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Proactive Resource Allocation: Harnessing the
Diversity and Multicast Gains

John Tadrous, Atilla Eryilmaz, and Hesham El Gamal

Abstract—This paper introduces the novel concept of proactive
resource allocation through which the predictability of user
behavior is exploited to balance the wireless traffic over time, and
hence, significantly reduce the bandwidth required to achieve a
given blocking/outage probability. We start with a simple model
in which the smart wireless devices are assumed to predict the
arrival of new requests and submit them to the networkT time
slots in advance. Using tools from large deviation theory, we
quantify the resulting prediction diversity gain to establish that
the decay rate of the outage event probabilities increases with
the prediction duration T . This model is then generalized to
incorporate the effect of the randomness in the prediction look-
ahead timeT . Remarkably, we also show that, in the cognitive
networking scenario, the appropriate use of proactive resource
allocation by the primary users improves the diversity gainof the
secondary network at no cost in the primary network diversity.
We also shed lights on multicasting with predictable demands
and show that the proactive multicast networks can achieve a
significantly higher diversity gain that scales super-linearly with
T . Finally, we conclude by a discussion of the new research
questions posed under the umbrella of the proposed proactive
(non-causal) wireless networking framework.

Index Terms—Scheduling, large deviations, diversity gain,
multicast alignment, predictive traffic.

I. I NTRODUCTION

I Deally, wireless networks should be optimized to deliver
the best Quality of Service (in terms of reliability, delay,

and throughput) to the subscribers with the minimum expen-
diture in resources. Such resources include transmitted power,
transmitter and receiver complexity, and allocated frequency
spectrum. Over the last few years, we have experienced an
ever increasing demand for wireless spectrum resulting from
the adoption ofthroughput hungryapplications in a variety of
civilian, military, and scientific settings.

Since the available spectrum is non renewable and limited,
this demand motivates the need for efficient wireless networks
that maximally utilizethe spectrum. In this work, we focus
our attention on the resource allocation aspect of the problem
and propose a new paradigm that offers remarkable spectral
gains in a variety of relevant scenarios. More specifically,
our proactive resource allocation framework exploits the pre-
dictability of our daily usage of wireless devices to smooth
out the traffic demand in the network, and hence, reduce the
required resources to achieve a certain point on the Qualityof
Service (QoS) curve. This new approach is motivated by the
following observations.
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• While there is a severe shortage in the spectrum, it is
well-documented that a significant fraction of the available
spectrum is under-utilized [1]. In fact, this is the main moti-
vation for the cognitive networking where secondary users are
allowed to use the spectrum at the off time of the primary so
as to maximize the spectral efficiency [2]. The cognitive radio
approach, however, is still facing significant technological
hurdles [3], [4] and, will offer only a partial solution to the
problem. This limitation is tied to the main reason behind the
under-utilization of the spectrum; namelythe large disparity
between the average and peak traffic demand in the network.

Actually, one can see that the traffic demand at the peak
hours is much higher than that at night. Now, the cognitive
radio approach assumes that the secondary users will be able
to utilize the spectrum at the off-peak times, but at those
times one may expect the secondary traffic characteristics
to be similar to that of the primary users (e.g., at night
most of the primary and secondary users are expected to be
idle). Thereby, the overarching goal of the proactive resource
allocation framework is to avoid this limitation, and hence,
achieve a significant reduction in the peak to average demand
ratio without relying on out of network users.
• In the traditional approach, wireless networks are con-
structed assuming that the subscribers are equipped with
dumb terminalswith very limited computational power. It
is obvious that the new generation ofsmart devicesenjoy
significantly enhanced capabilities in terms of both processing
power and available memory.This observation should inspire
a similar paradigm shift in the design of wireless networks
whereby the capabilities of the smart wireless terminals are
leveraged to maximize the utility of the frequency spectrum,
a non-renewable resource that does not scale according to
Moore’s law. Our proactive resource allocation framework is
a significant step in this direction.
• The introduction of smart phones has resulted in a paradigm
shift in the dominant traffic in mobile cellular networks.
While the primary traffic source in traditional cellular networks
was real-time voice communication, one can argue that a
significant fraction of the traffic generated by the smart phones
results from non-real-time data requests (e.g., file downloads).
As demonstrated in the following, this feature allows for more
degrees of freedom in the design of the scheduling algorithm.
• The final piece of our puzzle relates to the observation that
the human usage of the wireless devices ishighly predictable.
This claim is supported by a growing body of evidence that
ranges from the recent launch ofGoogle Instant to the
interesting findings on our predictable mobility patterns [5].
An example would be the fact that our preference for a
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particular news outlet is not expected to change frequently.
So, if the smart phone observes that the user is downloading
CNN, for example, in the morning for a sequence of days in a
row then it cananticipate that the user will be interested in the
CNN again the following day. One can now see the potential
for scheduling early downloads of the predictable traffic to
reduce the peak to average traffic demandby maximally
exploiting the available spectrum in the network idle time.

These observations motivate us in this work to develop and
analyze proactive resource allocation strategies in the presence
of user predictability under various conditions, dynamics, and
operational capabilities. In particular, our contributions along
with their position in the rest of the paper are:
• In Section II we state the predictive network model and in-
troduce the outage probability and the associated diversity gain
for two main scaling regimes, namely, linear and polynomial
scaling.
• In Section III, we establish the diversity gain of non-
predictive and predictive networks, and analyze the effectof
the random look-ahead window size,T . Our analysis reveals
a minimum improvement factor of (1+T) in the diversity gain
for both linear and polynomial scaling regimes.
• In Section IV, we investigate proactive scheduling in a two-
QoS network,typical of a cognitive radio network, where we
prove the existence of a proactive scheduling policy that can
maintain the diversity gain level of the primary predictive
network while strictly improving it for the secondary non-
predictive network.
• In Section V, we analyze the robustness of the proactive
resource allocation scheme to the prediction errors and deter-
mine the optimal choice of the look-ahead window size given
an imperfect prediction mechanism to maximize the diversity
gain, which is shown to be always strictly greater than that of
the non-predictive network.
• In Section VI, we analyze the proactive multicasting with
predictable demands, and show the significant gains that can
be leveraged through the alignment property offered by pre-
dictable multicast traffic. More specifically, we show that the
diversity gain of a proactive multicasting network is increasing
super-linearly with the window size,T , for the linear scaling
regime.
• In Section VIII, we conclude the paper and highlight other
important research aspects that can be leveraged through
predictive wireless communications.

The proactive wireless network can be viewed as an ordi-
nary network with delay tolerant requests, that is, when the
network predicts a request a head of time, the actual arrival
time of that request can be considered as a hard deadline that
the scheduler should meet. In [6], scheduling with deadlines
was considered for a single packet under the objective of
minimizing the expected energy consumed for transmission.In
[7], the asymptotic performance of the error probability with
the signal-to-noise ratio was analyzed when the bits of each
codeword must be delivered under hard deadline constraints.
In [8] and [9], scheduling with deadlines was also addressed
from queuing theory point of view under different objectives
and multiple priority classes while optimal scheduling policies
were investigated for different scenarios.

Time slots

q(n)

Prediction time

n

Tq(n): Prediction duration

Dq(n):

Deadline

Actual arrival time

Fig. 1: Prediction Model:q(n) is a request predicted at the
beginning of time slotn, Tq(n) is the prediction duration
of requestq(n), and Dq(n) is the actual slot of arrival for
requestq(n) which can be considered as the deadline for such
a request.

In this paper, however, we look at the scheduling problem
with deadlines from a different perspective, where we define
the outage probability as the probability of having a time slot
suffering expiring requests, and we analyze the asymptotic
decay rate of this outage probability with the system capacity,
C, when the input traffic is increasing inC either linearly
or polynomially, andC is approaching infinity. We call this
metric the diversity gain of the network and show that its
behavior can significantly be improved by exploiting the
predictable behavior of the users. This metric and line of
investigation are also motivated by the order-wise difference
between the timescale of the prediction window lengths (typ-
ically of the order of tens of minutes, if not hours) and
the timescale of application-based deadline-constraints(of the
order of milliseconds) considered in other works.

II. SYSTEM MODEL

We consider a simplified model of a single server, time-
slotted wireless network where the requests arrive at the
beginning of each slot. The number of arriving requests at
time slotn is an integer-valued random variable denoted by
Q(n) that is assumed to be ergodic and Poisson distributed
with meanλ. Each request is assumed to consume one unit
of resource and is completely served in a single time slot.
Moreover, the wireless network has afixed capacityC per
slot. We distinguish two types of wireless resource alloca-
tion: reactive and proactive. In reactive resource allocation,
the wireless network responds to user requests right after
they are initiated by the user, whereas in proactive resource
allocation, the network can track, learn and thenpredict
the user requests ahead of time, and hence possesses more
flexibility in scheduling these requests before their actual time
of arrival. We refer to the networks that perform reactive and
proactive resource allocation, respectively, asnon-predictive
andpredictive networks.

The predictive wireless network can anticipate the arrival
of requests a number of time slots ahead. That is, ifq(n),
q ∈ {1, · · · , Q(n)}, is the identifier of a request predicted at
the beginning of time slotn, the predictive network has the
advantage of serving this request within the nextTq(n) slots.
Hence, when requestq(n) arrives at a predictive network, it
has a deadline at time slotDq(n) = n + Tq(n) as shown in
Fig. 1.

Conversely, in a non-predictive network, all arriving re-
quests at the beginning of time slotn must be served in
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the same time slotn, i.e., if q(n) is an unpredicted request,
then Tq(n) = 0 and Dq(n) = n. At this point, we wish to
stress the fact that the model operates as the time scale of
the application layer at which 1) the current paradigm, i.e.,
non-predictive networking, treats all the requests as urgent, 2)
each slot duration may be in the order of minutes and possibly
hours, and 3) the system capacity is fixed since the channel
fluctuation dynamics are averaged out at this time scale.

Definition 1: Let N0(n) be the number of requests in the
system at the beginning of time slotn having a deadline of
n. The outage eventO is then defined as

O , {N0(n) > C, n ≫ 1} , (1)

The above definition states that an outage occurs at slotn if
and only if at least one of the requests in the system expires
in this slot. The termN0(n) coincides onQ(n) when the
network is non-predictive, and is different when the network
is predictive.

Following the definition of the outage event, we denote
the probability that the wireless network runs into an outage
at slot n > 0 by P (O). Throughout this paper, we will
focus on analyzing the asymptotic decay rate of the outage
probability with the system capacityC when it approaches
infinity. We call this decay rate thediversity gain of the
network. Moreover, in our analysis we assume that the mean
input trafficλ scales with the system capacity in two different
regimes as follows.

1) Linear Scaling: In this regime, the arrival process
Q(n), n > 0 is Poisson with ratēλ that scales with
C as

λ̄ = γC, 0 < γ < 1.

And with outage probability denoted byP (O), the
associated diversity gain is defined as

d(γ) , lim
C→∞

−
logP (O)

C
.

2) Polynomial Scaling:In this regime, the arrival process
Q̃(n), n > 0, is also Poisson with ratẽλ, but the rate
scales with the system capacityC polynomially as

λ̃ = C γ̃ , 0 < γ̃ < 1.

And with outage probabilityP (Õ), the associated diver-
sity gain is defined as

d̃(γ̃) , lim
C→∞

−
logP (Õ)

C logC
.

We consider the linear scaling of the input traffic with the
system resources because it is commonly used in networking
literature where the parameterγ serves as bandwidth uti-
lization factor. Asγ approaches1 the average input traffic
approaches the capacity and the system becomes critically
stable and more subject to outage events, whereas small values
of γ imply underutilized resources but small probability of
outage. The polynomial scaling regime is also introduced
because under this type of scaling, the optimal prediction
diversity gain can be fully determined through the asymptotic
analysis of simple scheduling policies like earliest deadline

first. Except for Section VI and its associated appendices,
we consistently use the accents.̄ and .̃ to denote linear
and polynomial scaling regimes respectively, while symbols
without accents are used to denote a general case.

