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each allowable value of the rank and
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Abstract

This work deals with Hadamard Z2Z4Q8-codes, which are binary codes after a Gray map from a subgroup of a

direct product of Z2, Z4 and Q8 groups, where Q8 is the quaternionic group. In a previous work, these kind of codes

were classified in five shapes. In this paper we analyze the allowable range of values for the rank and dimension of

the kernel, which depends on the particular shape of the code. We show that all these codes can be represented in a

standard form, from a set of generators, which help to understand the characteristics of each shape. The main results

we present are the characterization of Hadamard Z2Z4Q8-codes as a quotient of a semidirect product of Z2Z4-linear

codes and, on the other hand, the construction of Hadamard Z2Z4Q8-codes with each allowable pair of values for

the rank and dimension of the kernel.

Index Terms

Combinatorial mathematics, Dimension of the kernel, error-correcting codes, Hadamard codes, rank, Z2Z4-codes,

Z2Z4Q8-codes.

I. INTRODUCTION

Non-linear codes (like Z4-linear, Z2Z4-linear codes and Z2Z4Q8-codes) have received a great deal of attention

since [6]. The codes this paper deals with can be characterized as the image of a subgroup, by a suitable Gray

map, of an algebraic group like a direct product of Z2, Z4 and Q8, the quaternionic group of order 8 [10].

Hadamard matrices with a subjacent algebraic structure have been deeply studied, as well as the links with other

topics in algebraic combinatorics [7]. We quote just a few papers about this subject [8], [5], [2], where we can

find beautiful equivalences between Hadamard groups, 2-cocyclic matrices and relative difference sets. On the other

hand, from the side of coding theory, it is desirable that the algebraic structures we are dealing with preserves the

Hamming distance. This is the case, for example, of the Z2Z4-linear codes which has been intensively studied during

the last years [6], [4]. More generally, the propelinear codes and, specially those which are translation invariant,
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are particularly interesting because the subjacent group structure has the property that both, left and right product,

preserve the Hamming distance. Translation invariant propelinear codes has been characterized as the image of a

subgroup by a suitable Gray map of a direct product of Z2, Z4 and Q8 [10].

In this paper we analyze codes that have both properties, being Hadamard and Z2Z4Q8-codes. These codes were

previously studied and classified [3] in five shapes. The aim of this paper is to go further. First of all by giving

an standard form for a set of generators of the code, depending on the parameters, which helps to understand the

characteristics of each shape and then by putting the focus in the exact computation of the values of the rank and

dimension of the kernel. One of the main results is to characterize the Z2Z4Q8-codes as a quotient of a semidirect

product of Hadamard Z2Z4-linear codes. The second main result is to construct, using the above characterization,

Hadamard Z2Z4Q8-codes such that the values for the rank and dimension of the kernel are each allowable pair

previously chosen.

The structure of the paper is as follows. Section II introduces the notation, the basic classification from [3] and

preliminary concepts; Section III shows the standard form of generators that allows to represent any Hadamard

Z2Z4Q8-code in a unique way, this section finishes with two important theorems characterizing a Hadamard

Z2Z4Q8-code as a quotient of a semidirect product of Z2Z4-linear codes (Theorems III.2 and III.4); Section IV

studies the values of the rank and dimension of the kernel, depending on the shape and parameters of the Z2Z4Q8-

code and in Section V we give the constructions of Z2Z4Q8-codes fulfilling the requirements for the prefixed values

of the dimension of the kernel and rank. We finish this last section with Theorem V.2, a compendium of the results

reached in this section, and a couple of examples about the constructions of codes with all allowable pair for the

values of rank and dimension of the kernel.

II. PRELIMINARIES

Almost all definitions and concepts below, in these preliminaries, can be found in [3].

Let Z2 and Z4 denote the binary field and the ring of integers modulo 4, respectively. Any non-empty subset

of Zn
2 is called a binary code and a linear subspace of Zn

2 is called a binary linear code or a Z2-linear code.

Let wt(v) denote the Hamming weight of a vector v ∈ Zn
2 (i.e., the number of its nonzero components), and let

d(v, u) = wt(v + u), the Hamming distance between two vectors v, u ∈ Zn
2 .

Let Q8 be the quaternionic group on eight elements. The following equalities provides a presentation and the

list of elements of Q8:

Q8 =⟨a,b : a4 = a2b2 = 1,bab−1 = a−1⟩ = {1,a,a2,a3,b,ab,a2b,a3b}.

Given three non-negative integers k1, k2 and k3, denote as G the group Zk1
2 ×Zk2

4 ×Qk3
8 . Any element of G can

be represented as a vector where the first k1 components belong to Z2, the next k2 components belong to Z4 and

the last k3 components belong to Q8.

We use the multiplicative notation for G and we denote by e the identity element of the group and by u the

element of order two, so e = (0, k1+k2. . . , 0,1, k3. . .,1) and u = (1, k1. . ., 1, 2, k2. . ., 2,a2, k3. . .,a2), respectively.
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We call a Gray map the function Φ:

Φ : Zk1
2 × Zk2

4 ×Qk3
8 −→ Zk1+2k2+4k3

2 ,

acting componentwise in such a way that over the binary part is the identity, over the quaternary part acts as the

usual Gray map, so 0 → (00), 1 → (01), 2 → (11), 3 → (10) and over the quaternionic part acts in the following

way [3]: 1 → (0, 0, 0, 0), b → (0, 1, 1, 0), a → (0, 1, 0, 1), ab → (1, 1, 0, 0), a2 → (1, 1, 1, 1), a2b → (1, 0, 0, 1),

a3 → (1, 0, 1, 0), a3b → (0, 0, 1, 1).

Note that Φ(e) is the binary all zero vector and Φ(u) is the binary all one vector.

Binary codes C = Φ(C) are called Z2Z4Q8-codes. In the specific case k3 = 0, C is called Z2Z4-linear code. In

this last case, note that C = Zγ
2 × Zδ

4 ⊂ Zk1
2 × Zk2

4 . We will say that C is of type 2γ4δ [6].

We are interested in Hadamard binary codes C = Φ(C) where C is a subgroup of G = Zk1
2 ×Zk2

4 ×Qk3
8 of length

n = 2m. All through the paper we are assuming it.

The kernel of a binary code C of length n is K(C) = {z ∈ Zn
2 : C + z = C}. The dimension of K(C) is

denoted by k(C) or simply k. The rank of a binary code C is the dimension of the linear span of C. It is denoted

by r(C) or simply r.

