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Proactive Resource Allocation: Harnessing the
Diversity and Multicast Gains
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Abstract—This paper introduces the novel concept of proactive e While there is a severe shortage in the spectrum, it is
resource allocation through which the predictability of user well-documented that a significant fraction of the avaiabl
behavior is exploited to balance the wireless traffic over the, and spectrum is under-utilized[1]. In fact, this is the main inot

hence, significantly reduce the bandwidth required to achiee a . . .

given blocking/outage probability. We start with a simple nodel vation for the cognitive networking Wherg secondary PS'*PS a
in which the smart wireless devices are assumed to predict ¢n allowed to use the spectrum at the off time of the primary so
arrival of new requests and submit them to the networkT time as to maximize the spectral efficiency [2]. The cognitiveiwad
slots in advance. Using tools from large deviation theory, @ approach, however, is still facing significant technolagic
quantify the resulting prediction diversity gain to establish that hurdles [3], [4] and, will offer only a partial solution to eh

the decay rate of the outage event probabilities increasesiti S T . .
the prediction duration T. This model is then generalized to problem. This limitation is tied to the main reason behingl th

incorporate the effect of the randomness in the predictiondok- under-utilization of the spectrum; nametlye large disparity
ahead time T. Remarkably, we also show that, in the cognitive between the average and peak traffic demand in the network

networking scenario, the appropriate use of proactive resorce Actually, one can see that the traffic demand at the peak
allocation by the primary users improves the diversity gainof the hours is much higher than that at night. Now, the cognitive

secondary network at no cost in the primary network diversity. . .
We also shed lights on multicasting with predictable demans radio approach assumes that the secondary users will be able

and show that the proactive multicast networks can achieve a t0 utilize the spectrum at the off-peak times, but at those
significantly higher diversity gain that scales super-linarly with ~ times one may expect the secondary traffic characteristics

T'. Finally, we conclude by a discussion of the new researchto be similar to that of the primary users (e.g., at night
questions pl)ose_d lunder the lli_mbr;ella of thﬁ proposed proac® o5t of the primary and secondary users are expected to be
(non-causal) wireless net\./vor s rameV\for- ' o ~idle). Thereby, the overarching goal of the proactive reseu
Index Terms—Scheduling, large deviations, diversity gain, gllocation framework is to avoid this limitation, and hence
multicast alignment, predictive traffic. achieve a significant reduction in the peak to average demand
ratio without relying on out of network users
I. INTRODUCTION e In the traditional approach, wireless networks are con-
. o _ structed assuming that the subscribers are equipped with
Deally, wireless networks should be optimized to delivejymp terminalswith very limited computational power. It
the best Quality of Service (in terms of reliability, delayis opvious that the new generation siart devicesenjoy
and throughput) to the subscribers with the minimum expegyynificantly enhanced capabilities in terms of both preires
diture in resources. Such resources include transmitte@Ro power and available memory. This observation should iespir
transmitter and receiver complexity, and allocated freqye 5 similar paradigm shift in the design of wireless networks
spectrum. Over the last few years, we have experienced \@Rereby the capabilities of the smart wireless terminaés ar
ever increasing demand for wireless spectrum resulting frqeyeraged to maximize the utility of the frequency spectrum
the adoption othroughput hungnapplications in a variety of 5 pon-renewable resource that does not scale according to

civilian, military, and scientific settings. ~ Moore’s law Our proactive resource allocation framework is
Since the available spectrum is non renewable and limitegd sjgnificant step in this direction.

this demand motivates the need for efficient wireless nédsvor, The introduction of smart phones has resulted in a paradigm
that maximally utilizethe spectrum. In this work, we focusgpift in the dominant traffic in mobile cellular networks.
our attention on the resource allocation aspect of the problyyjle the primary traffic source in traditional cellular metrks
and propose a new paradigm that offers remarkable specffals real-time voice communication, one can argue that a
gains in a variety of relevant scenarios. More specificallyjgnjficant fraction of the traffic generated by the smartrE®o
our proactive resource allocation framework exploits the-p resyits from non-real-time data requests (e.g., file doaasd.
dictability of our daily usage of wireless devices to smooths gemonstrated in the following, this feature allows forrmo
out the traffic demand in the network, and hence, reduce iiggrees of freedom in the design of the scheduling algorithm
required resources to achieve a certain point on the Quaflitys The final piece of our puzzle relates to the observation that
Service (QoS) curve. This new approach is motivated by th¢s human usage of the wireless deviceighly predictable
following observations. This claim is supported by a growing body of evidence that
, _ o ranges from the recent launch @&oogle Instant to the
Authors are with the Department of Electrical and Computegieering interesting findi dictabl bilit tter
at the Ohio State University, Columbus, USA. g findings on our predictable mobility patterb} [
E-mail: {tadrousj,eryilmaz,helgamg®ece.osu.edu An example would be the fact that our preference for a
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particular news outlet is not expected to change frequently Taw: Predicion duration

So, if the smart phone observes that the user is downloading ( . ) Dy

CNN, for example, in the morning for a sequence of days in a i T 1 1 foeading Time slots
row then it carenticipate that the user will be interested in the o) Actual arrival time

CNN again the following day. One can now see the potential Prediction time

for scheduling early downloads of_ the predictable_traffic tRig. 1: Prediction Modely(n) is a request predicted at the
reduce the peak to average traffic demabg maximally peginning of time slotn, Ty, is the prediction duration
exploiting the available spectrum in the network idle time. of requestg(n), and Dy is the actual slot of arrival for

These observations motivate us in this work to develop apgyuest;(n) which can be considered as the deadline for such
analyze proactive resource allocation strategies in tasguce 5 request.

of user predictability under various conditions, dynamarsd
operational capabilities. In particular, our contribaticalong

with their position in the rest of the paper are: ~In this paper, however, we look at the scheduling problem
o In Sectior 1) we state the predictive network model and ingith deadlines from a different perspective, where we define
troduce the outage probability and the associated diyegain e gutage probability as the probability of having a timat s|
for two main scaling regimes, namely, linear and polynomialffering expiring requests, and we analyze the asymptotic
scaling. _ o _ decay rate of this outage probability with the system cdpaci

e In Section[ll, we establish the diversity gain of nong: when the input traffic is increasing i@ either linearly
predictive and predictive networks, and analyze the eféct o, olynomially, andC' is approaching infinity. We call this
the random look-ahead window siZ&, Our analysis reveals metric the diversity gain of the network and show that its
a minimum improvement factor of (1+T) in the diversity gaithehayvior can significantly be improved by exploiting the
for both linear and polynomial scaling regimes. predictable behavior of the users. This metric and line of
» In Sectior[ ¥, we investigate proactive scheduling in a tWQpyestigation are also motivated by the order-wise difiee
QoS network,typical of a cognitive radio network, where Wgetween the timescale of the prediction window lengths-(typ
prove the existence of a proactive scheduling policy that CRally of the order of tens of minutes, if not hours) and
maintain the diversity gain level of the primary predictivghe timescale of application-based deadline-constréaitthe

network while strictly improving it for the secondary nony der of milliseconds) considered in other works.
predictive network.

¢ In Section[¥, we analyze the robustness of the proactive
resource allocation scheme to the prediction errors aner-det
mine the optimal choice of the look-ahead window size given We consider a simplified model of a single server, time-
an imperfect prediction mechanism to maximize the diversislotted wireless network where the requests arrive at the
gain, which is shown to be always strictly greater than that beginning of each slot. The number of arriving requests at
the non-predictive network. time slotn is an integer-valued random variable denoted by
¢ In Section[V], we analyze the proactive multicasting witl§)(n) that is assumed to be ergodic and Poisson distributed
predictable demands, and show the significant gains that egith mean\. Each request is assumed to consume one unit
be leveraged through the alignment property offered by pref resource and is completely served in a single time slot.
dictable multicast traffic. More specifically, we show thiaét Moreover, the wireless network hasfixed capacity C' per
diversity gain of a proactive multicasting network is inasang slot. We distinguish two types of wireless resource alloca-
super-linearly with the window siz€d;, for the linear scaling tion: reactive and proactive. In reactive resource allocation,
regime. the wireless network responds to user requests right after
¢ In SectionVIIl, we conclude the paper and highlight othethey are initiated by the user, whereas in proactive resourc
important research aspects that can be leveraged throadjbcation, the network can track, learn and theredict
predictive wireless communications. the user requests ahead of time, and hence possesses more
The proactive wireless network can be viewed as an ordliexibility in scheduling these requests before their alctinge
nary network with delay tolerant requests, that is, when tlog arrival. We refer to the networks that perform reactivel an
network predicts a request a head of time, the actual arriyabactive resource allocation, respectively,nas-predictive
time of that request can be considered as a hard deadline tad predictive networks.
the scheduler should meet. In [6], scheduling with deadline The predictive wireless network can anticipate the arrival
was considered for a single packet under the objective @ff requests a number of time slots ahead. That is(if),
minimizing the expected energy consumed for transmiséion.q € {1,---,Q(n)}, is the identifier of a request predicted at
[7], the asymptotic performance of the error probabilitthwi the beginning of time slot, the predictive network has the
the signal-to-noise ratio was analyzed when the bits of eaativantage of serving this request within the néyt,, slots.
codeword must be delivered under hard deadline constrairti&€nce, when request(n) arrives at a predictive network, it
In [8] and [9], scheduling with deadlines was also addressbds a deadline at time sld®,,,) = n + T, as shown in
from gqueuing theory point of view under different objectiveFig.[1.
and multiple priority classes while optimal schedulingipels Conversely, in a non-predictive network, all arriving re-
were investigated for different scenarios. qguests at the beginning of time slat must be served in

Il. SYSTEM MODEL

a(n



the same time slot, i.e., if ¢(n) is an unpredicted request,first. Except for Sectiod VI and its associated appendices,
then T,y = 0 and D,,,) = n. At this point, we wish to we consistently use the accentsand © to denote linear
stress the fact that the model operates as the time scaleanfl polynomial scaling regimes respectively, while symabol
the application layer at which 1) the current paradigm, i.ewithout accents are used to denote a general case.
non-predictive networking, treats all the requests asnirgd

each slot duration may be in the order of minutes and possibly I1l. DIVERSITY GAIN ANALYSIS

hours, and 3) the system capacity is fixed since the chan[&el

fluctuation dynamics are averaged out at this time scale. ) o
Definition 1: Let Ny(n) be the number of requests in the The reactive networks are supposed to have no prediction

system at the beginning of time slothaving a deadline of capabilities so they cannot serve any request prior toris ti

Diversity Gain of Reactive Networks

n. The outage ever® is then defined as of actual arrival. Hence, the reactive network encounters a
outage at time slot if and only if Q(n) > C as Ny(n) =

Theorem 1:Denote the outage probability and the diversity
r%aln of the non-predictive network, respectively, By (O)
anddN( ), then

The above definition states that an outage occurs atnslbt
and only if at least one of the requests in the system expi
in this slot. The termNy(n) coincides onQ(n) when the

network is non-predictive, and is different when the networ dn@) =7 —-1—log7, 0<7y<1, (2)
is predictive.