III. D IVERSITY GAIN ANALYSIS

A. Diversity Gain of Reactive Networks

The reactive networks are supposed to have no prediction
capabilities so they cannot serve any request prior to its time
of actual arrival. Hence, the reactive network encounters an
outage at time slotn if and only if Q(n) > C asN0(n) =
Q(n).

Theorem 1:Denote the outage probability and the diversity
gain of the non-predictive network, respectively, byPN (O)
anddN (γ), then

dN (γ) = γ − 1− log γ, 0 < γ < 1, (2)

and
d̃N (γ̃) = 1− γ̃, 0 < γ̃ < 1. (3)

Proof: Please refer to Appendix A.
It can be noted that asγ and γ̃ approach1, the corre-

sponding diversity gainsdN (γ) and d̃N (γ̃) approach0, as in
this case the arrival rate in both regimes matches the system
capacity, and hence the system becomes critically stable and
the logarithm of the outage probability does not decay with
C. However, the behavior of the the diversity gain is not the
same when bothγ andγ̃ approach0. As γ → 0, dN (γ) → ∞
because the arrival ratēλ → 0, thus the resulting outage
probability approaches0 and the diversity gain approaches
∞. Whereas̃γ → 0 implies thatd̃N (γ̃) → 1 which is the case
when the input traffic is still positive but does not scale with
the system capacity.

B. Diversity Gain of Proactive Networks

Unlike reactive networks, the proactive network has the
flexibility to schedule the predicted requests in a window of
time slots through some scheduling policy. Depending on the
scheduling policy employed, the resulting outage probability
(and of course the associated diversity gain) varies. By the
termoptimal prediction diversity gain, we mean the maximum
diversity gain that can be achieved by the predictive network,
which corresponds to the minimum outage probability denoted
P ∗
P (O).
In our analysis, we consider, for simplicity, the earliest

deadline first (EDF) scheduling policy, which has also been
called in [13] shortest time to extinction (STE). This policy,
as proved in [13], maximizes the number of served requests
under a per-request deadline constraint. Further studies on
this policies can be found in [8] and [14]. In the proposed
predictive network, the EDF scheduling policy is defined as
follows.

Definition 2 (Earlies Deadline First (EDF)):Let the max-
imum prediction interval for a request be denoted byT ∗, i.e.,
T ∗ = supq,n

{
Tq(n)

}
, and letNi(n), i = 0, 1, · · · , T ∗ be the

number of requests in the system at the beginning of time slot
n and having a deadline ofn + i. Then, at the beginning of
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slotn, the EDF policy sorts{Ni(n)}
T∗

i=0 in an ascending order
with respect toi, and serves them in that order until either a
total of C requests get served or the network completes the
service of all existing requests in this slot.

It can be noted that EDF does not necessarily minimize the
outage probability as it is only concerned with maximizing the
number of served requests while the outage event does not take
into account the number of dropped requests. However, EDF
has two main characteristics that help in analysis. Namely,it
always serves requests as long as there are any, i.e., it is a
work conserving policy, and it serves requests in the order of
their remaining time to deadline.

1) Deterministic Look-ahead Time:In this scenario,
Tq(n) = T for all q(n), n > 0 for some constantT ≥ 0.
Hence, assuming that the system employs EDF scheduling
policy, we haveT ∗ = T andNT (n) = Q(n), n > 0. Thus,
the EDF policy will reduce to first-come-first-serve (FCFS).
The outage probability in this case is denoted byPPD(O).

Lemma 1:Under EDF, let

UD ,

{
T∑

i=0

Q(n− T − i) > C(T + 1), n ≫ 1

}

and
LD , {Q(n− T ) > C(T + 1), n ≫ 1} .

Then, the eventsUD andLD constitute a necessary condition
and a sufficient condition on the outage event, respectively.
Hence,P (LD) ≤ PPD(O) ≤ P (UD).
In the above lemma, we assume thatn ≫ 1 as we are
interested in the steady state performance. The eventUD

occurs when the number of arriving requests in consecutive
T + 1 slots is larger than the total capacity ofT + 1 slots,
whereas the eventLD occurs when the number of arriving
requests at any slot is larger than the total capacity ofT + 1
slots.

Proof: Please refer to Appendix B.
It is obvious from the proof that the eventUD is related

to the outage eventO through the EDF scheduling policy,
whereas the eventLD is independent of the scheduling policy
employed.

Theorem 2:The optimal prediction diversity gain of a
proactive network with deterministic prediction intervalT ,
denoteddPD(γ), satisfies

dPD(γ) ≥ (1 + T )(γ − 1− log γ), 0 < γ < 1, (4)

d̃PD(γ̃) = (1 + T )(1− γ̃), 0 < γ̃ < 1. (5)

The above result shows that proactive resource allocation
offers a multiplicative diversity gain of at leastT + 1 for the
linear scaling regime and exactlyT + 1 for the polynomial
scaling regime.

Proof: Please refer to Appendix C.
Note that, an upper bound ondPD(γ) can be established

usingP (LD) ≤ PPD(O) and following the same approach of
deriving the lower bound in the theorem. This upper bound
will be given by

dPD(γ) ≤ (T + 1)

(
γ

T + 1
− 1 + log

(
T + 1

γ

))
. (6)

Comparing the right hand sides of (4), and (6) it can be seen
that they match only whenT = 0, and in this case, they
also match the non-predictive diversity gain obtained in (59).
Otherwise, for positive values ofT , the two bounds differ.

2) Random Look-ahead Time:We consider a more general
scenario whereTq(n), 0 ≤ q(n) ≤ Q(n), n > 0 is a sequence
of IID non-negative integer-valued random variables defined
over a finite support{T∗, · · ·T

∗}, where0 ≤ T∗ ≤ T ∗ < ∞.
The random variableTq(n) has the following probability mass
function (PMF),

P
(
Tq(n) = k

)
,

{
pk, T∗ ≤ k ≤ T ∗,

0, otherwise,
(7)

where
∑T∗

k=T∗

pk = 1 and pk ≥ 0, ∀k, the cumulative
distribution function (CDF) ofTq(n) can be written as

P (Tq(n) ≤ k) = Fk =





1, k > T ∗,∑k
i=T∗

pi, T∗ ≤ k ≤ T ∗,

0, k < T∗.

(8)

Hence, the overall processQ(n) can be decomposed to a
superposition of independent Poisson processes, i.e.,

Q(n) =

T∗∑

k=T∗

Qk(n)

whereQk(n), n > 0 is the process of requests predictedk

slots ahead,k = T∗, · · · , T
∗. The arrival rate ofQk(n) is

pkλ.
In this scenario, we denote the outage probability under

EDF by PPR(O) and the optimal diversity gain bydPR(γ).
Unlike the case of deterministic look-ahead time, EDF here
does not reduce to FCFS because the arriving requests at
the subsequent slots can have earlier deadlines than some of
those who have already arrived. Upper and lower bounds on
PPR(O) are introduced in the following lemma.

Lemma 2:Let

I ,





T∗∑

j=0

T∗∑

i=T∗

Qi(n− i− j) > C(T ∗ + 1), n ≫ 1



 ,

J ,

T∗−1⋃

k=T∗





k∑

j=T∗

j∑

i=T∗

Qi(n− j) > C(k + 1), n ≫ 1



 ,

UR , I
⋃

J

and

LR ,

T∗⋃

k=T∗





k∑

j=T∗

Qj(n− j) > C(k + 1), n ≫ 1



 ,

then, the eventsUR andLR constitute necessary and sufficient
conditions on the outage event, respectively. HenceP (LR) ≤
PPR(O) ≤ P (UR).
Here also, we assume the system is at steady state.

Proof: Please refer to Appendix D.
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Theorem 3:Let

v∗ , min
T∗≤k≤T∗−1

{
(k + 1)

[
log

(
k + 1

γ
∑k−T∗

i=0 Fk−i

)
− 1

]

+γ

k−T∗∑

i=0

Fk−i

}
,

the optimal diversity gain of a proactive wireless network with
random prediction interval,dPR(γ), satisfies

dPR(γ) ≥ min{(T ∗+1)(γ−1−log γ), v∗}, 0 < γ < 1 (9)

for the linear scaling regime, and

d̃PR(γ̃) = (T∗ + 1)(1− γ̃), 0 < γ̃ < 1, (10)

for the polynomial scaling regime.
Proof: Please refer to Appendix E.

Theorem 3 determines a lower bound on the optimal pre-
diction diversity gain of the linear scaling regime and fully
characterizes the optimal prediction diversity. It is obvious
that the lower bound ondPR(γ) depends on the distribution
of Tq(n), however, this lower bound is always larger than
dN (γ) as long asT ∗ > 0 and pT∗>0. This can be viewed
by considering the term(T ∗ + 1)(γ − 1 − log γ) which is
strictly larger thandN (γ) and v∗ where for anyk such that
T∗ ≤ k ≤ T ∗ − 1,

(k + 1)

[
γ

(∑k−T∗

i=0 Fk−i

k + 1

)
− log

∑k−T∗

i=0 Fk−i

k + 1
− 1− log γ

]

(a)
> (k + 1)(γ − 1− log γ)

(b)

≥ dN (γ).

Inequality (a) follows as

0 <

∑k−T∗

i=0 Fk−i

k + 1
< 1

andγx−log x > γ, ∀x ∈ (0, 1), while inequality (b) follows
becausek ≥ T∗ ≥ 0. Hence, the proactive network in linear
scaling regime withT ∗ > 0 and pT∗ > 0 always improves
the diversity gain.

For the polynomial scaling regime, Theorem 3 shows that
the prediction diversity gain of a proactive wireless network
with random look-ahead interval is dominated by arrivals with
Tq(n) = T∗. Hence, the main drawback of this is that, ifT∗ = 0
the prediction diversity becomes tantamount to that of the non-
predictive scenario. However, even thoughT∗ = 0, the outage
probability of the predictive network is evaluated numerically
in Section VII and shown to outperform the non-predictive
case.

IV. H ETEROGENOUSQOS REQUIREMENTS

We consider two types of users with different QoS re-
quirements, the first is a primary user who has the priority
to access the network, whereas the second is a secondary
user that is allowed to access the primary network resources
opportunistically. That is, it can use the primary resources at
any time slot only when there is sufficient capacity to serve

all primary requests at that slot with the remaining capacity
assigned to the secondary user. This type of opportunistic
access to the primary network adds more utilization to its
resources while it may get paid by the secondary user for
the offered service.

The primary and secondary requests arrive to the net-
work following two Poisson processesQp(n), n > 0 and
Qs(n), n > 0 with arrival ratesλp andλs respectively. We also
assume that the network is stable and dominated by primary
arrivals as follows.

Assumption 1:

λs + λp < C, (11)

λs < λp. (12)

The network is reactive to the secondary requests and hence
each secondary request will expire if it is not served in the
same slot of arrival. In the following subsection, we analyze
the performance of the secondary outage probability and
diversity gain when the primary network is also reactive, then
we proceed to the proactive case.

A. Non-predictive Primary Network

At the beginning of time slotn the network hasQp(n) +
Qs(n) arrivals that should be served within the same slot, i.e.,
all have a deadline ofn. The network typically serves the
primary requests before the secondary. Hence, the diversity
gain of the primary network in this scheme, denotedd

p
N (γp),

follows the same expressions obtained in Theorem 1, i.e.,

d
p

N (γp) = γp − 1− log γp, 0 < γp < 1 (13)

d̃
p
N (γ̃p) = 1− γ̃p, 0 < γ̃p < 1, (14)

whereλ̄p = γpC and λ̃p = C γ̃p

.
The secondary user, therefore, suffers an outage at time slot

n if and only if

Qp(n) +Qs(n) > C, Qs(n) > 0.