A Hadamard matrix of order n is a matrix of size n× n with entries ±1, such that HHT = nI . Any two rows

(columns) of a Hadamard matrix agree in precisely n/2 components. If n > 2 then any three rows (columns) agree

in precisely n/4 components. Thus, if n > 2 and there is a Hadamard matrix of order n then n is multiple of 4.

Two Hadamard matrices are equivalent if one can be obtained from the other by permuting rows and/or columns

and multiplying rows and/or columns by −1. With the last operations we can change the first row and column of H

into +1’s and we obtain an equivalent Hadamard matrix which is called normalized. If +1’s are replaced by 0’s and

−1’s by 1’s, the initial Hadamard matrix is changed into a (binary) Hadamard matrix and, from now on, we will

refer to it when we deal with Hadamard matrices. The binary code consisting of the rows of a (binary) Hadamard

matrix and their complements is called a (binary) Hadamard code, which is of length n, with 2n codewords, and

minimum distance n/2.

Hadamard Z2Z4Q8-codes were studied in [3] and a classification in five shapes was given. Set |T (C)| = 2σ ,

|Z(C)/T (C)| = 2δ and |C/Z(C)| = 2ρ, where T (C) is the subgroup of elements of order two, Z(C) is the center

of C and m = σ + δ + ρ − 1. A normalized generator set in [3] has the form C = ⟨x1, . . . , xσ; y1, . . . , yδ; z1,

. . . , zρ⟩, where xi are elements of order two generating T (C) = ⟨x1...xσ⟩ and Z(C) = ⟨x1, . . . , xσ; y1, . . . , yδ⟩ is

the center of C. In summary, the five shapes found in [3] are:

• Shape 1: ρ = 0.

• Shape 2: δ = 0, z21 = z22 = [z1, z2] = u, [zi, zj ] = z2j and [zj , zk] = e for every i ∈ {1, 2} and 3 ≤ j, k ≤ ρ.

• Shape 3: δ = 0, z21 = u ̸∈ ⟨z22 , . . . , z2ρ⟩ ∼= Zρ−1
2 , [z1, zi] = z2i and [zi, zj ] = e, for every i ̸= j in {2, . . . , ρ}.

• Shape 4: δ ≤ 1 and z21 = z22 = [z1, z2] ̸= u.

• Shape 5: δ = 0, ρ = 4, z21 = z22 = [z1, z2] = u ̸= z23 = z24 = [z3, z4] and [zi, zj ] ∈ ⟨z2j ⟩ for every i ∈ {1, 2}

and j ∈ {3, 4}.
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However, in the current paper we distinguish the case when u is not the square of some element of order four

(this is equivalent to δ = 0) and the case when u is the square of some element of order four (this is equivalent

to δ = 1). Hence, we will use two more shapes. Shape 1∗ and 4∗ will distinguish the cases of shape 1 and 4,

respectively, when u is the square of some element of order four (this is equivalent to δ = 1).

Two elements a and b of C commutes if and only if ab = ba. As an extension of this concept, the commutator

of a and b is defined as the element [a, b] such that ab = [a, b]ba. Note that all commutators belong to T (C) and

any element of T (C) commutes with all elements of C.

We say that two elements a and b of C swap if and only if Φ(ab) = Φ(a) + Φ(b). As an extension of this

concept, we define the swapper of a and b as the element (a : b) such that Φ((a : b)ab) = Φ(a) + Φ(b). Note that

all swappers belong to T (G) but they can be out of C.

Both, commutators and swappers can be obtained as a component-wise expression, if a = (a1, . . . , al) and

b = (b1, . . . , bl) then (a : b) = ((a1 : b1), . . . , (al : bl)) and [a, b] = ([a1, b1], . . . , [al, bl]). Table I and Table II

describes the values of all swappers and commutators, respectively, in Z4 and Q8 (the value in Z2 is always 0).

0,2 1,3

0,2 0 0

1,3 0 2

1,a2 a,a3 b,a2b ab,a3b

1,a2 1 1 1 1

a,a3 1 a2 a2 1

b,a2b 1 1 a2 a2

ab,a3b 1 a2 1 a2

TABLE I

SWAPPERS IN Z4 AND Q8

0,2 1,3

0,2 0 0

1,3 0 0

1,a2 a,a3 b,a2b ab,a3b

1,a2 1 1 1 1

a,a3 1 1 a2 a2

b,a2b 1 a2 1 a2

ab,a3b 1 a2 a2 1

TABLE II

COMMUTATORS IN Z4 AND Q8

It is known [3] the following relationship between swappers, the kernel and the linear span of C. For any element

a of C we have Φ(a) ∈ K(C) if and only if, for every b ∈ C, all swappers (a : b) ∈ C. Moreover, the linear span

of C can be seen as Φ(⟨C ∪ S(C)⟩), where ⟨C ∪ S(C)⟩ is the group generated by C and S(C), the set of swappers

of the elements in C.

Using Table-I and Table-II the next lemma can be easily verified.

Lemma II.1. For any a, b, c ∈ G:

1) [a, b] = [b, a]. Note it is not always true that (a : b) = (b : a).
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2) (ab : c) = (a : c)(b : c) and (c : ab) = (c : a)(c : b)

3) [ab, c] = [a, c][b, c].

4) (a : b)(b : a) = [a, b]

5) (a : a) = a2

6) if a2 = e then [a, b] = (a : b) = (b : a) = e.

7) if a2 = u and [a, b] = e then (a : b) = (b : a) = b2.

Definition II.2. For any x ∈ T (G) define M(x) as the set of components where x has, as entry, an element of

order two, ∅ ⊆ M(x) ⊆ M(u).

Example: let x = (1, a2, a2, 1, 1, a2) then M(x) = {1, 2, 5}, where we enumerate the 0th component as the first

one.

The next results in this section are technical lemmas, which prove to be useful later.

Lemma II.3. Let x, y ∈ G, then

1) M( (x : y) ) ⊆ M(x2) ∩M(y2) and M([x, y]) ⊆ M(x2) ∩M(y2).

In the specific case when [x, y] = e we have M((x : y)) = M(x2) ∩M(y2) and M([x, y]) = ∅.

2) if [x, y] = e then wt((xy)2) = wt(x2y2) = wt(x2) + wt(y2)− 2wt((x : y)).

Proof. These items follow straightforwardly from Tables I and II.

Lemma II.4. Let C be a subgroup of Qk3
8 such that Φ(C) is a Hadamard code and let a, b ∈ T (C). If a, b, ab ̸∈

{e,u}, then |M(a) ∩M(b)| = |M(a) ∩M(b)| = |M(a) ∩M(b)| = |M(a) ∩M(b)| = k3/4.

Proof. Straightforward.