Following the definition of the outage event, we denof@nd ~ ~ _
the probability that the wireless network runs into an oatag dv(¥)=1-7, 0<7<L ®3)
at slotn > 0 by P(O). Throughout this paper, we will Proof: Please refer to Appendix]A. -

focus on analyzing the asymptotic decay rate of the outaget can be noted that as and 5 _approachl, the corre-
probability with the system capacityy’ when it approaches sponding diversity gaindy (7) anddy () approachn, as in
infinity. We call this decay rate theliversity gain of the thjs case the arrival rate in both regimes matches the system
network. Moreover, in our analysis we assume that the megdbacity, and hence the system becomes critically stafle an
input traffic A scales with the system capacity in two differenhe |ogarithm of the outage probability does not decay with
regimes as follows. C. However, the behavior of the the diversity gain is not the
1) Linear Scaling: In this regime, the arrival processsame when botly and” approach). As — 0, dy (7) — oo
Q(n),n > 0 is Poisson with rate\ that scales with because the arrival ratd — 0, thus the resulting outage
C as probability approache$ and the diversity gain approaches
A=7C, 0<7y<1. oco. Whereasy — 0 implies thath( ) — 1 which is the case
when the input traffic is still positive but does not scalehwit

And with outage probability denoted by’ (O), the the system capacity.

associated diversity gain is defined as

A7) 2 lim _logP (6). B. Diversity Gain of Proactive Networks

Croo ¢ Unlike reactive networks, the proactive network has the

2) Polynomial Scalingin this regime, the arrival processtlexibility to schedule the predicted requests in a window of
Q(n),n > 0, is also Poisson with rata, but the rate time slots through some scheduling policy. Depending on the
scales with the system capacity polynomially as scheduling policy employed, the resulting outage prolitsbil

T A ~ (and of course the associated diversity gain) varies. By the
A=C7 0<~y<l1. . . : ) . .
B termoptimal prediction diversity gain, we mean the maximum
And with outage probability?(0), the associated diver- diversity gain that can be achieved by the predictive nekyor

sity gain is defined as which corresponds to the minimum outage probability dethote
3 Pp(0).
E[ﬁ) 2 lim _w In our analysis, we consider, for simplicity, the earliest

Cooe ClogC deadline first (EDF) scheduling policy, which has also been
We consider the linear scaling of the input traffic with thealled in [13] shortest time to extinction (STE). This pglic
system resources because it is commonly used in networkasy proved in[[13], maximizes the number of served requests
literature where the parameter serves as bandwidth uti-under a per-request deadline constraint. Further studies o
lization factor. As% approached the average input traffic this policies can be found iri[8] and [14]. In the proposed
approaches the capacity and the system becomes criticgligdictive network, the EDF scheduling policy is defined as
stable and more subject to outage events, whereas smadisvalollows.
of 7 imply underutilized resources but small probability of Definition 2 (Earlies Deadline First (EDF))Let the max-
outage. The polynomial scaling regime is also introduceéchum prediction interval for a request be denotedy i.e.,
because under this type of scaling, the optimal predictidi* = sup, ,, {Tq(n)}, and letN;(n),i = 0,1,--- ,T* be the
diversity gain can be fully determined through the asyniptotnumber of requests in the system at the beginning of time slot
analysis of simple scheduling policies like earliest deadl n and having a deadline of + i. Then, at the beginning of



slotn, the EDF policy sorts{Nl-(n)};T:O in an ascending order Comparing the right hand sides &1 (4), afdl (6) it can be seen
with respect toi, and serves them in that order until either ¢hat they match only whefl” = 0, and in this case, they
total of C' requests get served or the network completes théso match the non-predictive diversity gain obtained )5
service of all existing requests in this slot. Otherwise, for positive values d@f, the two bounds differ.

It can be noted that EDF does not necessarily minimize the2) Random Look-ahead Tima&Ve consider a more general
outage probability as it is only concerned with maximizihg t scenario wheré’(,,), 0 < ¢(n) < Q(n), n > 0 is a sequence
number of served requests while the outage event does reot tak 1ID non-negative integer-valued random variables define
into account the number of dropped requests. However, ERfer a finite suppor{T.,---T*}, where0 < T, < T* < cc.
has two main characteristics that help in analysis. Naniely,The random variablé,,,) has the following probability mass
always serves requests as long as there are any, i.e., it ifugction (PMF),
work conserving policy, and it serves requests in the ordler o i}
their remaining time to deadline. P (Tq(n) = k:) 2 { Pk T, < k =T

1) Deterministic Look-ahead Time:ln this scenario, 0,  otherwise
Tymy = T for all g(n),n > 0 for some constanf” > 0.
Hence, assuming that the system employs EDF schedulmg
policy, we haveT* = T and Np(n) = Q(n),n > 0. Thus, di
the EDF policy will reduce to first-come-first-serve (FCFS). 1, k> T

()

ere Z;‘:;T* pr = 1 andp, > 0, Vk, the cumulative
tribution function (CDF) ofl,(,,) can be written as

The outage probability in this case is denotedRyp (O). P(T <k = Fr — k _ < < T 8
Lemma 1:Under EDF, let (T < K) K Yier. P T.< k=T (8)
0, k< Ti.
T
Up £ {Z Qn—-T—-)>C(T+1),n> 1} Hence, the overall procesQ(n) can be decomposed to a
i=0 superposition of independent Poisson processes, i.e.,
and -~
Lp2{Qn—T)>C(T+1),n>1}. Q(n) = Z Qr(n)
Then, the event&/p and £Lp constitute a necessary condition k=T,
and a sufficient condition on the outage event, respectivqwherer(n), n > 0 is the process of requests predicted
Hence,P(Lp) < Ppp(0) < P(Up). slots aheadk = T.,---,T*. The arrival rate ofQy(n) is

In the above lemma, we assume that> 1 as we are j, ).

interested in the steady state performance. The e¥@nt |n this scenario, we denote the outage probability under
occurs when the number of arriving requests in consecuti#@)r py Py (0) and the optimal diversity gain bypz (7).

T + 1 slots is larger than the total capacity 8f+ 1 slots, ypjike the case of deterministic look-ahead time, EDF here
whereas the evenfp occurs when the number of armivinggoes not reduce to FCFS because the arriving requests at
requests at any slot is larger than the total capacity’ef 1  he subsequent slots can have earlier deadlines than some of
slots. those who have already arrived. Upper and lower bounds on

Proof: Please refer to Appendix B. . B Pop(0) are introduced in the following lemma.
It is obvious from the proof that the eveirp is related Lemma 2: Let

to the outage even through the EDF scheduling policy,

whereas the evertip is independent of the scheduling policy I o i}
employed. 23NN Qin—i—4)>C(T +1),n> 1y,
Theorem 2:The optimal prediction diversity gain of a 7=04=T.

proactive network with deterministic prediction interval ‘

denoteddpp(v), satisfies 1l ko
_ ro7) J = ZZQi(n—j)>C(k+1),n>>1 ,
dpp(¥) > (1+T)F—-1-1og®), 0<7y<1, (4 k=T, | j=T. i=T.
dpp(3) = (1+T)(1-7), 0<7y<1. (5)

. , up 2zl Jg
The above result shows that proactive resource allocation

offers a multiplicative diversity gain of at lea%t+ 1 for the and
linear scaling regime and exactlf + 1 for the polynomial . i
scaling regime. A .
Proof: Please refer to Appendix| C. [] Lr= U Z Qi(n—j)>Ck+1)n>10,
Note that, an upper bound afpp () can be established =T =T
using P(Lp) < Ppp(0O) and following the same approach ofthen, the event&; and £ constitute necessary and sufficient
deriving the lower bound in the theorem. This upper bourgbnditions on the outage event, respectively. HeR¢E ) <

will be given by Ppr(0) < P(Ug).
- 5 T+1 Here also, we assume the system is at steady state.
dpp(¥) < (T'+1) (T—-‘rl —1+log (T)) - (6) Proof: Please refer to AppendixID. n



Theorem 3:Let all primary requests at that slot with the remaining capacit
assigned to the secondary user. This type of opportunistic
log (&) _ 1] access to the primary network adds more utilization to its
Zf OT* Fy_; resources while it may get paid by the secondary user for
k—T. } the offered service.

+7 Z Fr_; The primary and secondary requests arrive to the net-
=0

work following two Poisson processe3”(n),n > 0 and
the optimal diversity gain of a proactive wireless netwoithw @°(12);7 > 0 with arrival rates\” and\® respectively. We also
random prediction intervalipr(7), satisfies

assume that the network is stable and dominated by primary
arrivals as follows.
dpr(¥) > min{(T*+1)(7—1-log7¥),v.}, 0<5<1(9)  Assumption 1:

T, <k<T*—1

T, 2  min {(k—i— 1)

for the linear scaling regime, and NN <O, (11)
dpr(¥) = (T, + 1)1 -7), 0<F <1, (10) A° < AP, (12)
for the polynomial scaling regime. The network is reactive to the secondary requests and hence
Proof: Please refer to Appendix E. m ecach secondary request will expire if it is not served in the

Theoren(B determines a lower bound on the optimal préame slot of arrival. In the following subsection, we anelyz
diction diversity gain of the linear scaling regime and yull the performance of the secondary outage probability and
characterizes the optimal prediction diversity. It is amg diversity gain when the primary network is also reactiventh
that the lower bound odpr(7) depends on the distributionwe proceed to the proactive case.
of Ty, however, this lower bound is always larger than
dy(7) as long asI™ > 0 and pr-o. This can be viewed A, Non-predictive Primary Network
by considering the ternfT* + 1)(7 — 1 — log7) which is
strictly larger thandy (7) and@, where for anyk such that
T.<k<T*-1,

At the beginning of time slot: the network hag)?(n) +
Q*(n) arrivals that should be served within the same slot, i.e.,
all have a deadline ofi. The network typically serves the

B Zf:‘g* F_; Zf:‘g* F_; _ | primary requests before the secondary. Hence, the diyersit
(k+1)|7 k1 - Er1l 1 —1log7|  gain of the primary network in this scheme, denotéd+?),
@ follows the same expressions obtained in Thedrém 1, i.e.,
. (k+1)(F =1~ log7) dy(P) =7 ~1-logy?, 0<77 <1  (13)
b ~
> dn (7). dy(F)=1-7", 0<3" <1, (14)
Inequality (a) follows as where)? =57C and\? = C7".
k—T. . The secondary user, therefore, suffers an outage at tirhe slo
Zi:o Fk—z . .
0<=—7F——<«1 n if and only if
k+1
andyz—logz >7, Vz e (0,1), while inequality (b) follows Q"(n)+Q*(n) >C, Q°(n) >0

because: > T, > 0. Hence, the proactive network in linear
scaling regime withl™* > 0 andpp- > 0 always improves
the diversity gain.

