (i
′

)-(ii
′

), we can equivalently

rewrite the two separated inequalities (i
′

)-(ii
′

) as one inequality, obtaining

(
xq − x⋆

q

λq − λq
⋆

)T


∇xqLq

(
(x⋆

q , λ
⋆
q), x−q, πt

)

− Iq(x
⋆
q)




︸ ︷︷ ︸
,Fq

(
(x⋆

q , λ
⋆
q); x−q, πt

)

≥ 0, ∀ (xq, λq) ∈ Yq × R+︸ ︷︷ ︸
,Kq

. (40)

The above system of inequalities defines the so-called VI problem in the variables (xq, λq) for fixed

(x−q, πt), whose defining vector function is Fq (•; x−q, πt) and feasible set is Kq, both defined in (40);2 such

a VI is denoted by VI(Kq,Fq). According to the implications (38)⇒(40), the VI(Kq,Fq) is an equivalent

reformulation of the KKT conditions of the q-th player’s optimization problem in (23), wherein the convex

constraints Yq’s (and thus the associated multipliers) have been absorbed in the VI set Kq, which is thus

convex. It turns out that the nonconvex problem in (23) has a unique optimal solution for any given x−q

and πt−the best-response of (36) is unique, and thus x⋆
q(x−q, πt) is well-defined−if the VI(Kq,Fq) has a

unique xq-component solution and some CQ holds. Proposition 2 below shows that Abadie CQ [35, Ch. 3.2]

is satisfied by any nontrivial optimal solution of (23) and establishes the uniqueness of the xq-component

under the positive definiteness of the Hessian matrix ∇2
xq
Lq ((xq, λq), x−q, πt) of Lq((xq, λq) , x−q, πt), for

all (xq, λq) ∈ Kq and any given x−q ∈ Y−q and πt ≥ 0. The matrix ∇2
xq
Lq ((xq, λq), x−q, πt) [interpreted

as a function of (xq, λq), for fixed x−q and πt] is given by

∇2
xq
Lq ((xq, λq), x−q, πt) , −∇2

xq
θq(xq,x−q) + λq · ∇2

xq
Iq(xq) + πt · ∇2

xq
I(xq,x−q). (41)

Lemma 12 in Appendix A shows that all the λq-solutions of the VI(Kq,Fq) are bounded from above,

for every given x−q ∈ Yq and πt ∈ St. Specifically, it holds that any λ⋆
q satisfies λ⋆

q ∈ [0, λmax] (see Lemma

12 in Appendix A), with

λmax ,

Q∑

q=1

1/

[
min

1≤q≤Q

{
Imax
q , min

1≤k≤N
pmax
q,k

}]


 min

1≤k≤N





log


 1 +

pmax
q,k

σ2
q,k +

∑

r 6=q

|Hqr(k)|2 pmax
r,k









 min

1≤k≤N

{
σ2
q,k

}

. (42)

2Given a set Q ⊆ R
n and a vector-valued function Ψ : Q → R

n, the VI(Q,Ψ) problem is to find a point z
⋆ ∈ Q, termed

a solution of the VI, such that (z− z
⋆)TΨ(z⋆) ≥ 0 for all z ∈ Q [35].
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This allows us to restrict the requirement on the positive definiteness of ∇2
xq
Lq ((xq, λq), x−q, πt) on all

xq ∈ Yq and λq ∈ [0, λmax]. The above discussion is made formal in the following proposition.

Proposition 2. Let x−q ∈ Y−q and πt ∈ St for some t > 0. Suppose that ∇2
xq
Lq ((xq, λq), x−q, πt) in

(41) is positive definite for all xq ∈ Yq and λq ∈ [0, λmax]. Then, the q-th nonconvex optimization problem

in (32) has a unique optimal solution x⋆
q ∈ Xq that is necessarily nontrivial.

Proof. See Appendix A.

Note that under conditions in the above proposition, the optimization problems in (32) remain non-

convex (the constraint set Xq is indeed nonconvex). To shed light on the physical interpretation of the

obtained result, we provide in Corollary 3 below easier conditions to be checked (but more restrictive)

under which Proposition 2 is true. To state the corollary, we use as weights wq,k’s involved in the interfer-

ence constraints (7) and (8) the cross-channels between secondary and primary users, i.e., wq,k = GP,q(k),

for all q = 1, . . . , Q and k = 1, . . . , Q (more general conditions are given in Appendix A).

Corollary 3. Proposition 2 holds if the following sufficient condition is satisfied:

γ(1)q · max
k=1,...,N

{ |GP,q(k)|2
I tot

}
< 1, (43)

where γ
(1)
q is a positive constant that depends only on system/sensing parameters and it is defined in (102)

(cf. Appendix B)

Proof. See Appendix B.

The condition in (43) has an interesting physical interpretation: the nonconvex problem in (32) has

a unique solution provided that the (normalized) cross-channels between the secondary and the primary

users are “sufficiently” small, meaning that there is not “too much” interference at the primary receivers;

see Sec. 4.3 for more details on the physical interpretation of the above conditions.

Based on Proposition 2 and Lemma 1, we can now establish the existence of a NE of the game Gt(X , θ)
invoking the existence of a fixed-point of the single-valued mapping B(•) defined in (36).

Proposition 4. Given t > 0, suppose that each matrix ∇2
xq
Lq ((xq, λq), x−q, πt) in (41) is positive definite

for all (xq, λq) ∈ Yq × [0, λmax], x−q ∈ Yq, and πt ∈ St. Then, the game Gt(X , θ) has a (nontrivial) NE.

Proof. Under the positive definiteness of each matrix ∇2
xq
Lq ((xq, λq), x−q, πt), the optimization problems

(34) and (35) have a unique optimal solutions x⋆
q(x−q, πt)’s and π⋆

t (x, πt), respectively, for any given

x ∈ Y and πt ∈ St. Since these optimal solutions are unique, it is not difficult to show that they are

continuous functions of the parameters (x, πt) (see, e.g., [39]), implying that the single-valued map B
in (36) is a continuous function on the convex and compact set Y × St. It follows from the Brouwer

fixed-point theorem, that B has a fixed-point, which is a NE of the game Gt(X , θ) (Lemma 1). It follows

from Proposition 2 that such a NE must be nontrivial.
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Step 3: Existence and uniqueness of a NE of the game G(X , θ)

To pass from a NE of the price-truncated game Gt(X , θ) to a NE of the original game G(X , θ), we argue

that there exists a sufficiently large t > 0 such that the truncation constraint πt ≤ t in St is not binding

at the optimal solution π⋆
t of the price-truncated optimization problem (35), corresponding to a NE of

Gt(X , θ). This implies that a NE of Gt(X , θ) is also a NE of G(X , θ) and, as such, existence conditions

given in Proposition 4 for the game Gt(X , θ) apply also to G(X , θ). This is made formal in Theorem 5

below, where we derive sufficient conditions for the existence and uniqueness of a NE of G(X , θ).
To introduce the theorem, we follow a similar approach as in Step 2: i) we first write the KKT

conditions associated with the game Gt(X , θ), which under some CQ, are necessary conditions for a tuple

(x⋆, π⋆
t ) to be a NE of Gt(X , θ) along with some multipliers associated with the local nonconvex constraints

{Iq(xq) ≤ 0, q = 1, . . . , Q} and the truncation in St; and then ii) we rewrite this KKT system as a proper

VI problem, whose solution analysis leads to the desired results (c.f. Theorem 5).

Under a suitable CQ, every NE (x⋆, π⋆
t ) of Gt(X , θ) will satisfy the KKT conditions of the game,

which are obtained by aggregating the KKT conditions of players’ optimization problems in (32) and (33).

Denoting by λ⋆
q and η⋆t the multipliers associated with the nonconvex constraint Iq(x

⋆
q) ≤ 0 of player q

and the price truncation π⋆
t ≤ t in St, respectively, and proceeding as in (38)-(40), the KKT conditions of

Gt(X , θ) that are necessarily satisfied by any NE (x⋆, π⋆
t ) can be written as:

(i) :




x1 − x⋆
1

...

xQ − x⋆
Q




T 


∇x1
L1
(
(x⋆

1, λ
⋆
1), x

⋆
−1, π

⋆
t

)

...

∇xQ
LQ
(
(x⋆

Q, λ
⋆
Q), x

⋆
−Q, π

⋆
t

)


 ≥ 0, ∀xq ∈ Yq and q = 1, . . . , Q,

(ii) :




(λ1 − λ⋆
1)

...

(λQ − λ⋆
Q)




T 


− I1(x
⋆
1)

...

− IQ(x
⋆
Q)


 ≥ 0, ∀λq ≥ 0 and q = 1, . . . , Q

(iii) : 0 ≤ π⋆
t ⊥ −I(x⋆) + η⋆t ≥ 0 and 0 ≤ η⋆t ⊥ t− π⋆

t ≥ 0.

(44)

Observing that the complementarity conditions in (iii) of (44) are equivalent to the VI problem in the πt

variable:

(πt − π⋆
t ) · (−I(x⋆)) ≥ 0, ∀πt ∈ St,

the KKT system (44) can be equivalently rewritten as




x− x⋆

λ − λ⋆

πt − π⋆
t




T



(
∇xqLq

(
(x⋆

q, λ
⋆
q), x

⋆
−q, π

⋆
t

))Q
q=1

(
−Iq(x⋆

q)
)Q
q=1

−I(x⋆)




︸ ︷︷ ︸
,Ψ(x⋆,λ⋆, π⋆

t )

≥ 0, ∀(x, λ, πt) ∈ Y × R
Q
+ × St︸ ︷︷ ︸

,Zt

,
(45)

which represents a VI problem in the tuple (x, λ, πt), i.e., VI(Zt, Ψ), with x = (xq)
Q
q=1 and λ , (λq)

Q
q=1.
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Based on the VI formulation (45), in Appendix C we prove that the following two properties are

satisfied by any solutions (x⋆, λ⋆, π⋆
t ) of VI(Zt, Ψ) and thus by any NE of Gt(X , θ) (under some suitable

CQ): i) at any (x⋆, λ⋆, π⋆
t ), π

⋆
t is bounded from above by π⋆

t ≤ λmax, with λmax defined in (42); and ii)

the x-component of (x⋆, λ⋆, π⋆
t ) is unique if the Jacobian matrix of

(
∇xqLq((xq, λq), x−q, πt)

)Q
q=1

with

respect to x, denoted by A(x, λ, πt), is positive definite on Y × [0, λmax]Q × St, with A(x, λ, πt) given

by:

A(x, λ, πt) , Jx




∇x1
L1((x1, λ1), x−1, πt)

...

∇xQ
LQ((xQ, λQ), x−Q, πt)


 . (46)

Building on the established connection between the NE of Gt(X , θ) and the solutions of the VI(Zt, Ψ)

and using properties i) and ii) above, we can finally obtain the desired existence and uniqueness result:

(a) It follows from property i) that since the truncated game Gt(X , θ) has a NE for t > λmax (which is

guaranteed under conditions in Proposition 4), the original game G(X , θ) must have a NE as well; and

(b) According to property ii), if there exists a t > λmax such that A(x, λ, πt) is positive definite for

all (x, λ, πt) ∈ Y × R
Q
+ × St, the x-component of the solution of the VI(Zt, Ψ)−and thus of the NE of

G(X , θ)−is unique. These results are collected in Theorem 5 below and formally proved in Appendix C.

Theorem 5. Given the game G(X , θ) and λmax defined in (42), the following hold:

(a) Suppose that there exists a t > λmax such that each matrix ∇2
xq
Lq ((xq, λq), x−q, πt) in (41) is positive

definite for all (xq, λq) ∈ Yq× [0, λmax], x−q ∈ Yq, and πt ∈ St. Then, every NE (x⋆, π⋆
t ) of Gt(X , θ)

is a NE of G(X , θ); therefore G(X , θ) has a NE;

(b) If the condition in (a) is strengthened by the following: the matrix A(x, λ, πt) in (46) is positive

definite for all x ∈ Y, λ ∈ [0, λmax]Q, and πt ∈ St, then the x-component of the NE of the game

G(X , θ) is unique.

Proof. See Appendix C.

Sufficient conditions for the matrix A(x, λ, πt) to be positive definite are given in the following.

Corollary 6. Statement (b) [and thus also (a)] of Theorem 5 true if the following sufficient conditions

are satisfied: for all q = 1, . . . , Q,

γ(1)q · max
k=1,...,N

{ |GPq(k)|2
I tot

}
+ γ(2)q ·

∑

r 6=q

(
max

k=1,...,N

{
|Hqr(k)|2

σ2
q,k

}
+ max

k=1,...,N

{
|Hrq(k)|2

σ2
r,k

})
< 1, (47)

where γ
(1)
q and γ

(2)
q are positive constants depending only on system/sensing parameters and are defined

in (102) and (119), respectively (cf. Appendix D).

Proof. See Appendix D.
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4.3 Discussion on the existence/uniqueness conditions

Corollary 3 and Corollary 6 suggest an intuitive physical interpretation of the equilibrium existence/uniqueness

conditions: existence of an equilibrium and uniqueness of the x-component are ensured if the MUI in

the network is sufficiently small (compared to the background noise). More specifically, existence re-

sults in (43) impose a limit (only) on the maximum interference that the the SUs are allowed to gen-

erate at the primary receivers, measured by max
k=1,...,N

{
|GPq(k)|2/I tot

}
. Uniqueness conditions in (47)

impose instead a limit on the maximum MUI experienced at both primary and secondary receivers.

This is clear looking at the LHS of (47): the first term on the LHS, max
k=1,...,N

{
|GPq(k)|2/I tot

}
, co-

incides with that of (43), imposing thus a limit on the MUI at the PU, whereas the second term,∑
r 6=q max

k=1,...,N

{
|Hqr(k)|2/σ2

q,k

}
+
∑

r 6=q max
k=1,...,N

{
|Hrq(k)|2/σ2

r,k

}
, limits the overall MUI in the secondary

network; indeed, the quantity
∑

r 6=q max
k=1,...,N

{
|Hrq(k)|2/σ2

r,k

}
is an estimate of the maximum interference

generated by each SU q against all the other SUs r’s, and
∑

r 6=q max
k=1,...,N

{
|Hqr(k)|2/σ2

q,k

}
can be inter-

preted as a limit on the maximum MUI tolerable by each secondary receiver q and generated by all the

other secondary transmitters r’s. These two sources of MUI affect the uniqueness through the constants

γ
(1)
q and γ

(2)
q , which depend on the fixed sensing/device-level parameters as well as on the SU/PUs’ QoS

requirements (e.g., maximum false alarm rate/minimum detection probability, and maximum sensing time

constraints).

Interestingly, conditions in (47) are of the same genre as those obtained in the literature to guarantee

the uniqueness of the NE of convex games modeling the power control problem in ad-hoc networks [18,

40, 19, 20] and CR systems [41, 21]. The main difference is that, because of the nonconvexity of some

constraints and the joint optimization of sensing and transmission strategies, in (47), there is an extra term,

max
k=1,...,N

{
|GPq(k)|2/I tot

}
, limiting the interference generated also against the PUs and the two weights

γ
(1)
q and γ

(2)
q capturing the sensing/QoS requirements.

5 Distributed Algorithms

This section is devoted to the design of distributed algorithms that solve the proposed class of games and

the study of their convergence. Before analyzing the most general game G(X , θ), we focus on solution

methods for the game where the price π is a fixed exogenous parameter (and thus there are only local

interference constraints). The resulting algorithms will be used as a subroutine in an extended iterative

algorithm solving the more complex game G(X , θ) wherein the prices are endogenous variables to optimize.

5.1 Game with exogenous price

When the price π is an exogenous fixed parameter, game G(X , θ) reduces to the following game.

Game Gπ(X , θ). The optimization problem of player q is: given x−q ∈ X−q and π ≥ 0,

maximize
xq∈Xq

θq (xq, x−q)− π · I(xq,x−q) q = 1, . . . , Q. (48)

We have denoted such a game by Gπ(X , θ), making explicit the fact that π is an exogenous fixed
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parameter. Note that Gπ(X , θ) contains as special cases the game with zero price (and thus no global

interference constraints) as introduced in Sec. 3.1, and the equisensing game with constant price π (and

local interference constraints only), which is an instance of the game G(X , θ) introduced in Sec. 3.2.

Therefore, Algorithms for Gπ(X , θ) apply also to the aforementioned special cases.

We are interested in iterative schemes based on the best-response mapping: according to a given

scheduling (e.g., sequentially, simultaneously, or asynchronously), each SU solves his own optimization

problem in (48), given the strategies of the others. If this procedure converges and some suitable conditions

are satisfied, it will converge to a NE of the game Gπ(X , θ). The Jacobi version of the proposed class of

algorithms wherein the users update their strategies simultaneously is formally described in Algorithm 1.