Theorem 4:The diversity gain of the secondary network,
dsN (γp, γs), when the primary network is non-predictive, sat-
isfies

d
s

N (γp, γs) ≤ γp − 1− log γp, (15)

d
s

N (γp, γs) ≥ γp + γs − 1− log(γp + γs), (16)

d̃sN (γ̃p, γ̃s) = 1− γ̃p, (17)

whereλ̄s = γsC, λ̃s = C γ̃s

and0 < γs < γp < 1, γp+γs <

1 and0 < γ̃s < γ̃p < 1.
Proof: Please refer to Appendix F.

Theorem 4 reveals that the diversity gain of the secondary
user, under non-predictive network, is at most equal to the
diversity gain of the primary network in the linear scaling
regime and is exactly equal to it in the polynomial scaling
regime although the secondary user has strictly less traffic
rate than the primary. It can also be noted thatd̃sN (γ̃p, γ̃s)
is independent of̃γs, that is, regardless of how smallγ̃s is,
the diversity gain of the secondary user is kept fixed atd̃

p
N (γ̃p)
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d
s

N (γp, γs) declines whenγs ≪ γp. In this figure,γs = 0.02
andγp ∈ (γs, 1− γs).

as long as̃γs > 0. The lower bound in (16), although does
not match the upper bound in (15), it is always positive and
approaches the upper bound whenγs is much smaller thanγp

as shown in Fig. 2.

B. Predictive Primary Network

When the primary network is predictive, the arriving pri-
mary requestsQp(n), n > 0 are assumed to be predictable
with a deterministic look-ahead timeT . The secondary re-
quests,Qs(n), conversely, are all urgent.

Let Np
i (n) be the number of all primary requests awaiting

in the network at the beginning of time slotn with deadline
n+ i, i = 0, · · · , T and letNp(n) =

∑T
i=0 N

p
i (n).

1) Selfish Primary Scheduling:By a selfishprimary behav-
ior we mean the primary network has a dedicated capacityC

per slot and no secondary request is served at the beginning
of time slotn unless all primary requestsNp(n) are served at
this slot andC−Np(n) > 0. The optimal prediction diversity
gain and the outage probability of the primary network in
this case are not affected by the presence of the secondary
user. On the other hand, the selfish behavior of the primary
predictive network cannot improve the outage probability of
the secondary user. To show this, letPP (O

s) denote the outage
probability of the secondary user when the primary network
is predictive. Then

PP (O
s) = P (Np(n) +Qs(n) > C,Qs(n) > 0)

≥ P (Qp(n) +Qs(n) > C,Qs(n) > 0) (18)

= PN (Os), (19)

where inequality (18) follows sinceNp
T (n) = Qp(n) and

Np(n) ≥ N
p
T (n). Here we note that the above result holds

for any scheduling policy that serves all primary requests in
the network at any slot before the secondary requests.

2) Cooperative Primary User:The predictive primary net-
work, however, can act in aless-selfishmanner without losing
performance and, at the same time, enhance the diversity gain
of the secondary user. This can be done by limiting the per-
slot capacity dedicated to serve the primary requests in the

system. One possible way to do so is to decide the capacity
for the primary network dynamically at the beginning of each
slot. We suggest the following less-selfish policy.

Definition 3: The number of primary requests to be served
at slotn is denoted byCp(n) and given by

Cp(n) , min

{
C,N

p
0 (n) + f ×

T∑

i=1

N
p
i (n)

}
, (20)

where 0 ≤ f ≤ 1, and the primary requests are served
according to EDF.
This scheme determines the maximum number of primary
requests that the primary network can serve at the beginning
of each slot depending on the number of primary requests with
deadline at this slot as well as some factor of the number of
other primary requests in the system. Hence, at the beginning
of time slotn, arriving secondary requests will have the chance
to get service ifC − Cp(n) > 0, while the primary network
has the capability to schedule theCp(n) requests according to
a service policy that minimizes the primary outage probability
(we address the EDF scheduling, however, for simplicity). In
the above scheme, iff is chosen to be1, the primary network
will act selfishly, whereasf = 0 implies a performance of
primarynon-predictive network. In the following theorem we
show that for some range off , the diversity gain expressions
for the primary network satisfy the same bounds of the selfish
scenario.

Theorem 5:Under the dynamic capacity assignment policy
in Def. 3 with f ∈ [0.5, 1], the diversity gain of the primary
network satisfies

d
p

P (γ
p) ≥ (T + 1)(γp − 1− log γp), 0 < γp < 1, (21)

d̃sP (γ̃
p) = (T + 1)(1− γ̃p), 0 < γ̃p < 1. (22)

Proof: Please refer to Appendix G.
The above theorem thus shows that the predictive primary

network satisfies the same diversity gain bounds of the selfish
behavior under the proposed dynamic capacity assignment
policy as long asf ∈ [0.5, 1]. Moreover, it gives a potential
for improvement in the outage performance of the secondary
users by limiting the number of primary requests served per
slot. The outage probability of the secondary network in this
case is given by

PP (O
s) = P (Qs(n) + Cp(n) > C,Qs(n) > 0)

= P

(
Qs(n) + min

{
C,N

p
0 (n)

+ f

T∑

i=1

N
p
i (n)

}
> C,Qs(n) > 0

)
. (23)

To show that even the diversity gain of the secondary
network is improved under such policy, we consider the case
when f = 0.5, and T = 1 for simplicity. In this case, the
per-slot capacity of the primary network turns out to be

Cp(n) = min {C,Np
0 (n) + 0.5Qp(n)} (24)
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with

N
p
0 (n+ 1) =



























Qp(n), if N
p
0 (n) = C,

0.5Qp(n) +N
p
0 (n) −C, if N

p
0 (n) < C, Np

0 (n)

+0.5Qp(n) ≥ C,

0.5Qp(n), if N
p
0 (n)

+0.5Qp(n) < C.
(25)

It is clear from (25) that

P (Np
0 (n+ 1) = l|Np

0 (n) = i, · · · , Np
0 (1) = k)

= P (Np
0 (n+ 1) = l|Np

0 (n) = i).

That is, the discrete-time random processN
p
0 (n), n > 0

satisfies the Markov property, and hence, it is a Markov chain.
Moreover, it can be easily verified thatNp

0 (n), n > 0 is
irreducible and aperiodic asP (Qp(n) = q) > 0 for all q ≥ 0.

The drift of the chain can thus be obtained as

E[N0(n+1)−N0(n)|N0(n) = i]

{
≤ −(1− γp)C, if i ≥ C,

≤ γp

2 C, if i < C.

(26)
Then, by Foster’s theorem [15], the Markov chain is positive
recurrent, and hence has a stationary state distribution.

Theorem 6:Suppose that the system is operating at the
stationary distribution ofNp

0 (n), n > 0, the diversity gain
of the secondary network,dsP (γ

p, γs), under the dynamic
capacity allocation for the primary satisfies

d
s

P (γ
p, γs) ≥ −γs(y2 − 1)− 2γp(y − 1) + 2 log(y), (27)

where

y = −
γp

2γs +

√
(4γs + γp2)

2γs

and

d̃sP (γ̃
p, γ̃s) ≥

{
(1− γ̃p), 1 + γ̃s ≥ 2γ̃p,
1
2 (1− γ̃s), 1 + γ̃s < 2γ̃p.

(28)

Proof: Please refer to Appendix H.
The right hand side of inequality (27) will be shown in

Section VII to be strictly larger than the right hand side of
(15) for a range ofγs, which implies a strict improvement in
the diversity gain of the secondary network without any loss
in the diversity gain of the primary. However, the right hand
side of inequality (28) shows that if1 + γ̃s < 2γ̃p, then the
diversity gain of the secondary network is at least equal to its
non-predictive counterpart.

V. ROBUSTNESS TOPREDICTION ERRORS

In the previous sections we have assumed that the prediction
mechanism is error free, that is, all predicted requests aretrue
and will arrive in future after exactly the same look-ahead
period of prediction. Under this assumption, we managed to
treat the predicted arrival process with deterministic look-
ahead time as a delayed version of the actual arrival process.
However, in practical scenarios, this is not necessarily the case.
In this section we provide a model for the imperfect prediction
process and investigate its effect on the prediction diversity
gain with fixed look-ahead intervalT assuming a single class
of QoS.

Let Q(n), n > 0 be the actual arrival process that the net-
work should predictT slots ahead. This process, as introduced
in Section II, is Poisson with rateλ. Because the prediction
mechanism employed by the network may cause errors, the
predicted arrival process differs from the actual arrival process.
The prediction mechanism is supposed to cause two types of
errors:

1) It predicts false requests, those will not arrive actually in
future, and serves them, resulting in a waste of resources.

2) It fails to predict requests and, as a consequence, the
network encounters urgent arrivals (unpredicted requests
that should be served in the same slot of arrival).

So, we model the predicted process as

QE(n) = Q′(n) +Q′′(n) (29)

whereQ′(n), n > 0 is the arrival process of the predicted
requests. It represents the number of arriving requests at the
beginning of time slotn with deadlinen + T . The process
Q′′(n), n > 0 represents the number of unpredicted requests
that arrive at the beginning of time slotn and must be served
in the same slot because the network has failed to predict them.
We assume further thatQ′(n) andQ′′(n) are independently
Poisson distributed with arrival ratesλ′ andλ′′, respectively.

SinceQ′′(n) is a part of the requestsQ(n), then

0 ≤ λ′′ < λ (30)

where the second inequality is strict because we assume that
Q′(n) contains truly predicted requests as well as mistakenly
predicted requests, which also implies

λ′ + λ′′ ≥ λ (31)

Moreover, the network is stable as long as

λ′ + λ′′ < C. (32)

For the linear scaling regime, the arrival processesQ
′
(n)

andQ
′′
(n), n > 0 have arrival ratesα′γC andα′′γC respec-

tively. Applying conditions (30)-(32) toα′γC andα′′γC we
obtain

α′′ < 1 (33)

and
1 ≤ α′ + α′′ <

1

γ
(34)

So, if the prediction mechanism is perfect, thenα′ = 1
whereasα′′ = 0.

The arrival processQ
E
(n), n > 0, can be considered

as a predicted process with random look-ahead interval that
takes on values0 andT . Hence, using the eventUR defined
in Lemma 2, we obtain the following lower bound on the
prediction diversity gain,d

E

P (γ),

d
E

P (γ) ≥ min {(T + 1) [(α′ + α′′)γ − 1− log (γ(α′ + α′′))] ,

α′′γ − 1− log(α′′γ)} (35)

The best operating point (prediction window) that maximizes
the right hand side of (35) is when both terms in themin{.}
are equal, which implies

T̄crit =
α′′γ − 1− log(α′′γ)

(α′ + α′′)γ − 1− log(γ(α′ + α′′))
. (36)
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Sinceα′′ < 1, then for T̄crit derived in (36), we obtain
d
E

P (γ) > dN (γ).
For the polynomial scaling regime, the processesQ̃′(n) and

Q̃′′(n), n > 0 have arrival ratesCα̃′γ̃ andCα̃′′γ̃ respectively.
Applying conditions (30)-(32) to the arrival ratesCα̃′γ̃ and
Cα̃′′γ̃ , we obtain,

α̃′′ < 1, (37)

Cα̃′γ̃ + Cα̃′′γ̃ ≥ C γ̃ , (38)

and
Cα̃′γ̃ + Cα̃′′ γ̃ < C. (39)

If the prediction mechanism is perfect, thenα̃′ = 1 whereas
α̃′′ = −∞.