For the polynomial scaling regime, Theoréin 3 shows th%f%]
the prediction diversity gain of a proactive wireless natwo

Theorem 4:The diversity gain of the secondary network,
,v*), when the primary network is non-predictive, sat-

with random look-ahead interval is dominated by arrivaltwi dy (7, 7°) <77 — 1 —log7?, (15)
Tyn) = T.. Hence, the main drawback of this is that]if = 0 T(FP A >AP L7 1 — ] +7 16
the prediction diversity becomes tantamount to that of the n (zp’ 75) 27"+ 0g(Y" +7°); (16)
predictive scenario. However, even thoufh= 0, the outage dN(V 7)) =1- 17)

probability of the predictive network is evaluated numalic wherex® — 750, X* =
in Section[ VIl and shown to outperform the non-predictive oo 50 < AP < 1.
case.

C7 and0 < 7° < 7P < 1,77 +7° <

Proof: Please refer to AppendiX F. [ ]
Theoren{# reveals that the diversity gain of the secondary
IV. HETEROGENOUSQOS REQUIREMENTS user, under non-predictive network, is at most equal to the
We consider two types of users with different QoS rediversity gain of the primary network in the linear scaling
quirements, the first is a primary user who has the prioritggime and is exactly equal to it in the polynomial scaling
to access the network, whereas the second is a secondagime although the secondary user has strictly less traffic
user that is allowed to access the primary network resourcage than the primary. It can also be noted tH&t(y?,~*)
opportunistically. That is, it can use the primary resoarae is independent ofy®, that is, regardless of how smajf is,
any time slot only when there is sufficient capacity to serw@e diversity gain of the secondary user is kept fixediaty”)



O system. One possible way to do so is to decide the capacity
for the primary network dynamically at the beginning of each

j‘. 1 slot. We suggest the following less-selfish policy.

| Definition 3: The number of primary requests to be served

at slotn is denoted byC?(n) and given by

)

15r

T
C?(n) £ min {C, NE(n) + f x ZNf(n)} . (20

=1

Upper and lower bounds on djy (37,7

where0 < f < 1, and the primary requests are served
- according to EDF.
(37 +7°) = 1~ log(77 + 7°) ™= This scheme determines the maximum number of primary
hoer e I e e e requests that the primary network can serve at the beginning
of each slot depending on the number of primary requests with
Fig. 2: The gap between the upper and lower bounds geadline at this slot as well as some factor of the number of
dn(¥7,7°) declines whery® < 7”. In this figure,y* = 0.02  other primary requests in the system. Hence, at the begjnnin
andy” € (7,1 —75°). of time slotn, arriving secondary requests will have the chance
to get service ifC — C?(n) > 0, while the primary network
_ has the capability to schedule th#(n) requests according to
as long asy® > 0. The lower bound in[(16), although does service policy that minimizes the primary outage protitbil
not match the upper bound in{15), it is always positive angye address the EDF scheduling, however, for simplicity). |
approaches the upper bound whgnis much smaller thaff”  the above scheme, jf is chosen to be, the primary network

as shown in Fig.12. will act selfishly, whereasf = 0 implies a performance of
primary non-predictive network. In the following theorem we
B. Predictive Primary Network show that for some range ¢f, the diversity gain expressions

When the primary network is predictive, the arriving prifor the primary network satisfy the same bounds of the selfish
mary requests)?(n), n > 0 are assumed to be predictablé&cenario.
with a deterministic look-ahead tim&. The secondary re- Theorem 5:Under the dynamic capacity assignment policy
quests,Q*(n), conversely, are all urgent. in Def.[3 with f € [0.5,1], the diversity gain of the primary
Let N¥(n) be the number of all primary requests awaitingietwork satisfies
in the network at the beginning of time slatwith deadline

n+i,i=0,---,7 and letN?(n) = 3. NP(n). dp(7) > (T+ 1)F —1—1log7"), 0<7" <1, (21)
_ 1) Selfish anary Schedulin@®y aselﬁshp_rlmary behav_— db({3) = (T+1)(1 —77), 0<7” < 1. (22)
ior we mean the primary network has a dedicated cap#city

per slot and no secondary request is served at the beginning proof: Please refer to Appendix]G. m

of time slotn unless all primary requesfS”(n) are served at  The apove theorem thus shows that the predictive primary
this slot andC’— N*(n) > 0. The optimal prediction diversity network satisfies the same diversity gain bounds of the Belfis
gain and the outage probability of the primary network iBehavior under the proposed dynamic capacity assignment
this case are not affected by the_ presence of the secgnd@é}{cy as long asf € [0.5,1]. Moreover, it gives a potential
user. On the other hand, the selfish behavior of the primagy jmprovement in the outage performance of the secondary
predictive network cannot improve the outage probability q,sers py limiting the number of primary requests served per

the secondary user. To show this, i¢t(O*) denote the outage gjot. The outage probability of the secondary network irs thi
probability of the secondary user when the primary netwoggse is given by

is predictive. Then

Pp(0%) = P(N*(n) + Q*(n) > C.Q*(n) > 0) Pr(07) = P(Q*(n) + C¥(n) > €,Q%(n) > 0)
> P(QP s s 18 s .
> P(Q (Sn) +Q°(n) > C,Q°%(n) >0) (18) — P(Q (n) —|—m1n{C, NZ(n)
= PN(O )7 (19)
T
where inequality [(I8) follows sinceVi(n) = QP(n) and p s
NP(n) > NZX(n). Here we note that the above result holds + fZ;Ni (n)} >CQ n)>0]. (23)
for any scheduling policy that serves all primary requests i =
the network at any slot before the secondary requests. To show that even the diversity gain of the secondary

2) Cooperative Primary UserThe predictive primary net- network is improved under such policy, we consider the case
work, however, can act in less-selfistmanner without losing when f = 0.5, and T = 1 for simplicity. In this case, the
performance and, at the same time, enhance the diversity geér-slot capacity of the primary network turns out to be
of the secondary user. This can be done by limiting the per-
slot capacity dedicated to serve the primary requests in the C?(n) = min {C, N[ (n) + 0.5Q"(n)} (24)



with Let Q(n), n > 0 be the actual arrival process that the net-
work should predicf slots ahead. This process, as introduced

Q" (n), if Ng(n) =C, . . . . . .
0.5QP(n) + NE(n) — C, if NP(n) < C, NE(n) N Sectlgnﬂl, is Poisson with ratad. Because the prediction
NE(n+1) = +0.5Q7(n) > C, mechanism employed by the network may cause errors, the
0.5Q" (n), if NZ(n) pred|cted_ar.r|val process dlff_ers from the actual arrivalgess.
10.5Q"(n) < C. The prediction mechanism is supposed to cause two types of
(25) errors:
It is clear from [25) that 1) It predicts false requests, those will not arrive actuill
future, and serves them, resulting in a waste of resources.
P(N§(n+1) =1Ng(n) =i,--- ,Nj(1) = k) 2) It fails to predict requests and, as a consequence, the
= P(N§(n+1) =1|N{(n) =1). network encounters urgent arrivals (unpredicted requests

that should be served in the same slot of arrival).

That is, the discrete-time random proced§(n),n > 0 So, we model the predicted process as

satisfies the Markov property, and hence, it is a Markov chain
Moreover, it can be easily verified thay}(n),n > 0 is Q¥ (n) =Q'(n) +Q"(n) (29)
irreducible and aperiodic aB(Q?(n) = ¢) > 0 for all ¢ > 0.

, . . .
The drift of the chain can thus be obtained as where Q’(n), n > 0 is the arrival process of the predicted

requests. It represents the number of arriving requestiseat t
< —(1—+P)C, if i>C, beginning of time slot» with deadlinen + T. The process
<2 if i <. Q"(n),n> 0 represents the number of unpredicted requests
p— 2 b * . . . .
(26) that arrive at the beginning of time slotand must be served

Then, by Foster's theorer [1L5], the Markov chain is positiv® the same slot because/the netWOf/'/‘ has failed to predict.the
recurrent, and hence has a stationary state distribution. e assume further thap’(n) and Q”(n) are independently

Theorem 6:Suppose that the System is operating at tH%NSSOﬂ distributed with arrival ratéé and )\H, reSpeCt|Ve|y.
stationary distribution ofN?(n),n > 0, the diversity gain ~ SinceQ”(n) is a part of the requestg(n), then
of the secondary networkd%(+?,~°), under the dynamic 0< )N <\ (30)
capacity allocation for the primary satisfies

E[No(n+1)—No(n)|No(n) = 1] {

. where the second inequality is strict because we assume that
dp(Y.7°) = =7 (> — 1) = 29"(§ — 1) + 2log(y), (27) Q'(n) contains truly predicted requests as well as mistakenly
predicted requests, which also implies

where
P (475 + 7172) N+XN >N (31)
Y= "o 27° Moreover, the network is stable as long as
and N+ N <C. (32)

(1=37), 147" =277,

_ - ~ 28 For the linear scaling regime, the arrival procesge
s(1=7%), 1+73° <237 (29) S procesee)

and@"(n), n > 0 have arrival rate&'7C anda’~C respec-

dH(37,7°) > {

Proof: Please refer to AppendixIH. B tively. Applying conditions[(3D)E(32) tav~C anda”’~C we
The right hand side of inequality (P7) will be shown inobtain
Section[V1] to be strictly larger than the right hand side of o’ <1 (33)

(I9) for a range ofy®, which implies a strict improvement in an
the diversity gain of the secondary network without any loss
in the diversity gain of the primary. However, the right hand
side of inequality[(28) shows that if + 7 < 27?, then the So
diversity gain of the secondary network is at least equalsto Lvh'e
non-predictive counterpart.

1<a +a” <§ (34)
7

if the prediction mechanism is perfect, theh = 1
rease” = 0. .

The arrival process) (n), n > 0, can be considered
as a predicted process with random look-ahead interval that

V. ROBUSTNESS TOPREDICTION ERRORS takes on value$ andT. Hence, using the evedty defined

In the previous sections we have assumed that the predictionLemmal2, we obtain the following lower bound on the
mechanism is error free, that is, all predicted requestsraee prediction diversity gainﬁf;(ﬁ),
and will arrive in future after exactly the same look-ahead s
period of prediction. Under this assumption, we managed tod, (5) > min {(T + 1) [(@ +&@")7 — 1 — log (F(@ +a"))],
treat thg predicted arrival process with determlr_nsuckloo @7 —1—log(@7)} (35)
ahead time as a delayed version of the actual arrival process ] ) o ) o
However, in practical scenarios, this is not necessaréyctise. 1he best operating point (prediction window) that maxirsize
In this section we provide a model for the imperfect predicti the right hand side of (35) is when both terms in thin{.}
process and investigate its effect on the prediction diyers@re €qual, which implies
gain with fixed look-ahead interval assuming a single class o’y — 1 —log(@"7)

of QoS. Terie = (a/ ¥+ a//)7 1 1og(7(a’ i a//))'

(36)



Since@” < 1, then forT,,; derived in [36), we obtain number of multicast requests arriving at the beginningrogti
Eg(ﬁ) > dy (7). slotn > 0 is a random variabl€)™ (n) which is assumed to

For the polynomial scaling regime, the proces§é&:) and be Poisson distributed with meavt".
Q" (n), n > 0 have arrival rate’®7 andC®"7 respectively. ~ Assuming that the data sources are demanded independently

Applying conditions [3D)H(32) to the arrival rates™7 and across time and requests, the proogss(n),n > 0 can be

C%"'%, we obtain, decomposed into
a’ <1, (37) L "
o . _ M(n) = mlll(p),  forall n >0,
cC"+CY 7 >0, (38) Q) ;Q ()
and o o whereQ™!!(n) denotes the number of multicast requests for
C¥7+C* 7" <C. (39) data sourcé € {1,---,L} arriving in slotn, and is Poisson

distributed with meam\™ !l £ plixm wherep £ (ph)-
is a valid probability distributichh capturing the potentially
asymmetric multicast demands over the pool.afata sources.