Algorithm 1: Jacobi Best-Response-Consensus Algorithm for Gπ(X , θ)
(S.0) : Choose any feasible x(0) ∈ X and set n = 0.

(S.1) : If x(n) satisfies a suitable termination criterion: STOP.

(S.2) : Run a consensus algorithm to locally compute the average
1

Q

Q∑

r=1

τ̂
(n)
r√
fr

.

(S.3) : for q = 1, . . . , Q, compute

x(n+1)
q ∈ argmax

xq∈Xq

{
θq

(
xq, x

(n)
−q

)
− π · I(xq,x−q)

}
. (49)

(S.4) : n← n+ 1; go to (S.1).

In order to relax constraints on the synchronization of the players’ updates, totally asynchronous

schemes (in the sense specified in [42]) can be considered, where some SUs may update their strategy profile

more frequently than others and they may even use an outdated measurement of the interference generated

by the others (we refer to [42] and [20] for a formal description of asynchronous algorithms). The analysis of

this general class of algorithms is addressed in Appendix E, where we provide sufficient conditions for their

convergence; see Theorem 16 and Corollary 17. Since Algorithm 1 is an instance of these asynchronous

schemes, it converges under the same aforementioned conditions. It is worth remarking that the obtained

convergence conditions have the same physical interpretation of that given for the existence/uniqueness

of the NE (cf. Sec. 4.3). Roughly speaking, they require “low” interference in the network, meaning

“small” values of the (normalized) secondary cross-channels |Hqr(k)|2/σ2
q,k as well as secondary-primary

cross-channels |GPq(k)|2/I tot. Interestingly, they do not depend on the specific updating scheduling used

by the users, meaning that the whole class of asynchronous algorithms converges under the same set of

unified conditions. The main implication of this result is that all the algorithms obtained as special case

of the asynchronous scheme, such as the sequential (Gauss-Seidel scheme) and the simultaneous (Jacobi

scheme) best-response algorithms, are robust against missing or outdated updates of the players.

5.1.1 Discussion on the implementation

We discuss now some implementation issues related to the proposed algorithms; for notational simplic-

ity, we will focus only on Algorithm 1, but similar conclusions can be drawn also for the asynchronous

implementation.
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In Step 3 of the algorithm, each user q needs to compute its best-response, knowing the information

on the strategies of the others x
(n)
−q = (x

(n)
r )Qr 6=q=1, with each xr = (τ̂r,pr, P

fa
r ). Given the structure of the

feasible set Xq [specifically, the presence of local interference constraints (7)] and the functional dependence

of the objective function in (48) on x−q [see (23)], this knowledge requires each SU q to estimate: i) the

overall Power Spectral Density (PSD) of the MUI at each subcarrier,
∑

r 6=q |Hqr(k)|2pr,k; ii) the primary-

secondary cross-channel function (GPq(k))
N
k=1 [if the weights wq,k’s in the local interference constraints (7)

are chosen as wq,k = GPq(k)]; and iii) the average of the (normalized) sensing times (1/Q)
∑Q

r=1(τ̂r/

√
f
(r)
s )

of all the SUs. Among other remarks, we discuss next alternative distributed protocols to obtain these

estimates, each of them being characterized by a different level (albeit limited) of signaling among the

SUs and computational complexity.

Estimate of the MUI and the primary-secondary cross-channels

To measure the MUI in a totally distributed way, it is enough for the SUs to perform a preliminary

noise calibration of their receivers (during this phase of course the SUs must stay silent). After this

noise calibration phase, to acquire the MUI, the SUs just need to locally measure the global interference

experienced at their receivers. Note that this procedure does not require the SUs to be able to distinguish

between primary and secondary signaling.

Because of the presence of the individual interference constraints in the set Xq, each SU needs to

estimate also the secondary-primary cross-channel transfer function (GPq(k))
N
k=1 [if in (7) one uses wq,k =

GPq(k)]. This knowledge can be acquired by each SU in advance by using classical channel estimation

techniques, and updated at the rate of the channel coherence time. In the CR scenarios where the PUs

cannot communicate with the SUs (e.g., when the PUs are legacy systems) and thus cannot be involved

in the (cross-)channel estimation, and the primary receivers have a fixed geographical location, it may

be possible to install some monitoring devices close to each primary receiver having the functionality of

(cross-)channel/interference measurement.

In scenarios where the above options are not feasible and the channel state information cannot be

acquired, a different choice of the weights coefficients wq,k’s and the interference threshold Imax
q in (7) can

be made, based on worst-case channel/interference statistics. More specifically, one can replace the in-

stantaneous value of the secondary-primary cross-channel transfer function (GPq(k))
N
k=1 with its expected

value; the expected value of each GPq(k) is

E
{
|GPq(k)|2

}
=

σg
1 + (dPq/d0)

ς , (50)

where σg is a positive constant depending on the number of resolvable paths and their variance; ς is the

path loss exponent, which generally is 2 ≤ ς ≤ 6; dPq is the distance between the SU q and the PU; and

d0 is the Fraunhofer distance. The interference constraints imposed to each SU q become then

N∑

k=1

Pmiss
q,k

(
τq, P

fa
q

)
· σg
1 + (dPq/d0)

ς · pq,k ≤ Imax
q , (51)

which is still in the form of (7), with weights coefficients wq,k = σg/(1 + (dPq/d0)
ς).
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When the distance dPq in (51) is unknown, one can instead consider a probabilistic (conservative)

version of (51), based on the worst-case interference scenario, as proposed in [43]. Modeling dPq as a

random variable, we can impose

Prob

{
N∑

k=1

Pmiss
q,k

(
τq, P

fa
q

)
· σg
1 + (dPq/d0)

ς · pq,k ≤ Imax
q

}
≥ PI , (52)

where 0 ≤ PI ≤ 1 is a given positive constant guaranteeing the desired QoS at the primary receiver. To

obtain an explicit expression of the probability above, we consider next a more conservative constraint

implying (52). More specifically, denoting by dmin , minq dPq the distance between the PU and the

nearest SU q, the following interference constraint implies (52):

Prob

{
N∑

k=1

Pmiss
q,k

(
τq, P

fa
q

)
· σg
1 + (dmin/d0)

ς · pq,k ≤ Imax
q

}
≥ PI . (53)

Assuming that the SUs are randomly distributed according to a homogeneous Poisson point process with

spatial density ρ, dmin , minq dPq is Rayleigh distributed; the probability in (53) can be then evaluated

in closed form and we obtain [43]

N∑

k=1

Pmiss
q,k

(
τq, P

fa
q

)
· pq,k ≤ Īmax

q , with Īmax
q ,

Imax
q

σg
·
(
1 +
|ln(PI)|
πρr20

)
(54)

which is still in the form of (7), where wq,k = 1 and the interference threshold Imax
q is replaced by Īmax

q .

Estimate of the average sensing time [Step 2]

The average of the sensing times can be locally computed by each SU by running a consensus based

algorithm that requires the interaction only between nearby secondary nodes, as stated in Step 2. Con-

sensus algorithms have become popular over the past few decades since [44] as a practical scheme for the

in-network distributed calculation of general functions of the node values; several protocols suitable for dif-

ferent applications and working under different network settings have been proposed and their properties

analyzed; see, e.g., [45, 46] for a good overview of recent results. In order to minimize the running time of

the consensus iterates and thus the amount of signaling to be exchange in Step 2 by the SUs, we suggest

here to use the finite-time distributed convergence linear scheme proposed in [47]. The main advantage

of this scheme with respect to the more classical consensus/gossip algorithms whose convergence is only

asymptotic (i.e., exact consensus is not reached in a finite number of times) is that, at no extra signaling,

each node can immediately calculate the consensus value after observing the evolution of its own value

over a finite number of time-iterations (specifically, upper bounded by the size of the network).

The consensus scheme we consider in Step 2 of Algorithm 2 makes use of the following liner iterations:

given the (normalized) sensing times τ̂
(n)
q ’s obtained as output of Step 3 at iterations n, and setting

z
(0)
q = τ̂

(n)
q /

√
fq, each SU q updates at each (inner) time-iteration i its value as

z(i+1)
q = aqq z

(i)
q +

∑

r∈Nq

aqr

(
z(i)r − z(i)q

)
(55)
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where Nq is the set of neighbors of user q, which are the nodes that interfere with node q (the SUs’ network

is modeled as a directed graph); the cardinality of Nq, the number of neighbors of node q, is denoted by

degin
q , |Nq| (also called in the graph theory jargon the in-degree of node q); and the aqr’s are a set of

given coefficients. These weights represent a degree of freedom in the algorithm design; here we focus on

the following choice that can be made locally by each SU q:

aqr =





1, if r ∈ Nq

0, if r /∈ Nq

F − degin
q if r = q,

(56)

where F is any integer number. Associated with the SUs’ network topology, there are some absolute

quantities that play a role in the stopping criterion of the iterates (55) and the computation of the final

consensus value. More specifically, for each node q, there exist a scalar 0 ≤ Lq ≤ Q− degq and a (Lq +1)-

length vector mq ∈ R
Lq+1 having the following properties [47]: given the samples z

(0)
q , . . . , z

(Lq)
q collected

by the SU q in the first Lq + 1 iterations of (55), it holds that

mT
q




z
(0)
q

...

z
(Lq)
q


 =

1

Q

Q∑

r=1

z(0)r =
1

Q

Q∑

r=1

τ̂
(n)
r√
fr

. (57)

According to (57), each SU q can obtain locally the desired average of the sensing times after running the

linear iterates (55) for Lq +1 time-steps; this will require at most Q−degq +1 time-iterations. Note that,

to calculate the quantity in (57), the SUs do not need to store the entire set of samples z
(0)
q , . . . , z

(Lq)
q ;

instead one can compute the scalar product in (57) incrementally, as the iterations progress.

To implement the above protocol distributively, each SU q has to preliminarily estimate his own Lq

and mq; for time-invariant topologies this can be done just once; the cost of this computation will then be

amortized over the number of times the consensus algorithm is performed. In [47], the authors proposed

a decentralized protocol still based on the updating (55) to perform such a computation in (at most)

Q(Q − 1) iterations; we refer the interested reader to [47, Sec. V] for details. The consensus protocol

discussed above is formally described in Algorithm 2 below, which represents the subroutine to implement

Step 2 of Algorithm 1.

Algorithm 2: Finite-time Consensus Algorithm in Step 2 of Algorithm 1

Data : τ̂
(n)
q [from Step 2 of Algorithm 1], Lq, mq, and (aqr)

Q
r=1, for all q = 1, . . . , Q.

(S.2a) : Set z
(0)
q = τ̂

(n)
q , for q = 1, . . . , Q and set i = 0.

(S.2b) : for i = 1, . . . ,maxq Lq,

− Each SU q updates z
(i)
q according to (55)

− if i == Lq for some q, then SU q computes (57) and gets
1

Q

Q∑

r=1

τ̂
(n)
r√
fr

;

end (for).

In Algorithm 2, the number of iterations i required to propagate the consensus over the whole network

is maxq{Lq} + 1 ≤ Q −minq{degq} + 1. One can reduce such a number by slightly changing the above
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protocol: SU q runs the iteration (55) for Lq +1 consecutive time-steps, or until he receives the consensus

value from a neighbor. If Lq + 1 iterations passes without receiving the consensus value, SU q calculates

that value and broadcast it to his neighbors, along with a flag indicating that it is the consensus value

(and not just an intermediate value). In this way, “slower” SUs r’s will receive the final value at most one

iteration after node q.

On the time-complexity and communication costs

We quantify now the complexity of Algorithm 1 (whose Step 2 is implemented using Algorithm 2) in terms

of the minimum number of iterations required to reach the desired convergence accuracy and communica-

tion costs (number of message passing among the SUs). Both results come readily from the following two

facts.

Fact 1. The convergence conditions of Algorithm 1 as given in Theorem 16 in Appendix E are based on

the contraction properties of the best-response mapping Bπt(x) ,
(
x⋆
q(x−q, πt)

)Q
q=1

associated with the

game Gπ(X , θ) in (48), with each x⋆
q(x−q, πt) defined in (34): under assumptions in Theorem 16, there

exists a constant cB ∈ (0, 1) such that [see (139) in Appendix E]

‖Bπt(x)− Bπt(y)‖ ≤ cB ‖x− y‖ , ∀x,y ∈ X , (58)

where an explicit expression of the contraction constant cB is given in (139) (cf. Appendix E.1). If the

“suitable termination criterion” in Step 2 of Algorithm 1 is chosen as the smallest iteration n = nmin at

which the relative error
∥∥Bπt(x

(n))− x⋆
∥∥ /
∥∥x(0) − x⋆

∥∥ is less than a prescribed tolerance ǫmax > 0 [with

x⋆ being the NE of Gπ(X , θ)], (58) leads to

nmin ≥
ln (1/ǫmax)

ln |cB|
, (59)

which provides the number of iterations n required for Algorithm 1 to reach convergence (within the

accuracy ǫmax).

Fact 2. The consensus algorithm described in Algorithm 2 was shown to converge in at most maxq{Lq}+
1 ≤ Q−minq{degq}+1 iterations. The communication cost incurred by the protocol can be characterized

as follows. Given the directed graph modeling the network topology (the outgoing edges from each node q

link the nodes associated with the SUs who receive interference from SU q), each SU q transmits a scalar

value on each outgoing edge at each time-step i; since there are at most maxq{Lq} runs, each SU q will

have in principle to transmit (maxq{Lq} + 1) · degout
q messages, where degout

q is the out-degree of node

q (i.e., the number of SUs having user q as interferer). Thanks to the broadcast nature of the wireless

channel, however, a single transmission of each user q will be equivalent to communicating a message along

each of degout
q outgoing edges, and thus each node would only have to transmit maxq{Lq} + 1 messages.

Summing over all nodes in the network, there will be
∑Q

q=1(maxq{Lq}+ 1) overall messages that have to

be transmitted to run the consensus protocol.

Using Facts 1 and 2 above, one can conclude that Algorithm 1 (whose Step 2 is implemented by

Algorithm 2) converges (within the accuracy ǫmax) in
ln (1/ǫmax)

ln |cB|
· (maxq{Lq}+1) (outer plus inner-loop)

iterations, which is also the number of per/user message passing.

26



A special case: fixed equi-sensing times

In the scenarios where no coordination is allowed among the SUs to run a consensus algorithm, one can

implement a special case of Algorithm 1, where the SUs’ sensing times are fixed a-priori and thus not

optimized. This would correspond to solving the game Gπ(X , θ) in (48) where the sensing times τ̂q are

fixed and equal to a common value τ ; the resulting solution scheme will be like Algorithm 1 where there is

no Step 2 and the optimization problems in (48) are solved only with respect to the tuple (pq, P
fa
q ), given

τ̂q = τ . The time and communication complexity of such an algorithm is of the same order of that required

by the well-known iterative waterfilling algorithm proposed and studied in many papers [18, 19, 20, 24]

to distributively solve the rate maximization game over interference channels (there is no optimization of

the sensing part in any formulation of that game). The price in the reduction of signaling obtained with

the fixing of sensing times may be paid in terms of overall performance; in Sec. 6, we numerically quantify

the loss in using a fixed sensing time rather than optimizing it. This sheds some light on the trade-off

between performance and signaling in the proposed games.

On the best-response computation

A last comment deals with the computation of the best-response of each optimization problem (48), which

would require the capability of solving a nonconvex problems. This is not a difficult task under the

assumption of Theorem 16 (cf. Appendix E), which ensures that each of such (nonconvex) optimization

problems has a unique stationary point (cf. Proposition 2) that can be computed by any of nonlinear

programming solvers, provided that each SU q has the information on the strategies x−q of the other SUs.

Finally, observe that, when conditions in Theorem 16 are not satisfied, every limit point of the sequence

generated by the proposed algorithms, wherein the best-response solution is replaced by a stationary

solution, has still some optimality properties: it is guaranteed to be a QNE of the game, whose properties

have been studied in our companion paper [26].

5.2 Game with endogenous prices

We focus now on distributed algorithms for solving the general game G(X , θ). The main challenge here is

to obtain distributed algorithms in the presence of coupling nonconvex constraints. The proposed approach

is to reduce the solution of the nonconvex game G(X , θ) with side constraints to a solution of a sequence

of (compact and) convex 3 games of a particular structure with no side constraints. The advantage of

this method is that we can efficiently solve each of the convex games with convergence guarantee using

the best-response algorithms introduced in Sec. 5.1 for the game Gπ(X , θ) with exogenous price; the

disadvantage is that, to recover the solution of the original game G(X , θ), we have to solve a (possibly

infinite) number of convex games. However, it is important to remark from the outset that this potential

drawback is greatly mitigated by the fact that, as we discuss shortly, (i) one only needs to solve these

3According to the terminology introduced in [27], a game is said to be compact and convex if: i) the feasible set of each

player is a convex and compact set; and ii) the cost function of each player (to be minimized) is a convex and continuously

differentiable function of the strategy of that player, for any given strategy profile of the other players. The desired properties

of such games are: i) each player optimization problem is a convex problem and thus it can be solved using efficient numerical

algorithms; and i) they always have a NE.
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games inaccurately; (ii) the (inaccurate) solution of the NEPs usually requires little computational effort;

and (iii) in practice, a fairly accurate solution of the original game G(X , θ) is obtained after the solution

of a limited number of games in the sequence.