We also use eventsUR and LR from Lemma 2 to deter-
mine the prediction diversity gain with imperfect prediction
mechanism,̃dEP (γ̃), as

d̃EP (γ̃) = min{(T + 1) [1−max{α̃′, α̃′′}γ̃] , 1− α̃′′γ̃}. (40)

Nevertheless, since at̃dEP (γ̃) is at C → ∞, then from (38),
(39), asC → ∞, we obtain,1 ≤ α̃′ < 1

γ̃
. And from (37),

max{α̃′, α̃′′} = α̃′. Hence,

d̃EP (γ̃) = min{(T + 1)(1− α̃′γ̃), 1− α̃′′γ̃}. (41)

So, to obtain the maximum diversity gain, the best predic-
tion window T̃crit should satisfy

T̃crit =
(α̃′ − α̃′′)γ̃

1− α̃′′γ̃
, (42)

and at this point, sincẽα′′ < 1, we haved̃EP (γ̃) > d̃N (γ̃).
This section hence has shown theoretically that even under

imperfect prediction mechanisms, the prediction window size
is judiciously chosen to strike the best balance between the
predicted traffic and the urgent one.

VI. PROACTIVE SCHEDULING IN MULTICAST NETWORKS

This section sheds light on the predictive multicast networks
and investigates the diversity gains that can be leveraged from
efficient scheduling of multicast traffic. Typically, multicast
traffic minimizes the usage of the network resources because
the same data is sent to a group of users consuming the same
amount of resources that serve only a single user which is
taken to be unity [16]. So, even in the non-predictive case, the
multicast traffic is expected to result in an improved diversity
gain performance over its unicast counterpart, discussed in the
previous sections.

Furthermore, when the multicast traffic is predictable, there
is an additional gain that can be obtained from the ability
to align the traffic in time. That is, the network can keep
on receiving predictable requests that target the same data
over time then serve them altogether as the earliest deadline
approaches. In this case, the network will end up serving
all the gathered requests in a window of time slots with the
same resources required to serve one request, and hence will
significantly improve the diversity gain of the network. We
assume that there areL data sources available (e.g. files,
packets, movies, podcasts, etc.) for multicast transmission. The

number of multicast requests arriving at the beginning of time
slot n > 0 is a random variableQm(n) which is assumed to
be Poisson distributed with meanλm.

Assuming that the data sources are demanded independently
across time and requests, the processQm(n), n > 0 can be
decomposed into

Qm(n) =

L∑

l=1

Qm,[l](n), for all n > 0,

whereQm,[l](n) denotes the number of multicast requests for
data sourcel ∈ {1, · · · , L} arriving in slotn, and is Poisson
distributed with meanλm,[l] , p[l]λm, wherep , (p[l])Ll=1

is a valid probability distribution1 capturing the potentially
asymmetric multicast demands over the pool ofL data sources.

In this section we focus only on the analysis of the lin-
ear scaling regime where the potential improvement in the
diversity gain is tangible2. The mean number of arriving
multicast requests scales withC asλm = γmC, γm ∈ (0, 1).
The number of data sourcesL scales also linearly withC as
L = θC, θ > 0.

The binary parameterXm,[l](n) for each multicast data
sourcel ∈ {1, · · · , L} is defined as

Xm,[l](n) ,

{
1, if Qm,[l](n) > 0,

0, if Qm,[l](n) = 0,
l = 1, · · · , L, (43)

which gives the indicator of at least one multicast request for
data sourcel arrives at slotn. And, under the aforementioned
Poisson assumptions,Xm,[l](n) is a simple Bernoulli random
variable with parameter

Am,[l] = 1− e−pm,[l]λm

, l ∈ {1, · · · , L}. (44)

We denote the total number of distinct multicast data
requests arriving in slotn asSm(n), defined as

Sm(n) ,

L∑

l=1

Xm,[l](n). (45)

Definition 4: Let Nm,[l]
0 (n) denote the indicator that there

is at leastone awaiting multicast request for data sourcel ∈
{1, · · · , L} that expires in slotn. Then, lettingNm

0 (n) ,∑L
l=1 N

m,[l]
0 (n), the multicast outage event is defined as

Om , {Nm
0 (n) > C, n ≫ 1} .

The pure multicast network will be investigated in the
following subsection where the diversity gain of its non-
predictive side will be shown to be larger than its unicast coun-
terpart, furthermore, the alignment property of the predictive
multicast will be proven to result in a significantly improved
diversity gain, that scales super-linearly with the prediction
interval T . Then, the subsequent subsection will address a
composite network consisting of unicast and multicast traffics;
the potential diversity gain will be investigated under different
prediction scenarios.

1
p is a valid distribution if0 ≤ p[l] ≤ 1 and

∑L
l=1 p

[l] = 1.
2The additional multicast gains do not appear in the polynomial scaling

regime because the traffic to each data source vanishes asymptotically, as
C → ∞, when the number of data sourcesL scales withC, implying that
at most one request can target a data source at each slot, i.e., the multicast
traffic will approach the unicast asC → ∞.
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Fig. 3: Diversity gain of the non-predictive multicast network
monotonically decreases withθ. However, it is lower bounded
by the diversity gain of non-predictive unicast networks.

A. Symmetric Multicast Demands

Suppose that the number of data sources scales withC as
L = θC, θ > 0. Then,θ ≤ 1 implies zero outage probability
and infinite diversity gain regardless of the value ofγm. This
is the first gain improvement that can be leveraged from the
nature of the multicast traffic. We now confine the analysis to
the case whenθ > 1. Assume that the multicast demands are
equally distributed on the available data sources, i.e.

p[l] = p =
1

θC
,

Am,[l] = Am = 1− e−
γm

θ , ∀l ∈ {1, · · · , L}.

1) Non-predictive Multicast Network:Under the above
symmetric setup (and assumingθ > 1), the random variable
Sm(n) turns out to have a binomial distribution with parameter
Am and the outage probability in this case, denoted by
PN (Om), is equal toP (Sm(n) > C). In other words, the
multicast outage occurs in slotn if and only if the number of
distinct data sources requested at this slot is larger than the
network capacity.

Theorem 7:The diversity gain of non-predictive multicast-
ing, denoted bydN (γm, θ), is given by

dN (γm, θ) = (θ − 1) log(θ − 1)− θ log θ + γm

(
θ − 1

θ

)

− log

(
1− e−

γm

θ

)
, 0 < γm < 1, θ > 1. (46)

Proof: Please refer to Appendix I.
Theorem 7 and Fig. 3, which depicts the diversity gains of

non-predictive multicast (46) and unicast (2) networks with
γm = γ, show thatdN (γm, θ) is monotonically decreasing in
θ. As θ increases, the number of data sources in the network
grows faster withC, and hence, from (46),

lim
θ→∞

dN (γm, θ) = γm − log γm − 1 = dN (γm). (47)

That is, multicast diversity gaindN (γm, θ) is strictly greater
than its unicast counterpartdN (γm), and converges to it in the

limit as θ → ∞. In fact, a much stronger result is that, when
γm = γ,

lim
θ→∞

LAm = lim
θ→∞

θC

(
1− e−

γm

θ

)

= γmC, 0 < γm < 1,

(48)

we have alsoAm → 0 and L = θC → ∞ as θ → ∞.
Therefore,Sm(n) converges in distribution toQ(n), and
consequently,PN (Om) → PN (O), θ → ∞.

In this subsection, we have highlighted the extra diversity
gain achieved through one of the multicast properties, thatis
all the requests arriving to the network at time slotn and
demanding a certain data source are all served with one unit
resources exactly as if only one request demands that data
source.

2) Predictive Multicast Network:Now suppose that the
symmetric multicast network has predictable demands with
a prediction window ofT > 0 slots. The traffic alignment in
this case appears in the following sense, the resource serving
a group of requests arriving at slotn also serves all other
requests in the system (that have arrived withing the previous
T slots) requesting the same data source. So, the resource
value is extendable across time. The prediction capabilityof
the network is thus equal to infinity as long asθ ≤ (T + 1),
which implies a multiplicative gain ofT + 1 in the number
of data sources that the network can support with zero outage
probability, as compared to the non-predictive case.

Consider then the other range ofθ, that is θ > (T + 1).
The network now is subject to outage events and efficient
scheduler has to be employed. Because of the symmetric
demands, we focus the analysis on the EDF scheduling. Let the
optimal diversity gain in this predictive scenario be denoted
by dP (γm, θ), in [17], we have shown thatdP (γm, θ) ≥
(T + 1)dN (γm, θ) which is consistent with the results of
Subsection III-B as the predictability multiplies the diversity
gain by a factor of at leastT +1. However, we show now that
the alignment property can even improve the diversity gain
and result in a super-linear scaling ofdP (γm, θ) with T .

Theorem 8:The optimal diversity gain of the predictive
multicast network with symmetric demands,dP (γm, θ), satis-
fies

dP (γm, θ) ≥ (T + 1) log

(
(1− ξmT )(T + 1)

ξmT (θ − (T + 1))

)

− θ log

(
1− ξmT +

(1− ξmT )(T + 1)

θ − (T + 1)

)
,

, Lsym.

(49)

where

ξmT = 1− exp

(
−
(T + 1)γm

θ

)
.

Proof: Please refer to Appendix J.
The new lower boundLsym takes into account the alignment
property of the predictable multicast traffic, and thus shows
significant increase in the diversity gain withT as compared
to the older bound(T + 1)dN (γm, θ) in Fig. 4.



10

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Prediction interval (T)

Lo
w

er
 b

ou
nd

s 
on

 th
e 

di
ve

rs
ity

 g
ai

n

 

 

(T+1)d
N

(γm,θ)

L
sym

Fig. 4: Superlinear increase in the diversity gain of the
multicast network with the prediction intervalT because of
the alignment property. In this figureγm = 0.9 andθ = 15.

B. Multicast and Unicast Traffic

Generally, wireless networks support both types of traffic:
multicast and unicast. For instance, a smart phone user my
receive unicast data such as e-mail or electronic bank statement
as well as multicast data such as movies or podcasts. In
this subsection we investigate the potential diversity gain of
wireless networks encompassing both types of traffic under
different predictability conditions.

The multicast traffic model adopted here is exactly as de-
fined in the beginning of this section, with the only difference
is we assume thatL = θC, whereθ ∈ (0, 1). The multicast
data sources are also equally demanded, each with probability

Am = 1− exp

(
−
γm

θ

)
.

The unicast traffic arrives at the beginning of each slotn

according toQu(n) which is Poisson distributed with mean
λu = γuC, γu ∈ (0, 1). Each of the unicast requests consumes
one unit of the system capacity. The stability condition of the
non-predictive network necessitates that

Amθ + γu < 1. (50)

Definition 5: Letting Nu
0 (n) denote the number of unicast

requests in the system at the beginning of time slotn, the
combined outage event of the wireless network with unicast
and multicast traffic is defined as

OA = {Nm
0 (n) +Nu

0 (n) > C, n ≫ 1} .

In [17], we have addressed the case when only on multicast
data source exists in the network an consumesµC, µ ∈ (0, 1)
of the available resources to supply data. This data source
shares the network with unicast traffic. We have shown the
impact of the multicast traffic alignment on the diversity gain
where more gains can be leveraged by gathering more of the
predictable multicast traffic and serving them altogether in a
single slot. Alternatively, in this subsection we address the
scenario of multiple data sources each consumes one unit

of the available resources. We will investigate the diversity
gain of the network in the following four scenarios of demand
predictability:

1) Both unicast and multicast traffics are non-predictive.
2) Unicast is non-predictive but multicast is predictive.
3) Both unicast and multicast traffics are predictive.
4) Unicast is predictive but multicast is non-predictive.
1) Scenario 1: Both Unicast and Multicast Traffics are Non-

predictive: In this scenario, all of the arriving requests are
urgent and hence,Nm

0 (n) = Sm(n) andNu
0 (n) = Qu(n).