In this section we focus only on the analysis of the lin-
ear scaling regime where the potential improvement in the
diversity gain is tangibléd. The mean number of arriving
dE(3) = min{(T + 1) [| — max{@,a"}3],1 — a"5}. (40) multicast requests scales withasA™ =77C, 7 € (0,1).

N The number of data sourcdsscales also linearly witlt' as

Nevertheless, since alﬁ(ﬁ) is atC — oo, then from [(38), L =9C, 9 > 0.
(39), asC — oo, we obtain,1 < &' < 1. And from (37),  The binary paramete&™!(n) for each multicast data
max{a’,a"} = a’. Hence, sourcel € {1,---, L} is defined as

dE(#) =min{(T + 1)(1 —&7),1 —&"3}.  (41)

So, to obtain the maximum diversity gain, the best predic-

If the prediction mechanism is perfect, théh = 1 whereas
o' = —oo0.

We also use eventdr and Lz from Lemmal2 to deter-
mine the prediction diversity gain with imperfect predicti

mechanismdZ(7), as

if O™
m,[i] vy 1, if Q (TL) > O, _ .
X (n) { 07 if Qm,[l] (n) _ O, l 17 aLa (43)

tion window T,.;; should satisfy which gives the indicator of at least one multicast request f
o e data sourcé arrives at slot:. And, under the aforementioned
T = %7 (42) Poisson assumption& ™! (n) is a simple Bernoulli random
1 —ay variable with parameter
and at this point, sinc&” < 1, we haved%(3) > dx (3). Al PN e LY (44)

This section hence has shown theoretically that even under . ,
imperfect prediction mechanisms, the prediction windazesi Ve denote the total nun?nber of distinct multicast data
is judiciously chosen to strike the best balance between figguests arriving in slot as S (n), defined as

predicted traffic and the urgent one. L
S™(n) £ X M(n). (45)
=1

V1. PROACTIVE SCHEDULING IN MULTICAST NETWORKS

o i L T

This section sheds light on the predictive multicast neksor  Definition 4: Let Ny “(n)_denote the indicator that there
and investigates the diversity gains that can be leveraged f IS @t leastone awaiting multicast request for data:nsoulrcie
efficient scheduling of multicast traffic. Typically, muléist {LL"' ,{Jn}[l]that expires in slotr. Then, letting N (n) =
traffic minimizes the usage of the network resources because—: Vo = (n), the multicast outage event is defined as
the same data is sent to a group of users _consuming th(_a same Om 2 {NJ"(n) > Cyn > 1}.
amount of resources that serve only a single user which is . . . . .
taken to be unity[[16]. So, even in the non-predictive cdse, t The_ pure mult|_cast network W'l_l be_mves_tlgateq in_the
multicast traffic is expected to result in an improved diitgrs follov_wr?g S!*bse9t'°” where the diversity gan Of_ Its non-
gain performance over its unicast counterpart, discussei predictive side will be shown to be larger than its unicastrco
previous sections terpart, furthermore, the alignment property of the pridekc

Furthermore, when the multicast traffic is predictablere&hemu'ticf’let Wi_" be proven to result i,n a signif?cantly imP“f’*’e
is an additional gain that can be obtained from the abili}iVersity gain, that scales super-linearly with the prédic

to align the traffic in time. That is, the network can keeyﬁ terval T. Then, the subsequent subsection will address a

on receiving predictable requests that target the same dﬁgg‘lposne network consisting of unicast and multicastiosf

over time then serve them altogether as the earliest deadfii€ Potential diversity gain will be investigated undefetiént

approaches. In this case, the network will end up serviRgediction scenarios.

all the gathered requgsts in a window of time slots with thei, s a valid distribution ifo < pl!l < 1 and SE pll =1,

same resources required to serve one request, and hence willhe additional multicast gains do not appear in the polymbracaling

significantly improve the diversity gain of the network. \Wdegime because the traffic to each data source vanishes tmigally, as
h h d ilabl fil C — oo, when the number of data sourcésscales withC', implying that

assume that there arg data sources available (e.g. I'€Sat most one request can target a data source at each slothéenulticast

packets, movies, podcasts, etc.) for multicast transonis3ihe traffic will approach the unicast a8 — oc.



limit as # — oo. In fact, a much stronger result is that, when
- Unicast

lim LA™ = lim 6C (1 — 6_7;)
6— 00 6— 00

(48)
=9"C, 0<Ay™ <1,

we have alsoA™ — 0 andL = 6C — co asf — oo.
Therefore, S™(n) converges in distribution taQ(n), and
consequentlyPy (O,,) — Pn(0), § — .

In this subsection, we have highlighted the extra diversity
gain achieved through one of the multicast properties, ithat
Ea— , all the requests arriving to the network at time stotand

demanding a certain data source are all served with one unit

Fig. 3: Diversity gain of the non-predictive multicast netky "€Sources exactly as if only one request demands that data

monotonically decreases with However, it is lower bounded SOUrce-

by the diversity gain of non-predictive unicast networks. 2) Predictive Multicast Network:Now suppose that the
symmetric multicast network has predictable demands with

a prediction window ofl" > 0 slots. The traffic alignment in
A. Symmetric Multicast Demands this case appears in the following sense, the resourcengervi
Suppose that the number of data sources scales Wit a group 9f requests arriving at slet .also SErves al other
L —=0C,0>0. Then,d < 1 implies zero outage probability requests in the system (that have arrived withing the puevio
and infinite diversity gain regardless of the valuey6f. This T SIOt_S) requesting the same data source. ,SO’ the resource
I;iglue is extendable across time. The prediction capalolity

Diversity gain

y—1l-logy

is the first gain improvement that can be leveraged from t a8 Kis th L to infini | B (T
nature of the multicast traffic. We now confine the analysis e network is thus equal to infinity as long @< (T' + 1),

the case whefl > 1. Assume that the multicast demands ar\é'hiCh implies a multiplicative gain of” + 1 in the number
equally distributed on the available data sources, i.e. of data sources that the network can support with zero outage
) probability, as compared to the non-predictive case.

pl=p=—, Consider then the other range 6f that is@ > (T + 1).
B oC The network now is subject to outage events and efficient
Amlll — gm _6_%’ Vie{l,- L) scheduler has to be employed. Because of the symmetric

demands, we focus the analysis on the EDF scheduling. Let the

1) Non-predictive Multicast Network:Under the above optimal diversity gain in this predictive scenario be dembt
symmetric setup (and assumifig> 1), the random variable by dp(7™,6), in [L7], we have shown thailp(7™,0) >
S™(n) turns out to have a binomial distribution with paramete(T + 1)dx (7™, 0) which is consistent with the results of
A™ and the outage probability in this case, denoted tSubsectiod III-B as the predictability multiplies the disigy
Pn(0y,), is equal toP(S™(n) > C). In other words, the gain by a factor of at leasf + 1. However, we show now that
multicast outage occurs in slatif and only if the number of the alignment property can even improve the diversity gain
distinct data sources requested at this slot is larger than tind result in a super-linear scaling @f (7™, ) with 7.

network capacity. Theorem 8:The optimal diversity gain of the predictive
Theorem 7:The diversity gain of non-predictive multicast-multicast network with symmetric demand; (777, 0), satis-
ing, denoted byly (7™, 0), is given by fies

(1— )T + 1)>
§r(0—(T+1))
_m — 5 5 (1—5:’?)(T+1)> (49)

—log(1—e"7 ), 0<7ym™<1, 6>1. (46 —flog(1—¢mp4 ST T /)

Og( ‘ ) ! (40) Og( ST

Proof: Please refer to AppendiX I. [ ]

Theoren{¥ and Fid.]3, which depicts the diversity gains of
non-predictive multicast(36) and unicaB (2) networkshwitvhere _
7™ =7, show thatdy (7", #) is monotonically decreasing in gr=1—exp(— - ]
. As § increases, the number of data sources in the network 0
grows faster withC', and hence, fron{(46),

dx(77,9) = (@~ 1)log(d — 1) — Glogh + 77 ("%01) Epw—m,?)z(ﬂl)log(

(1>

Loym-

Proof: Please refer to Appendix J. ]
lim dy(y™,0) = —logy™ — 1 =dn (™). (47) The new lower bound,,,, takes into account the alignment
900 property of the predictable multicast traffic, and thus show

That is, multicast diversity gaidy (7™, 6) is strictly greater significant increase in the diversity gain wiih as compared
than its unicast counterpatf; (7™), and converges to it in the to the older boundT + 1)dx (7™, ) in Fig.[d.
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‘ ‘ ‘ ‘ of the available resources. We will investigate the ditgrsi
Lal| —&— T1d 670) / gain of the network in the following four scenarios of demand

——Lym predictability:

1) Both unicast and multicast traffics are non-predictive.

2) Unicast is non-predictive but multicast is predictive.

3) Both unicast and multicast traffics are predictive.

4) Unicast is predictive but multicast is non-predictive.

1) Scenario 1: Both Unicast and Multicast Traffics are Non-
predictive: In this scenario, all of the arriving requests are
urgent and hencey]"(n) = S™(n) and N} (n) = Q“(n).

Theorem 9:Let the outage probability in Scenario 1 be
denoted byPl(@A) and the associated diversity gain be
denoted byd, (7%,~7™, 6), then

Fig. 4: Superlinear increase in the diversity gain of the (" 7.0) :1Og_(yl) + 775711 —v) - (51)
multicast network with the prediction intervdl because of — flog (e‘T +u (1 - e‘T)) ,
the alignment property. In this figure™ = 0.9 and6 = 15.