Before introducing the formal description of the algorithm, let us begin with some informal observations

and intermediate results motivating how the sequence of convex games is built; the mathematical details

can be found in Appendix F. At the basis of our analysis there are two results, namely: i) an equivalence

(under some conditions) between the game G(X , θ) and the VI(Zt, Ψ) introduced in (45); and ii) the

reformulation of the VI(Zt, Ψ) as a convex game with no side constraint. The former connection, which is

made formal in Lemma 7 below, allows us to remove side constraints from the game G(X , θ), whereas the

latter, given in Lemma 8 below, paves the way to the use of best-response algorithms for convex games

with no side constraints, as introduced in Sec. 5.1.

Lemma 7. Given the game G(X , θ), suppose that there exists some t > λmax such that the matrix

A(x, λ, πt) in (46) is positive definite for all x ∈ Y, λ ∈ [0, λmax]Q, and πt ∈ St. Then G(X , θ) is

equivalent to the VI(Zt, Ψ), which always has a solution. The equivalence is in the following sense: for

any solution
(
xVI, λVI, πVI

t

)
∈ Zt of the VI, the tuple

(
xVI, πVI

t

)
is a NE of G(X , θ); conversely, the game

G(X , θ) has a NE (x⋆, π⋆
t ), and for any such a NE there exist multipliers λ⋆ ∈ [0, λmax]Q associated with

the nonconvex constraints {Iq(x⋆
q), q = 1, . . . , Q} such that (x⋆, λ⋆, π⋆

t ) is a solution of the VI(Zt, Ψ).

Sufficient conditions for A(x, λ, πt) to be positive definite along with their physical interpretation

are given in Sec. 4.3 (cf. Corollary 6). Under conditions of Lemma 7, one can solve the VI(Zt, Ψ) and

obtain the NE of the original game G(X , θ). Since we are interested in using best-response algorithms as

those developed in Sec. 5.1 for games with exogenous price and no side constraints, we rewrite next the

VI(Zt, Ψ) as a game, and then use best-response algorithms to solve that game. More formally, let us

introduce the following game with no side constraints wherein the players, anticipating rivals’ strategies,

solve
(i) : minimize

xq∈Yq

Lq ((xq, λq), x−q, πt) , q = 1, . . . , Q

(ii) : minimize
λq∈[0, λmax]

−λq · Iq(xq), q = 1, . . . , Q,

(iii) : minimize
πt∈St

−πt · I(x).

(60)

The following connection holds between the above game and the VI(Zt, Ψ).

Lemma 8. Under the setting of Lemma 7, the VI(Zt, Ψ) is equivalent to the game in (60), which always

admits a NE.

Note that the game in (60) is composed of 2Q+1 players. The first Q players in (i) correspond to the

players of the original game G(X , θ)−the SUs in the system−that now optimize a different cost function,

which is the “Lagrangian” function associated with their original cost functions in (23), for a given set

of price πt and multiplies λ. In addition to the Q SUs, there are Q + 1 more players solving problems

(ii) and (iii); they act as virtual players who aim to compute the optimal multipliers λq’s associated with

the nonconvex local interference constraints {Iq(xq), q = 1, . . . , Q} and the optimal price πt, respectively.

By introducing these virtual players, the original game G(X , θ) can be transformed (under the setting of
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Lemma 7) into the desired (compact and) convex game with only local constraints, which paves the way

to the design of best-response algorithms for the game G(X , θ).
We proved in Appendix E that the best-response algorithms introduced in Sec. 5.1 converge under

conditions implying the uniqueness of individual player’s optimization problems. The game in the form

(60) however may never satisfy such conditions; indeed, the linear programming problems in (ii) and (iii)

have multiple optimal solutions whenever some Iq(xq) = 0 or I(x) = 0. To overcome this issue, we follow

a similar idea as in Step 1 of Sec. 4.2 and introduce in (ii) and (iii) of (60) a proximal-based regularization

of the λ-variables and price πt, so that the resulting modified optimization problems become strongly

convex. Given the center of the regularization of the λ-variables, say λ0 , (λ0
q)

Q
q=1, and the price πt, say

π0
t , and the proximal gain α > 0, the regularized version of the game in (60), denoted by Gt(X ,θ,λ0, π0

t )

is the following.

Game Gt(X ,θ,λ0, π0
t ). Anticipating rivals’ strategies and given λ0 , (λ0

q)
Q
q=1, π0

t , and α > 0, the

2Q+ 1 players solve the following optimization problems:

minimize
xq∈Yq

Lq ((xq, λq), x−q, πt) , q = 1, . . . , Q

minimize
λq∈[0, λmax]

−λq · Iq(xq) +
α

2

(
λq − λ0

q

)2
, q = 1, . . . , Q,

minimize
πt∈St

−πt · I(x) +
α

2

(
πt − π0

t

)2

(61)

The main (desired) property of game Gt(X ,θ,λ0, π0
t ) is that, under the setting of Lemma 7, the NE

is unique and it can be computed with convergence guarantee using best-response algorithms as those

introduced in Sec. 5.1 (we make formal this statement shortly). Nice as it is, this result would be of no

practical interest if we were not able to connect the solutions of Gt(X ,θ,λ0, π0
t ) with those of the game in

(60) and thus the original game G(X , θ). In fact, the solution of Gt(X ,θ,λ0, π0
t ) and (60) are in general

different but, nevertheless, there exists a connection between them, as stated in the following lemma.

Lemma 9. Under the setting of Lemma 7, a tuple (x⋆,λ⋆, π⋆
t ) is a NE of the game in (60) if and only if

it is a NE of the game Gt(X ,θ,λ⋆, π⋆
t ). Therefore, such a (x⋆, π⋆

t ) is a NE of the original game G(X ,θ).

Providing the relationship between G(X ,θ), the game in (60), and Gt(X ,θ,λ0, π0
t ), Lemma 9 opens

the way to the design of best-response algorithms that solve the original game G(X ,θ): instead of solving

G(X ,θ) directly, starting from an arbitrary regularization tuple (λ0, π0
t ) > 0, one can solve the sequence

of games Gt(X ,θ,λ0, π0
t )→ · · · → Gt(X ,θ,λn, πn

t )→ · · · , where the center (λn, πn
t ) of the regularization

of the game at stage n is just the (λ, πt)-component of the (unique) NE of the game Gt(X ,θ,λn−1, πn−1
t )

in the previous stage. If this procedure converges, it must converge to a tuple (x⋆,λ⋆, π⋆
t ) that necessarily

is a NE of the game Gt(X ,θ,λ⋆, π⋆
t ), which implies by Lemma 9 that (x⋆,λ⋆) is also a NE of the original

game G(X ,θ). A flow-chart with the connection of all these games along with an informal description of

the above ideas is given in Figure 1.
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A (x,λ,π) ≻ 0

[Lemma 7]

Augmented game in (60)

(x,λ, πt) = game variables
x = player’s strategy profile

(λ, πt) = virtual players’ strategies

(x⋆,λ⋆, π⋆

t
) = NE

Game G(X ,θ)

(x, π) = game variables
x = players’ strategy profile

π = price variable associated with
the side constraint I(x) ≤ 0

(x⋆, π⋆) = NE

VI(Zt, Ψ) [t > λmax]

(x,λ, π) = VI variables
x = primal variable

λ = dual variables of {Iq(xq) ≤ 0, q = 1, . . . , Q}
π = dual variable of I(x) ≤ 0

(xVI,λVI, πVI) = VI solution

(x⋆,π⋆) = (xVI,πVI)

A
(x
,λ

,π
)
≻

0

[L
em

m
a
8]

(xVI,λVI, πVI) = (x⋆,λ⋆, π⋆

t
)

A (x,λ,π) ≻ 0

[Theorem 10]

Solve the sequence of games Gt(X ,θ,λn,πn
t )

Gt(X ,θ,λ0,π0

t ) → · · ·
n→∞

→ Gt(X ,θ,λ∞,π∞

t )

(x⋆,∞,λ⋆,∞,π
⋆,∞

t ) = NE of Gt(X ,θ,λ∞,π∞

t )
(x⋆,∞,λ⋆,∞,π

⋆,∞

t ) = (x⋆,λ⋆,π⋆

t )

(a) (b)

(c)(d)

Figure 1: Connection among G(X ,θ), VI(Zt,Ψ) , and the sequence of games Gt(X ,θ,λn, πn
t ). Under the setting of Lemma

7, we have the following: i) G(X ,θ) in (a) is equivalent to the “augmented” VI(Zt,Ψ) in (b), where the local interference

constraints {Iq(xq), q = 1, . . . , Q} are “relaxed” by introducing the multipliers λ , (λq)
Q
q=1 and π is a variable of the VI; ii) the

VI(Zt,Ψ) can be interpreted as a (compact) convex “augmented” game with no side constraints as represented in (c) [see (60)],

where there are Q real players, the SUs, and Q+1 virtual players who aim to optimize the multipliers λq’s and the price variable

πt; iii) a NE of the augmented game (60), and thus the original game G(X ,θ), is computed via best-response algorithms

solving the sequence of regularized convex games with no side constraints Gt(X ,θ,λ0, π0
t ) → · · · → Gt(X ,θ,λ∞, π∞

t ) as

shown in (d).

A formal description of the above solution method is given in Algorithm 3 below, which provides the de-

sired best-response based scheme solving the game G(X ,θ); the convergence conditions are given in Theo-

rem 10. In the algorithm we use the following notation: given (λn, πn
t ), we denote by (x⋆(λn, πn

t ),λ
⋆(λn, πn

t ),

π⋆
t (λ

n, πn
t )) the NE tuple of the game Gt(X ,θ,λn, πn

t ), where we make explicit the dependence on the reg-

ularization offset (λn, πn
t ).
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Algorithm 3: Best-Response Algorithm for G(X ,θ)
(S.0) : Choose any tuple

(
λ0, π0

t

)
> 0, with λ0 , (λ0

q)
Q
q=1, and some ǫ ∈ (0, 1); set n = 0.

(S.1) : If (x⋆(λn, πn
t ), λ

⋆(λn, πn
t ), π

⋆
t (λ

n, πn
t )) satisfies a suitable termination criterion: STOP.

(S.2) : Solve the game Gt(X ,θ,λn, πn
t ); let (x⋆(λn, πn

t ), λ
⋆(λn, πn

t ), π
⋆
t (λ

n, πn
t )) be the NE.

(S.3) : Update the center of the regularization:

λn+1
q , (1− ǫ) · λn

q + ǫ · λ⋆
q(λ

n, πn
t ), q = 1, . . . , Q,

πn+1
t , (1− ǫ) · πn

t + ǫ · π⋆
t (λ

n, πn
t ).

(62)

.

(S.4) : n← n+ 1; go to (S.1).

Theorem 10. Under the setting of Lemma 7, the sequence {(x⋆(λn, πn
t ), π

⋆
t (λ

n, πn
t ))}∞n=0 generated by

Algorithm 3 globally converges to a NE of G(X ,θ).

Proof. See Appendix F.

It is interesting to observe that Algorithm 3 converges under the same conditions introduced in Propo-

sition 5 and guaranteeing the uniqueness of the x-component of the NE of G(X ,θ); we refer to Corollary

6 and Sec. 4.3 for easier conditions to be checked as well as a detailed discussion on their interpreta-

tion in terms of the system parameters. We discuss next some practical implementation issues related to

Algorithm 3.

5.2.1 Discussion on the implementation

Algorithm 3 is conceptually a double-loop scheme wherein at each (outer) iteration n, given the current

values of the regularization parameters (λn, πn
t ), the SUs solve the game Gt(X ,θ,λn, πn

t ) (with t > λmax)

[Step 2], which requires an inner iterative process. Once the NE of Gt(X ,θ,λn, πn
t ) is reached, the reg-

ularization parameters (λn, πn
t ) are updated according to (62) [Step 3], which represents the outer loop,

and the new game Gt(X ,θ,λn+1, πn+1
t ) is played again (if the convergence criterion in Step 1 is not met).

In practice, however, Algorithm 3 is implementable as a single-loop scheme: the SUs play the game

Gt(X ,θ,λn, πn
t ), wherein from “time to time” (more precisely, when a NE is reached within the required

accuracy) the objective functions of the virtual players are changed by updating the regularization terms

from α
2 (λq − λn

q ) and α
2 (πt − πn

t ) to α
2 (λq − λn+1

q ) and α
2 (πt − πn+1

t ), respectively.

In order to implement the aforementioned single-scale scheme, the following issues need to be addressed:

1) How to solve each inner game Gt(X ,θ,λn, πn
t ) via distributed best-response algorithms? 2) How to

update the regularization parameters in a distributed way? and 3) How to check the terminations of

the inner process in Step 2−the SUs have reached a NE of the game Gt(X ,θ,λn, πn
t ) within the desired

accuracy? We provide an answer to these questions next.

On the inner game and price/multipliers update [Steps 2 and 3]

Capitalizing on the solution methods that we developed in Sec. 5.1 for games with exogenous price and

no side constraints, a natural choice for computing a NE of each Gt(X ,θ,λn, πn
t ) in Step 2 of Algorithm

31



3 is applying those best-response asynchronous algorithms to Gt(X ,θ,λn, πn
t ). For instance, if a Jacobi

scheme is chosen (cf. Algorithm 1), Algorithm 3 reduces to Algorithm 4 below, which sheds light on the

signaling and complexity requirements of the proposed class of algorithms. In Algorithm 4 we use the

following notation:
(
x⋆(λ, πt), λ

⋆(λ, πt), π
⋆
t (λ, πt)

)
denotes the NE of Gt(X ,θ,λ, πt), and [x]λ

max

0 in (63)

is the Euclidean projection onto the interval [0, λmax], i.e., [x]λ
max

0 , max(0,min(x, λmax)).

Algorithm 4: Jacobi Best-Response-Consensus Algorithm for G(X ,θ)
(S.0) : Choose i) any arbitrary starting point (x(0),λ(0), π

(0)
t ), with x(0) , (τ̂

(0)
q ,p

(0)
q , P

fa(0)
q ) ∈

Y and (λ(0), π
(0)
t ) > 0; ii) any regularization tuple

(
λ, πt

)
> 0 , and iii) some ǫ ∈ (0, 1); set

n = 0.

(S.1): If
(
x⋆(λ, πt), λ

⋆(λ, πt), π
⋆
t (λ, πt)

)
satisfies a suitable termination criterion: STOP.

(S.2a): Run a (vector) consensus algorithm to locally compute the current values of
1

Q

Q∑

q=1

τ̂
(n)
q√
fq

and I
(
x(n)

)
=

Q∑

q=1

Iq(x
(n)
q ) [cf. Algorithm 2];

(S.2b): Update the players’ strategies simultaneously:

x
(n+1)
q ∈ argmin

xq∈Yq

{
Lq
(
(xq, λ

(n)
q ), x

(n)
−q , π

n
t

)}
, ∀q = 1, . . . , Q

λ
(n+1)
q =


λq +

Iq

(
x
(n)
q

)

α



λmax

0

, ∀q = 1, . . . , Q

π
(n+1)
t =

[
πt +

I
(
x(n)

)

α

]λmax

0

.

(63)

(S.3) : If
(
x(n+1), λ(n+1), π

(n+1)
t

)
is a NE of Gt(X ,θ,λ, πt), then

1) update the regularization tuple
(
λ, πt

)
:

λq = λ(n+1)
q , ∀q = 1, . . . , Q and πt = π

(n+1)
t ; (64)

2) set
(
x⋆(λ, πt), λ

⋆(λ, πt), π
⋆
t (λ, πt)

)
=
(
x(n+1), λ(n+1), π

(n+1)
t

)
;

3) n← n+ 1 and return to (S.1).

else: n← n+ 1 and return to (S.2a).