Theorem 9:Let the outage probability in Scenario 1 be
denoted byP1(OA) and the associated diversity gain be
denoted byd1(γu, γm, θ), then

d1(γu, γm, θ) = log(y1) + γu(1 − y1)

− θ log
(
e−

γm

θ + y1

(
1− e−

γm

θ

))
,

(51)

where

y1 =
1

2γu

(
e

γm

θ − 1

)
[(

(θ
2
− 2θ + 1)e

2γm

θ

+
(
−2θ

2
+ 2θ(γu + 2) + 2(γu − 2)

)
e

γm

θ + θ
2

− 2θ(γu + 1) + γu2 − 2γu + 1
) 1

2

+ (1− θ)e
γm

θ

+ θ − γu − 1

]
.

Proof: Please refer to Appendix K.
Theorem 9 thus tightly characterizes the diversity gain of
the network in Scenario 1. The expression ofd1(γu, γm, θ),
however, is not insightful, so it will be compared graphically
to the results of the other scenarios.

2) Scenario 2: Unicast is Non-predictive but Multicast is
Predictive: In this scenario, the network can predict the
multicast requestsT slots ahead, whereas the unicast traffic is
urgent. We consider a scheduling policyπ2 to establish a lower
bound on the optimal diversity gain, denotedd2(γu, γm, θ), of
this scenario.

Definition 6 (Scheduling Policyπ2): At each slot n, the
scheduling policyπ2 serves as much as possible of the existing
requests in the system in the following order:

1) Multicast data sources demanded by urgent requests,
Nu

0 (n).
2) Unicast requests,Qu(n).
3) The rest of the multicast data sources according to EDF.

The policy π2 is a slightly modified version of EDF with
priority given to urgent multicast requests.

Theorem 10:Let the outage probability in Scenario 2 under
the scheduling policyπ2 be denotedP2(OA) and the optimal
diversity gain be denoted byd2(γu, γm, θ), then

d2(γu, γm, θ) ≤ min
{
dN (γu), (T + 1) log y2

− (T + 1)γu(y2 − 1)

− θ log(1− ξmT + ξmT y2)
}
,

, L2.

(52)
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and

d2(γu, γm, θ) ≤ dN (γu) , U2, (53)

wheredN (γu) is as derived in (2) withγ = γu, and

y2 =
1

2ξmT γu(T + 1)

[((
(1 − ξmT )2γu2 + 2ξmT γu(1− ξmT )

+ ξmT
2
)2

T 2 +
(
[2ξmT γu(1− ξmT )− 2ξmT

2]θ

+ 2ξmT
2(1− ξmT )2 + 4ξmT γu(1− ξmT ) + 2ξmT

2
)
T

+ [2ξmT θ(1− ξmT )− 2ξmT
2]θ + γu2(1− ξmT )2

+ 2ξmT θ(1− ξmT ) + ξmT
2(1 + θ)2

) 1
2

+
(
(ξmT − 1)γu

)
T − ξmT θ + γu(ξmT − 1) + ξmT

]
.

Proof: Please refer to Appendix L.
The upper and lower bounds ond2(γu, γm, θ) established

in Theorem 10 match each other asT increases. In fact, the
second term inmin{., .} of expression (52) is monotonically
increasing inT , and hence∃t such thatT ≥ t implies
d2(γu, γm, θ) = dN (γu). This result means that, efficient
scheduling of the predictable multicast traffic results in the
same diversity gain that will be obtained if the system sees
only the unicast traffic. This result is clarified in Fig. 5
where the lower boundL2 increases inT until it becomes
dominated bydN (γu) at T = 2, and from this point on,L2

andU2 coincide and the diversity gain of the network is only
determined by the non-predictive unicast traffic.

3) Scenario 3: Both Unicast and Multicast Traffics are
Predictive: In this scenario we assume that both traffics are
predictable with the same look-ahead interval ofT slots. The
scheduling policy we consider is EDF where requests are
served in the order of their arrival.

Theorem 11:Let the outage probability of the network
in Scenario 2 under EDF scheduling policy be denoted by
P3(OA) and the optimal diversity gain of this scenario be
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Fig. 6: Bounds on the optimal diversity gain versus the unicast
traffic factorγu. In this figure,γm = 0.9, θ = 0.7 andT = 4
for any predictive network.

denoted byd3(γu, γm, θ), then

d3(γu, γm, θ) ≥ (T + 1) log y2 − (T + 1)γu(y2 − 1)

− θ log(1− ξmT + ξmT y2)

, L3.

(54)

Proof: Please refer to Appendix M.
In Scenario 3 one should expect that the optimal diversity
gain should be the largest amongst the other three scenarios.
To highlight this intuition, an upper bound will be established
on the diversity gain of Scenario 4.

4) Scenario 4: Unicast is Predictive but Multicast is Non-
predictive: Assuming that the unicast traffic is predictable with
a look-ahead window ofT slots, and the multicast traffic is
urgent.

Theorem 12:Let the optimal diversity gain of Scenario 4
be denoted byd4(γu, γm, θ) and the minimum possible outage
probability be denoted byP ∗

4 (OA), then

d4(γu, γm, θ) ≤ d1(γu, γm, θ) + T
[
2 log y4 − γu(y4 − 1)

− 2θ log(1 −Am +Amy4)
]

, U4,

(55)

where

y4 =
1

2γuAm

[(
(4θ

2
− 4θ(γu + 2) + (2− γu)2)Am2 + γu2

+ (4γuθ − 2γu2 + 4γu)Am
) 1

2

+ (−2θ + γu + 2)Am − γu

]
.

Proof: Please refer to Appendix N.
To collectively compare the obtained bounds on the optimal

diversity gain of the discussed scenarios, Fig.6 plots the
different bounds obtained in the last four theorems versusγu,
where the range ofγu ensures that (50) is satisfied, and hence
the non-predictive network always sees a positive diversity
gain. It is clear from the figure that the totally predictive
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Fig. 7: Bounds on the optimal diversity gain versus the pre-
diction look-ahead timeT . In this figure,γu = 0.4, γm = 0.9
andθ = 0.7.

network (of Scenario 3) has the highest possible diversity gain
as the lower boundL3 even exceeds the upper boundU4 on
the entire range of plottedγu. Also, it shows thatL2 and
U2 are coinciding atdN (γu), and of course this is the best
diversity gain that the network can achieve with unpredictable
unicast traffic.

Also, Fig. 7 demonstrates the effect of the prediction look-
ahead periodT on the derived bounds. It shows that bothL3

andU4 are both increasing inT , and that asT increasesL3

exceedsU4 andL2 matchesU2.

VII. S IMULATION RESULTS

The analytical results obtained in this paper are demon-
strated through numerical simulations in this section. Theout-
age probability is quantified as the ratio of the number of slots
that suffer expired requests to the total number of simulated
slots. Each simulation result is obtained by averaging a100
sample paths each contains a1000 slots.

A. Diversity Gain of Deterministic and RandomT Scenarios

Fig. 8 compares the outage probability of proactive net-
works with different look-ahead schemes to the non-predictive
network. The results obtained for the linear scaling regimeare
plotted versusC in Fig. 8a and for the polynomial scaling
regime are plotted versusC logC in Fig. 8b. It is obvious
from both figures that being proactive significantly enhances
the outage probability performance at a given capacity, or
it considerably reduces the required capacity to satisfy a
given level of outage performance. This ascribes to the more
flexibility given to the predictive network that allows it to
schedule the arriving requests over a longer time horizon
compared to the urgent demand of the non-predictive network.
The effect of the distribution of random look-ahead prediction
interval is demonstrated in Fig. 9 for both the linear and
polynomial scaling regimes.

The predictive network in each regime is assumed to antici-
pate requests by a random period which varies betweenT∗ and
T ∗ whereT∗ = 0 andT ∗ = 5. We consider a general binomial
distribution with parameterp, 0 ≤ p ≤ 1 to represent the
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(a) Linear scaling regime:γp = 0.8.
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(b) Polynomial scaling regime:̃γp = 0.8.

Fig. 8: Outage probability is significantly improved by proac-
tive networks.

PDF of the look-ahead interval. Hence, the probability thatan
arriving request at the beginning of time slotn has a deadline
at slotn+ T , T∗ ≤ T ≤ T ∗, is given by

P (Tq(n) = T ) = pT =

(
T ∗

T

)
pT (1− p)T

∗−T . (56)

We consider different values ofp in each regime in addition
to the non-predictive network scenario. The obtained results
for the linear scaling regime are shown in Fig. 9a where at
p = 0.1, dPR(γ) ≥ γp0 − log(γp0) − 1, and dPR(γ) =
(T ∗+1)(γ−1−log γ) atp = 0.9. The results of the polynomial
scaling regime are shown in Fig. 9b. Although the diversity
gain is tantamount to that of the non-predictive network, itis
clear from the figure that the outage probability is significantly
improved. Here, we want to point out that diversity gain
represents the asymptotic decay rate of the outage probability
with the system capacity (orC logC), but it does not capture
the relative difference between the outage probability curves
themselves. This is why the curves show different trends at
small values ofC. After all, the figure shows that even if
T∗ = 0 the network achieves a significantly better outage
performance when it follows a proactive resource allocation
technique.

Finally, from Figs. 9a, 9b, we can roughly infer that asp in
creases, it is more likely to have arriving requests with larger
prediction interval and hence the network gets more degrees
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Fig. 9: Outage probability is significantly improved by proac-
tive networks.

of freedom in scheduling such requests in an efficient way that
reduces the number of outage events.

B. Two-QoS Network

Fig. 10 demonstrates the result (19) for both the linear
scaling and polynomial scaling regimes. The simulation is
run assuming103 time slots and averaged over102 sample
paths. For the selfish predictive primary network, we assume
that T = 4 and the primary requests are served according to
EDF. The results of the linear scaling regime are depicted in
Fig. 10a, whereas that of the polynomial scaling regime are
depicted in Fig. 10b.

Figure 11 shows the potential improvement in the diversity
gain of the secondary network by efficient use of prediction at
the primary side only. Also, simulation results and analytical
results are plotted together on the same figure to show the
relative differences.

The performance of the dynamic-primary-capacity scheme,
has been evaluated numerically and plotted in Fig. 12 for
different values off and under the two scaling regimes,
namely, the linear scaling in Fig. 12a and the polynomial
scaling in Fig. 12b. The prediction interval is chosen to be
T = 4 and at each slotn, the primary network is assumed to
serve theCp(n) primary requests according to EDF policy. For
the two schemes, the selfish primary network, atf = 1, results
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(a) Linear scaling regime:γp = 0.6, γs = 0.1.
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(b) Polynomial scaling regime:̃γp = 0.75, γ̃s = 0.05.

Fig. 10: Selfish primary predictive network cannot improve
the outage probability of the secondary.
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Fig. 11: Improvement in the diversity gain of the secondary
network under predictive primary withT = 1 and dynamic
capacity assignment. Considered in the figure is the linear
scaling regime withγp = 0.6. The lower bound ondP (γp, γs)
is shown in red, and obviously it strictly exceeds the upper
bound ondN (γp, γs) determined in Theorem 4 plotted in blue.

in the smallest primary outage probability, while atf = 0.5,
the primary outage probability is slightly increased beyond the
selfish case, but the secondary outage probability outperforms
its counterpart of the non-predictive primary network obtained
at f = 0. It is clear from the figures that atf = 0.5
the secondary outage probability achieves the primary outage
probability of the primary non-predictive network atf = 0 in
the linear scaling regime, and is even better in the polynomial



14

2 4 6 8 10 12 14 16 18 20

10
−4

10
−3

10
−2

10
−1

10
0

System Capacity (C)

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

Primary, f=0.5
Primary, f=0
Secondary, f=0.5
Secondary, f=0
Primary, f=1

(a) Linear scaling regime:γp = 0.6, γs = 0.1.