Lower bounds on the diversity gain

Prediction interval (T)

where

—2
B. Multicast and Unicast Traffic hW="—""7= [((
(7 )

Generally, wireless networks support both types of traffic:
multicast and unicast. For instance, a smart phone user my

_2 —_ — am
receive unicast data such as e-mail or electronic banknséate + (_29 +20(7" + 2) +2(y" - 2))6 7 +0

Nl=
2

as well as multicast data such as movies or podcasts. In _ ) 2
this subsection we investigate the potential diversityn gz 2000+ 1) + 77—+ 1)+ (1= f)e
wireless networks encompassing both types of traffic under —
different predictability conditions. +O—9" - 1] :

The multicast traffic model adopted here is exactly as de-
fined in the beginning of this section, with the only diffecen Proof: Please refer to Appendix]K. u

is we assume that = 6C, wheref € (0,1). The multicast Theorem[® thus tightly characterizes the dlverS|ty gain of

data sources are also equally demanded, each with prapabliie network in Scenario 1. The expressiondgty™,7™,0),
however, is not insightful, so it will be compared graphligal

A™ =1—exp <_ﬁ) ) to the results of the other scenarios.
0 2) Scenario 2: Unicast is Non-predictive but Multicast is
The unicast traffic arrives at the beginning of each slot Predictive: In this scenario, the network can predict the
according toQ“( ) which is Poisson distributed with meanmulticast request¥’ slots ahead, whereas the unicast traffic is
A\t =77, 57 ¢ (0,1). Each of the unicast requests consumé#gent. We consider a scheduling polieyto establish a lower
one unit of the system capacity. The stability conditiontef t bound on the optimal diversity gain, denoiéd~7, 7™, 9), of

non-predictive network necessitates that this scenario.
o Definition 6 (Scheduling Policys): At each slotn, the
A™0+~" < 1. (50) scheduling policyrs serves as much as possible of the existing

requests in the system in the following order:
Definition 5: Letting N%(n) denote the number of unicast 1) Multicast data sources demanded by urgent requests,

requests in the system at the beginning of time sipthe Ng'(n).

combined outage event of the wireless network with unicast2) Unicast requests)"(n).

and multicast traffic is defined as 3) The rest of the multicast data sources according to EDF.
_ m N The policy 72 is a slightly modified version of EDF with
O = {Ng"(n) + Ng'(n) > C;n > 1} priority given to urgent multicast requests.

In [L7], we have addressed the case when only on multicast! heorem 10:Let the outage probability in Scenario 2 under
data source exists in the network an consum@s . € (0,1) the scheduling policyr» be denoted?(04) and the optimal
of the available resources to supply data. This data soufd¥ersity gain be denoted by»(77,7™, 6), then
shares the network with unicast traffic. We have shown the -
impact of the multicast traffic alignment on the diversityirga (7%, 7™, 6) < mm{dN( ") (T + 1) logys
where more gains can be leveraged by gathering more of the —(T+1)y%(y2— 1)
predictable multicast traffic and serving them altogetinea i —Tlog(1 — & + & )}
single slot. Alternatively, in this subsection we address t & T TY2)
scenario of multiple data sources each consumes one unit £ L.

(52)
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Fig. 5: AsT increases, the system attains the same diversgyy 6: Bounds on the optimal diversity gain versus the stica
gain of the non-predictive unicast network. In this figuter  {raffic factory®. In this figure,7™ = 0.9, 8 = 0.7 and T = 4

0.7,7™ = 0.9 andy* = 0.4. for any predictive network.
and denoted byd;(7#,7™, 0), then
Ao(~8 ~m T (Aw) & - —
da(7%, 4™, 0) < dn(7%) £ Uy, (53) &7, 77,8) > (T + 1)logys — (T + 1)7(y2 — 1)
wheredy (7%) is as derived in[{2) withy = 77, and — Olog(1 — &' + &'y2) (54)
. £ Ls.
Y =g T 1) (((1 — P2 + 26 E(1 - EF) Proof: Please refer to AppendixIM. n
T ) In Scenario 3 one should expect that the optimal diversity
+em2\ 12 4 (pemAmE(] — em) — 2¢m2g gain should be the largest amongst the other three scenarios
& ) ([ SFy(l = &7) - 2657 To highlight this intuition, an upper bound will be estahksl
12672 (1 — €7)2 4 46 75(1 — €7) + 2§$Q)T on the diversity gain of Scenario 4.
- . M2 | 2 o 4) Scenario 4: Unicast is Predictive but Multicast is Non-
+ 267001 - &7) — 267710 + (1-¢71) predictive: Assuming that the unicast traffic is predictable with
B 3 3 a look-ahead window of" slots, and the multicast traffic is
+26m0(1 — &) + €72 (1 + 9)2> urgent.
Theorem 12:Let the optimal diversity gain of Scenario 4
. _ v — . be denoted by, (7%,7™, 8) and the minimum possible outage
+ ((fT - 1)7“)T =&+ — 1) + &7 |- probability be denoted by; (O 4), then
Proof: Please refer to Appendix L. p AOTYmO) <di(ym AT 0+ T {2 logya —7"(ya — 1)
The upper and lower bounds a@h(77,7™,6) established — 2flog(1 — A™ + Amy4)}
in Theoren{ID match each other Asincreases. In fact, the N
second term imin{.,.} of expression[(32) is monotonically = Uy,
increasing in7, and hence3t such that? > ¢ implies (55)

da(v%,7™,0) = dy(¥¥). This result means that, efficientyhere
scheduling of the predictable multicast traffic results le t
same diversity gain that will be obtained if the system seeg —
only the unicast traffic. This result is clarified in Fifl 5 2ymA™
where the lower bound., increases inI" until it becomes

((492 — 4T +2) + (2 — 7)) A2 4 7

-

—_— p— JR— 2
dominated bydy (77) at T = 2, and from this point onlL;, + (4770 — 297 + 47“)Am)
andU, coincide and the diversity gain of the network is only
determined by the non-predictive unicast traffic. +(—20+7%+2)A™ — W} .
3) Scenario 3: Both Unicast and Multicast Traffics are
Predictive: In this scenario we assume that both traffics are  Proof: Please refer to AppendixIN. |

predictable with the same look-ahead intervallb$lots. The  To collectively compare the obtained bounds on the optimal
scheduling policy we consider is EDF where requests ai@ersity gain of the discussed scenarios, [Rig.6 plots the
served in the order of their arrival. different bounds obtained in the last four theorems vergys
Theorem 11:Let the outage probability of the networkwhere the range of“ ensures thaf(50) is satisfied, and hence
in Scenario 2 under EDF scheduling policy be denoted Wlge non-predictive network always sees a positive diversit
P3(O4) and the optimal diversity gain of this scenario bgain. It is clear from the figure that the totally predictive
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(a) Linear scaling regimey? = 0.8.
Fig. 7: Bounds on the optimal diversity gain versus the pre-
diction look-ahead timé&". In this figure,y* = 0.4, v™ = 0.9 10°
andf = 0.7.

network (of Scenario 3) has the highest possible diversity g
as the lower bound.; even exceeds the upper boutid on
the entire range of plotted®. Also, it shows thatl., and
U, are coinciding aidy (7%), and of course this is the best
diversity gain that the network can achieve with unpredieta

Outage probability

. . —3k— Deterministic T=4

unicast tr-aﬁlc- o " —e—Uzifeor:r::;s(i:Ztributederom110 10
Also, Fig.[7 demonstrates the effect of the prediction look- o ‘ — Non-predictive networki T=0__|3

ahead period” on the derived bounds. It shows that bdth 0 s " oge 2 >

and U, are both increasing ifl’, and that agl” increased.s (b) Polynomial scaling regimei® — 0.8
exceedsU, andL, matchesU,. y g regimey = 0.8
Fig. 8: Outage probability is significantly improved by pecea

VIl. SIMULATION RESULTS tive networks.

The analytical results obtained in this paper are demon-
strated through numerical simulations in this section. e . .
age probability is quantified as the ratio of the number otfssIoPD.F. of the IooI:—atht?]adt;ntqrva}l. Hefn;:e, th;aozrobab(;hty dT'mt
that suffer expired requests to the total number of simdlatgir'\fntg req;e; a< Te< ;9'0”'”9 N l|)me siohas a deadline
slots. Each simulation result is obtained by averaging)@ atsiotn + 1, 1. < I'< 17, Is given by
sample paths each containd @0 slots. T .

Piep P(Tywmy =T) =pr = (T)pT(l—p)T . (56)

A. Diversity Gain of Deterministic and RanddiScenarios \we consider different values of in each regime in addition
Fig. [@ compares the outage probability of proactive nete the non-predictive network scenario. The obtained tesul
works with different look-ahead schemes to the non-pradict for the linear scaling regime are shown in Hig] 9a where at

network. The results obtained for the linear scaling regamee p = 0.1, dpr(5) > Fpo — log(Fpo) — 1, and dpr(y) =
plotted versusC' in Fig. and for the polynomial scaling(7*+1)(7—1—log7) atp = 0.9. The results of the polynomial
regime are plotted versu§'log C in Fig. [8B. It is obvious scaling regime are shown in Fig.]9b. Although the diversity
from both figures that being proactive significantly enha@ncegain is tantamount to that of the non-predictive networks it
the outage probability performance at a given capacity, olear from the figure that the outage probability is signiitta
it considerably reduces the required capacity to satisfyimproved. Here, we want to point out that diversity gain
given level of outage performance. This ascribes to the maepresents the asymptotic decay rate of the outage pritabil
flexibility given to the predictive network that allows it towith the system capacity (@' log C), but it does not capture
schedule the arriving requests over a longer time horiztime relative difference between the outage probabilitwesr
compared to the urgent demand of the non-predictive netwotkemselves. This is why the curves show different trends at
The effect of the distribution of random look-ahead praditt small values ofC. After all, the figure shows that even if
interval is demonstrated in Figl] 9 for both the linear an@, = 0 the network achieves a significantly better outage
polynomial scaling regimes. performance when it follows a proactive resource allocatio
The predictive network in each regime is assumed to antiteéchnique.
pate requests by a random period which varies betW&emd Finally, from Figs[Qb[_9b, we can roughly infer thatyam
T* whereT, = 0 andT™* = 5. We consider a general binomialcreases, it is more likely to have arriving requests witlgdar
distribution with parametep, 0 < p < 1 to represent the prediction interval and hence the network gets more degrees

*
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System Capacity (C)
. . . . . . L _
¥4 6 14 16 18 20 (a) Linear scaling regimey? = 0.6, ¥° = 0.1.
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System Capacity

(a) Linear scaling regimey? = 0.6. o

,ﬂ
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—©— Binomial with p=0.1
==k Binomial with p=0.9
\ Non-predictive

10,1 L \

H
S,

Secondary outage probability

,_.
S,

—— Primary predictive network
— Y = Primary non—predictive network|

Outage probability
.
o
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ClogC

(b) Polynomial scaling regimeéy? = 0.75, v° = 0.05.

10 : ‘ ‘ ‘ Fig. 10: Selfish primary predictive network cannot improve
0 5 10 15 20 25 -
ClogC the outage probability of the secondary.

(b) Polynomial scaling regiméy? = 0.9.