The convergence analysis of the algorithm follows from that of Algorithm 3 (the outer loop) and

Algorithm 1 (the inner loop) and thus is omitted. It is worth mentionig that Algorithm 4 converges

under similar conditions obtained for Algorithm 1, provided that a sufficiently large proximal gain α is

chosen; this is not surprising, since the core of Algorithm 4 is the updating rule used in Algorithm 1,

whose convergence conditions imply those of the outer loop (cf. Theorem 10). We refer to Sec. 5.1 for an

interpretation of these convergence conditions.
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Algorithm 4 is mainly composed of two-subroutines: a consensus-based scheme [Step 2a] and a best-

response update [Step 2b], both implemented locally by the SUs. More specifically, the inner game

Gt(X ,θ,λ, πt) is solved in a fairly distributed way by following a two-steps procedure. Fist, in Step

2a, the SUs run a consensus algorithm to locally acquire the global information required to perform the

update of their sensing/transmission variables as well as the multipliers λq’s and the price πt, which

is represented by the average sensing time (1/Q)
∑Q

q=1 (τ̂
(n)
q /

√
fq) and the global level of interference

I(x(n)) =
∑Q

q=1 Iq(x
(n)
q ) generated at the primary receiver; this procedure requires an exchange of infor-

mation among neighboring nodes, as already discussed in Sec. 5.1, where we refer for details. Once the

aforementioned information is available at the secondary transmitters, each SU q locally updates his own

sensing/transmission strategy xq as well as the multiplier λq and the price πt, according to (63) [Step2b];

he just needs to measure the MUI experienced at his receiver and solve his own optimization problem.

Note that: i) the updates of the multipliers λq’s and the price πt have an explicit closed form expres-

sion, and thus are computationally inexpensive; and ii) there is no need of a centralized authority for the

optimization of the price πt, which is instead updated locally by each SU.

On the inner termination criterium [Step 2]

The only issue left to discuss is how to check the termination criterion of the inner process in Step 2

of Algorithm 3; similar discussion applies to Algorithm 4. In practice, Step 2 is terminated when the

NE (x⋆(λn, πn
t ), λ

⋆(λn, πn
t ), π

⋆
t (λ

n, πn
t )) of Gt(X ,θ,λn, πn

t ) is reached within the prescribed accuracy,4

say ε(n), where we let ε(n) to depend on the (outer) iteration index n. Stated in mathematical terms,

this means that the players leave Step 2 as soon as their current strategy profile (x, λ, πt) satisfies the

following inequality: ∥∥∥∥∥∥∥




x

λ

πt


−




x⋆(λn, πn
t )

λ⋆(λn, πn
t )

π⋆
t (λ

n, πn
t )




∥∥∥∥∥∥∥

2

≤ ε(n), (65)

where ‖•‖ is any vector norm. Denoting by z , (x, λ, πt) the players’ strategy profile and by SGt(λ
n, πn

t )

the (unique) NE of Gt(X ,θ,λn, πn
t ), which depends on the regularization parameters (λn, πn

t ), the stop-

ping criterium in (65) can be equivalently written as ‖z − SGt(λ
n, πn

t )‖2 ≤ ε(n). Using the above nota-

tion/terminology, Step 2 of Algorithm 3 reads as

(S.2a) : Solve the game Gt(X ,θ,λn, πn
t ) within the accuracy ε(n): find a z = (x, λ, πt) such that

‖z− SGt(λ
n, πn

t )‖2 ≤ ε(n); (66)

(S.2b) : Set (x⋆(λn, πn
t ), λ

⋆(λn, πn
t ), π

⋆
t (λ

n, πn
t )) = z.

In general, the test in (66) would require some coordination among the players; nevertheless, we suggest

next two simple distributed protocols to do that, building on the error-bound analysis of VIs [35, Ch. 6].

Observe preliminarily that an error bound on the distance of the current strategy profile z from the

NE SGt(λ
n, πn

t ) can be obtained by solving a convex (quadratic) problem (see, e.g., [35, Prop. 6.3.1], [35,

Prop. 6.3.7]). Indeed, under the convergence conditions of Algorithm 3 [cf. Theorem 10], one can write

4Recall that, under the convergence conditions in Theorem 10, each Gt(X ,θ,λ, πt) has a unique equilibrium,
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each game Gt(X ,θ,λn, πn
t ) as a (strongly monotone) VI problem, for which the following error bound

holds [35, Prop. 6.3.1]: a (finite and absolute) constant η > 05 exists such that for every z,

‖z− SGt(λ
n, πn

t )‖2 ≤ η ‖Ψn
nat (z) ‖2, (67)

with

Ψn
nat (z) ,







xq −ΠYq

(
xq −∇xqLq((xq, λq), x−q, πt)

)

λq −
[
λn
q +

Iq(xq)

α

]λmax

0




Q

q=1

πt −
[
πn
t +

I(x)

α

]λmax

0




,




(
[Ψn

nat (z)]q

)Q
q=1

[Ψn
nat (z)]Q+1


 , (68)

and ΠYq (a) denoting the Euclidean projection of the vector a onto the closed and convex set Yq, where

in (68) we made explicit the partition of Ψn
nat (z) in Q + 1 (vector) components, ([Ψn

nat (z)]q)
Q+1
q=1 , each

of the first Q being associated with one different player q. The important result here is that each SU q

can compute his own component [Ψn
nat (z)]q (as well as the last component [Ψn

nat (z)]Q+1) efficiently and

locally. Indeed, capitalizing on the information already acquired for the computation of the best-response,

he just needs to solve a quadratic programming [corresponding to the evaluation of the projection ΠYq (•)],
for which no extra signaling/coordination with the others is required.

A simple application of the error bound (67) for the test in (66) is to let each SU q to choose a

local termination error εq ≤ η · ε/Q, with ε = ε(n) being the desired accuracy in (67), and perform the

termination criterion ‖[Ψn
nat (z)]q‖2 + ‖[Ψn

nat (z)]Q+1‖2 ≤ εq; which is locally implementable, provided

that an estimate of the absolute constant η in (67) and the number of the active SUs can be preliminary

obtained.

When this information is not available, one can consider a variation (inexact version) of Algorithm

3. Instead of solving each game Gt(X ,θ,λn, πn
t ) exactly, the players compute at every stage n only an

approximated solution of Gt(X ,θ,λn, πn
t ) that becomes tighter and tighter as the iteration in n proceeds.

Stated in mathematical terms, we have that the sub-iterations in Step 2a are terminated according to a

prescribed error sequence {ε(n)}n that progressively becomes tighter as the iteration in n proceeds. For

instance, a suitable termination sequence in (66) is any {ε(n)}n ⊂ [0,∞) satisfying
∑∞

n=1 ε
(n) <∞; since

the latter condition implies ε(n) ↓ 0, when the iterations n progress the NE SGt(λ
n, πn

t ) will be estimated

with an increasing accuracy. One can show that the aforementioned inexact version of Algorithm 3

converges under the same conditions given in Theorem 10; we omit the details because of the space

limitation, and we refer to [22] for a similar approach valid for convex games. The termination protocol

for the inexact version of Algorithm 3 is then the following. Each player q choses preliminarily a suitable

local termination sequence {ε(n)q }n ⊂ [0,∞) such that
∑∞

n=1 ε
(n)
q < ∞; the termination criterion of each

player q becomes then ‖[Ψn
nat (z)]q‖2 + ‖[Ψn

nat (z)]Q+1‖2 ≤ ε
(n)
q , which can be locally implemented. Once

the desired local accuracy is reached by all the players, they can all update the center of their regularization,

according to (62). This protocol guarantees that the resulting sequence ε(n) ,
∑Q

q=1 ε
(n)
q in (66) will satisfy

the required condition
∑∞

n=1 ε
(n) <∞, without the need of any information exchange among the players.

5An explicit expression of η can be obtained as a function of the system parameters, based on [35, Prop. 6.3.1].
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The last issue to address for a practical implementation of the two protocols above is to understand

how the players can know that also the others have reached the desired termination criterion. This can

be done by exchanging one bit of information; otherwise each user can just update his regularization after

experiencing no changes in ‖[Ψn
nat (z)]q‖ and ‖[Ψn

nat (z)]Q+1‖ for a prescribed number of iterations.

Two last comments about the proposed class of algorithms solving G(X ,θ) are in order. To obtain

decentralize algorithms even in the presence of global (nonconvex) interference constraints, we have intro-

duced multipliers and relaxed the global constraints. As a side effect of the proposed approach, we have

that global interference constraints are met only at the equilibrium of the game; implying that during

the iterations of the algorithms they might not be satisfied. This issue is alleviated in practice by a fast

convergent behavior of the proposed algorithms, as shown in Sec. 6. Note that this issue is quite common

to many power control algorithms subject to QoS or coupling interference constraints (see, e.g., [48] and

references therein). Finally, we wish to point out that when the sufficient conditions for the convergence

of the proposed algorithms are not satisfied, still we can claim some optimality property for the proposed

algorithms, namely: every limit point of the sequence generated by the our algorithms is a quasi-NE of the

game under consideration; the analysis of such relaxed equilibrium concept along with its main properties

is addressed in the companion paper [26].

5.3 A bird’s-eye view

In the previous three sections we proposed several distributed algorithms to solve the general game G(X ,θ)
and its special cases. The algorithms differ from computational complexity, performance, and level of

signaling among the SUs; making them applicable to several different scenarios. It is useful to summarize

the results obtained so far, showing that, in spite of apparent diversities, all the algorithms belong to a

same family; Figure 2 provides the roadmap of the proposed distributed solution methods along with the

signaling required for their implementation.

6 Numerical Results

In this section, we provide some numerical results to illustrate our theoretical findings. More specifically, we

first compare the performance of our games with those of state-of-the-art decentralized [21] and centralized

[14] schemes proposed in the literature for similar problems; such schemes do not perform any sensing

optimization using thus all the frame length for the transmission, and the QoS of the PUs is preserved by

imposing (deterministic) interference constraints (we properly modified the algorithms in [14] to include the

interference constraints in the feasible set of the optimization problem). Interestingly, the proposed design

of CR systems based on the distributed joint optimization of the sensing and transmission strategies

is shown to outperform both centralized and decentralized current CR designs, which validates our new

formulation. Then, we provide an example of signaling/performance trade-off, showing the throughput

gains achievable by the SUs if the sensing time is included in the optimization. Finally, we focus on the

convergence properties of the proposed algorithms.

Example #1: Comparison with state-of-the-art algorithms. In Fig. 3, we compare the perfor-

mance achievable by the proposed joint optimization of the sensing and the transmission strategies with

those achievable using the sum-rate NUM-based approach subject to interference constraints [14] and the
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Solve the sequence of games in (61)
Gt(X ,θ,λ0, π0

t
) → · · · → Gt(X ,θ,λ∞, π∞

t
)

using Algorithms 3 (or Algorithm 4)

- signalling among the players in the
form of consensus (Algorithm 2)

some

signalling

allowed?

NO

Game G(X ,θ) [cf. (23)-(24)]

Game Gπ=0(X ,θ) [cf. (48)]

- only local interference constraints
- fixed (equi)sensing times τ̂q = τ for all q

Solve Gπ=0(X ,θ) using Algorithm 1

- asynchronous implementation
- no signalling among the players

YES

global

interference

constraints?

YES

Game G(X ,θ) in the general form (23)-(24)

- local/global interference constraints plus pricing
- optimization of the sensing times

Game Gπ(X ,θ) [cf. (48)]

- only local interference constraints
- optimization of the sensing times

Solve Gπ(X ,θ) using Algorithm 1

- asynchronous implementation
- signalling among the players in the
form of consensus (Algorithm 2)

NO

Figure 2: Road-map of the proposed algorithms solving G(X ,θ) and its special cases along with the resulting sig-

nalling/optimization tradeoff.

game theoretical formulation in [21]. More specifically, we plot the (%) ratio (SRQE − SR)/SR versus

the (normalized) interference constraint bound P/Imax (Pq = Pr = P for all q 6= r and Imax
q = Imax for

all q), for different values of the SNR detection snrd = σ2
Iq,k

/σ2
q,k, where SRQE is the sum-throughput

achievable at the (Q)NE of the game Gπ=0(X ,θ) (local interference constraints only), whereas SR is either

the sum-rate achievable using the scheme in [14] (red line curves) or the sum-rate at the NE of the game in

[21] (black line curves). We simulated a hierarchical CR network composed of two PUs (the base stations

of two cells) and ten SUs, randomly distributed in the cells. The (cross-)channels among the secondary

links and between the primary and the secondary links are FIR filters of order L = 10, where each tap

has variance equal to 1/L2; the available bandwidth is divided in N = 1024 subchannels. From Fig. 3,

we clearly see that the proposed joint optimization of the sensing and transmission parameters yields a

considerable performance improvement over the current state-of-the-art CR centralized and decentralized

designs, especially when the interference constraints are stringent.

Example #2: Sensing time optimization. Fig. 4 shows an example of the achievable throughput of

the SUs when the sensing time is included in the optimization. More specifically, in the picture, we plot

the (normalized) sum-throughput achieved at a (Q)NE by one player of the game versus the (normalized)

common sensing time, for different values of the (normalized) total interference constraint (the setup is

the same as in Fig. 3). In the same figure, we plot also the sum-throughput achieved at the (Q)NE of the

game Gπ=0(X ,θ) (square markers in the plot), where c is set to c = 100. According to the picture, the

following comments are in order. There exists an optimal duration for the (common) sensing time at which

the throughput of each SU is maximized, implying that the SUs can achieve better performance if some

(limited) signaling is exchanged in order to optimize also the sensing time. Second, as expected, more
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stringent interference constraints impose lower missed detection probabilities as well as false-alarm rates;

requirement that is met by increasing the sensing time (i.e., making the detection more accurate). This is

clear in the picture where one can see that the optimal sensing time duration increases as the interference

constraints increase. Third, the proposed approach based on a penalty function leads to performance

comparable with those achievable by a centralized approach that computes the optimal common sensing

time based on a grid search.

Example #3: Algorithms for Gπ=0(X ,θ) (local constraints only). In Fig. 5, we plot an instance of

the sequential and simultaneous best-response based algorithms, proposed in Sec. 5.1 to solve the game

Gπ(X ,θ) in (48), with π = 0 (cf. Algorithm 1). We considered the same setup as in Fig. 4, but with

15 active SUs; the SNR detection snrd , σ2
Iq,k

/σ2
q,k is set to snrd = 0dB, for all q and k; the SNR of

the SUs snrq,k , Pq/σ
2
q (k) is snrq,k = 2dB for all q and k, and the (normalized) inter-pair distances

dqr/dqq ≥ 3 for all q 6= r, with dqr denoting the distance between the receiver of SU q and the transmitter

of SU r, which corresponds to a “low/medium” level of interference among the SUs; the bounds αq,k and

βq,k are both equal to 0.5 for all q and k; and the constant c is set to c = 100. In Fig. 5(a), we plot the

opportunistic throughput evolution of the SUs’ links as a function of the iteration index, achieved using

the sequential best-response algorithm (solid line curves) and the simultaneous best-response algorithm

(dashed line curves); whereas in Fig. 5(b) we plot the evolution of the optimal (normalized) sensing times

of the SUs versus the iteration index. To make the figures not excessively overcrowded, we report only

the curves of 3 out of 15 links. As expected, the sequential best-response algorithm is slower than the

simultaneous version, especially if the number of active links is large, since each SU is forced to wait for

all the users scheduled in advance, before updating his own strategy. However, both algorithms converge

in a few iterations (this desired feature has been observed for different channel realizations), which makes

them appealing in practical CR scenarios. Observe also that, thanks to the penalty term on the sensing

times in the objective function of each SU, the algorithms converge to the same optimal sensing time for

all the SUs [cf. Fig. 5(b)]. Roughly speaking, these algorithms share the same features of the well-known

iterative waterfilling algorithms solving the power control game over ICs [18, 19, 20, 21, 22].

Finally, observe that, even when the theoretical convergence conditions we obtained are not satisfied,

still we can claim that every limit point of the sequence generated by our algorithms is a QNE of the

game.

Example #4: Algorithms for G(X ,θ) (global constraints). In Fig. 6 we tested the convergence

speed of Algorithm 1 applied to the game G(X ,θ) in the presence of global interference constraints. The

system setup is the same as the one considered in Fig. 5 for the low/medium interference regime, with

the only difference that now, instead of the overall bandwidth interference constraints (7), we assume that

the PUs impose the global interference constraint (8); for the sake of simplicity we considered the same

interference threshold for both the PUs. In Fig. 6, we plot the opportunistic throughput evolution of 4

(out of 15) SUs’ links and the worst-case average violation of the interference constraints as a function of

the iteration index (counted considering both the inner and the outer iterations), achieved using Algorithm

4. As expected, Fig. 6 shows that the algorithms proposed to solve the game G(X ,θ) with side constraints

require more iterations to converge that those used to solve the game Gπ=0(X ,θ). On the other hand,

global interference constraints impose less stringent conditions on the transmit power of the SUs than
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those imposed by the individual interference constraints, implying better throughput performance of the

SUs (at the price however of more signaling among the SUs) [26].
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7 Conclusions

In this paper, we proposed a novel class of noncooperative games with (possibly) side constraints, where

each SU aims to maximize his own opportunistic throughput by choosing jointly the sensing duration, the

detection thresholds, and the vector power allocation over SISO frequency-selective interference channels,

under local and (possibly) global average probabilistic interference constraints. In particular, to enforce

global interference constraints while keeping the optimization as decentralized as possible, we proposed a

pricing mechanism that penalizes the SUs in violating the global interference constraints. The proposed

games belong to the class of nonconvex games and lack boundedness in some of the optimization variables,

which makes the analysis quite involved. A major contribution of this paper was to introduce a new

methodology for studying the existence and the uniqueness of the solution of nonconvex games with

side constraints and design distributed solution algorithms. The proposed class of algorithms spans from

noncooperative settings modeling selfish users to cooperative scenarios where the users are willing to

exchange limited signaling (in the form of consensus algorithms) in favor of better performance. Numerical

results showed the superiority of the proposed design (in terms of achievable system throughput) with

respect to the state-of-the-art centralized and decentralized resource allocation algorithms for CR systems.