Lemma II.5. Let C be a subgroup of Zk1
2 ×Zk2

4 ×Qk3
8 such that Φ(C) is a Hadamard code. Let a, b, c ∈ C \T (C).

1) either a2 = u or [a, b] = [b, a] = e or [a, b] = [b, a] = a2.

2) if a2 = u and b2 = c2 = [b, c] ̸∈ {e,u} then [a, b] = e or [a, c] = e or [a, bc] = e.

3) if b2 = c2 = [b, c] and [a, b] = [a, c] = e then (ab)2 = (ac)2 = u and a2, b2, c2 are not equal to u.

Proof. The first item was already proven in [3, Lemma IV.6].

For the second item we will assume that the first two possibilities of the conclusion are false. Using the first

item in this Lemma we have [a, b] = [a, c] = b2 = c2, so [a, bc] = [a, b][a, c] = b2c2 = e. This proves the second

item.

For the third item note that (bc)2 = b2c2[b, c] = b2 = c2, thus M(b2) = M(c2) = M((bc)2). Taken into

account that [a, b] = [a, c] = [a, bc] = e, by Lemma II.3 we have M((a : b)) = M((a : c)) = M((a : bc)). Hence,

(a : b) = (a : c) = (a : bc). Moreover, (a : bc) = (a : b)(a : c) = (a : b)2 = e and so (a : b) = (a : c) = e. Now, using

again Lemma II.3, wt(a2b2) = wt(a2)+wt(b2)−2wt((a : b)) = wt(a2)+wt(b2). As we are working with elements

of a Hadamard code, the weights must be equal to n, n/2 or 0. The last possibility has been discarded when we

state that they do not belong to T (C), and so the only remainder possibility is wt(a2) = wt(b2) = wt(c2) = n/2
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and wt(a2b2) = n, proving in this way that a2, b2, c2 are not equal to u and a2b2 = u. The same argumentation

leads to a2c2 = u.

III. THE STANDARD FORM FOR THE GENERATOR SET OF A HADAMARD Z2Z4Q8-CODE

To know the shape of a given Hadamard Z2Z4Q8-code we need to begin with a normalized generator set of

C [3]. Now, in this section, we present a new point of view which lead to us to construct a standard generator set

which will allow to decide the classification of a given subgroup in a more efficient way.

The next theorem shows that a subgroup C, such that ϕ(C) is a Hadamard Z2Z4Q8-code, has an abelian maximal

subgroup A which is normal in C and C/A is an abelian group of order 2a, for a ∈ {0, 1, 2}. We begin by a

technical lemma.

Lemma III.1. Let C be a subgroup of Zk1
2 ×Zk2

4 ×Qk3
8 such that ϕ(C) = C is a Hadamard Z2Z4Q8-code. Let A

be any subgroup of C containing T (C), the subgroup of the elements of order two in C. Then A is normal in C.

Proof. We want to show that c−1ac ∈ A for every a ∈ A, c ∈ C. We have c−1ac = a[a, c] and all commutators

belong to T (C) ⊆ A, so the statement follows.

Theorem III.2. Let C be a subgroup of Zk1
2 ×Zk2

4 ×Qk3
8 such that ϕ(C) = C is a Hadamard Z2Z4Q8-code. Then

C has an abelian maximal subgroup A which is normal in C and | C/A | ∈ {1, 2, 4}. Futher, C may be expressed

as a quotient of a semidirect product of A.

Proof. A normalized generator set in [3] has the form C = ⟨x1, . . . , xσ; y1, . . . , yδ; z1, . . . , zρ⟩, where xi are

elements of order two that generates T (C) = ⟨x1...xσ⟩ and Z(C) = ⟨x1, . . . , xσ; y1, . . . , yδ⟩ is the center of C.

Throughout this proof we will use a new generator set for C, which will be called standardized generator set:

C = ⟨x1, . . . , xσ, r1, . . . , rτ , s1, . . . , sυ⟩ and we always define the subgroup A = ⟨x1, . . . , xσ, r1, . . . , rτ ⟩, which is

normal in C by Lemma III.1.

For the case when C is of shape 1 or shape 1∗ we have that the whole group C is abelian, so A = C and

| C/A | = 1.

For the case when C is of shape 2 we have [3] δ = 0, z21 = z22 = [z1, z2] = u, [zi, zj ] = z2j and [zj , zk] = e for

every i ∈ {1, 2} and 3 ≤ j, k ≤ ρ. We define the standardized generator set taking x1, . . . , xσ; r1 = z1z2, ri = zi+1

for every 2 ≤ i ≤ τ ; s1 = z1. Now we want to show that A is abelian and maximal in C and C/A = ⟨s1⟩. Indeed,

for every 2 ≤ i, j ≤ τ , [r1, ri] = [z1z2, zi+1] = [z1, zi+1][z2, zi+1] = z2i+1z
2
i+1 = e and [ri, rj ] = [zi+1, zj+1] = e.

Hence A is abelian. To prove the maximality of A in C we show that [s1, r1] = [z1, z1z2] = [z1, z2] = u ̸= e.

In addition, we see that r21 = (z1z2)
2 = z21z

2
2 [z1, z2] = u and s21 = z21 = u and so C = A o ⟨s1⟩

/
(u, s21), with

r21 = u.

For the case when C is of shape 3 we have [3] δ = 0, z21 = u ̸∈ ⟨z22 , . . . , z2ρ⟩, [z1, zi] = z2i and [zi, zj ] = e,

for every i ̸= j in {2, . . . , ρ}. We define the standardized generator set taking ri = zi+1 for every 1 ≤ i ≤ τ =

ρ − 1; s1 = z1. Now we want to show that A is abelian and maximal in C and C/A = ⟨s1⟩. Indeed, for every

1 ≤ i, j ≤ τ , [ri, rj ] = [zi+1, zj+1] = e. Hence A is abelian. To prove the maximality of A in C we show that
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[s1, r1] = [z1, z2] = z22 ̸= e. In addition, we note that u ̸∈ ⟨r21 . . . r2τ ⟩ and s21 = z21 = u and so C = Ao⟨s1⟩
/
(u, s21),

with r21 ̸= u.

For the case when C is of shape 4 with δ = 0 we have δ = 0, ρ = 2 and z21 = z22 = [z1, z2] ̸∈ {e,u}. We define

the standardized generator set taking r1 = z1, s1 = z2 and define A = ⟨x1, . . . , xσ; r1⟩. In this case, r1 ̸= u and

υ = 1. As all generators, except one, belong to T (C) it is immediate that A is abelian and C/A = ⟨s1⟩. For the

maximality, see that [r1, s1] = [z1, z2] = z21 ̸= e. Note r21 = s21 ̸= u and C = Ao ⟨s1⟩
/
(r21, s

2
1).