Fig. 9: Outage probability is significantly improved by pecea 02 ‘ ‘ ‘ ‘ ‘ ‘ ‘
tive networks. T Predioiv lowerbound

Non-predictive lower bound
) —&— Numerical non-predictive
021 ¢ —6— Numerical predictive

of freedom in scheduling such requests in an efficient waly tha
reduces the number of outage events.

o

e

5}
T

Diversity gain bounds
o
=

B. Two-QoS Network

Fig. [0 demonstrates the result}(19) for both the linear 005l
scaling and polynomial scaling regimes. The simulation is
run assumingl0® time slots and averaged ovéb? sample
paths. For the selfish predictive primary network, we assume
thatT = 4 and the primary requests are served according to ) ] . )
EDF. The results of the linear scaling regime are depicted fi#g- 11: Improvement in the diversity gain of the secondary
Fig. [I0&, whereas that of the polynomial scaling regime aRgtwork under predictive primary withi’ = 1 and dynamic
depicted in Fig[I0b. capacity assignment. Considered in the figure is the linear

Figure[T1 shows the potential improvement in the diversi§faling regime withy” = 0.6. The lower bound o (77,7°)
gain of the secondary network by efficient use of prediction & Shown_in red, and obviously it strictly exceeds the upper
the primary side only. Also, simulation results and anajiti Pound ondy (3*,7*) determined in Theorefd 4 plotted in blue.
results are plotted together on the same figure to show the
relative differences.

The performance of the dynamic-primary-capacity schemia, the smallest primary outage probability, while ft= 0.5,
has been evaluated numerically and plotted in Eig. 12 fdre primary outage probability is slightly increased beytme
different values of f and under the two scaling regimesselfish case, but the secondary outage probability outpeasfo
namely, the linear scaling in Fig._12a and the polynomiitk counterpart of the non-predictive primary network afa
scaling in Fig.[12b. The prediction interval is chosen to b& f = 0. It is clear from the figures that af = 0.5
T = 4 and at each slot, the primary network is assumed tothe secondary outage probability achieves the primarygaeuta
serve theC? (n) primary requests according to EDF policy. Foprobability of the primary non-predictive network At= 0 in
the two schemes, the selfish primary networkf at 1, results the linear scaling regime, and is even better in the polyabmi




14

=
15}

outage performance is enhanced even for the same value of
T. Whenf — oo the multicast curves coincide on the unicast
> Xk as shown in Sectiopn YI.

H
°,
o

X e A=k e A e

%

H
°,

VIII. CONCLUSION AND DISCUSSION

N
°,

Outage Probability
o

We have proposed a novel paradigm for wireless resource

—©— Primary, f=I . . . . e
\ e allocation which exploits the predictability of user betwv
10 —#— Secondary, f=0.5| ] .. . i
el to minimize the spectral resources (e.g., bandwidth) niede
274 6 810 12 14 16 18 2 to achieve certain QoS metrics. Unlike the traditional tieac

System Capacity (C)

resource allocation approach in which the network can only
start serving a particular user request upon its initigtiaur
o ‘ ‘ ‘ ‘ ‘ proposed scheme anticipates future requests. This graats t
T P o® network more flexibility in scheduling those potential regts
T Seconaany =0 | over an extended period of time. By adopting the outage
S (blocking) probability as our QoS metric, we have estalslish
the potential of the proposed framework to achieve significa
spectral efficiency gains in several interesting scenarios

More specifically, we have introduced the notion of pre-
: diction diversity gain and used it to quantify the gain offér
o : 0 " 20 pe by the proposed resource allocation algorithm under differ

ClogC . . ..
(b) Polynomial scaling regiméi® = 0.75, 5 — 0.05. a_ssumptlon on the performance of th(_e traffic pre_d_|ct|on tech
’ nigue. Moreover, we have shown that, in the cognitive networ

Fig. 12: Primary predictive network can tolerate a triviabcenario, prediction at one side only does not only enhance
loss in outage probability at a significant improvement ia thits diversity gain, but it also improves the diversity gain
secondary outage probability. performance of the other user class. On the multicastingt,fro
we have shown that the diversity gain of predictive multicas
network scales super-linearly with the prediction wind @ur
theoretical claims were supported by numerical result$ tha
demonstrate the remarkable gains that can be leveraged from
T O SsE g g E the proposed techniques.

(a) Linear scaling regimey? = 0.6, 5° = 0.1.

10°F b 8
*e *.

Outage probability

RS
<

. teogg B: We believe that this work has only scratched the surface of
£ oo ey a very interesting research area which spans several lifigsp
] R ¢ and could potentially have a significant impact on the desfgn
& ] future wireless networks. In fact, one can immediately tdgn
3 —— Multicast T=2,6=6 a multitude of interesting research problems at the inteiee
o uieas 72,6510 of information theory, machine learning, behavioral scign
- = = Multicast T=0,0=6 |} and networking. For example, the analysis have focused on
T2 e the case of fixed supply and variable demand. Clearly, the
T 1 1 16 18 2 same approach can be used to match demand with supply
System capacity (C) under more general assumptions on the two processes.
Fig. 13: Outage probability verss. In this simulationy® = APPENDIX A
0.6. PROOF OFTHEOREM[I]

Let Ag(r) denote the log moment generating functibn|[12]

) ) . o . of a Poisson random variab@(n),n > 0 with meanJ, i.e.,
scaling regime. The simulation is fan? time slots averaged
Ag(r)=Xe"—-1), reR.

over 10?2 sample paths.
For the linear scaling regime, lekK;, i = 1,2,--- be
a sequence of independent and identically distributed)(IID

C. Proactive Multicasting with Symmetric Demands > : . ally His .
(riandom variables, each with a Poisson distribution withmmea

The outage probability of the predictive multicast an and define
unicast networks of the symmetric input traffic is compare c
numerically to that of non-predictive network and is pldtte Se Zyi,
in Fig.[13. The figure shows the significant enhancement to the i=1
outage probability of the multicast network when predietioT,. outage probabilityPy (0), can then be written as
is employed. Moreover, we can see that the outage prohabilit _ _
of the unicast predictive network is better than that of the Pn(0) = P(Q(n) > C)
multicast non-predictive network. The impagt?b&lso appears _p (?_c S 1) (57)
clearly, as it can easily be noticed that as ¢thdecreases, the o C

(1>
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Applying Cramer’s theoreni[12] td_(57), we get APPENDIXB
PROOF OFLEMMA[T]

.1 Sc .
leloo C log P <? s 1> = gg{) {Ax(r) =7}, (58) ForUp, we need to show that the outage occurring at time
_ _ slot n implies ZiT:o Q(n—T—1) > C(T +1). To see this,
whereAx (r) = 7(e"—1). By the convexity of the log moment ogqme there is an outage at sloSince in our scenario EDF
generating function, we obtain reduces to FCFS, then: 1) the outage at sl@iccurs only on

i&% {Ax(r) —r} =1 -7+ log7. the arrivals of sloth — 7" and 2) during the interval of slots

n—Tn—-T+1,--- n, the system does not serve any of
Then, it follows that the arriving requests at slots beyond-T. Let N(m), m > 0
_ denote the number of requests in the system at the beginning
dn(7) = — lim log(P(0)) of slotm, then having an outage at stoimplies N (n—1T") >
C—o0 C (59) C(T +1). And since at any slot: > 0, there are no requests
=7y—-1-logy, 0<7y<L in the system arriving at slots prior t@ — 7', it follows that

T .
For the polynomial scaling regime, we determine the diverwi—o @(n =T —i) = N(n =T) > C(T +1). o
sity gain using tight lower and upper bounds. First, the gata F0r £p, we need to show tha@(n—T') > C(T'+1) implies

probability is given by an outage at slot. This is straightforward as the arrivals at
~ ~ slotn — T can not remain in the system at any slot beyand
Py(0) = P(Q(n) > C) (60) furthermore, sinc&)(n —T') > C(T + 1), the capacity of the
2 (O s system at the slot of arrival in addition to the néxislots is
= Z o C not sufficient to serve th@(n—1T') requests, hence the system
k=C+1 encounters an outage at slot
> (Cry)(cﬂ)efcf
- @+ APPENDIXC
Using Stirling’s formula to approximate the factorial fuio, PROOF OFTHEOREMI[Z
we have

27 + PR — )

T
where = means that the left hand side approaches the right Ppp(0) < P (Z Qn =T —1i) > C(T + 1)> . (66)
hand side in the limit a&’ — co. Hence, =0

Using the same definition of the sequence of IID random

. log Py (O) < variablesX;,i > 0 as in the proof of Theoreml 1, we have

m ——=—=" = < _ C(T+1)

C—o0 ClOgC SC(T+1) = Zi:l X; and

1 1 1 < e=C7 < Ce C+1> o _

im — 0g - : Sor+1)

C—oo ClogC C+ 1> S — 2O(T+1) _
- g 27(C + 1) P(;Q(n T z)>C(T+1)> P(C(T+1)>1

Therefore, _ - (67)
dv(H) <1-7. (61) Using Cramer's theorem,

Second, applying tightest Chernoff bourid1[12] ¢nl(60), we I log P(Up) _ 1 —log™ (68)

have N e oT+1) TR

P(Q(n) > C) < inf ¢*a(M=—rC (62) _ _ .
>0 Since P5,(0) < Ppp(O) < P(Up), we have
whereA5(r) = C7(e” — 1). And sinceA5(r) — r is convex (A 7
Q Q log P% (O log P
in r, by simple differentiation, we get Clim —Og%[’() > Chm —OgT(uD) (69)
—00 —00
Py (0) < eC=C7-0-A)Clog (63) =(T+1)(7 — 1~ log7),

Now, taking the logarithm of both sides df {63), dividing byfor which (4) follows.

—Clog C, and lettingC — oo, it follows that For the polynomial scaling regime, first we use the upper
~ _ bound Prp(0) < P(Up) to establish a lower bound on the
dn(¥) = 1-7. (64) optimal diversity gaindpp(3) as follows. Using Chernoff

By (61), (64), bound onP(Up),
~ T~ ~ T

1-7=dv(y) =1-7, PPD(@)SP(Z@(n—T—i)>C(T—i—1)>
then N i=0 (70)
dv@) =1-7, 0<7<1. (65) < inf TR

>0
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WhereA@(r) = C7(e” — 1). Then, using differentiation, 0,(m) @ @ @ @ O O
0,(m) e ¢ ¢ ¢ @ O
A —_cN)— _5 0,(m)
Ppp(0) < eTH(E-CN—T+DA-A)Clog 0 (71 —2 2 22
And sincePp (6) < PPD((5), we get (a) Blue circles represent an upper bound on the requests tha
must be served by slot in the interval of slotss —T7*,- -+ | n.
élva (5) > (1 + T)(l _ 5) (72) Red circles represent requests that are no longer in thersyst

at slotn — T whereas white circles represent requests with

~ ~ deadline | tham.
Second, we use the lower bourf@-p(0O) > P(Lp) to eadiine farger fan

establish an upper bound mNTpDﬁ).