Together with their fast convergence behavior, this makes them appealing in many practical CR scenarios.

Appendix

A Proof of Proposition 2

A.1 Intermediate results

To prove the proposition we need two intermediate results, stated in Lemma 11 and Lemma 12 below.

Lemma 11 proves that the Abadie Constraint Qualification (ACQ) holds true at every (nontrivial) optimal

solution of (32), which implies that any of such solutions must satisfy the KKT conditions associated

with (32). Lemma 12 proves the boundedness of the multipliers λ⋆
q associated with the local nonconvex

constraint I(x⋆
q) ≤ 0 at any solution x⋆

q of (32).

Lemma 11. The ACQ holds at every feasible solution of problem (32).

Proof. The proof follows similar steps of [26, Prop. 8] and thus is omitted.

Lemma 12. Let x−q ∈ Y−q and πt ∈ St for some t > 0. At every solution x⋆
q of (32), any optimal

multiplier λ⋆
q associated with the constraint I(x⋆

q) ≤ 0 satisfies λ ≤ λmax, with λmax defined in (42).

Proof. First of all, observe that the nonconvex problem (32) admits a solution x⋆
q =

(
τ̂⋆q , p

⋆
q , P

fa⋆
q

)
, for

every given x−q ∈ Y−q and πt ∈ St; by Lemma 11, x⋆
q must satisfy the KKT conditions of the problem,

for some multipliers λ⋆
q associated with the constraint I(x⋆

q) ≤ 0. Given the KKT conditions (which are

omitted here), starting from the complementarity of the pq,k-variables, summing over k, and invoking the

orthogonality condition, we obtain: denoting by χ⋆
q and ξ⋆q,k the multipliers associated to the power budget
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and the spectral mask constraints, respectively,

(
λ⋆
q + πt

) N∑

k=1

Pmiss
q,k (τ̂⋆q , P

fa⋆
q ) |GP,q(k)|2 p⋆q,k + χ⋆

q

N∑

k=1

p⋆q,k +
N∑

k=1

ξ⋆q,k p
⋆
q,k

=

N∑

k=1

p⋆q,k
(

N∑

k=1

rq,k(p
⋆
q,k,p−q)

) 
σ2

q,k +
∑

r 6=q

|Hqr(k)|2 pr,k + |Hqq(k)|2p⋆q,k




≤ 1
 min

1≤k≤N





log


 1 +

|Hqq(k)|2pmax
q,k

σ2
q (k) +

∑

r 6=q

|Hqr(k)|2 pmax
r (k)









 min

1≤k≤N

{
σ2
q,k

}

, λmax
q ,

(69)

where in the last inequality we used the following property of the logarithmic function, which is an

immediate consequence of its concavity: for any scalar a > 0 and c > 0, it holds that log(1 + c y) ≥
y log(1+c a), for all y ∈ [0, a]. Inequality in (69) together with the complementarity conditions associated

to the power constraints p⋆
q ≤ pmax

q and
∑N

k=1 p
⋆
q,k ≤ Pq, and the individual nonconvex interference

constraint Iq(x
⋆
q) ≤ 0 lead to

λ⋆
q I

max
q + χ⋆

q Pq +

N∑

k=1

ξ ⋆
q,k p

max
q,k ≤ λmax

q .
(70)

The desired result λ⋆
q ≤ λmax follows from (70) and min

{
Pq, mink {pmax

q,k }
}
= mink pmax

q,k for q.

A.2 Proof of Proposition 2

The proof is organized in the following two steps:

Step 1. We show first that under the assumptions in the proposition, each problem (32) has a unique

optimal solution, for any given x−q ∈ Y−q.

Step 2. Then, we prove that any optimal solution of (32) is nontrivial.

Step 1. Given x−q ∈ Y−q and πt ∈ St, let x⋆
q =

(
τ̂⋆q, p

⋆
q, P

fa⋆
q

)
be a solution of (32); by Lemma 11,

there exists a multiplier λ⋆
q such that (x⋆

q , λ
⋆
q) satisfies the VI(Kq,Fq) in (40); by Lemma 12, it must be

λ⋆
q ≤ λmax. It turns out that to prove Proposition 2 is sufficient to show that, under the condition in the

proposition, the VI(Kq,Fq) has a unique solution in the xq-variables.

Suppose by contradiction that there are two distinct solutions of the VI(Kq,Fq), denoted by y
(1)
q ,

(x
(1)
q , λ

(1)
q ) ∈ Yq × [0, λmax] and y

(2)
q , (x

(2)
q , λ

(2)
q ) ∈ Yq × [0, λmax], with x

(1)
q 6= x

(2)
q . Then, we have

(
y
(2)
q − y

(1)
q

)T
Fq

(
y
(1)
q ; x−q, πt

)
≥ 0

(
y
(1)
q − y

(2)
q

)T
Fq

(
y
(2)
q ; x−q, πt

)
≥ 0.
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Summing the two inequalities yields to

0 ≤ −
(
y(1)
q − y(2)

q

)T (
Fq(y

(1)
q ; x−q, πt)− Fq(y

(2)
q ; x−q, πt)

)
. (71)

Invoking the mean-value theorem applied to to the univariate, differentiable, scalar-valued function

δ ∈ [0, 1] 7→
(
y(1)
q − y(2)

q

)T
Fq (yq(δ); x−q, πt) ; (72)

we deduce that there exists some 0 < δ̄ < 1, such that (71) can be written as

0 ≤ −
(
y(1)
q − y(2)

q

)T (
Fq(y

(1)
q ; x−q, πt)− Fq(y

(2)
q ; x−q, πt)

)
(73)

= −
(
y(1)
q − y(2)

q

)T
JyqFq

(
yq(δ̄); x−q, πt

) (
y(1)
q − y(2)

q

)
(74)

= −
(

x
(1)
q − x

(2)
q

λ
(1)
q − λ

(2)
q

)T [ ∇2
xq
Lq
(
(xq(δ̄), x−q), πt, λq(δ̄)

)
, ∇xqIq

(
xq(δ̄)

)

−∇xqIq
(
xq(δ̄)

)T
0

](
x
(1)
q − x

(2)
q

λ
(1)
q − λ

(2)
q

)
(75)

= −
(
x(1)
q − x(2)

q

)T
∇2

xq
Lq
(
(xq(δ̄), x−q), πt, λq(δ̄)

) (
x(1)
q − x(2)

q

)
, (76)

where in (73) JyqFq( · ; x−q, πt) denotes the Jacobian matrix of Fq(· ;x−q, πt) with respect to yq ,

(xq, λq). Since xq(δ̄) ∈ Yq (recall that Yq is a convex set) and λq(δ̄) ≤ λmax, the inequality in (76)

contradicts the positive definiteness of ∇2
xq
Lq
(
(xq(δ̄), x−q), πt, λq(δ̄)

)
, as assumed in Proposition 2.

Step 2. To complete the proof it is enough to show that the pq-component of any optimal solution

x⋆
q =

(
τ̂⋆q , p

⋆
q , P

fa⋆
q

)
of (32) is such that

∑
k p

⋆
q(k) is lower bounded by a positive constant; see Lemma 13

below. To state the lemma, we need the following intermediate definitions. Let pref
q , (pref

q,k) ∈ Pq be any

tuple such that ∑

k

|GP,q(k)|2 pref
q,k ≤ 2 Imax

q , (77)

so that for all pairs (τ̂q, P
fa
q ) satisfying (12)(b), the interference constraints (12)(a) evaluated at (τ̂q, p

ref
q , P fa

q )

hold; and let

P faref

q , max
k

{
Q
(
σq,k|1 α̂q,k + (µq,k|1 − µq,k|0)

√
fq τmin

σq,k|0

)}
. (78)

Note that, under the feasibility conditions (25), such a P faref

q satisfies [see (12)(b)]

σq,k|0

σq,k|1
Q−1

(
P faref

q

)
− τ̂q

µq,k|1 − µq,k|0

σq,k|1
≤ α̂q,k, ∀k = 1, . . . , N, (79)

for any τ̂q ≥
√

fq τmin. Finally, given t > 0, let

ηref
q (t) , log

(
1− τmin

Tq

)
+ log

(
1− P faref

q

)
+ log

(
∑

k

rq,k
(
pref
q ,pmax

−q

)
)
− t

2

(
max

k=1,...,N

{
|GP,q(k)|2 pref

q,k

})
.

(80)

We can now introduce Lemma 13 that provides a lower bound for the optimal sum-power allocation of

each player.
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Lemma 13. Given t > 0, and feasible πt ∈ St, p−q ∈ P−q and τ̂r ∈
[√

fr τmin,
√
fr τmax

]
for all r 6= q,

the power-part p⋆
q of any optimal solution of the q-th nonconvex optimization problem in (12) satisfies

N∑

k=1

p⋆q,k ≥
(

min
k=1,...,N

{
σ̂2
q,k

})
exp

(
ηref
q (t)

)
. (81)

Proof. Let t > 0, πt ∈ St, 0 ≤ pr ≤ pmax
r with r 6= q, and τ̂r for r 6= q satisfying τ̂r ∈

[√
fr τmin,

√
fr τmax

]

be given. Let define τ̂ ref
q ,

√
fq

Q− 1

∑
r 6=q

τ̂r√
fr

; we then have
√
τmin ≤

τ̂ ref
q√
fq
≤ 1

Q

∑Q
r=1

τ̂ r√
fr
≤
√
τmax.

Therefore, if x⋆
q = (τ̂⋆q , p

⋆
q, P

fa⋆
q ) is player q’s best-response corresponding to πt, τ̂−q, and p−q, then

R̂q

(
τ̂ ref
q , (pref

q ,p−q), P
faref

q

)
− πt ·

∑

k

Pmiss
q,k (τ̂ ref

q , P faref

q ) |GP,q(k)|2 pref
q,k

≤ Rq

(
τ̂⋆q , (p

⋆
q ,p−q), P

fa⋆
q

)
− πt ·

∑

k

Pmiss
q,k (τ̂ ref

q , P faref

q ) |GP,q(k)|2 p⋆q,k −
c

2



(
1− 1

Q

)
τ̂⋆q√
fq
− 1

Q

∑

r 6=q

τ̂⋆r√
fr




2

≤ log

(
∑

k

rq,k(p
⋆
q ,p−q)

)
≤ log

(
∑

k

log

(
1 +

p⋆q,k
σ̂2
q,k

))
≤ log

(
∑

k

(
p⋆q,k
σ̂2
q,k

))
,

(82)

where R̂q

(
τ̂q, p, P

fa
q

)
and rq,k (pq,p−q) are defined in (5) and (6), respectively. On the other end, we

have:
R̂q

(
τ̂ ref
q , (pref

q ,p−q), P
faref

q

)
− πt ·

∑

k

Pmiss
q,k (τ̂ ref

q , P faref

q ) |GP,q(k)|2 pref
q,k ≥ ηref

q (t), (83)

with ηref
q (t) defined in (80), and in (83) we used πt ∈ St and Pmiss

q,k ≤ 1/2. The desired bound in (81)

follows readily from (82) and (83).

B Proof of Corollary 3

The proof is based on the following two steps.

Step 1. We introduce a symmetric matrix, denoted by ∇2
xq
Lq ∈ R

(N+2)×(N+2), having the property that:

given t > 0,

yT
(
∇2

xq
Lq (x, πt, λq)

)
y ≥ |y|T ∇2

xq
Lq |y| ∀ (x, πt, λq) ∈ Y × St × [0, λmax], and y ∈ R

N+2, (84)

which guarantees that ∇2
xq
Lq (x, πt, λq) is positive definite if ∇2

xq
Lq is so.

Step 2. We derive sufficient conditions for ∇2
xq
Lq to be positive definite.

Step 1. It is not difficult to see that (84) is satisfied if ∇2
xq
Lq is built such that: for all (x, πt, λq) ∈

Y × [0, t] × [0, λmax],

[
∇2

xq
Lq
]
ij
=





≤
[
∇2

xq
Lq (x, πt, λq)

]
ij

if i = j,

≤ −
∣∣∣∣
[
∇2

xq
Lq (x, πt, λq)

]
ij

∣∣∣∣ if i 6= j.

(85)
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To construct such a matrix, we need to bound properly the entries of ∇2
xq
Lq (x, πt, λq). Recalling that

∇2
xq
Lq (x, πt, λq) has the following expression [cf. (41)]:

∇2
xq
Lq (x, πt, λq) , −∇2

xq
θq(x) + λq · ∇2

xq
Iq(xq) + πt · ∇2

xq
I(x) (86)

we focus next on each term in (86) separately.

−Matrix −∇2
xq
θq(x): Introducing

rq(p) ,

N∑

k=1

rq,k(p) ≤
N∑

k=1

log

(
1 +

pmax
q,k

σ̂2
q,k

)
, rmax

q , (87)

with rq,k(p) defined in (6), −∇2
xq
θq(x) is given by

−∇2
xq
θq(x) =




2

fq Tq

(
1 +

τ̂2q
fq Tq

)

(
1−

τ̂2q
fq Tq

)2 + c

(
1− 1/Q√

fq

)2

01×N 0

0N×1 ∇2
pq

(− log rq(p)) 0N×1

0 01×N
1

(
1− P fa

q

)2




, (88)

with

∇2
pq

(− log rq(pq,p−q)) =

[
−∇2

pq
rq(p)

rq(pq)
+
∇pq

rq(p)∇pq
rq(p)

T

rq(pq)2

]
(89)

∇pq
rq(p) = vect








1

σ̂2
q,k +

Q∑

r=1

|Ĥqr(k)|2 pr(k)




N

k=1





(90)

∇2
pq
rq(p) = Diag








−1
(
σ̂2
q,k +

Q∑

r=1

|Ĥqr(k)|2 pr,k
)2




N

k=1





(91)

We provide now some bounds of the above quantities that will be used to define the diagonal entries

of ∇2
xq
Lq. The minimum eigenvalue of the positive definite matrix ∇2

pq
(− log rq(p)) is lower bounded by:

for all p ∈ P =
∏Q

q=1Pq,

λmin

(
∇2

pq
(− log rq(p))

)
≥ min

k=1,...,N





dmin
− log rq,k

,
1/rmax

q

σ̂2
q,k +

Q∑

r=1

|Ĥqr(k)|2 pmax
r,k





, dmin
− log rq

, (92)
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whereas a lower bound of the first and last diagonal elements in (88) are: for all feasible
(
τ̂q, P

fa
q

)
[see

conditions (b) and (c) in (12)],

2

fq Tq

(
1 +

τ̂2q
fq Tq

)

(
1−

τ̂2q
fq Tq

)2 ≥

2

fq Tq

(
1 +

(
τ min

)2

Tq

)

(
1−

(
τ min

)2

Tq

)2 , dmin
τ̂q and

1
(
1− P famin

q

)2 ≥
1

(
1− P fa

q

)2 , dmin
P fa
q
,

(93)

where we used the following lower bound of P fa
q : P fa

q ≥ minkQ
((

µq,k|1 − µq,k|0

) √
fq τmax

σq,k|0

)
, P famin

q .

This bounds will be used to define the diagonal entries of the candidate matrix ∇2
xq
Lq.