For the case when C is of shape 4∗ we have ρ = 2 and z21 = z22 = [z1, z2] ̸∈ {e,u}. The element y1 commutes

with both z1, z2 and so, by item 3 of Lemma II.5 we have y21 ̸= u and (y1z1)
2 = (y1z2)

2 = u. We define the

standardized generator set taking r1 = y1z1, r2 = z1, s1 = z2. In this case, r1 = u and υ = 1. We have [r1, r2] =

[y1z1, z1] = e2 = e and so A is abelian. For the maximality, see that [r1, s1] = [y1z1, z2] = [z1, z2] = z21 ̸= e. In

addition, r21 = (y1z1)
2 = u ̸= r22 = z21 and s21 = z22 ̸= u and C = Ao ⟨s1⟩

/
(r21, s

2
1).

For the case when C is of shape 5 we have δ = 0 and ρ = 4. We have: z21 = z22 = [z1, z2] = u ̸= z23 = z24 = [z3, z4]

and [zi, zj ] ∈ ⟨z2j ⟩ for every i ∈ {1, 2} and j ∈ {3, 4}. We define the standardized generator set taking r1 = z1,

r2 = f(z1), s1 = z2, s2 = f(z2), where:

f(z) =


z3 if [z, z3] = e,

z4 if [z, z4] = e,

z3z4 otherwise.
From Lemma II.5 it is easy to check that in the following matrix

[z1, z3] [z1, z4] [z1, z3z4]

[z2, z3] [z2, z4] [z2, z3z4]

[z1z2, z3] [z1z2, z4] [z1z2, z3z4]


there is one and only one element in each row or column equal to e, being the other two elements equals to z23 = z24 .

Therefore, [z1, f(z1)] = [z2, f(z2)] = e and [z1, f(z2)] = [z2, f(z1)] = [f(z1), f(z2)] = z23 = z24 .

We have A = ⟨r1, r2⟩ and C/A = ⟨s1, s2⟩. In particular [r1, r2] = [z1, f(z1)] = e, hence A is abelian. For the

maximality, see that [r1, s1] = [z1, z2] ̸= e and [r2, s2] = [f(z1), f(z2)] ̸= e. In addition, note r21 = s21 = u ̸= r22 =

s22 and C = Ao ⟨s1, s2⟩
/
(r21, s

2
1)(r

2
2, s

2
2).

The next corollary summarize the most relevant properties of the standardized set of generators we just defined.

Corollary III.3. Let C be a subgroup of Zk1
2 × Zk2

4 × Qk3
8 such that C = Φ(C) is a Hadamard code and let

{x1, . . . , xσ; r1, . . . , rτ ; s1, sυ } be a standard set of generators of C.

• The elements xi are of order two and generate T (C).

• The elements ri are of order four and commute with each other, [ri, rj ] = e for every 1 ≤ i, j ≤ τ . When

u ∈ ⟨r1 . . . rτ ⟩ we will take u = r21 and we have r21 = u ̸∈ ⟨r22...r2τ ⟩.

• The cardinal υ of the set {s1, sυ} is in {0, 1, 2} and when υ = 2 we have s21 = u ̸= s22, and [s1, s2] = e.

Moreover, when r21 = s21 = u then [r1, s1] = u.
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• Any element c ∈ C can be written in a unique way as

c =

σ∏
i=1

xai
i

τ∏
j=1

r
bj
j

υ∏
k=1

sckk , where ai, bj , ck ∈ {0, 1}.

There are a few more facts that we want to emphasize and that we use later in the next section about constructions.

First of all, if there exists x ∈ C such that x2 = u then k1 = 0. This is the reason why the shapes 2, 3, 4∗ and shape

5 must have k1 = 0. Secondly, if x, y ∈ C and [x, y] = z ̸= e then the components in M(z) does not correspond

to Z4. This is the reason why the shape 2 and 5 (where r21 = s21 = [r1, s1] = u) have k2 = 0.

For shape 4 we have that x2 ̸= u, for all x ∈ C. Hence, since [r1, s1] = r21 = s21 ̸= u, we have that all

Z4-components in r1 and in s1 are 0 or 2. The other generator elements in C (apart from r1 and s1) are of order

two. We claim that in this case k2 = 0. Otherwise, after the Gray map, the corresponding Hadamard matrix would

have repeated columns, those corresponding the two binary components of each Z4, and this contradicts that we

had a Hadamard matrix. We can go further, for the same reason it can not exist any Q8-component of order two

in r1 or s1 and, since [r1, s1] has weight 4k3 which must be n/2. We conclude that k1 = 4k3.

Finally, for shape 3 and shape 4∗, the elements x ∈ C such that x2 = u should have their Z4-components

belonging to {1, 3}. The rest of elements x, so with x2 ̸= u, have their Z4-components belonging to {0, 2} since,

for any i ∈ {1, . . . , τ}, [ri, s1] = r2i ̸= u for shape 3 and [ri, s1] = s21 ̸= u for shape 4∗. The same argumentation

as in the previous paragraph lead us to say that k2 = 2k3 for shape 4∗. We summarize these results in Table III.

The next theorem characterizes the maximal abelian subgroup A and makes possible all constructions of these

kind of Hadamard Z2Z4Q8-codes.

Theorem III.4. Let C be a subgroup of Zk1
2 × Zk2

4 ×Qk3
8 such that ϕ(C) = C is a Hadamard Z2Z4Q8-code and

A the abelian maximal subgroup in C. Then ϕ(A) can be described as a duplication of a Hadamard Z2Z4-linear

code when υ = 1 or as a quadruplication of a Hadamard Z4-linear code, if υ = 2.

Proof. Let A = ⟨x1, . . . , xσ, r1, . . . , rτ ⟩ and C = ⟨A, s1, . . . , sυ⟩. We know from Theorem III.2 that |C/A| ∈

{1, 2, 4}. If |C/A| = 1 then there is nothing to prove, ϕ(A) is a Hadamard Z2Z4-linear code.