0,(m) @ @ ¢ ®¢ O O
s e Gm, 9 9 9P Lt
_ Z (€7) o7
k! (b) Here, eventZ is not satisfied. At slotn — 3 the system
k=C(T+1)+1 has managed to serve all requests with deadlines not exgeedi
(Ofy)(C(TJrl)Jrl) 5 n. However, [* = 3, meaning that all of the next arrivals
> =7 @ ¢ with deadlines not exceeding will consume the whole system
(C(T+1)+1)! capacity till slotn inclusive.
A = C(T+1)+1 .
e @ Ce =y Fig. 14: An outage occurs at slat whereT, = 1, T* = 3.
\/QW (T+1)+1) \C(T+1)+1 At the beginning of any time slot, arriving requests with the

- same deadline are represented by a circle.
And since P}, (O) < Ppp(O), we obtain

dpp() < (1+T)(1 = 7). (73) deadlines not beyond are more tharCl* (Fig.[14B shows
By (72), (73), it follows that the case when evedt is not occurring while* = 3.).
~ - - Second, we show thaf i is a sufficient condition on the
dpp(7) = (1+T)(1-7), 0<y<L outage event. The proof is straightforward as for every, <
k < T*, the event thaEf:T* Qi(n —1i) > C(k + 1) means
APPENDIXD the number of requests that must be served in the interval
PROOF OFLEMMA 2 n—k,---,n is larger thanC(k + 1) which is sufficient to
First, we show thal/p is a necessary condition for theCause an outage at slet Then, taking the union over all
outage event, that is, if an outage occurs at siptthen k€ {T%,---,T"} is also a sufficient condition for an outage
Ur = TUJ occurs. Suppose there is an outage atsslathis  at slotn.
outage occurs on the arrival@x(n — k), k=T, ---,T*,
hence,ziT:*0 Ni(n —T,) > C(Tx + 1), i.e,, in the interval APPENDIXE
n —T,,---,n the system is serving requests with deadlines PROOF OFTHEOREMD

not exceeding.

EventZ represents the case when at slet 7%, the number
of requests in the system in addition to the requests that WIPPR( 0) < P(Up)
arrive with deadlines not larger thanis larger thanC' (T +

T T*
1), i.e., larger than the maximum number of requests that the . .
system can serve in the subsequEnt-1 slots (Fig[14a shows =P 2_: Z Qi(n—j—1)>C(T" +1)
the requests considered in evénas blue circles fofl, = 1, J=0i=T
T* = 3.). However, event alot is not a necessary condition "1
for an outage as, for instance, we may haye (n — T.) > + >y P Z Z Qi(n—j)>C(k+1)
C(T. +1) but Y7, zf:_T* Qi(n—i—7) < C(T* +1). k=T \J=T.i=T.
Now, suppose thaf did not occur because of the outage < inf eter(r)=riC(I7+1)
at slotn, then ttlwere exists at least one stot- [, T, < [ < ”;2_1
T.* such tha_ltzizo N;(n — ?) <C (_Otherwise, th(_e system n Z f ehan (M- Clh+D)
will be serving requests with deadline of at mastn slots 5 >0
n—"T*--- n— T, which impliesn € Z.). In other words, =T
at slot/, the system will be empty of all requests that havghere Ag, (r;) = AT* + 1)(e"” — 1) and Ag, (rx) =
deadlines not beyond sleot Let A, T p T <k<T*—1.
! For the linear scaling regime,
[" = min {l : ZNi(n —)<C T<is< T*} Ppr(0) < I-TCT+D+C(T7+1)log7
1=0
. _ T —1 7727 Fr_i T P
thenZéz’Tl* 7_r. Qi(n—j) > CI*, henceJ occurs. That is, + Z C(Hl)[l 0 T s T }

all of the arriving requests in slots—(*+1,--- ,n— T, with



Let

7(C) £  max
T, <k<T*—1

and

— k—T.

T

{C(k:+1) 1—772150“’“
k—T,

T2 o Fr—i

1 ==y "~ v -
log —==

7(C) = max {C(T* + 1)(1 — 7 + log¥),5(C)} ,

}

then
_ 1 _
= > 1 o m(C)
dpr(7) 2 lim —=loge
= lim —M
C—oo
=min{(7" + 1)(§ — 1 — log¥), 0.} (74)
which proves[(B).
For the polynomial scaling regime,
PPR((5) < e(T*Jrl)(CfC:*fClogCl*:*)
g P Siso Fr-i
+ Z D [17 o V(:fl) Hog 757 UwcFﬂ) }
Let
o Sy Fii
v(C) = T.<keTe 1 {C(k |1 C'7(k+1)
Zk T, j
log == —— 75
Hoe GSmrn| (™
and 7(C)
F(C) & _ e
m(C) = Clgnoo ClogC’

for large values ofC, the terms in themax{.} of (7H) are

decreasing irk, hence

follows.

dpr(¥

Then, we use the everty with the polynomial scaling as

Ppr(O) > P(Lr)

T

max
<k<T*

) > (T +1)(1 = 7).

k
{P (Z Qi(n—i) > C(k+1)

(chﬁ) C(k+1)+1 eiFkC:Y

Clk+1)+1!

. ) F.Ce C(k+1)+1
= max —_—
T.<k<T \C(k+1)+1

g

_ch’V

\/271'

k+1)+1)

F,Ce )C(T*H)H

CT+1)+1

e —pr, C7

\/27r

T.+1)+1)

(76)

)
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Hence, N
dpr(7) < (T +1)(1 = 7). (77)

From [Z6) and[{77), resulE(1L0) follows.

APPENDIXF
PROOF OFTHEOREME4

Let the outage probability of the secondary user while the
primary network is non-predictive be denoted By (0?),
then

Pn(0%) = P(Q"(n) + @°(n) > C,Q%(n) > 0).  (78)

Since@Q?(n) + Q*(n) and Q*(n) are two dependent random
variables, we use upper and lower bounds Bf(O) to
characterizel3, (+*,~*) as follows.

Pn(0%) = P(Q"(n) + @°(n) > C|Q°(n) > 0)P(Q*(n) > 0)

Y P () > CIQ* () > 0)P(@*(n) > 0)

Y p@rn) > C)P(Q*(n) > 0), (79)

where (a) follows from the fact tha@*(n) > 0 and (b)
follows as@?(n) andQ*(n) are independent. Moreover, since
P(A,B) < P(A), then, from [78), we can write

Py (0%) < P(Q"(n) + Q%(n) > ). (80)

For the linear scaling regime, we hawé = 57C and \* =
~°C. From [11), [(IP) we obtaif < 7° < 7° < 1 and¥® +
~P < 1. From [79),

Pn(0°) > P(Q"(n) > C)P(Q"(n) > 0)
=P@"(n) > C) (1 - 6_750) .

Hence

dy(?,7°) < Jim

— 00

7 —1-log(7),

—log P(Q"(n) >0) log(1—e7°9)
C a C

(81)

where (c) follows by Cramer's theorem. This provés](15).
Since Q”(n), Q°(n) are independent Poisson random vari-
ables, thenQ”(n) + Q°(n) is a Poisson process with rate
(7? +7°)C. Applying Cramer’s theorem t¢_(80), we obtain
Ay ) = (7 +7°) — 1 = log( +7°)

which proves[(16). ) .

For the polynomial scaling regime? = C7°, \* = C7".
From [11), (1), we geb < 7° < 57 < 1. From [80),

Py (0%) > P(Q"(n) > C)P(Q*(n) > 0)

= P(Q"(n) > )1 =)

o)

(O o+t e ¢ et
:<C+1> 2r(C +1)) (1_60 )
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Hence, But C?(n—1) < C implies NJ'(n) = 0.5Q"(n—1) and hence

B e the joint eveniQ®(n) + N§ (n) +0.5QF(n) > C,CP(n—1) <
& (57 5°) < Tim —log P(QP(n) > C) (1 -€ ) C impliesQ?®(n) +0.5QP(n—1)+0.5Q?(n) > C. Therefore,
N ) = -
0 ClogC ClogC Pp(0%) < P(Q°(n) + 0.5Q"(n — 1) + 0.5Q"(n) > C)
=T ©2) +P(CP(n — 1) = O).
(85)
From [80), we obtain, using tightest Chernoff bound, Now, we show thﬂ%%the decay rate of the second term on the
ASY < inf oAasiar(r)—rC right hand side ofi(85) witlC” is larger than the first. We start
Pn(0%) < }I;Ee o ’ (83) with the second ternP(C?(n — 1) = C) which can be upper
whereAg, , 5.(r) = (C7" + C7")(e” - 1). Then it follows bounded by
that, P(C?(n—1) =C) < P(N§(n) +0.5Q%(n) > C,
~ e ~ —p ~ C?(n—1) < C for somen <n —1)
S P A5 > _ D xS
dy(3*,7%) > 1 iaX{V 7} (84) + P(NE(m) + 0.5Q"(m) > C,
=1-7% CP(m—1)=Cforallm<n—1)
From [82) and[(84), the resulf{[17) follows. < P(0.5Q%(n — 1) +0.5Q"(n) > C)
+ P(CP(m)=C, forall m <n—1).
APPENDIX G (86)
PROOF OFTHEOREM[G Fix 0 < M < n — 1. The last term on the right hand side of
Let the outage probability of the primary network under th@) satisfies
dynamic scheduling policy be denoted By (O?). To upper P(CP(m)=C, forallm <n—1) <P(C”(1) =
bound this outage probability, it suffices to show thfate . =CP(M) =0C),
0.5, 1] implies Pp(OP) < P(Up), wherelp is as defined in \ hare
Lemmal. So, suppose that there is an outage ahslo¢nce,
according to the dynamic policf;?(n) = C asNf(n) > C. P(C7(1)=---=C"(M)=0C) <
Moreover, that outage is occurring @pf (n — 7). . ) )
Now, at time slotn — 1, assume towards contradiction that ~ £(C"(1) =---=C"(M) = C, No outages inl, - -- , M)
CP(n —1) < C, then fN;(n — 1) < C. This must lead to M o B .
NQ(TL) < (1 _ f)Nl(n _ 1) <Casl— f < f, f c [0571], +;P(Cp(1) == CP(M) = C7l outages inl, - - - 7.1\4)
which is a contradiction. Therefor&?(n — 1) = C. , o
Since the EDF nature of the dynamic policy implies that tH8"P1Ying
network resources are only dedicated to serve primary gtgueP(C?(1) = --- = C?(M) =C) <
that arrived prior to sloh — 7'+ 1, thenC?(n — 1) andC?(n)
represent the served requests that arrived at slotsT” — 1 P(C*(1)=---=CP(M) = C, No outages inl,--- , M)
andn — T. But, C?(k) < min{C, f(C?(n — 1) + C?(n))}, +(2M — 1)PE(OP).
k=n-T,--- ,n.HenceC?(k) =Cforallk=n-T,--- ,n ) ) )
asf € [0.5,1]. Since M is constant, the tern2’ — 1) P5(OP) decays with
Therefore, an outage at sloimplies>""_ ) Q?(n—i—T) > thf system capacity a&,(+”). The joint evenC?(1) = ... =
C(T + 1), and consequently, we obtain the lower bounds dn (M) = C and no outage ir, - -, M implies
dp(77) andds(37) in the same manner as in TheorEm 2. M-1
Also, it is straightforward to see that the evefip of NE(M) = NE(1) = (M —1)C+ Y Q"(i)
Lemma 1 satisfie(Lp) < Pp(OP). So the diversity gain i=1
of the polynomial scaling regime is fully determined. M1
<—(M-1)C+ ) Qi)
APPENDIXH =0
PROOF OFTHEOREM[G and hence,
We will show the result for the linear scaling regime while ~ P(C”(1) = --- = C*(M) = C, No outage inl,--- , M)
its polynomial scaling regime counterpart is obtained tigto M-1 ‘
the same approach by taking into account the differencedin th <P | —(M — 1)C + > Q"(i) + 0.5Q" (M) > C
=0

diversity gain definitions. o
From [23) and[{24), we can upper bouRg(O*) by <p <Z Q7 (i) > MC)
Pp(0°) < P(Q*(n) + N (n) +0.5Q7(n) > C, o
» <'inf {e (m—r }7
CP(n—1)<(C) r>0
+ P(Q°(n) + Ni(n) +0.5Q"(n) > C, where, for the linear scaling regime,
CP(n—1)=0C). K(r) = (M + 1)7°C(e" —1).
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Hence, APPENDIX |
PROOF OFTHEOREM[7]