0 5 10 15 20 25

10
−3

10
−2

10
−1

10
0

C log C 

O
ut

ag
e 

pr
ob

ab
ili

ty

 

 
Primary, f=0.5
Primary, f=0
Secondary, f=0.5
Secondary, f=0
Primary, f=1

(b) Polynomial scaling regime:̃γp = 0.75, γ̃s = 0.05.

Fig. 12: Primary predictive network can tolerate a trivial
loss in outage probability at a significant improvement in the
secondary outage probability.
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Fig. 13: Outage probability versusC. In this simulation,γu =
0.6.

scaling regime. The simulation is for103 time slots averaged
over 102 sample paths.

C. Proactive Multicasting with Symmetric Demands

The outage probability of the predictive multicast and
unicast networks of the symmetric input traffic is compared
numerically to that of non-predictive network and is plotted
in Fig. 13. The figure shows the significant enhancement to the
outage probability of the multicast network when prediction
is employed. Moreover, we can see that the outage probability
of the unicast predictive network is better than that of the
multicast non-predictive network. The impact ofθ also appears
clearly, as it can easily be noticed that as theθ decreases, the

outage performance is enhanced even for the same value of
T . Whenθ → ∞ the multicast curves coincide on the unicast
as shown in Section VI.

VIII. C ONCLUSION AND DISCUSSION

We have proposed a novel paradigm for wireless resource
allocation which exploits the predictability of user behavior
to minimize the spectral resources (e.g., bandwidth) needed
to achieve certain QoS metrics. Unlike the traditional reactive
resource allocation approach in which the network can only
start serving a particular user request upon its initiation, our
proposed scheme anticipates future requests. This grants the
network more flexibility in scheduling those potential requests
over an extended period of time. By adopting the outage
(blocking) probability as our QoS metric, we have established
the potential of the proposed framework to achieve significant
spectral efficiency gains in several interesting scenarios.

More specifically, we have introduced the notion of pre-
diction diversity gain and used it to quantify the gain offered
by the proposed resource allocation algorithm under different
assumption on the performance of the traffic prediction tech-
nique. Moreover, we have shown that, in the cognitive network
scenario, prediction at one side only does not only enhance
its diversity gain, but it also improves the diversity gain
performance of the other user class. On the multicasting front,
we have shown that the diversity gain of predictive multicast
network scales super-linearly with the prediction window.Our
theoretical claims were supported by numerical results that
demonstrate the remarkable gains that can be leveraged from
the proposed techniques.

We believe that this work has only scratched the surface of
a very interesting research area which spans several disciplines
and could potentially have a significant impact on the designof
future wireless networks. In fact, one can immediately identify
a multitude of interesting research problems at the intersection
of information theory, machine learning, behavioral science,
and networking. For example, the analysis have focused on
the case of fixed supply and variable demand. Clearly, the
same approach can be used to match demand with supply
under more general assumptions on the two processes.

APPENDIX A
PROOF OFTHEOREM 1

Let ΛQ(r) denote the log moment generating function [12]
of a Poisson random variableQ(n), n > 0 with meanλ, i.e.,

ΛQ(r) = λ(er − 1), r ∈ R.

For the linear scaling regime, letX i, i = 1, 2, · · · be
a sequence of independent and identically distributed (IID)
random variables, each with a Poisson distribution with mean
γ, and define

SC ,

C∑

i=1

Xi.

The outage probability,PN (O), can then be written as

PN (O) = P (Q(n) > C)

= P

(
SC

C
> 1

)
(57)



15

Applying Cramer’s theorem [12] to (57), we get

lim
C→∞

1

C
logP

(
SC

C
> 1

)
= inf

r>0
{ΛX(r) − r} , (58)

whereΛX(r) = γ(er−1). By the convexity of the log moment
generating function, we obtain

inf
r>0

{ΛX(r) − r} = 1− γ + log γ.

Then, it follows that

dN (γ) = − lim
C→∞

log(P (O))

C

= γ − 1− log γ, 0 < γ < 1.

(59)

For the polynomial scaling regime, we determine the diver-
sity gain using tight lower and upper bounds. First, the outage
probability is given by

PN (Õ) = P (Q̃(n) > C) (60)

=

∞∑

k=C+1

(C γ̃)k

k!
e−Cγ̃

≥
(C γ̃)(C+1)

(C + 1)!
e−Cγ̃

.

Using Stirling’s formula to approximate the factorial function,
we have

(C + 1)!
.
=
√
2π(C + 1)

(
C + 1

e

)(C+1)

,

where
.
= means that the left hand side approaches the right

hand side in the limit asC → ∞. Hence,

lim
C→∞

−
logPN (Õ)

C logC
≤

lim
C→∞

−
1

C logC
log

(
e−Cγ̃

√
2π(C + 1)

(
C γ̃e

C + 1

)C+1
)

Therefore,
d̃N (γ̃) ≤ 1− γ̃. (61)

Second, applying tightest Chernoff bound [12] on (60), we
have

P (Q̃(n) > C) ≤ inf
r>0

eΛQ̃
(r)−rC (62)

whereΛ
Q̃
(r) = C γ̃(er − 1). And sinceΛ

Q̃
(r) − r is convex

in r, by simple differentiation, we get

PN (Õ) ≤ eC−Cγ̃−(1−γ̃)C logC . (63)

Now, taking the logarithm of both sides of (63), dividing by
−C logC, and lettingC → ∞, it follows that

d̃N (γ̃) ≥ 1− γ̃. (64)

By (61), (64),

1− γ̃ ≤ d̃N (γ̃) ≤ 1− γ̃,

then
d̃N (γ̃) = 1− γ̃, 0 < γ̃ < 1. (65)

APPENDIX B
PROOF OFLEMMA 1

For UD, we need to show that the outage occurring at time
slot n implies

∑T
i=0 Q(n− T − i) > C(T + 1). To see this,

assume there is an outage at slotn. Since in our scenario EDF
reduces to FCFS, then: 1) the outage at slotn occurs only on
the arrivals of slotn − T and 2) during the interval of slots
n − T, n − T + 1, · · · , n, the system does not serve any of
the arriving requests at slots beyondn−T . Let N(m),m > 0
denote the number of requests in the system at the beginning
of slotm, then having an outage at slotn impliesN(n−T ) >
C(T +1). And since at any slotm > 0, there are no requests
in the system arriving at slots prior tom− T , it follows that∑T

i=0 Q(n− T − i) ≥ N(n− T ) > C(T + 1).
ForLD, we need to show thatQ(n−T ) > C(T+1) implies

an outage at slotn. This is straightforward as the arrivals at
slot n−T can not remain in the system at any slot beyondn,
furthermore, sinceQ(n− T ) > C(T +1), the capacity of the
system at the slot of arrival in addition to the nextT slots is
not sufficient to serve theQ(n−T ) requests, hence the system
encounters an outage at slotn.

APPENDIX C
PROOF OFTHEOREM 2

For the linear scaling regime, we have from Lemma 1,
P (O)PD ≤ P (UD), hence,

PPD(O) ≤ P

(
T∑

i=0

Q(n− T − i) > C(T + 1)

)
. (66)

Using the same definition of the sequence of IID random
variablesXi, i > 0 as in the proof of Theorem 1, we have
SC(T+1) =

∑C(T+1)
i=1 Xi and

P

(
T∑

i=0

Q(n− T − i) > C(T + 1)

)
= P

(
SC(T+1)

C(T + 1)
> 1

)
.

(67)
Using Cramer’s theorem,

lim
C→∞

−
logP (UD)

C(T + 1)
= γ − 1− log γ. (68)

SinceP ∗
PD(O) ≤ PPD(O) ≤ P (UD), we have

lim
C→∞

−
logP ∗

PD(O)

C
≥ lim

C→∞
−
logP (UD)

C

= (T + 1)(γ − 1− log γ),

(69)

for which (4) follows.
For the polynomial scaling regime, first we use the upper

boundPPD(Õ) ≤ P (ŨD) to establish a lower bound on the
optimal diversity gaind̃PD(γ̃) as follows. Using Chernoff
bound onP (ŨD),

PPD(Õ) ≤ P

(
T∑

i=0

Q̃(n− T − i) > C(T + 1)

)

≤ inf
r>0

e(T+1)Λ
Q̃
(r)−C(T+1)r,

(70)
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whereΛ
Q̃
(r) = C γ̃(er − 1). Then, using differentiation,

PPD(Õ) ≤ e(T+1)(C−Cγ̃)−(T+1)(1−γ̃)C logC . (71)

And sinceP ∗
PD(Õ) ≤ PPD(Õ), we get

d̃PD(γ̃) ≥ (1 + T )(1− γ̃). (72)

Second, we use the lower boundPPD(Õ) ≥ P (L̃D) to
establish an upper bound oñdPD(γ̃).

P (L̃D) = P (Q̃(n− T ) > C(T + 1))

=

∞∑

k=C(T+1)+1

(C γ̃)k

k!
e−Cγ̃

≥
(C γ̃)(C(T+1)+1)

(C(T + 1) + 1)!
e−Cγ̃

.
=

e−Cγ̃

√
2π(C(T + 1) + 1)

(
C γ̃e

C(T + 1) + 1

)C(T+1)+1

And sinceP ∗
PD(Õ) ≤ PPD(Õ), we obtain

d̃PD(γ̃) ≤ (1 + T )(1− γ̃). (73)

By (72), (73), it follows that

d̃PD(γ̃) = (1 + T )(1− γ̃), 0 < γ̃ < 1.

APPENDIX D
PROOF OFLEMMA 2

First, we show thatUR is a necessary condition for the
outage event, that is, if an outage occurs at slotn, then
UR = I ∪J occurs. Suppose there is an outage at slotn. This
outage occurs on the arrivals,Qk(n− k), k = T∗, · · · , T

∗,
hence,

∑T∗

i=0 Ni(n − T∗) > C(T∗ + 1), i.e., in the interval
n − T∗, · · · , n the system is serving requests with deadlines
not exceedingn.

EventI represents the case when at slotn−T ∗, the number
of requests in the system in addition to the requests that will
arrive with deadlines not larger thann is larger thanC(T ∗ +
1), i.e., larger than the maximum number of requests that the
system can serve in the subsequentT ∗+1 slots (Fig. 14a shows
the requests considered in eventI as blue circles forT∗ = 1,
T ∗ = 3.). However, eventI alot is not a necessary condition
for an outage as, for instance, we may haveQT∗

(n − T∗) >

C(T∗ + 1) but
∑T∗

j=0

∑T∗

i=T∗

Qi(n− i− j) < C(T ∗ + 1).
Now, suppose thatI did not occur because of the outage

at slotn, then there exists at least one slotn − l, T∗ < l ≤
T ∗ such that

∑l
i=0 Ni(n − l) ≤ C (Otherwise, the system

will be serving requests with deadline of at mostn in slots
n − T ∗, · · · , n − T∗ which impliesn ∈ I.). In other words,
at slot l, the system will be empty of all requests that have
deadlines not beyond slotn. Let

l∗ = min

{
l :

l∑

i=0

Ni(n− l) ≤ C, T∗ < l ≤ T ∗

}
,

then
∑l∗−1

j=T∗

∑j
i=T∗

Qi(n−j) > Cl∗, henceJ occurs. That is,
all of the arriving requests in slotsn− l∗+1, · · · , n−T∗ with

n1 n3 n

)(
1
mQ

)(
2
mQ

)(
3
mQ

(a) Blue circles represent an upper bound on the requests that
must be served by slotn in the interval of slotsn−T ∗, · · · , n.
Red circles represent requests that are no longer in the system
at slot n − T ∗ whereas white circles represent requests with
deadline larger thann.
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(b) Here, eventI is not satisfied. At slotn − 3 the system
has managed to serve all requests with deadlines not exceeding
n. However, l∗ = 3, meaning that all of the next arrivals
with deadlines not exceedingn will consume the whole system
capacity till slotn inclusive.