Let us assume that υ = 1, so |C/A| = 2. Code A is additive and has length 2m = 2σ+τ+υ−1 . Let M be the

matrix with the rows given by x1, . . . , xσ, r1, . . . , rτ . Matrix M has k1 binary columns, k2 quaternary columns

and k3 quaternionic columns and is a generator matrix for A. Let M the matrix M extended with one more row

given by s1. Also, let N be the matrix where the rows are all elements in A and N the matrix N extended adding

the remainder rows of C. Columns in N could be considered as binary columns after a Gray map of the original

elements. First of all we claim that there are not three repeated binary columns in M . Deny the claim. Let a, b, c be

the repeated binary columns in N and a′, b′, c′ the corresponding extension to the second part of matrix N . Since

ϕ(C) is a Hadamard code any two columns of N agree in precisely half of components. Hence, we should have

b′(c) = a′, where b′(c) means the complementary of b′. Also we should have c′(c) = a′ and c′(c) = b′ obtaining

b′(c) = b′ which could not happen. So, in N there are not three or more repeated binary columns. It is known

that the parity check matrix M of and additive code A = ⟨x1, . . . , xσ, r1, . . . , rτ ⟩ has at most k1 + k2 different

(up to sign) Z2Z4-columns [9], where k1 + 2k2 = 2σ+τ−1, and this maximum corresponds to a Hadamard code.
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Therefore, since matrix M has not three repeated binary columns and has length 2(k1 +2k2) we conclude that M

has exactly k1 + k2 different Z2Z4−columns (up to sign) each one repeated twice and A is a duplicated additive

Hadamard code.

Finally, let us assume υ = 2, so |C/A| = 4. In this case we known that k1 = k2 = 0 (Table III). Matrix M has

repeated binary columns. Indeed, each element is in ⟨a⟩ ⊂ Q8 and so, each binary column is repeated twice. We

claim that we can not have five repeated binary columns, so three Q8-columns. Deny the claim. Let a1, a2, a3, a4, a5

the five repeated binary columns in N and a′1, a
′
2, a

′
3, a

′
4, a

′
5 the corresponding extension to the second part of matrix

N . We know that in a Hadamard matrix, any three columns agree in precisely a fourth part of the components.

Since any three different columns ai1 , ai2 , ai3 coincide we have that any three different columns a′i1 , a
′
i2
, a′i3 does

not agree, simultaneously, in any component. This could not happen if we have five or more repeated columns

a1, a2, a3, a4, a5. Therefore, since matrix M has length 2σ+τ and has no five repeated binary columns, so M has

no three repeated Q8-columns, we conclude that M has duplicated all Q8-columns. Hence, M is a quatriplication

of a Z4-linear hadamard code.

From Theorem III.4 and the rest of results of this section we see that there are two big classes of Hadamard

Z2Z4Q8-codes. Despite all codes contains the all one vector u, there are codes where there exist an element r1,

of order four, such that r21 = u (codes of shape 1∗, 2, 4∗ and 5) and there are codes where u is not the square of

any other element of order four (codes of shape 1, 3 and 4). We will define the new parameter τ = τ − 1 in the

first case (r21 = u) and τ = τ in the second case (r21 ̸= u). The existence conditions for Hadamard Z2Z4Q8-codes

we included in Table III easily come from Theorem III.4 and [9], where it was stated the existence conditions for

Hadamard Z2Z4-linear codes.

IV. RANK AND KERNEL DIMENSION OF HADAMARD Z2Z4Q8-CODES

In this section we show the conditions that s1 and s2 must fulfill in order to compose a code with specific values

for the dimension of the kernel and the rank. Later, in the next section, our focus will be the construction of codes

C, by adding the generator s1 and, optionally, s2 to a previous subgroup A(C).

Recall that in the proof of Theorem III.2 we saw that r21 = u for codes of shapes 1∗, 2, 4∗, 5 and u /∈ ⟨r21 . . . r2τ ⟩

for the other shapes.

Let A(C) = ⟨x1, . . . , xσ, r1, . . . , rτ ⟩ and let R(C) be defined by R(C) = ⟨x1...xσ, r2...rτ ⟩; if r21 = u

R(C) = A(C); if r21 ̸= u

With this definition, we have the following technical lemmas.

Lemma IV.1. Let a, b ∈ R(C)\T (C) which are not in the same coset of T (C), so ba−1 /∈ T (C) then:

1) a2, b2, (ab)2 /∈ {e,u} and wt(a2) = wt(b2) = wt((ab)2) = n/2

2) wt((a : b)) = n/4 and so (a : b) /∈ C.

3) With the same hypothesis as for a, b, let a′, b′ a different pair, such that the different elements in {a, b, a′, b′}

are pairwise not in the same coset of T (C). Then (a : b) ̸= (a′ : b′).
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Zk1
2 × Zk2

4 ×Qk3
8

shape k1 k2 k3 C existence

1∗ (r21 = u, τ = τ − 1, υ = 0) 0 2σ+τ−2 0 A ∀τ ≤ ⌊m+1
2

⌋;
σ = m− τ + 1

1 (r21 ̸= u, τ = τ, υ = 0) 2σ−1 (2τ − 1)2σ−2 0 A ∀τ ≤ ⌊m
2
⌋;

σ = m− τ + 1

2 (r21 = u = s21, τ = τ − 1, υ = 1) 0 0 2σ+τ−2 A o Z4

/
(u, s21) ∀τ ≤ ⌊m

2
⌋;

σ = m− τ

3 (r21 ̸= u = s21, τ = τ, υ = 1) 0 2σ−1 (2τ − 1)2σ−2 A o Z4

/
(u, s21) ∀τ ≤ ⌊m−1

2
⌋;

σ = m− τ

4 (r21 ̸= u ̸= s21, τ = τ, υ = 1) 2σ−1 0 2σ−3 A o Z4

/
(r21 , s

2
1) m even; τ = 1;

σ = m
2

+ 1

4∗ (r21 = u ̸= s21, τ = τ − 1, υ = 1) 0 2σ 2σ−1 A o Z4

/
(r2, s21) m even; τ = 2;

σ = m
2

− 1

5 (r21 = u, τ = τ − 1, υ = 2) 0 0 2σ+1 A o (Z4 × Z4)
/
(r21 , s

2
1)(r

2
2 , s

2
2) τ = 2;

σ = m− 3

TABLE III

EXISTENCE CONDITIONS AND PARAMETERS k1, k2, k3 DEPENDING ON THE SHAPE OF HADAMARD Z2Z4Q8-CODES OF LENGTH n = 2m ,

WHERE m = σ + τ + υ − 1

Proof.

• Elements a, b are not in T (C) so their square is not e. Also, the construction of R(C) explicitly excludes any

element with square equal to u. The product ab is also an element of R(C)), thus their square can not be u.

Moreover, if (ab)2 = e then a = bT (C) which contradicts the hypothesis. This proves the first item.