−Matrix ∇2
xq
Iq(xq). Let introduce first the following quantities and their associated bounds:

ωτ̂q,k ,
∂Pmiss

q,k (τ̂q , P
fa
q )

∂τ̂q
and

∣∣ωτ̂q,k

∣∣ ≤ 1√
2 π

(
µq,k|1 − µq,k|0

σq,k|1

)
, ωmax

τ̂q,k
(94)

ωP fa
q ,k ,

∂Pmiss
q,k (τ̂q, P

fa
q )

∂P fa
q

and
∣∣∣ωP fa

q ,k

∣∣∣ ≤
(

σq,k|0

σq,k|1

)
exp

{(
µq,k|1 − µq,k|0

σq,k|0

√
fqτmax

)2

/2

}
, ωmax

P fa
q ,k, (95)

ωτ̂q P fa
q ,k ,

∂2Pmiss
q,k (τ̂q, P

fa
q )

∂τ̂q∂P fa
q

and ωτ̂q P fa
q ,k ≤ max

{
Q−1(αq,k),

µq,k|1 − µq,k|0

σq,k|1

√
fqτmax

}

· exp

{(
µq,k|1 − µq,k|0

σq,k|0

√
fsτmax

)2

/2

}
, ωmax

τ̂q P fa
q ,k

(96)

ωτ̂q τ̂q,k ,
∂2Pmiss

q,k (τ̂q, P
fa
q )

∂(τ̂q)
2

and ωP fa
q P fa

q ,k ,
∂2Pmiss

q,k (τ̂q, P
fa
q )

∂(P
(q)
fa )2

, (97)

which can be collected in the vectors ωτ̂q , (ωτ̂q ,k)
N
k=1, ωP fa

q
, (ωP fa

q ,k)
N
k=1, ωτ̂q P fa

q
, (ωτ̂q P fa

q ,k)
N
k=1,

ωP fa
q P fa

q
, (ωP fa

q P fa
q ,k)

N
k=1, and ωmax

τ̂q
, (ωmax

τ̂q ,k
)Nk=1, ω

max
P fa
q

, (ωmax
P fa
q ,k

)Nk=1, ω
max
τ̂q P fa

q
, (ωmax

τ̂q P fa
q ,k

)Nk=1. Finally,

we introduce the column vector GP,q ,
(
|GP,q(k)|2

)N
k=1

of the cross-channel transfer function between the

secondary transmitter q and the PU, and the notation a ⊙ b , (ak · bk)Nk=1 for given a , (ak)
N
k=1 and

b , (bk)
N
k=1. Then, matrix ∇2

xq
Iq(xq) can be written as

∇2
xq
Iq(xq) = 2




1T vect
(
ωτ̂q τ̂q ⊙GP,q ⊙ pq

)
, vect

(
ωτ̂q ⊙GP,q

)T
, 1Tvect

(
ω

τ̂qP
(q)
fa

⊙GP,q ⊙ pq

)

vect
(
ωτ̂q ⊙GP,q

)
, 0N×N , vect

(
ω

P
(q)
fa

⊙GP,q

)

1Tvect
(
ω

τ̂qP
(q)
fa

⊙GP,q ⊙ pq

)
, vect

(
ω

P
(q)
fa

⊙GP,q

)T
, 1Tvect

(
ω

P
(q)
fa

P
(q)
fa

⊙GP,q ⊙ pq

)


 .

(98)

Based on (98), let us introduce the matrix
[
∇2

xq
Iq(xq)

]
off

obtained from ∇2
xq
Iq(xq) by setting to zero

the diagonal terms ([A]off denotes the off-diagonal part of the matrix A) and take an upper bound of its
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off-diagonal entries (the inequalities below have to be intended component-wise):

[
∇2

xq
Iq(xq)

]
off

, 2




0, vect
(
ωτ̂q ⊙GP,q

)T
, 1T vect

(
ω

τ̂qP
(q)
fa

⊙GP,q ⊙ pq

)

vect
(
ωτ̂q ⊙GP,q

)
, 0N×N , vect

(
ω

P
(q)
fa

⊙GP,q

)

1Tvect
(
ω

τ̂qP
(q)
fa

⊙GP,q ⊙ pq

)
, vect

(
ω

P
(q)
fa

⊙GP,q

)T
, 0




≤ max
k

{
|GP,q(k)|2

}
· 2




0, vect
(
ωmax

τ̂q

)T
, 1Tvect

(
ωmax

τ̂qP fa
q
⊙ pmax

q

)

vect
(
ωmax

τ̂q

)
, 0N×N , vect

(
ωmax

P fa
q

)

1Tvect
(
ωmax

τ̂qP fa
q
⊙ pmax

q

)
, vect

(
ωmax

P fa
q

)T
, 0




︸ ︷︷ ︸
,
[
∇2

xq
Iq

]up

off

, max
k

{
|GP,q(k)|2

}
·
[
∇2

xq
Iq

]up

off
.

(99)

−Matrix ∇2
xq
I(x). Following similar steps as for (99), we obtain

[∣∣∣∇2
xq
I(x)

∣∣∣
]
off
≤ max

k

{
|GP,q(k)|2

}
·
[
∇2

xq
Iq

]up

off
. (100)

We are now ready to introduce the matrix ∇2
xq
Lq satisfying (85). Given t > 0, and the definitions in

(94)-(96) and (100), we define

∇2
xq
Lq , Diag

{
(dmin

τ̂q , (dmin
− log rq ,k)

N
k=1, d

min
P fa
q
)
}
− 2 ·max {t, λmax} ·max

k

{
|GP,q(k)|2

}
·
[
∇2

xq
Iq

]up

off
(101)

Step 2. It follows from Step 1 that ∇2
xq
Lq in (101) satisfies the desired property (84). Condition (43) of

the corollary is readily obtained by imposing that ∇2
xq
Lq is row-diagonal dominant, and setting

γ(1)q =
2 max(t, λmax)

min





dmin
τ̂q

∑
j

[
[∇2

xq
Iq]

up
off

]
1j

, min
i=1,...,N





dmin
q,i

∑
j

[
[∇2

xq
Iq]

up
off

]
ij





,
dmin
P fa
q

∑
j

[
[∇2

xq
Iq]

up
off

]
N+2 j





. (102)

�

C Proof of Theorem 5

To prove the theorem we need the following lemma whose proof follows the same idea of that in Lemma

12 and thus is omitted.

Lemma 14. Let t > λmax, with λmax defined in (42). Then, at every solution (x⋆, λ⋆, π⋆
t ) of the VI(Zt,Ψ)

defined in (45) [stationary solution of Gt(X , θ)], the price constraints (30) are not binding, i.e., π⋆
t < t.

Proof of Theorem 5. We prove only statement (a); the proof of the second part (b) follows similar

steps of those in the proof of Proposition 2 and thus is omitted. Given t > t⋆, under the assumptions in

(a), Proposition 4 states that the game Gt(X , θ) admits a nontrivial NE (x⋆, π⋆
t ); by Lemma 11, there
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exist multipliers λ⋆ such that (x⋆,λ⋆, π⋆
t ) satisfies the VI(Zt,Ψ) in (45) [or equivalently (44)]. Lemma 14

shows that the upper bound constraint on the price in St is not binding at (x⋆,λ⋆, π⋆
t ), implying from

iii) of (44) that η⋆t = 0 and thus 0 ≤ π⋆
t ⊥ −I(x⋆) ≥ 0. Hence, (x⋆, π⋆

t ) must be a NE of the original

un-truncated game G(X , θ) [recall that, under the positive definiteness of the matrices ∇2
xq
Lq(x, πt, λq)

on Y × St × [0, λmax], each optimization problem in (32), with x−q = x⋆
−q and πt = π⋆

t , has a unique

stationary (and thus optimal) solution, which then must be equal to x⋆
q ; see Proposition 2]. �

D Proof of Corollary 6

In order to obtain more general conditions than those in Theorem 5, by Lemma 13, we can restrict the

check of the positive definiteness of the matrices ∇2
xq
Lq(x, πt, λq) and A(x, λ, πt) as required in Theorem

5 to the subset of the feasible set where any solution of the game lies. More specifically, let us introduce the

restriction of the sets Pq and Yq defined in (4) and (19), respectively, to the power allocations satisfying

(81): given t > 0,

P̂t
q ,

{
p ∈ Pq :

N∑

k=1

pq,k ≥
(
min
k

{
σ̂2
q,k

})
exp

(
ηref
q (t)

)
}
, q = 1, . . . , Q, (103)

Ŷ t ,
∏

q

Ŷt
q, (104)

where Ŷt
q is defined as Yq in (19), but with Pq replaced by P̂t

q. By Lemma 13, instead of checking the

positive definiteness of ∇2
xq
Lq(x, πt, λq) and A(x, λ, πt) on the feasible set Y × St × [0, λmax], we can

restrict this requirement to the subset Ŷt × St × [0, λmax].

We can now prove the corollary. We show next that (47) are sufficient conditions for the matrix

A(x, λ, πt) to be positive definite on Y × St × [0, λmax]. Fist of all, observe that matrix A(x, λ, πt) can

be written as

A(x, λ, πt) ,




∇2
x1
L1
∣∣
c=0

, ∇2
x1x2

θ1
∣∣
c=0

· · · ∇2
x1xQ

θ1

∣∣∣
c=0

... · · · . . .
...

∇2
xQx1

θQ

∣∣∣
c=0

, · · · ∇2
xQxQ−1

θQ

∣∣∣
c=0

∇2
xQ
LQ
∣∣∣
c=0




︸ ︷︷ ︸
,A(x,λ, πt)|c=0

(105)

+ c (1− 1/Q)


 D−1

f

(
IQ −

11T

Q

)
D−1

f 0

0 0




︸ ︷︷ ︸
up to a permutation

, (106)

where Dfs , diag
{(√

fq
)Q
q=1

}
. Since the matrix in (106) is positive semidefinite, we can focus only on

A(x, λ, πt)|c=0. To obtain a sufficient condition for A(x, λ, πt)|c=0 to be positive definite on Ŷ t × St ×
[0, λmax], we follow a similar idea of that in Corollary 3. Namely, we build a proper matrix A such that,

for some t > λmax,

yT (A(x, λ, πt)|c=0) y ≥ |y|T A |y| ∀(x, πt, λ) ∈ Ŷ t × St × [0, λmax], and y ∈ R
Q (N+2). (107)
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To this end, we focus on each term in (105) separately and derive proper bounds.

−Matrix
∣∣∣∇2

xqxr
θq

∣∣∣
c=0

∣∣∣. Recalling the definition of rq(p) ,
∑

k rq,k(p), with rq,k(p) given in (6), we have

∇2
xqxr

θq

∣∣∣
c=0

=




0 01×N 0

0N×1 ∇2
pqpr

(− log rq(p)) 0N×1

0 01×N 0


 , (108)

with

∇2
pqpr

(− log rq(p)) =

[
−∇2

pqpr
rq(p)

rq(pq)
+
∇pqrq(p)∇prrq(p)

T

rq(pq)2

]
, (109)

∇pqrq(p) given in (89) and

∇prrq(p) = vect








−|Ĥqr(k)|2 pq,k
(
σ̂2
q,k +

Q∑

r=1

|Ĥqr(k)|2 pr,k
)
σ̂2

q,k +
∑

r 6=q

|Ĥqr(k)|2 pr,k







N

k=1





, (110)

∇2
pqpr

rq(p) = Diag








−|Ĥqr(k)|2
(
σ̂2
q,k +

Q∑

r=1

|Ĥqr(k)|2 pr,k
)2




N

k=1





. (111)

Using the following lower bound for the rate function rq(p): given t > 0 and pq ∈ P̂ t
q,

rq(p) ≥
(

N∑

k=1

pq,k

)
· min
k=1,...,N




log


1 +

pmax
q,k

σ̂2
q,k +

∑

r 6=q

|Ĥqr(k)|2 pmax
r,k








︸ ︷︷ ︸
,rmin

q

(112)

≥
(

min
k=1,...,N

{
σ̂2
q,k

})
· exp

(
ηref
q (t)

)
· rmin

q , rlow
q (t), (113)

where the second inequality follows from Lemma 13, we have for
∣∣∣∇2

pqpr
(− log rq(p))

∣∣∣: given t > 0, pq ∈ P̂t
q

and pr ∈ [0, pmax
r ] with r 6= q,

∣∣∣∇2
pqpr

(− log rq(p))
∣∣∣ ≤ 1

rq(p)
Diag







|Ĥqr(k)|2(

σ̂2
q,k

)2




N

k=1




+

1

rq(p)2
vect





(
1

σ̂2
q,k

)N

k=1



 · vect







|Ĥqr(k)|2 pq,k(

σ̂2
q,k

)2




N

k=1





T

≤ 1

rlow
q (t)


Diag







|Ĥqr(k)|2(
σ̂2
q,k

)2




N

k=1





+
1

rmin
q

vect





(
1

σ̂2
q,k

)N

k=1



 ·vect







|Ĥqr(k)|2(
σ̂2
q,k

)2




N

k=1





T


,

[
∇2

pqpr
θq

]up

,

(114)
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which leads also to

∥∥∥∇2
pqpr

(− log rq(p))
∥∥∥ ≤ max

k=1,...,N

{
|Ĥqr(k)|2

σ̂4
q,k

}
·
(

1

rlow
q (t)

+
1

rlow
q (t)

· 1

rmin
q

· max
k=1,...,N

{
1

σ̂4
q,k

})

︸ ︷︷ ︸
,ξsupq (t)

. (115)

Using ∇2
xq
Lq defined in (101), we are now ready to introduce the matrix A, defines as: given t > 0,

A ,
(
Aqr

)Q
q,r=1

with Aqr ,

{
∇2

xq
Lq, if q = r,

−Diag
{[

0,
[
∇2

pqpr
θq

]up

, 0
]}

, otherwise,
(116)

which satisfies the desired property in (107).

A sufficient condition for (107) can be obtained as in (47), by imposing that (the symmetric part of)

A is row diagonal dominant. More specifically, introducing

ζ(t) , max
q=1,...,Q



 max

k=1,...,N

{
1

σ̂2
q,k

}
·


 1

rlow
q (t)

+
1

rlow
q (t)

· 1

rmin
q

·
N∑

k′=1

1

σ̂2
q,k′





 (117)

the diagonal dominance conditions is: for each q = 1, . . . , Q and i = 1, . . . , N ,

1

2

∑

r 6=q

N∑

j=1

[[
∇2

pqpr
θq

]up

+
([
∇2

pqpr
θq

]up)T]

ij

≤ ζ(t)

2

∑

r 6=q

(
max

k=1,...,N

{
|Ĥqr(k)|2

σ̂2
q,k

}
+ max

k=1,...,N

{
|Ĥrq(k)|2

σ̂2
r,k

})
.

(118)

After substituting the explicit expression of
[
∇2

pqpr
θq

]up

and doing some manipulations, (118) leads to

the desired condition (47), where we defined γ
(2)
q as

γ(2)q , ζmax
q (t) · γ(1)q (119)

with γ
(1)
q given in (102) and

ζmax
q (t) ,

ζ(t)

2 t
· 1

min

{∑
j

[
[∇2

xq
Iq]

up
off

]
1j
, min
i=1,...,N

{∑
j

[
[∇2

xq
Iq]

up
off

]
ij

}
,
∑

j

[
[∇2

xq
Iq]

up
off

]
N+2 j

} , (120)

where [∇2
xq
Iq]

up
off and ζ(t) are defined in (99) and (117), respectively.

E Convergence of Asynchronous Best-Response Algorithms for Gπ(X , θ)
In this section, we study the convergence of asynchronous best-response algorithms solving the game

Gπ(X ,θ) in (48); an instance of such algorithms is represented by Algorithm 1. Since the study of

convergence is based on contraction arguments of the best-response map associated with game Gπ(X ,θ),
we derive first sufficient conditions for this best-response to be a contraction; see Sec. E.1. We then

provide the main theorem stating convergence of the asynchronous best-response algorithms; see Sec. E.2.
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E.1 Contraction properties of the best-response of Gπ(X , θ)
Before introducing the main result of this section, we need the following intermediate definitions. Given

Lq defined in (37), let Bq (x, λq, πt) be the 2× 2 matrix, defined as

Bq (x, λq, πt) ,



∇2

τ̂q
Lq (x, πt, λq)

∣∣∣
c=0

, −
∥∥∥∇2

τ̂q (pq ,P fa
q )
Lq (x, πt, λq)

∥∥∥

−
∥∥∥∇2

(pq ,P fa
q ) τ̂q
Lq (x, πt, λq)

∥∥∥ , λleast

(
∇2

(pq ,P fa
q )
Lq (x, πt, λq)

)


 , (121)

where ‖A‖ , ρ
(
ATA

)1/2
and λleast(B) denote the spectral norm of A and the minimum eigenvalue of

the symmetric matrix B, respectively. Given t > 0 and Ŷt as defined in (103) (cf. Appendix D), we also

introduce

ρq(t) ,





ρq(t) , min
(xq, λq) ∈ Ŷt

q × [0, λmax]
(x−q, πt) ∈ Y−q × St

{λleast (Bq (x, λq, πt))} , if ρq(t) ≥ 0,

0, otherwise;

(122)

and the diagonal matrices Dq(t, c) and Eqr (x)

Dq(t, c)
2 ,




ρq(t) + c

(
1− 1/Q√

fq

)2

, 0

0 ρq(t)


 and Eqr (x) ,



∣∣∣∇2

τ̂q τ̂r
θq (x)

∣∣∣ , 0

0,
∥∥∥∇2

pqpr
θq (x)

∥∥∥


 ,

(123)

with θq(·) defined in (17). Given the coefficients

βqr(t, c) , max
(xq,x−q)∈Ŷt

q×Y−q

∥∥Dq(t, c)
−1 Eqr (x) Dr(t, c)

−1
∥∥ , (124)

for r, q = 1, . . . , Q and r 6= q, we can finally define the Q×Q matrix Γ(t) that plays a key role in studying

contraction properties of the best-response map associated with the game Gπ(X ,θ):

[Γ(t)]q,r ,

{
1, if r = q,

−βqr(t, c), otherwise.
(125)

It is important to remark here that the off-diagonal entries of the matrix Γ(t) depend, among other

quantities, on the cross-channels
{
|Ĥqr(k)|2

}
and

{
|GP,q(k)|2

}
. Roughly speaking, this dependence is

such that the βqr(t, c)’s tend to decrease as the aforementioned cross-channels decrease, meaning that the

βqr(t, c) remains “small” as long as the overall MUI in the system remains “small”. We will show shortly

that this is what one needs to guarantee the convergence of the distributed best-response based algorithms

introduced in Sec. 5.1. More formally, by postulating that Γ(t) is a P-matrix, Theorem 15 below states

the contraction properties of the best-response mapping of the game Gπ(X , θ) with respect to the suitably

defined block maximum norm [see proof of the theorem for details].