Fig. 14: An outage occurs at slotn whereT∗ = 1, T ∗ = 3.
At the beginning of any time slot, arriving requests with the
same deadline are represented by a circle.

deadlines not beyondn are more thanCl∗ (Fig. 14b shows
the case when eventI is not occurring whilel∗ = 3.).

Second, we show thatLR is a sufficient condition on the
outage event. The proof is straightforward as for everyk, T∗ ≤
k ≤ T ∗, the event that

∑k
i=T∗

Qi(n − i) > C(k + 1) means
the number of requests that must be served in the interval
n − k, · · · , n is larger thanC(k + 1) which is sufficient to
cause an outage at slotn. Then, taking the union over all
k ∈ {T∗, · · · , T

∗} is also a sufficient condition for an outage
at slotn.

APPENDIX E
PROOF OFTHEOREM 3

PPR(O) ≤ P (UR)

≤ P




T∗∑

j=0

T∗∑

i=T∗

Qi(n− j − i) > C(T ∗ + 1)




+

T∗−1∑

k=T∗

P




k∑

j=T∗

j∑

i=T∗

Qi(n− j) > C(k + 1)


 .

≤ inf
rI>0

eΛQI
(rI)−rIC(T∗+1)

+
T∗

−1∑

k=T∗

inf
rk>0

eΛQk
(rk)−rkC(k+1)

where ΛQI
(rI) = λ(T ∗ + 1)(erI − 1) and ΛQk

(rk) =

λ
∑k−T∗

i=0 Fk−i, T∗ ≤ k ≤ T ∗ − 1.
For the linear scaling regime,

PPR(O) ≤ e(1−γ)C(T∗+1)+C(T∗+1) log γ

+

T∗−1∑

k=T∗

e
C(k+1)

[
1−

γ
∑k−T∗

i=0
Fk−i

k+1 +log
γ

∑k−T∗

i=0
Fk−i

k+1

]

.
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Let

v(C) , max
T∗≤k≤T∗−1

{
C(k + 1)

[
1−

γ
∑k−T∗

i=0 Fk−i

k + 1

+ log
γ
∑k−T∗

i=0 Fk−i

k + 1

]}

and

m(C) = max {C(T ∗ + 1)(1− γ + log γ), v(C)} ,

then

dPR(γ) ≥ lim
C→∞

−
1

C
log em(C)

= lim
C→∞

−
m(C)

C

= min{(T ∗ + 1)(γ − 1− log γ), v∗} (74)

which proves (9).
For the polynomial scaling regime,

PPR(Õ) ≤ e(T
∗+1)(C−Cγ̃−C logC1−γ̃)

+

T∗−1∑

k=T∗

e
C(k+1)

[
1−

∑k−T∗

i=0
Fk−i

C1−γ̃ (k+1)
+log

∑k−T∗

i=0
Fk−i

C1−γ̃ (k+1)

]

.

Let

ṽ(C) = max
T∗≤k≤T∗−1

{
C(k + 1)

[
1−

∑k−T∗

i=0 Fk−i

C1−γ̃(k + 1)

+ log

∑k−T∗

i=0 Fk−i

C1−γ̃(k + 1)

]}
(75)

and

m̃(C) , lim
C→∞

−
m̃(C)

C logC
,

for large values ofC, the terms in themax{.} of (75) are
decreasing ink, hence

d̃PR(γ̃) ≥ (T∗ + 1)(1− γ̃). (76)

Then, we use the eventLR with the polynomial scaling as
follows.

PPR(Õ) ≥ P (L̃R)

≥ max
T∗≤k≤T∗

{
P

(
k∑

i=T∗

Q̃i(n− i) > C(k + 1)

)}

≥ max
T∗≤k≤T∗

(
FkC

γ̃
)C(k+1)+1

C(k + 1) + 1!
e−FkC

γ̃

.
= max

T∗≤k≤T∗

(
FkC

γ̃e

C(k + 1) + 1

)C(k+1)+1

×
e−FkC

γ̃

√
2π(C(k + 1) + 1)

=

(
FkC

γ̃e

C(T∗ + 1) + 1

)C(T∗+1)+1

×
e−pT∗

Cγ̃

√
2π(C(T∗ + 1) + 1)

.

Hence,
d̃PR(γ̃) ≤ (T∗ + 1)(1− γ̃). (77)

From (76) and (77), result (10) follows.

APPENDIX F
PROOF OFTHEOREM 4

Let the outage probability of the secondary user while the
primary network is non-predictive be denoted byPN (Os),
then

PN (Os) = P (Qp(n) +Qs(n) > C,Qs(n) > 0). (78)

SinceQp(n) +Qs(n) andQs(n) are two dependent random
variables, we use upper and lower bounds onP s

N (O) to
characterizedsN (γp, γs) as follows.

PN (Os) = P (Qp(n) +Qs(n) > C|Qs(n) > 0)P (Qs(n) > 0)

(a)

≥ P (Qp(n) > C|Qs(n) > 0)P (Qs(n) > 0)

(b)
= P (Qp(n) > C)P (Qs(n) > 0), (79)

where (a) follows from the fact thatQs(n) ≥ 0 and (b)
follows asQp(n) andQs(n) are independent. Moreover, since
P (A,B) ≤ P (A), then, from (78), we can write

PN (Os) ≤ P (Qp(n) +Qs(n) > C). (80)

For the linear scaling regime, we haveλ̄p = γpC and λ̄s =
γsC. From (11), (12) we obtain0 < γs < γp < 1 andγs +
γp < 1. From (79),

PN (O
s
) ≥ P (Q

p
(n) > C)P (Q

s
(n) > 0)

= P (Q
p
(n) > C)

(
1− e−γsC

)
.

Hence

d
s

N(γp, γs) ≤ lim
C→∞

− logP (Q
p
(n) > 0)

C
−

log
(
1− e−γsC

)

C
(c)
= γp − 1− log(γp),

(81)

where (c) follows by Cramer’s theorem. This proves (15).
SinceQ

p
(n), Q

s
(n) are independent Poisson random vari-

ables, thenQ
p
(n) + Q

s
(n) is a Poisson process with rate

(γp + γs)C. Applying Cramer’s theorem to (80), we obtain

d
s

N (γp, γs) ≥ (γp + γs)− 1− log(γp + γs)

which proves (16).
For the polynomial scaling regime,̃λp = C γ̃p

, λ̃s = C γ̃s

.
From (11), (12), we get0 < γ̃s < γ̃p < 1. From (80),

PN (Õs) ≥ P (Q̃p(n) > C)P (Q̃s(n) > 0)

= P (Q̃p(n) > C)(1 − e−Cγ̃s

)

≥
C γ̃p(C+1)

(C + 1)!
e−Cγ̃p (

1− e−Cγ̃s)

.
=

(
C γ̃p

e

C + 1

)C+1
e−Cγ̃p

√
(2π(C + 1))

(
1− e−Cγ̃s)

.
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Hence,

d̃sN (γ̃p, γ̃s) ≤ lim
C→∞

− logP (Q̃p(n) > C)

C logC
−

(
1− e−Cγ̃s

)

C logC

≤ 1− γ̃p.

(82)

From (80), we obtain, using tightest Chernoff bound,

PN (Õs) ≤ inf
r>0

eΛQ̃s+Q̃p(r)−rC , (83)

whereΛ
Q̃p+Q̃r (r) = (C γ̃p

+ C γ̃s

)(er − 1). Then it follows
that,

d̃sN (γ̃p, γ̃s) ≥ 1−max{γ̃p, γ̃s}

= 1− γ̃p.
(84)

From (82) and (84), the result (17) follows.

APPENDIX G
PROOF OFTHEOREM 5

Let the outage probability of the primary network under the
dynamic scheduling policy be denoted byPP (O

p). To upper
bound this outage probability, it suffices to show thatf ∈
[0.5, 1] impliesPP (O

p) ≤ P (UD), whereUD is as defined in
Lemma 1. So, suppose that there is an outage at slotn, hence,
according to the dynamic policy,Cp(n) = C asNp

0 (n) > C.
Moreover, that outage is occurring onQp(n− T ).

Now, at time slotn− 1, assume towards contradiction that
Cp(n − 1) < C, then fN1(n − 1) < C. This must lead to
N0(n) ≤ (1 − f)N1(n− 1) < C as1 − f ≤ f , f ∈ [0.5, 1],
which is a contradiction. Therefore,Cp(n− 1) = C.

Since the EDF nature of the dynamic policy implies that the
network resources are only dedicated to serve primary requests
that arrived prior to slotn−T +1, thenCp(n−1) andCp(n)
represent the served requests that arrived at slotsn − T − 1
andn − T . But, Cp(k) ≤ min{C, f(Cp(n − 1) + Cp(n))},
k = n−T, · · · , n. Hence,Cp(k) = C for all k = n−T, · · · , n
asf ∈ [0.5, 1].

Therefore, an outage at slotn implies
∑T

i=0 Q
p(n−i−T ) >

C(T + 1), and consequently, we obtain the lower bounds on
d
p

P (γ
p) and d̃sP (γ̃

p) in the same manner as in Theorem 2.
Also, it is straightforward to see that the eventLD of

Lemma 1 satisfiesP (LD) ≤ PP (O
p). So the diversity gain

of the polynomial scaling regime is fully determined.

APPENDIX H
PROOF OFTHEOREM 6

We will show the result for the linear scaling regime while
its polynomial scaling regime counterpart is obtained through
the same approach by taking into account the difference in the
diversity gain definitions.

From (23) and (24), we can upper boundPP (O
s) by

PP (O
s) ≤ P (Qs(n) +N

p
0 (n) + 0.5Qp(n) > C,

Cp(n− 1) < C)

+ P (Qs(n) +N
p
0 (n) + 0.5Qp(n) > C,

Cp(n− 1) = C).

But Cp(n−1) < C impliesNp
0 (n) = 0.5Qp(n−1) and hence

the joint eventQs(n)+N
p
0 (n)+0.5Qp(n) > C,Cp(n−1) <

C impliesQs(n)+0.5Qp(n−1)+0.5Qp(n) > C. Therefore,

PP (O
s) ≤ P (Qs(n) + 0.5Qp(n− 1) + 0.5Qp(n) > C)

+ P (Cp(n− 1) = C).
(85)

Now, we show that the decay rate of the second term on the
right hand side of (85) withC is larger than the first. We start
with the second termP (Cp(n− 1) = C) which can be upper
bounded by

P (Cp(n− 1) = C) ≤ P (Np
0 (η) + 0.5Qp(η) > C,

C
p(η − 1) < C for someη ≤ n− 1)

+ P (Np
0 (m) + 0.5Qp(m) > C,

C
p(m− 1) = C for all m ≤ n− 1)

≤ P (0.5Qp(η − 1) + 0.5Qp(η) > C)

+ P (Cp(m) = C, for all m ≤ n− 1).
(86)

Fix 0 ≤ M ≤ n− 1. The last term on the right hand side of
(86) satisfies

P (Cp(m) = C, for all m ≤ n− 1) ≤P (Cp(1) =

· · · = C
p(M) = C),

where

P (Cp(1) = · · · = C
p(M) = C) ≤

P (Cp(1) = · · · = C
p(M) = C, No outages in1, · · · ,M)

+
M
∑

l=1

P (Cp(1) = · · · = C
p(M) = C, l outages in1, · · · ,M)

implying

P (Cp(1) = · · · = C
p(M) = C) ≤

P (Cp(1) = · · · = C
p(M) = C, No outages in1, · · · ,M)

+ (2M − 1)P p

P (O
p).