• As the elements a, b commute, we have from Lemma II.3 n/2 = wt((ab)2) = wt(a2b2) = wt(a2) + wt(b2)−

2wt((a : b)) = n/2 + n/2− 2wt((a : b)). Hence, wt((a : b)) = n/4. This proves the second item.

• Suppose (a : b) = (a′ : b′). Since wt((a : b)) = wt((a′ : b′)) = n/4 there are some components (for a total weight

of n/8) where all a, b, a′, b′ share an entry of order four. The rest of components of order four (for a total

weight of n/8) in each a, b, a′, b′ is not shared at all, since the elements are pairwise not in the same coset

of T (C). This situation is not possible in the case where all a, b, a′, b′ are different, for we obtain a vector of

length 5n/4. If, without loss of generality, we suppose b = a′ we obtain a2b2b′2 = u ∈ R(C), a contradiction.

Lemma IV.2. Let C be a Hadamard Z2Z4Q8-code of shape 2 and length n with a standard set of generators

C = ⟨x1 . . . xσ; r1 . . . rτ ; s1⟩ where, by definition of shape 2, r21 = s21 = [r1, s1] = u. Let r be and element of order

four in A(C) such that r2 ̸= u and let x ∈ T (C) be an element which is not the square of any other element of C.

If (s1 : r1) = x then

1) |M((s1 : r))| = k3/4; wt((s1 : r)) = n/4 and (s1 : r) ̸∈ C.

2) for any element r ∈ R(C) we have:
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a) (s1 : r) ̸= (a : b), for any a, b ∈ R(C)\T (C) such that ba−1 ∈ T (C).

b) (s1 : r) ̸= (s1 : a), for any a ∈ R(C)\T (C) such that s1a−1 ∈ ⟨T (C), r1⟩.

Proof. Taken into account that [r1, r] = e and r21 = u ̸= r2, from Lemma II.3 we have M((s1 : r)) = M((s1 : r1))∩

M(r2) = M(x) ∩ M(r2) and from Lemma II.4 |M(x) ∩ M(r2)| = k3/4. This proves the first part of the first

item. Since for codes of shape 2 all non-zero components of order two has binary length four, the second part of

the first item comes. As all elements of C must have weight in {n, n/2, 0}, we conclude that (s1 : r) ̸∈ C for any

r. The first item is done.

For the second item, let r2, r3, r4 elements of R(C)\T (C), pairwise not in the same coset of T (C). First assume

(s1 : r2) = (s1 : r3). In this case we have (s1 : r2r3) = e ∈ C which contradicts Lemma IV.1. Now assume

(s1 : r2) = (r3 : s1) then, from Lemma II.5, (s1 : r2r3) = (s1 : r2)(s1 : r3) = r23(r3 : s1)
2 = r23 ∈ C, against the above

item in this lemma. Finally, assume (s1 : r2) = (r3 : r4). Since M((s1 : r2)) = M((s1 : r1))∩M(r22) = M(x)∩M(r22)

and M((r3 : r4)) = M(r23)∩M(r24), we obtain M(x)∩M(r22) = M(r23)∩M(r24). The above equality means that

M(x), M(r22), M(r23), M(r24) have k3/4 elements in common, while the other k3/4 elements in each one of these

sets are disjoint from each other. This is not possible, for a total of 5k3/4 components is needed for the above

composition. The second item is proved.

Now, we can enumerate a list of cases depending on τ , τ and υ from which we obtain later, in the next section,

a code with an specific dimension of the kernel and rank.

Proposition IV.3. Let C be a subgroup of Zk1
2 × Zk2

4 ×Qk3
8 such that C = Φ(C) is a Hadamard code generated

by ⟨A(C), s1, sυ⟩. The values of the dimension of the kernel and rank depends on τ , τ and υ according to the

following cases:

1) In the case υ = 0 (Z2Z4-code) we have

a) if τ ≤ 1 (that is, τ ≤ 2 and r21 = u or τ ≤ 1 and r21 ̸= u) the code is linear and k = r = σ + τ ;

b) if τ ≥ 3 and r21 = u then k = σ+ 1, r = σ+ τ +
(
τ−1
2

)
and C is a Z2Z4-linear code of type 2σ−τ4τ ;

c) if τ ≥ 2 and r21 ̸= u then k = σ, r = σ + τ +
(
τ
2

)
and C is a Z4-linear code of type 2σ−τ4τ .

2) In the case τ = 1, υ = 1 we have

a) if (s1 : r1) ∈ C then C is linear and k = r = σ + 2;

b) if (s1 : r1) /∈ C then k = σ and r = σ + 3.

3) In the case τ = 2, τ = 1, υ = 1, consider the swappers (s1 : r1), (s1 : r2) and (s1 : r1r2):

a) if these three swappers are in C then k = r = σ + 3;

b) if one of them is in C then k = σ + 1, r = σ + 4;

c) if none of them is in C then k = σ, r = σ + 5.

4) In the case τ ≥ τ ≥ 2, υ = 1 we have

a) if (bs1 : a) ∈ C for all a ∈ A(C) and some b ∈ R(C), then k = σ + τ − τ + 1, r = σ + τ + 1 +
(
τ
2

)
;

b) if the previous condition is not satisfied but (r1 : s1) ∈ C and r21 = u then k = σ + 1 and r =

σ + τ + 1 +
(
τ+1
2

)
;
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c) if none of the previous conditions is satisfied then k = σ and

σ + τ + υ +

(
τ − 1

2

)
≤ r ≤ σ + τ + υ +

(
τ

2

)
+ 1when τ = τ + 1, (r21 = u)

σ + τ + υ +

(
τ

2

)
+ 1 ≤ r ≤ σ + τ + υ +

(
τ + 1

2

)
, when τ = τ , (r21 ̸= u)

5) In the case τ = 2 and υ = 2, consider the two swappers (r2 : s2) and (r1r2 : s1s2).

a) if both swappers are in C then C is linear;

b) if only one of the two swappers is in C then k = σ + 2 and r = σ + 5

c) if none of the two swappers is in C then k = σ and r = σ + 6

Proof.

1) In the case υ = 0 we have that C is abelian and the shape is 1.

If r21 = u, any element c ∈ C can be written as c = xri1r with x ∈ T (C), r ∈ R(C) and i ∈ {0, 1}. The

element ϕ(c) belongs to K(C) if the swapper of c with every element in C is still in C. Hence, ϕ(c) ∈ K(C)

if and only if (c : r1) ∈ C and (c : r) ∈ C. From Lemma II.1 we see that (r : r1) = (r : r) = r2 and for

all r ∈ R(C) with r ̸= rT (C) we have (r : r) /∈ C. Hence, we conclude with K(C) = ⟨T (C), r1⟩. From

Lemma IV.1, all swappers of two elements in R(C) are different. Therefore, if τ > 1 and r21 = u we have

k = σ + 1 and r = σ + τ +
(
τ−1
2

)
. With the same argumentation, if τ > 1 and r21 ̸= u we have k = σ and

r = σ + τ +
(
τ
2

)
. In both cases, if τ ≤ 1 we have r − k ≤ 1 and so the code is linear and k = r = σ + τ .