Theorem 15. Given the game Gπ(X , θ) with exogenous (fixed) price π ≥ 0, suppose that Γ(t) in (125)

is a P-matrix. Then the following hold:
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(a) Each nonconvex optimization problem in (48) has a unique (nontrivial) optimal solution Bq(x−q) ,(
τ̂⋆q (x−q), p

⋆
q(x−q), P

fa⋆
q (x−q)

)
, for every given x−q ∈ Y−q and π ≥ 0;

(b) The best-response map Y ∋ x → B(x) ,
(
Bq(x−q)

)Q
q=1

is a block-contraction; the unique fixed-point

of B is the unique x-component of the NE of the game.

Proof. To prove contraction of the best-response, we need to specify first under which norm the best-

response map contracts. We will use the following norms: the block-maximum norm on R
Q(N+2), defined

as [42]

‖y‖wblock , max
i=1,...,Q

‖yi‖i
wi

, for y = (yi)
Q
i=1 ∈ R

Q(N+2), (126)

where ‖·‖i is a valid vector norm on R
N+2 and w , [w1, . . . , wQ]

T > 0 is any given positive weight

vector. In particular, we choose ‖·‖i as follows: partitioning the vector yi ∈ R
N+2 as yi = (yi,1,yi,2:N+2),

with yi,2:N+2 (or yi,1) being the (N + 1)-length vector containing the last N + 1 components (or the

first component) of yi, and given the matrix Di(t, c) as defined in (123), let the vector norm ‖·‖i be

‖y‖i ,
∥∥(|yi,1|, ‖yi,2:N+2‖2

)∥∥
Di(t, c)2

, where ‖x‖Di(t, c)2
, ‖Di(t, c)x‖2. As it will be clarified shortly, the

choice of such a norm is instrumental to obtain convergence conditions that can be satisfied for all ranges

of c ≥ 0. We also need to introduce the (weighted) maximum norm on R
Q, defined as [49]

‖x‖w∞,vec , max
i=1,...,Q

|xi|
wi

, for x ∈ R
Q; (127)

and the matrix norm ‖·‖w∞,mat on R
Q×Q induced by ‖·‖w∞,vec , given by [49]

‖A‖w∞,mat , max
i

1

wi

Q∑

j=1

|[A]ij |wj , for A ∈ R
Q×Q. (128)

We are now ready to prove the theorem.

(a): Given t ≥ 0, the P property of matrix Γ(t) implies ρq(t) > 0 for all q, and thus ∇2
xq
Lq(x, π, λq) ≻ 0

for all (xq, λq) ∈ Ŷt
q × [0, λmax], x−q ∈ Y−q, and π ≥ 0. According to Proposition 2, this guarantees the

uniqueness of the optimal solution Bq(x−q) =
(
τ̂⋆q (x−q), p

⋆
q(x−q), P

fa⋆
q (x−q)

)
of each nonconvex problem

in (48), for every given π ≥ 0 and x−q ∈ Y−q.

(b): Given the unique solution Bq(x−q), by Lemma 11, it follows that there exists a multiplier λq associated

with the nonconvex constraint Iq(xq) ≤ 0 such that the tuple (Bq(x−q), λq) satisfies the KKT optimality

conditions of the optimization problem in (48), or equivalently, the VI(Kq,Fq) defined in (40), which we

rewrite here for the reader’s convenience:

[
yq − Bq(x−q)

λq − λq

]T ( ∇xqLq
(
(Bq(x−q), λq), x−q, π

)

−Iq
(
Bq(x−q)

)
)
≥ 0, ∀ (yq, λq) ∈ Yq × R

M
+ , (129)

with ∇xqLq defined in (37). Recall that λq ∈ [0, λmax] (Lemma 12) and Bq(x−q) ∈ Ŷt
q (Lemma 13).

Consider now two feasible points x(1) , (x
(1)
q )Qq=1, x

(2) , (x
(2)
q )Qq=1 ∈ Y, with x

(i)
q ,

(
τ̂
(i)
q , p

(i)
q , P

fa(i)
q

)

for i = 1, 2, and q = 1, . . . , Q, and let λ
(i)
q ’s be the multipliers associated with the nonconvex constraints

51



{Iq(xq) ≤ 0}’s at the optimal solutions Bq(x(i)
−q) =

(
τ̂⋆q (x

(i)
−q), p

⋆
q(x

(i)
−q), P

fa⋆
q (x

(i)
−q)
)
, for i = 1, 2. Eval-

uating (129) first in the solution (Bq(x(1)
−q), λ

(1)
q ) given (yq, λq) = (Bq(x(2)

−q), λ
(2)
q ), then in the solution

(Bq(x(2)
−q), λ

(2)
q ) given (yq, λq) = (Bq(x(1)

−q), λ
(1)
q ), and summing the resulting inequalities, we obtain

0 ≥
[
Bq(x(1)

−q)− Bq(x
(2)
−q)

λ
(1)
q − λ

(2)
q

]T 
 ∇xqLq

(
(Bq(x(1)

−q), λ
(1)
q ), x

(1)
−q , π

)
−∇xqLq

(
(Bq(x(2)

−q), λ
(2)
q ), x

(2)
−q, π

)

−Iq
(
Bq(x(1)

−q)
)
−
(
−Iq

(
Bq(x(2)

−q)
))


 .

(130)

By the main-value theorem we deduce that there exists a δ ∈ (0, 1) and a pair (xq(δ),x−q(δ), λq(δ)) ,

δ ·
(
Bq(x(1)

−q),x
(1)
−q , λ

(1)
q

)
+ (1− δ) ·

(
Bq(x(2)

−q),x
(2)
−q , λ

(2)
q

)
such that

0 ≥
(
Bq(x(1)

−q)− Bq(x
(2)
−q)
)T (
∇2

xq
Lq ((xq(δ), λq(δ)), x−q(δ), π)

)(
Bq(x(1)

−q)− Bq(x
(2)
−q)
)

+
(
Bq(x(1)

−q)− Bq(x
(2)
−q)
)T ∑

r 6=q

∇2
xqxr

θq (xq(δ), x−q(δ))
(
x(1)
r − x(2)

r

)
. (131)

Using the definition of Bq(x, πt, λq), ρq(t), ξ
sup
q , and Dq(t, c) and Erq (x) as given in (121), (122), (123),

and (115), respectively, let us introduce for each q = 1, . . . , Q, the error vectors:

eBq
,




∣∣∣τ̂⋆q (x
(2)
−q)− τ̂⋆q (x

(1)
−q)
∣∣∣∥∥∥∥∥

p⋆
q(x

(2)
−q)− p⋆

q(x
(1)
−q)

P fa⋆
q (x

(2)
−q)− P fa⋆

q (x
(1)
−q)

∥∥∥∥∥


 , and eq ,




∣∣∣τ̂ (2)q − τ̂
(1)
q

∣∣∣∥∥∥∥∥
p
(2)
q − p

(1)
q

P
fa(2)
q − P

fa(1)
q

∥∥∥∥∥


 (132)

and the matrices

Cq (x(δ), λq(δ), π) ,


 ∇

2
τ̂q
Lq ((xq(δ), λq(δ)), x−q(δ), π) , −

∥∥∥∇2
τ̂q (pq,P fa

q )Lq ((xq(δ), λq(δ)), x−q(δ), π)
∥∥∥

−
∥∥∥∇2

(pq,P fa
q ) τ̂q
Lq ((xq(δ), λq(δ)), x−q(δ), π)

∥∥∥ , λmin

(
∇2

(pq,P fa
q )Lq ((xq(δ), λq(δ)), x−q(δ), π)

)



= Bq (x(δ), λq(δ), π) +


 c

(
1− 1/Q√

fq

)2

, 0

0 0


 � Dq(t, c)

2 (133)

and

Eqr (x(δ)) =



∣∣∣∇2

τ̂q τ̂r
θq (x(δ))

∣∣∣ , 0

0,
∥∥∥∇2

pqpr
θq (x(δ))

∥∥∥


 =




c

(
1− 1/Q√

fq

)(
1/Q√
fr

)
, 0

0,
∥∥∥∇2

pqpr
(− log rq(p(δ)))

∥∥∥




≤




c

(
1− 1/Q√

fq

)(
1/Q√
fr

)
, 0

0, max
k=1,...,N

{
|Ĥqr(k)|2

σ̂4
q,k

}
· ξsupq



, Esup

qr , (134)

where the upper bound in (134) follows from Lemma 13 and (115). Then, from inequality (131), we deduce

eT
Bq

Cq (x(δ), λq(δ), π) eBq
≤ eT

Bq

∑

r 6=q

Eqr (x(δ)) er, (135)
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which, using the bounds in (133) and (134) and the definition of βqr(t, c) in (124), leads

∥∥∥Dq(t, c) eBq

∥∥∥
2
≤
∑

r 6=q

∥∥Dq(t, c)
−1 Eqr (x(δ)) Dr(t, c)

−1
∥∥ ‖Dr(t, c) er‖2 ≤

∑

r 6=q

βqr(t, c) ‖Dr(t, c) er‖2 ,

(136)

for all q = 1, . . . , Q (the inequality in (131) is trivially satisfied if
∥∥∥Dq(t, c) eBq

∥∥∥
2
= 0). Introducing the

vectors eB,D ,

(∥∥∥eBq

∥∥∥
Dq(t, c)

)Q

q=1

and eD ,

(
‖eq‖Dq(t, c)

)Q
q=1

, and the matrix E(t) , I−Γ(t), the set of

inequalities in (136) can be written in vectorial form as

eB,D ≤ E(t) eD, ∀x(1),x(2)∈ Y, (137)

and thus, for any given w > 0, we have

∥∥∥B(x(1))− B(x(2))
∥∥∥
w

block
=
∥∥∥eB,D

∥∥∥
w

∞,vec
≤ ‖E(t)‖w∞,mat ‖eD‖w∞,vec = ‖E(t)‖w∞,mat

∥∥∥x(1) − x(2)
∥∥∥
w

block
,

(138)

for all x(1),x(2)∈ Y . To complete the proof we need to show that ‖E(t)‖w∞,mat < 1 for some w > 0.

Invoking Lemma [34, Lemma 5.2.14] and [42, Cor. 6.1], we obtain the desired result:

Γ(t) is a P-matrix ⇔ ∃ w̄ > 0 such that cB , ‖E(t)‖w̄∞,mat < 1. (139)

E.2 Asynchronous convergence theorem

Convergence of best-response algorithms solving the game Gπ(X , θ) follows readily from the block-contraction

properties of the best-response, as proved in Theorem 15 and is thus guaranteed under the same conditions

given in Theorem 15.

Theorem 16. Given the game Gπ(X , θ) with exogenous (fixed) π ≥ 0, suppose that Γ(t) in (125) is a

P-matrix. Then, any sequence generated by the asynchronous algorithm based on the best-response B and

starting from any point in Y converges to a NE of the game, for any given updating feasible schedule of

the players.

E.3 On the contraction/convergence conditions

We derive here easier conditions to be checked implying those in Theorem 16 (and Theorem 15); this sheds

light also on their physical interpretation. The approach is similar to that followed to prove Corollary 6;

we thus provide only a sketch of the proof.

The main idea is to build a matrix, say Γlow(t), such that Γ(t) ≥ Γlow(t) [the inequality has to be

intended component-wise], implying that if Γlow(t) is a P matrix, then Γ(t) is so [34], which is the condition

required by Theorem 16. Then, we provide sufficient conditions for Γlow(t) to be a P matrix.

To obtain such a Γlow(t), it is sufficient to properly upper bound (the modulus of) the off-diagonal

entries βqr(t, c) of Γ(t). Given the expression of βqr(t, c) [cf. (124)], a way to do that is to find a matrix

Blow
q such that Bq (x, λq, πt) ≥ Blow

q , and a diagonal matrix Dlow
q (t, c) such that Dq(t, c) ≥ Dlow

q (t, c),
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where Bq (x, λq, πt) and Dq(t, c) are defined in (121) and (123), respectively. Skipping tedious intermediate

derivations, we obtain the following

Blow
q ,




dmin
τ̂q

−ςup
q (t)

−ςup
q (t) λleast

([
∇2

xq
Lq
]
2:N+2

)

 , (140)

where dmin
τ̂q

is defined in (93),
[
∇2

xq
Lq
]
2:N+2

denotes the (N + 1)-dimensional lower right block of the

matrix ∇2
xq
Lq defined in (101), and ςup

q (t) is given by

ςup
q (t) , 2 max {t, λmax} · max

k=1,...,N

{ |GP,q(k)|2
I max

}
·

∥∥∥∥∥∥
vect

(
ωmax

τ̂q

)

1Tvect
(
ωmax

τ̂qP fa
q
⊙ pmax

q

)
∥∥∥∥∥∥
, (141)

with ωmax
τ̂q

and ωmax
τ̂qP fa

q
defined in (94) and (96), respectively. Note that, since the following bounds hold

between the entries of Bq (x, λq, πt) and Blow
q :

∇2
τ̂2q
Lq (x, π̂t, λq)

∣∣∣
c=0
≥ dmin

τ̂q ,
∥∥∥∇2

τ̂q (xq,P fa
q )Lq (x,λq, πt)

∥∥∥ ≤ ςup
q (t),

λleast

(
∇2

(xq ,P fa
q )Lq (x, π̂t, λq)

)
≥ λleast

([
∇2

xq
Lq
]
2:N+2

)
,

matrix Blow
q satisfies the desired property Bq (x, λq, πt) ≥ Blow

q .

Finally, using Blow
q , we can introduce a lower bound of the quantities ρq(t) in (122)

ρlow
q (t) ,

{
ρlow
q (t) , λleast

(
Blow

q

)
, if ρlow

q (t) ≥ 0,

0, otherwise,
(142)

and define the matrix Dlow
q (t, c) as

Dlow
q (t, c)2 ,




ρlow
q (t) + c

(
1− 1/Q√

fq

)2

, 0

0 ρlow
q (t)


 , (143)

which satisfies Dq(t, c) ≥ Dlow
q (t, c). Using the above matrices, the desired upper bound βup

qr (t, c) of the

coefficients βqr(t, c) is

βup
qr (t, c) ,

∥∥Dlow
q (t, c)−1 Esup

qr Dlow
r (t, c)−1

∥∥

= max





c · 1/(Q − 1)√
ρlow
q (t) fq

(1− 1/Q)2
+ c

√
ρlow
r (t) fr

(1− 1/Q)2
+ c

, max
k=1,...,N

{
|Ĥqr(k)|2

σ̂4
q,k

}
ξsupq√

ρlow
q (t)

√
ρlow
r (t)





≥ βqr(t, c),

(144)
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with ξsupq and E
sup
qr defined in (115) and (134), respectively. Using these quantities it is not difficult to see

that the matrix Γlow(t) defined as

[
Γlow(t)

]
q,r

,

{
1, if r = q,

−βup
qr (t, c), otherwise,

(145)

satisfies the desired property Γ(t) ≥ Γlow(t) for any t ≥ 0.

Since Γlow(t) is a P matrix if and only if ρ
(
I− Γlow(t)

)
< 1 [34, Lemma 5.2.14], imposing that

I − Γlow(t) is row or column diagonal dominat, leads to the desired sufficient conditions guaranteeing

convergence of asynchronous algorithms based on the best-response B. This is made formal in the corollary

below.