. 1 . —
Jim —= logP(C’p(l) - =C"(M) =0,
No outage ini, - - - ,M) > PN(@m) = P(8™(n) > O)
v _ M Sm(n) 1
(M + 1)y M+Mlog<(M+1)7p (87) :P(—gO > 5)
with the right hand side of(87) monotonically increasing in C i
M as long asg*= >75P. Then,M can be chosen sufficiently < =1 :>
Iarg@ so that 0C 0
clim _é log P (C"(m) = C for all m < n— 1) > Z5() Applying Cramer’s Theoremni [12],
=2(7" — 1 - log7"). dy(Y™,0) = — mf{0Axu (r) - Or}, (90)
Also, the first term on the right hand side ¢f{86) can bg
written as
P(0.5Q"(n — 1) + 0.5Q%(n) > C) = P(Q”(n — 1) + Q”(n) > 2C) Axw(r) =log(l — A™ + A™e")
P 5 7
ZPP(OP)7 zlog (e_e—|— (1—6_9>6T> s
whereT = 1. Hence,
log P (Up(n -1)= C) . Then,
_— —p -
Clgnoo C = dP(’y ) . 1 e_%
=2(7" — 1 - log7"). Sl i
(88) (9—1)(1—6 5)

Now, comparing the two termB(Q*(n) +0.5QP(n — 1) + L _ . )
0.5Q”(n) > C) in (83) andP(0.5Q(n—1)+0.5Q"(n)) > C) The conditions0 *< 7 < 1,6 > 1 ensure that™ > 0.
in (88), we have by the stationarity 6§*(n),n > 0 and the Substituting withr* in (@0), we obtain[(46).
non-negativity ofQ*(n),n > 0,

P(Q°(n) +0.5QF (n — 1) + 0.5Q"(n) > C) > APPENDIXJ .
P(0.5Q"(n — 1) + 0.5Q"(n) > C). PROOF OFTHEOREM[8|

This implies that the asymptotic decay rate 1of Pp(O?) Under EDF scheduling, an outage occurs in sige- 1 if

with C is lower bounded by the decay rate 8{Q*(n) + and only ifN_m.("_T) =~ C(T'+1), whereN™(n—T) is .the.
0.5QP(n — 1) + 0.5Q"(n) > C) with C. number of distinct multicast data sources targeted by iagist

Now, we can use Chernoff bound to lower boﬁﬁdipﬁs) requests in the system at slot- 7. Hence

as follows P{(On) < Pp(0,) = P(N™(n—T) > C(T +1)).
N AP (o P . Atot (r)y—rC
P(Q@ (M)+0.5Q" (n=1)+0.5Q"(n) > €) < igg {e } " Let Z'(n—T) be the number of distinct data sources that
(89) were requested in the window of slots — 27, --- ,n — T7,

where then according to EDF,

Aior(r) =7°C(e" = 1) + 277C (™" = 1),

By differentiation, the optimal value of, denoted*, satisfies

N™"n-T)< Z(n-T). (91)

05 ThereforeP(N™(n —T) < C(T +1)) < P(ZP(n—-T) >
Ve 7 —1=0. C(T +1)).
Since each data source is requested independently of the

=24 0.57" i
Lety = e - we obtain others at each slot and from slot to another, then the prbtyabi
_ 3 Ve + P2 that a data source is requested at least once in a window of
v= e 27° T + 1 slots, denoted?, is equal to
and . 210gg &717} -1— (1 _ Am)TJrl B
- L (T 1)y
Substituting with7* in (89), taking —log of both sides, =L exp 7 )

dividing by C and sendingC’ — oo, the diversity gain of

the secondary network in the linear scaling regime satisfieé1ence
=5 p s Cs—2 Comp(= - o B B (5C)£mk(1 _gm)507k7 k=0,---,6C
dp(¥*,7°) = =7 (" — 1) = 29°(y — 1) + 2log(y). P(Zf(n—T) = k) = {07'@ T T othermise.

3The system is assumed to operate in the steady statep ie. 1.
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Now we can upper-boun&;(0,,) using Chernoff bound n —T. Since NJ*(n) > 0 and NJ*(n) + Q“(n) > C, then the

as system is operating at full capacity in the slgts-T', - - - , n].
Pi(0,) < Pp(0,,) That is,
< P(ZP(n—T)> C(T +1)) " S
< inf {ehz()-TCT+D) N™(n-T)+ ; Q"“(n—1i) > C(T +1),

>0
where N™(n — T') is the number of distinct multicast data
sources demanded by at least one request existing in the
system at slotn — 7.
- — 1o ((1 — &)+ 1)> . From [91),N™(n —T) < Zy(n —T), where Z(n — T)

& —(r+1)) is as defined in Appendi¥ J, then we can now write

Now, taking— log P (77, 8), dividing by C and taking the P2(04) < P(Q"(n) > C)

whereA z(r) = 0C log (1 — &% + &e™) . Solving forr* > 0
that minimizese®# (") —C¢(T+1)  we obtain

limit as C — oo, we obtain [(4D). T
+ P(Z Q'(n—1i)+ ZP(n—T) > C(T + 1),
APPENDIXK =0
PROOF OFTHEOREM[9
o . QR"'(n) < C
We have by the definition o 4 in Scenario 1 that
P(04) = P(S™(n) + Q%(n) > C). < P(Q%(n) > C)
T
By Cramer’s theorem, we have +p <Z Q“(n—1i)+ ZM(n—T) > C(T + 1)> _
al (Wa ,7_17'7,7 ?) = inf {T - Am+u(7')}, (92) =0
>0 We have from Theoreif 1 that
where u
B —m o lim _1ogP(Qén) >C) =% —1—log". (94)
Apgu(r) =7%(e" — 1) 4+ Olog (e 7 4e — erT> . @ree )
Also, Cramer’s theorem can be used in the same way of

Differentiatingr — A4 () with respect ta- and equating APPendixK to show that
with 0, we obtain

T
(= o _ - o . 1 w . m
'y“<ee —1)62 —|—<(9—1)ee —9+'yu—|—1>e —1=0. ClgIloo—alogP<ZOQ (n—2)+ZT(n—T)
(93) 1=
Sety; = ¢, thgn [@3) is a quadrgtic equationgm, t.hat can > C(T +1)
be solve analytically for two possible roots. Choosing thetr
y1 > 1 for r* > 0, we get = (T+1)logys — (T + 1)7%(ys — 1)
s i —Olog(1 — &7 + M), 95
= 1_ [((92_29+1)e L og(1 = &7 +&7'y2) (95)
97T (e”;" _ 1) where
i 1 2 ~u
) - _ Fm ) _ _ emN2Tg Mg (1 _ £m
+ (=20 +20(77 +2) + 2(7" _12))8 7 +0 V2 =S 1) <((1 &)y + 267y (1 - &)
yilowr a2 _ ona 2 BT m2) 2 m=—g m m21g
- 200"+ 1)+ 2y +1) +(1—6)e +€T2) T2+([25T7“(1—§T)—25T2]9
+T- - 1]. 21— G + AT — ) + 2677)T

+2m_1_ m _2m2§+—u21_ m\2
Substitution withy;, = e™* into (32), we obtain[{5L). (26601 = &) — 2647 (1 =&

2

APPENDIX L
PrROOF OFTHEOREM[IO

Under the policym,, suppose that an outage event has  + ((5511 - 1)W)T—§?9+W(§? - 1) +&7
occurred in sloth > 1, then NJ*(n) + Q“(n) > C, which
can be decomposed to either of the following to events: Therefore, from[(94) and (95),_(52) follows.
Q“(n) > C or 2) Q“(n) < C but Nj*(n) > 0 so that  To seel(5B), it suffices to note th@t'(n) > C is a sufficient
Ni*(n) + Q*(n) > C. Now, focus on the second eventcondition for an outage at slet independently of the service
specifically, NJ*(n) > 0. To each data source of th€J"(n), policy used. HenceP»(0,4) > P(Q“(n) > C), therefore,
at least one corresponding request has already arrivedtat gh(v%,7™,0) < dy(7%).

+2070(1 - €F) + €77 (1 + 9>2>
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PrROOF OFTHEOREM[L]]

An outage event at sletimpliesN*(n—T)+N™(n—T) >

C(T +1) whereN*“(n—T) is the number of unicast requests _

existing in the network at time slat — 7'. Hence
P3(04) < P(N“(n—T)+ N™(n—T) > C(T + 1)),
but

T
N'(n—T)< Y Q“n—i-T),
=0
and
N™"n—-T)< Z(n-T).
Therefore
Py(0O4) <P ZQ“ n—i—T)+Z™n—T) > C(T+1)

Since {Q"“(i)}; are 1ID random variables, then fro_{95),[14]

we obtain [(GH).

APPENDIXN
PROOF OFTHEOREM[1Z

event is sufficient for an outage at slot

Q*n—i—-T)>2C—-S"(n—2i) —S™(n—2i+1),
i=1,---,T,

and

Q“(n—T) > C —S8™(n).

The above event ensures that the number of delayed unieast re

quests is increasing over the window of slpts- 2T, --- ,n—
T] where at slotn — T, the network will end up having

T
Y QUn—i-T)+8™(n—i)>C(T+1),

implying that the total number of resources that have to be
consumed by slot inclusive is greater than the aggregate

available capacity’ (T + 1) which would cause an outage.
Noting that{S™(:)}; are IID, we can write

P{(04) 2P(Q"(n —T) + 8™(n) > C)
X P(Q“(n —T+1)+S™(n—2)

T
+8™(n—1) > 20) ,
which, using Chernoff bound, leads fo [55).
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