2) The case τ = 1 and υ = 1 means that C = ⟨T (C), r1, s1⟩. Since the linear span of C is generated by C

and all swappers of pairs of elements in C we conclude that ⟨C⟩ is the binary image by the Gray map of

⟨C, (r1 : s1)⟩. Hence, either (s1 : r1) ∈ C and the code is linear or k = σ and r = σ + τ + υ + 1 = σ + 3.

3) In the case τ = 2 and υ = 1 and τ = 1 the code C is of shape 2 with r21 = s21 = u ̸= r22 or is of shape

4∗ with r21 = u ̸= s21 = r22 . Any element c ∈ C can be written as c = xri1r
j
2s

k
1 where x ∈ T (C) and

i, j, k ∈ {0, 1}. It belongs to K(C) if the swapper of c with every element in C is still in C. Hence, from

Lemma II.1, c ∈ K(C) if and only if (sk1 : r1), (s
k
1 : r2) ∈ C (recall that when (s1 : r1) ∈ C and (s1 : r2) ∈ C

then also (s1 : r1r2) ∈ C). If all swappers above are in C then code C is linear and K(C) = ⟨T (C), r1, r2, s1⟩.

If some swapper does not belong to C, for instance, (s1 : r1) ∈ C and (s1 : r2) ̸∈ C then (s1 : r1r2) =

(s1 : r1)(s1 : r2) /∈ C, hence K(C) = ⟨T (C), r1⟩ and ⟨C⟩ = ϕ(⟨T (C), r1, r2, s1, (s1 : r2)⟩). The same argu-

mentation works for the other instances proving the statement.

If none of the swappers belong to C then ⟨C⟩ = ϕ(⟨T (C), r1, r2, s1, (s1 : r2), (s1 : r1)⟩) and K(C) = T (C).

Note that if s21 ̸= u then M((r1r2)
2) ∩M(s21) = ∅, thus by Lemma II.3, (r1r2 : s1) = e.

4) In the case τ ≥ τ ≥ 2 and υ = 1 the code is of shape 2 with r21 = s21 = u, or shape 3 with s21 = u ̸∈

⟨r21 . . . r2τ ⟩.

Assume r21 = u and (bs1 : a) ∈ C for all a ∈ A(C) and some b ∈ R(C). We can assert that (s1 : r1) ∈ C

because, from Lemma II.1, (bs1 : r1) = (b : r1)(s1 : r1) = b2(s1 : r1) ∈ C. In this way we have K(C) =

⟨T (C), r1, bs1⟩ and the linear span is generated by C and the swappers of pairs in R(C) (from Lemma-IV.1

we known there are a total amount of
(
τ
2

)
swappers of this kind to be included in the generator set of the
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linear span). If r21 ̸= u we have K(C) = ⟨T (C), bs1⟩ and the linear span is generated as before. Hence,

k = σ + 1 + τ − τ , r = σ + τ + υ +
(
τ
2

)
.

Assume now r21 = u and (s1 : r1) ∈ C (but not the previous condition about (bs1 : a)). If (s1 : r1) = b2 where

b is an element of A(C), then (bs1 : r1) = (b : r1)(s1 : r1) = b2b2 = e. So (bs1 : a) = e for all a ∈ A(C)

and some b ∈ R(C), and the previous condition is fulfilled, a contradiction. Thus, without lost of generality,

we can assert (s1 : r1) = x with x ∈ T (C) and x is not the square of any other element of C. In this case

K(C) = ⟨T (C), r1⟩ and the linear span of C is generated by C, the swappers of pairs in R(C) (from Lemma-

IV.1,
(
τ
2

)
swappers), and the swappers of s1 with the elements in R(C) (from Lemma IV.2, τ swappers).

Hence, k = σ + 1, r = σ + τ + υ +
(
τ
2

)
+ τ = σ + τ + υ +

(
τ+1
2

)
.

When (s1 : r1) ̸∈ C and r21 = u, we have τ = τ −1 and K(C) = T (C). The linear span is generated by C, the

swappers of pairs in R(C) (from Lemma-IV.1,
(
τ
2

)
swappers), the swapper (r1 : s1) and the swappers of s1

with elements of R(C) that do not belong to C. Hence k = σ, σ+ τ + υ+
(
τ
2

)
≤ r ≤ σ+ τ + υ+

(
τ
2

)
+ τ =

σ + τ + υ +
(
τ+1
2

)
+ 1.

When (s1 : r1) ̸∈ C and r21 ̸= u, we have τ = τ . Now K(C) = T (C) and the linear span is generated by

C, the swapper of elements in R(C) and the swappers of s1 with elements of R(C) that do not belong to C

(at least one of these last swappers must not belong to C, otherwise we are in the previous case 4a). Hence,

σ + τ + υ +
(
τ
2

)
+ 1 ≤ r ≤ σ + τ + υ +

(
τ
2

)
+ τ = σ + τ + υ +

(
τ+1
2

)
.

5) In the case τ = 2 and υ = 2 the code C is of shape 5 with r21 = s21 = u ̸= r22 = s22, C = ⟨T (C); r1, r2; s1, s2⟩.

We have C = ⟨T (C); r1, r2; s1, s2⟩ = ⟨T (C); r1r2, r2; s1s2, s2⟩), so it is enough to analyze the swappers

(r1r2 : r2), (r1r2 : s1s2), (r1r2 : s2), (r2 : s1s2), (r2 : s2) and (s1s2 : s2).

From Lemma II.1, (r1r2 : r2) = (r1 : r2)(r2 : r2) = r22r
2
2 = e, and (s1s2 : s2) =(s1 : s2)(s2 : s2) = s22s

2
2 = e.

Moreover, we have (r1r2)
2 = (s1s2)

2 = ur22 = us22, so Supp((r1r2)
2) is disjoint from Supp(s22) and

also from Supp(r22). The same for Supp((s1s2)
2), which is disjoint from Supp(r22) and Supp(s22). Hence,

(r1r2 : s2) = (s1s2 : r2) = (r1r2 : r2) = (s1s2 : s2) = e. Now, only swappers (r1r2 : s1s2) and (r2 : s2) are left

in our analysis. When (r1r2 : s1s2) ∈ C and (r2 : s2) ∈ C we have the linear case K(C) = S(C) = C; if only

one of these swappers belongs to C we have the case where k = σ + 2 and the linear span is generated by

C and the swapper that does not belong to C. Finally, if none of these two swappers belongs to C we have

K(C) = T (C) and the linear span is generated by C and the two swappers.