Corollary 17. Statements in Theorem 16 (or Theorem 15) hold true if one of the two following conditions

is satisfied:

- Low received MUI: for all q = 1, . . . , Q,

∑

r 6=q

βup
qr (t, c) < 1, (146)

- Low transmitted MUI: for all r = 1, . . . , Q,

∑

q 6=r

βup
qr (t, c) < 1. (147)

The physical interpretation of the above conditions is similar to that given for the existence/uniqueness

of the NE (cf. Section 4.3). Roughly speaking, conditions (146) or (147) require “low” interference in

the network, meaning “small” values of the (normalized) cross-channels |Ĥqr(k)|2/σ̂4
q,k as well as large

values of coefficients ρlow
q (t), which is met if, among all, the (normalized) cross-channels |GP,q(k)|2/I max

are “sufficiently small”. An illustrative example is obtained in the two opposite cases where there is no

optimization of the sensing times (and thus c = 0) or the sensing times are optimized by imposing a

common optimal sensing time by choosing a (sufficiently) large constant c (and there are many active

SUs). For those two cases, conditions (146) and (147) reduce respectively to

∑

r 6=q

max
k=1,...,N

{
|Ĥqr(k)|2

σ̂4
q,k

}
γqr < 1, and

∑

q 6=r

max
k=1,...,N

{
|Ĥqr(k)|2

σ̂4
q,k

}
γqr < 1, (148)

with

γqr ,
ξsupq√

ρlow
q (t)

√
ρlow
r (t)

.

Note that γqr’s, among all, depend on the cross-channels |GP,q(k)|2/I max, and become “small” when

|GP,q(k)|2/I max are small. Conditions (148) are thus satisfies if there is not “too much” interference in the

system.
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F Convergence of Best-Response Algorithms for G(X , θ)
F.1 Proof of Theorem 10

First of all note that, given λ0 ≥ 0 and π0
t ≥ 0 and under the setting of Lemma 7, the game Gt(X ,θ,λ0, π0

t )

has a unique NE, denoted by
(
x⋆(λ0, π0

t ),λ
⋆(λ0, π0

t ), π
⋆
t (λ

0, π0
t )
)
, where we made explicit the dependence

on the regularization tuple (λ0, π0
t ). This makes the sequence {(x⋆(λn, πn

t ),λ
⋆(λn, πn

t ), π
⋆
t (λ

n, πn
t ))}∞n=0

generated by Algorithm 3 well defined. The uniqueness of the NE of Gt(X ,θ,λ0, π0
t ) can be proved by

exploring the connection between the game and a suitably defined VI, as briefly outlined next. Under the

positive definiteness of matrix A (x,λ,πt) (as required by Lemma 7), Gt(X ,θ,λ0, π0
t ) is equivalent to the

VI(Zt, Ψλ
0,π0

t
), with Zt given in (45) and the VI function Ψ

λ
0,π0

t
(x,λ, πt) defined as

Ψ
λ
0,π0

t
(x,λ, πt) = Ψ(x,λ, πt) + ǫ ·




0Q(N+2)×1((
λ

πt

)
−
(

λ0

π0
t

))

 . (149)

In other words, the VI(Zt, Ψλ
0,π0

t
) is obtained by the VI(Zt, Ψ) in (45) introducing the proximal regu-

larization of some of the VI variables, namely the λ-variables and πt-variable. The Jacobian matrix of

Ψ
λ
0,π0

t
(x,λ, πt) denoted by JΨ

λ
0,π0

t
(x,λ, πt) is

JΨ
λ
0,π0

t
(x,λ, πt) ,




A (x,λ,πt) ∇xI(x) ∇xI(x)

−∇xI(x)
T ǫ · I 0

−∇xI(x)
T 0 ǫ


 , (150)

where ∇xI(x) , ∇x[I1(x1), · · · , IQ(xQ)]. If A (x,λ,πt) is uniformly positive definite, then so is JΨ
λ
0,π0

t
(x,

λ, πt). It turns out that, under the setting of Lemma 7, the regularized VI(Zt, Ψλ
0,π0

t
) is strongly monotone

[35, Prop. 2.3.2(c)] and thus has a unique solution [35, Th. 2.3.3], implying the uniqueness of the NE(
x⋆(λ0, π0

t ),λ
⋆(λ0, π0

t ), π
⋆
t (λ

0, π0
t )
)

of Gt(X ,θ,λ0, π0
t ).

Once we have proved that (x⋆(λ, πt),λ
⋆(λ, πt), π

⋆
t (λ, πt)) is well defined for any given λ ≥ 0 and

πt ≥ 0, we can derive the main properties of such a tuple [interpreting its components as functions of

(λ, πt)], along with its connection with the NE of the game Gt(X , θ) [and thus G(X , θ)]; these properties

will be instrumental to prove Theorem 10.

Proposition 18. Given t > 0, suppose that A (x,λ, πt) in (46) is uniformly positive definite for all

(x,λ, πt) ∈ Y × [0, λmax]Q × St, and let ǫ > 0 be given. Then the following hold:

(a) The mapping associated with the λ-components and π-component of (x⋆(λ, πt),λ
⋆(λ, πt), π

⋆
t (λ, πt)),

i.e., (
λ⋆(·)
π⋆
t (·)

)
: [0, λmax]Q × St ∋ (λ, πt) 7→

(
λ⋆(λ,πt)

π⋆
t (λ,πt)

)
(151)

has a fixed point, and it is nonexpansive on [0, λmax]Q × St;
(b) The mapping associated with the x-components of (x⋆(λ, πt),λ

⋆(λ, πt), π
⋆
t (λ, πt)), i.e.,

x⋆(·) : [0, λmax]Q × St ∋ (λ, πt) 7→ x⋆(λ,πt) (152)
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is Lipschitz continuous on [0, λmax]Q × St, i.e., there exists a constant 0 < ν < +∞ such that

‖x⋆(λ(1), π
(1)
t )− x⋆(λ(2), π

(2)
t )‖2 ≤ ν ‖(λ(1), π

(1)
t )− (λ(2), π

(2)
t )‖2, (153)

for all (λ(1), π
(1)
t ), (λ(2), π

(2)
t ) ∈ [0, λmax]Q × St;

(c) For any fixed-point (λ, πt) ∈ [0, λmax]Q × St of (λ⋆(·), π⋆
t (·)), the tuple (x⋆(λ, πt), λ, πt) is a solution

of the VI(Zt, Ψ); therefore, it is a NE of Gt(X , θ).

Proof. We prove next only (a) and (b); (c) follows similarly.

(a) Let
(
x,λ, πt

)
∈ Zt be a solution of the VI(Zt, Ψ) in (45), whose existence is guaranteed by Lemma 7;

recall that, by Lemma 12, it must be
(
x,λ, πt

)
∈ Y×[0, λmax]Q×St. It follows that: i) (x⋆(λ, πt), λ

⋆(λ, πt),

π⋆
t (λ, πt)) is the unique solution of the VI(Zt, Ψλ,πt

); and ii)
(
x,λ, πt

)
is also a solution of VI(Zt, Ψλ,πt

).

Hence, it must be x⋆(λ, πt) = x, λ⋆(λ, πt) = λ, and π⋆
t (λ, πt) =πt, which implies the existence of a

fixed-point of the mapping (λ⋆(·), π⋆
t (·)) in (151); moreover, since

(
x,λ, πt

)
∈ Y × [0, λmax]Q × St, such a

fixed point is in [0, λmax]Q × St.
We prove now that (λ⋆(·), π⋆

t (·)) is nonexpansive on [0, λmax]Q × St. Given two distinct tuples

(λ(1), π
(1)
t ), (λ(2), π

(2)
t ) ∈ [0, λmax]Q×St, by definition, the tuples (x⋆(λ(i), π

(i)
t ),λ⋆(λ(i), π

(i)
t ), π⋆

t (λ
(i), π

(i)
t )),

with i = 1, 2, satisfy the following:




x− x⋆(λ(i), π
(i)
t )

λ− λ⋆(λ(i), π
(i)
t )

πt − π⋆
t (λ

(i), π
(i)
t )




T




(
∇xqLq

(
x⋆(λ(i), π

(i)
t ), λ⋆

q(λ
(i), π

(i)
t ), π⋆

t (λ
(i), π

(i)
t ),

))Q
q=1

−




(
Iq

(
x⋆
q(λ

(i), π
(i)
t )
))Q

q=1

I
(
x⋆(λ(i), π

(i)
t )
)


+ ǫ ·

(
λ⋆(λ(i), π

(i)
t )− λ(i)

π⋆
t (λ

(i), π
(i)
t )− π

(i)
t

)



≥ 0, (154)

for all (x, λ, πt) ∈ Yt × [0, λmax]Q ×St and i = 1, 2. Thus, similar to the proof of Theorem 15, we deduce




x⋆(λ(2), π
(2)
t )− x⋆(λ(1), π

(1)
t )

λ⋆(λ(2), π
(2)
t )− λ⋆(λ(1), π

(1)
t )

π⋆
t (λ

(2), π
(2)
t )− π⋆

t (λ
(1), π

(1)
t )




T

×







(
∇xqLq

(
x⋆(λ(1), π

(1)
t ), λ⋆

q(λ
(1), π

(1)
t ), π⋆

t (λ
(1), π

(1)
t )
))Q

q=1


(
Iq

(
x⋆
q(λ

(2), π
(2)
t )
))Q

q=1

I
(
x⋆(λ(2), π

(2)
t )
)


+ ǫ

(
λ⋆(λ(1), π

(1)
t )− λ(1)

π⋆
t (λ

(1), π
(1)
t )− π

(1)
t

)




+

−




(
∇xqLq

(
x⋆(λ(2), π

(2)
t ), λ⋆

q(λ
(2), π

(2)
t ), π⋆

t (λ
(2), π

(2)
t )
))Q

q=1


(
Iq

(
x⋆
q(λ

(1), π
(1)
t )
))Q

q=1

I
(
x⋆(λ(1), π

(1)
t )
)


− ǫ

(
λ⋆(λ(2), π

(2)
t )− λ(2)

π⋆
t (λ

(2), π
(2)
t )− π

(2)
t

)






≥ 0.

(155)

By the mean-value theorem, it follows that there exists a tuple (xδ, λδ, πδ) lying on the line segment joining

(x⋆(λ(1), π
(1)
t ),λ⋆(λ(1), π

(1)
t ), π⋆

t (λ
(1), π

(1)
t )) and (x⋆(λ(2), π

(2)
t ),λ⋆(λ(2), π

(2)
t ), π⋆

t (λ
(2), π

(2)
t )) such that [see
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also (150)]
(
x⋆(λ(2), π

(2)
t )− x⋆(λ(1), π

(1)
t )
)T

A (xδ, λδ, πδ)
(
x⋆(λ(2), π

(2)
t )− x⋆(λ(1), π

(1)
t )
)

≤ ǫ ·
(

λ⋆(λ(2), π
(2)
t )− λ⋆(λ(1), π

(1)
t )

π⋆
t (λ

(2), π
(2)
t )− π⋆

t (λ
(1), π

(1)
t )

)T (
λ(2) − λ(1)

π
(2)
t − π

(1)
t

)
− ǫ ·

∥∥∥∥∥

(
λ⋆(λ(2), π

(2)
t )− λ⋆(λ(1), π

(1)
t )

π⋆
t (λ

(2), π
(2)
t )− π⋆

t (λ
(1), π

(1)
t )

)∥∥∥∥∥

2

2

.

(156)

Applying the Cauchy–Schwartz inequality and reorganizing terms we obtain:
∥∥∥∥∥

(
λ⋆(λ(2), π

(2)
t )− λ⋆(λ(1), π

(1)
t )

π⋆
t (λ

(2), π
(2)
t )− π⋆

t (λ
(1), π

(1)
t )

)∥∥∥∥∥

2

2

≤
∥∥∥∥∥

(
λ⋆(λ(2), π

(2)
t )− λ⋆(λ(1), π

(1)
t )

π⋆
t (λ

(2), π
(2)
t )− π⋆

t (λ
(1), π

(1)
t )

)∥∥∥∥∥
2

·
∥∥∥∥∥

(
λ(2) − λ(1)

π
(2)
t − π

(1)
t

)∥∥∥∥∥
2

−1

ǫ

(
x⋆(λ(2), π

(2)
t )− x⋆(λ(1), π

(1)
t )
)T

A (xδ, λδ, πδ)
(
x⋆(λ(2), π

(2)
t )− x⋆(λ(1), π

(1)
t )
)

≤
∥∥∥∥∥

(
λ⋆(λ(2), π

(2)
t )− λ⋆(λ(1), π

(1)
t )

π⋆
t (λ

(2), π
(2)
t )− π⋆

t (λ
(1), π

(1)
t )

)∥∥∥∥∥
2

·
∥∥∥∥∥

(
λ(2) − λ(1)

π
(2)
t − π

(1)
t

)∥∥∥∥∥
2

where the last inequality follows from the positivity of the quadratic form, due to the positive definiteness

of A (xδ, λδ, πδ); which proves the desired nonexpansive property of the mapping (λ⋆(·), π⋆
t (·)):

∥∥∥∥∥

(
λ⋆(λ(2), π

(2)
t )− λ⋆(λ(1), π

(1)
t )

π⋆
t (λ

(2), π
(2)
t )− π⋆

t (λ
(1), π

(1)
t )

)∥∥∥∥∥
2

≤
∥∥∥∥∥

(
λ(2) − λ(1)

π
(2)
t − π

(1)
t

)∥∥∥∥∥
2

. (157)

(b) Following similar steps as in (a) and using the Cartesian structure of the set Zt we deduce that, for any

given (λ(1), π
(1)
t ), (λ(2), π

(2)
t ) ∈ [0, λmax]Q×St, there exists a tuple (xη, λη, πη) lying on the segment joining

(x⋆(λ(1), π
(1)
t ),λ⋆(λ(1), π

(1)
t ), π⋆

t (λ
(1), π

(1)
t )) and (x⋆(λ(2), π

(2)
t ),λ⋆(λ(2), π

(2)
t ), π⋆

t (λ
(2), π

(2)
t )) such that

(
x⋆(λ(2), π

(2)
t )− x⋆(λ(1), π

(1)
t )
)T

A (xη, λη, πη)
(
x⋆(λ(2), π

(2)
t )− x⋆(λ(1), π

(1)
t )
)

≤
(
x⋆(λ(2), π

(2)
t )− x⋆(λ(1), π

(1)
t )
)T

[∇xI(xη),∇xI(xη)]

(
λ⋆(λ(1), π

(1)
t )− λ⋆(λ(2), π

(2)
t )

π⋆
t (λ

(1), π
(1)
t )− π⋆

t (λ
(2), π

(2)
t )

)

≤
∥∥∥x⋆(λ(2), π

(2)
t )− x⋆(λ(1), π

(1)
t )
∥∥∥
2
· ‖[∇xI(xη),∇xI(xη)]‖ ·

∥∥∥∥∥

(
λ(2) − λ(1)

π
(2)
t − π

(1)
t

)∥∥∥∥∥
2

,

(158)

where the last inequality follows from the Cauchy–Schwartz inequality and the nonexpansive property of

(λ⋆(·), π⋆
t (·)) [cf. (157)], and ∇xI(x) , ∇x[I1(x1), · · · , IQ(xQ)]. Invoking the uniform positive definiteness

of A (xη, λη, πη) and the boundedness of the set Y, we deduce from (158)

∥∥∥x⋆(λ(2), π
(2)
t )− x⋆(λ(1), π

(1)
t )
∥∥∥ ≤ ‖[∇xI(xη),∇xI(xη)]‖

λleast (A (xη, λη, πη))

∥∥∥∥∥

(
λ(2) − λ(1)

π
(2)
t − π

(1)
t

)∥∥∥∥∥ ≤ ν ·
∥∥∥∥∥

(
λ(2) − λ(1)

π
(2)
t − π

(1)
t

)∥∥∥∥∥
(159)

for some finite positive ν, which proves the desired Lipschitz continuity of x⋆(·) on [0, λmax]Q × St.
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Proof of Theorem 10. We are now ready to prove the theorem. The outer loop of Algorithm 10 [see

(62) in Step 3] is an instance of the Jacobi Over Relaxation, JOR, method [50] applied to the mapping

(λ⋆(·), π⋆
t (·)); which, using the notation introducing above, can be equivalently rewritten as:

(
λ(n+1)

π
(n+1)
t

)
= (1− ǫ) ·

(
λ(n)

π
(n)
t

)
+ ǫ ·

(
λ⋆(λ(n), π

(n)
t )

π⋆
t (λ

(n), π
(n)
t )

)
. (160)

Since (λ⋆(·), π⋆
t (·)) is nonexpansive on [0, λmax]Q × St [Proposition 18(a)], the sequence {(λ(n), π

(n)
t )}∞n=1

generated by the JOR scheme (160) converges to a fixed-point
(
λ, πt

)
of (λ⋆(·), π⋆

t (·)) [50, Th. 12.3.7].

By Proposition 18(b) [see (153)], the convergence of {(λ(n), π
(n)
t )}∞n=1 implies also the convergence of the se-

quence {x⋆(λ(n), π
(n)
t )}∞n=1 in the inner loop of Algorithm 10 to x⋆

(
λ, πt

)
; the limit point

(
x⋆
(
λ, πt

)
, λ, πt

)

is the claimed NE of Gt(X , θ) [Proposition 18(c)], and thus G(X , θ), if t > λmax (Theorem 5). �
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