SinceM is constant, the term(2M − 1)P p
P (O

p) decays with
the system capacity asdpP (γ

p). The joint eventCp(1) = · · · =
Cp(M) = C and no outage in1, · · · ,M implies

N
p
0 (M) = N

p
0 (1)− (M − 1)C +

M−1∑

i=1

Qp(i)

≤ −(M − 1)C +

M−1∑

i=0

Qp(i).

and hence,

P (Cp(1) = · · · = C
p(M) = C, No outage in1, · · · ,M)

≤P

(

−(M − 1)C +

M−1
∑

i=0

Q
p(i) + 0.5Qp(M) > C

)

≤P

(

M
∑

i=0

Q
p(i) > MC

)

≤ inf
r>0

{

e
Λ(r)−rMC

}

,

where, for the linear scaling regime,

Λ(r) = (M + 1)γpC(er − 1).
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Hence,

lim
C→∞

−
1

C
logP

(

C
p
(1) = · · · = C

p
(M) = C,

No outage in1, · · · ,M
)

≥

(M + 1)γp
−M +M log

(

M

(M + 1)γp

)

(87)

with the right hand side of (87) monotonically increasing in
M as long as M

M+1 > γp. Then,M can be chosen sufficiently
large3 so that

lim
C→∞

−
1

C
logP

(

C
p
(m) = C for all m ≤ n− 1

)

≥ d
p

P (γ
p)

= 2(γp
− 1− log γp).

Also, the first term on the right hand side of (86) can be
written as
P (0.5Qp(η − 1) + 0.5Qp(η) > C) = P (Qp(η − 1) +Q

p(η) > 2C)

≥ P
p

P (O
p),

whereT = 1. Hence,

lim
C→∞

−
logP

(
C

p
(n− 1) = C

)

C
≥ d

p

P (γ
p)

= 2(γp − 1− log γp).
(88)

Now, comparing the two termsP (Qs(n)+ 0.5Qp(n− 1)+
0.5Qp(n) > C) in (85) andP (0.5Qp(η−1)+0.5Qp(η) > C)
in (86), we have by the stationarity ofQp(n), n > 0 and the
non-negativity ofQs(n), n > 0,

P (Qs(n) + 0.5Qp(n− 1) + 0.5Qp(n) > C) ≥

P (0.5Qp(η − 1) + 0.5Qp(η) > C).

This implies that the asymptotic decay rate oflogPP (O
s)

with C is lower bounded by the decay rate ofP (Qs(n) +
0.5Qp(n− 1) + 0.5Qp(n) > C) with C.

Now, we can use Chernoff bound to lower boundd
s

P (γ
p, γs)

as follows

P (Q
s
(n)+0.5Q

p
(n−1)+0.5Q

p
(n) > C) ≤ inf

r>0

{
eΛtot(r)−rC

}
,

(89)
where

Λtot(r) = γsC(er − 1) + 2γpC(e0.5r − 1).

By differentiation, the optimal value ofr, denotedr∗, satisfies

γser
∗ + γp0.5r

∗

− 1 = 0.

Let y , e0.5r
∗

, we obtain

y = −
γp

2γs +

√
4γs + γp2

2γs

and
r∗ = 2 log y.

Substituting with r∗ in (89), taking − log of both sides,
dividing by C and sendingC → ∞, the diversity gain of
the secondary network in the linear scaling regime satisfies

d
s

P (γ
p, γs) ≥ −γs(y2 − 1)− 2γp(y − 1) + 2 log(y).

3The system is assumed to operate in the steady state, i.e.,n ≫ 1.

APPENDIX I
PROOF OFTHEOREM 7

PN (Om) = P (Sm(n) > C)

= P

(
Sm(n)

θC
>

1

θ

)

= P

(∑θC
l=1 X

[l]

θC
>

1

θ

)
.

Applying Cramer’s Theorem [12],

dN (γm, θ) = − inf
r>0

{θΛX[l](r) − θr}, (90)

but

ΛX[l](r) = log(1−Am +Amer)

= log

(
e−

γm

θ +

(
1− e−

γm

θ

)
er
)
,

Then,

r∗ = log




e−
γm

θ

(θ − 1)

(
1− e−

γm

θ

)


 .

The conditions0 < γ < 1, θ > 1 ensure thatr∗ > 0.
Substituting withr∗ in (90), we obtain (46).

APPENDIX J
PROOF OFTHEOREM 8

Under EDF scheduling, an outage occurs in slotn ≫ 1 if
and only ifNm(n−T ) > C(T +1), whereNm(n−T ) is the
number of distinct multicast data sources targeted by existing
requests in the system at slotn− T . Hence

P ∗
P (Om) ≤ PP (Om) = P (Nm(n− T ) > C(T + 1)).

Let Zm
T (n− T ) be the number of distinct data sources that

were requested in the window of slots[n − 2T, · · · , n − T ],
then according to EDF,

Nm(n− T ) ≤ Zm
T (n− T ). (91)

ThereforeP (Nm(n − T ) ≤ C(T + 1)) ≤ P (Zm
T (n − T ) >

C(T + 1)).
Since each data source is requested independently of the

others at each slot and from slot to another, then the probability
that a data source is requested at least once in a window of
T + 1 slots, denotedξmT , is equal to

ξmT = 1− (1−Am)T+1

= 1− exp

(
−
(T + 1)γm

θ

)
,

hence

P (Zm
T (n− T ) = k) =

{(
θC

k

)
ξm
T

k(1 − ξm
T
)θC−k , k = 0, · · · , θC

0, otherwise.
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Now we can upper-boundP ∗
P (Om) using Chernoff bound

as

P ∗
P (Om) ≤ PP (Om)

≤ P (Zm
T (n− T ) > C(T + 1))

≤ inf
r>0

{eΛZ(r)−rC(T+1)},

whereΛZ(r) = θC log (1− ξmT + ξmT er) . Solving for r∗ > 0
that minimizeseΛZ(r)−rC(T+1), we obtain

r∗ = log

(
(1 − ξmT )(T + 1)

ξmT (θ − (T + 1))

)
.

Now, taking− logP ∗
P (γ

m, θ), dividing byC and taking the
limit as C → ∞, we obtain (49).

APPENDIX K
PROOF OFTHEOREM 9

We have by the definition ofOA in Scenario 1 that

P (OA) = P (Sm(n) +Qu(n) > C).

By Cramer’s theorem, we have

d1(γu, γm, θ) = inf
r>0

{r − Λm+u(r)}, (92)

where

Λm+u(r) = γu(er − 1) + θ log

(
e−

γm

θ + er − er−
γm

θ

)
.

Differentiatingr−Λm+u(r) with respect tor and equating
with 0, we obtain

γu

(
e

γm

θ − 1

)
e2r

∗

+

(
(θ − 1)e

γm

θ − θ + γu + 1

)
er

∗

−1 = 0.

(93)
Sety1 = er

∗

, then (93) is a quadratic equation iny1, that can
be solve analytically for two possible roots. Choosing the root
y1 > 1 for r∗ > 0, we get

y1 =
1

2γu

(
e

γm

θ − 1

)
[(

(θ
2
− 2θ + 1)e

2γm

θ

+
(
−2θ

2
+ 2θ(γu + 2) + 2(γu − 2)

)
e

γm

θ + θ
2

− 2θ(γu + 1) + γu2 − 2γu + 1
) 1

2

+ (1− θ)e
γm

θ

+ θ − γu − 1

]
.

Substitution withy1 = er∗ into (92), we obtain (51).

APPENDIX L
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Under the policyπ2, suppose that an outage event has
occurred in slotn ≫ 1, thenNm

0 (n) + Qu(n) > C, which
can be decomposed to either of the following to events: 1)
Qu(n) > C or 2) Qu(n) ≤ C but Nm

0 (n) > 0 so that
Nm

0 (n) + Qu(n) > C. Now, focus on the second event,
specifically,Nm

0 (n) > 0. To each data source of theNm
0 (n),

at least one corresponding request has already arrived at slot

n−T . SinceNm
0 (n) > 0 andNm

0 (n)+Qu(n) > C, then the
system is operating at full capacity in the slots[n−T, · · · , n].
That is,

Nm(n− T ) +

T∑

i=0

Qu(n− i) > C(T + 1),

whereNm(n − T ) is the number of distinct multicast data
sources demanded by at least one request existing in the
system at slotn− T .

From (91),Nm(n− T ) ≤ Zm
T (n− T ), whereZm

T (n− T )
is as defined in Appendix J, then we can now write

P2(OA) ≤ P (Qu(n) > C)

+ P

(
T∑

i=0

Qu(n− i) + Zm
T (n− T ) > C(T + 1),

Qu(n) < C

)

≤ P (Qu(n) > C)

+ P

(
T∑

i=0

Qu(n− i) + Zm
T (n− T ) > C(T + 1)

)
.

We have from Theorem 1 that

lim
C→∞

−
logP (Qu(n) > C)

C
= γu − 1− log γu. (94)

Also, Cramer’s theorem can be used in the same way of
Appendix K to show that

lim
C→∞

−
1

C
logP

(
T∑

i=0

Qu(n− i) + Zm
T (n− T )

> C(T + 1)

)

= (T + 1) log y2 − (T + 1)γu(y2 − 1)

− θ log(1− ξmT + ξmT y2), (95)

where

y2 =
1

2ξmT γu(T + 1)

[((
(1− ξmT )2γu2 + 2ξmT γu(1 − ξmT )

+ ξmT
2
)2

T 2 +
(
[2ξmT γu(1− ξmT )− 2ξmT

2]θ

+ 2ξmT
2(1 − ξmT )2 + 4ξmT γu(1− ξmT ) + 2ξmT

2
)
T

+ [2ξmT θ(1− ξmT )− 2ξmT
2]θ + γu2(1− ξmT )2

+ 2ξmT θ(1− ξmT ) + ξmT
2(1 + θ)2

) 1
2

+
(
(ξmT − 1)γu

)
T − ξmT θ + γu(ξmT − 1) + ξmT

]
.

Therefore, from (94) and (95), (52) follows.
To see (53), it suffices to note thatQu(n) > C is a sufficient

condition for an outage at slotn independently of the service
policy used. Hence,P2(OA) ≥ P (Qu(n) > C), therefore,
d2(γu, γm, θ) ≤ dN (γu).
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APPENDIX M
PROOF OFTHEOREM 11

An outage event at slotn impliesNu(n−T )+Nm(n−T ) >
C(T +1) whereNu(n−T ) is the number of unicast requests
existing in the network at time slotn− T . Hence

P3(OA) ≤ P (Nu(n− T ) +Nm(n− T ) > C(T + 1)),

but

Nu(n− T ) ≤

T∑

i=0

Qu(n− i− T ),

and
Nm(n− T ) ≤ Zm

T (n− T ).

Therefore

P3(OA) ≤ P

(
T∑

i=0

Qu(n−i−T )+Zm
T (n−T ) > C(T +1)

)
.

Since{Qu(i)}i are IID random variables, then from (95),
we obtain (54).

APPENDIX N
PROOF OFTHEOREM 12

Regardless of the scheduling policy used, the following
event is sufficient for an outage at slotn.

Qu(n− i− T ) > 2C − Sm(n− 2i)− Sm(n− 2i+ 1),

i = 1, · · · , T,

and

Qu(n− T ) > C − Sm(n).

The above event ensures that the number of delayed unicast re-
quests is increasing over the window of slots[n−2T, · · · , n−
T ] where at slotn− T , the network will end up having

T∑

i=0

Qu(n− i− T ) + Sm(n− i) > C(T + 1),

implying that the total number of resources that have to be
consumed by slotn inclusive is greater than the aggregate
available capacityC(T + 1) which would cause an outage.

Noting that{Sm(i)}i are IID, we can write

P ∗
4 (OA) ≥P (Qu(n− T ) + Sm(n) > C)

× P
(
Qu(n− T + 1) + Sm(n− 2)

+ Sm(n− 1) > 2C
)T

,

which, using Chernoff bound, leads to (55).
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