From the above results in Proposition IV.3 we can specify a little more for what shapes we obtain the values for

the rank and dimension of the kernel. Tables IV and V are a summary. We write in the right top corner of each

value the corresponding shape and, separate by a colon, the item of Proposition IV.3 where the case is studied. Note

that we do not include the additive cases which were studied in [3]. Table IV covers all items in Proposition IV.3,

except 4) and Table V covers the codes in item 4) of Proposition IV.3.
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m+ 1− k r − (m+ 1)

4 − − 2[5;5c]

3 − 2[2,4
∗;3c] −

2 1[2,3,4;2b] 1[2,4
∗;3b] 1[5;5b]

0 0[2,4
∗;2a] 0[2,4

∗;3a] 0[5;5a]

TABLE IV

RANK AND DIMENSION OF THE KERNEL FOR THE CODES FULFILLING PROPOSITION IV.3, EXCEPT ITEM 4)

m+ 1− k r − (m+ 1)

τ + 1
(τ−1

2

)
· · ·

(τ
2

)
+ 1[2;4c]

(τ
2

)
+ 1 · · ·

(τ+1
2

)[3;4c]
τ

(τ
2

)[2;4b] (τ
2

)[3;4a]
τ − 1

(τ−1
2

)[2;4a] −

TABLE V

RANK AND DIMENSION OF THE KERNEL FOR THE CODES FULFILLING PROPOSITION IV.3, ITEM 4)

V. CONSTRUCTION OF HADAMARD Z2Z4Q8-CODES

In this section it is shown how to construct Hadamard Z2Z4Q8-codes with each allowable pair of values for the

rank and the dimension of the kernel. We follow the entries of Proposition IV.3 explaining, in each case, how to

construct the desired Hadamard code. After the constructions, as a summary, we include Theorem V.2, where it is

described what are the allowable parameters for the dimension of the kernel and, for each one of these values, the

corresponding range of values for the rank. For each one of the possible pair of allowable values for the dimension

of the kernel and rank, we construct a Hadamard Z2Z4Q8-code fulfilling it. As an illustration of the constructions

we include two examples at the end of the section.

We can take as starting point a Hadamard Z2Z4-code D of type 2σ−τ4τ , which can be constructed using the

methods described in [9], [1]. Recall that an element x with square equal to u is included in D if and only if D

is a Z4-code.

We define three basic homomorphisms:

χ1 : Z2 → Z4 such that χ1(x) = 2x,

χ2 : Z4 → Q8 such that χ2(x) = ax,

χ3 : A → A×A such that χ3(x) = (x, x), where A ∈ {Z2,Z4}.

(1)

The next theorem is one of the main results in the current paper. For a given pair of allowable parameters r, k

we construct a Hadamard Z2Z4Q8-code with these parameters.

Theorem V.1. Let C a Hadamard Z2Z4Q8-code of length 2m and |T (C)| = 2σ , where T (C) is the subgroup of

elements in C of order two; |C/A(C)| = 2υ; |A(C)/T (C)| = 2τ ; |C/T (C)| = 2τ+υ and m+ 1 = σ + τ + υ. Then,

for any two allowable values of the rank r and dimension of the kernel k (Proposition IV.3) of a putative Hadamard

Z2Z4Q8-code, we construct this code.
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Proof. First, we describe the elementary constructions based on the previously defined homomorphisms (1). After

that, for each of all possibilities given in Lemma IV.3, we show how to construct the putative code.

The first step is the construction of the subgroup A(C) applying (1) to some Hadamard Z2Z4-code D, of type

2σ−τ4τ , which can be constructed using the methods described in [9], [1]. After obtaining this code D, from

Theorem III.4 we will duplicated it (or quatruplicate it). One of the following ways must be used:

• From Table III we know that codes of shape 1 or shape 1∗ have k3 = 0, so they are Hadamard Z2Z4-codes,

C = A(C) = D.

• In a code of shape 2, from Table III we have that k1 = k2 = 0. Also r21 = u and D is a Z4-linear Hadamard

code. So A(C) can be obtained applying χ2 component-wise to D.

• In a code of shape 3, since r21 ̸= u, D must be a Z2Z4-code. Moreover, from Table III, k1 = 0 and A(C)

can be obtained applying χ1 component-wise to Z2 components of D and χ2 to Z4 ones. This means that the

rate between the number of Z2 and Z4 components in a Hadamard Z2Z4-code is extended to theses codes of

shape 3.

• In a code of shape 4, since r21 ̸= u we have that D must be a Z2Z4-code. As τ = 1, this code must be of

type 22k4k. From Table III k2 = 0, so A(C) can be obtained applying χ3 component-wise to Z2 components

of D and χ2 to the Z4 components.

• In a code of shape 4∗, since r21 = u we have that D must be a Z4-code. A(C) can be obtained applying χ3

component-wise to half of the Z4 components of D and χ2 to the rest of components.

• In a code of shape 5, since r21 = u, D must be a Z4-code. From Table III, k1 = k2 = 0, so A(C) can be

obtained applying χ3 component-wise to all Z4 components of D followed by χ2 to obtain the desired A(C).

The code C is obtained adding one generator (two in case of shape 5) to A(C). The components of these added

generators must follow some restrictions to be sure that a Hadamard code is obtained. In addition, several values

remains free of choice. These values are used to select the target rank and dimension of the kernel.

Specifically, we follow the list of all possibilities given in Proposition IV.3 and, for each one of them, we show

how to construct the putative code.

For codes in item 2) of Proposition IV.3 we can construct a code of shape 2 (it is also possible to construct codes

of shape 3 or shape 4). Code D must be in Zm−2
4 with r21 = u, length 2m−1, σ = m − 1 and τ = 1. This code

is of type 2σ−141 [9]. Now, we add one new generator s1 to A(C) with its components in {b,a2b} or {ab,a3b}

obtaining a code C with the following generator matrix.

C =

 A(C) = χ2(D)

s
(1)
1 . . . s

(2m−2)
1


If we take all s(i)1 components in {b,a2b} then (s1 : r1) ∈ C then C is in the subcase 2a) of Proposition IV.3

where it is proven that the obtained code is linear. If we fill one of the components of s1 with one value in {b,a2b}

and the remainder ones with values in {ab,a3b} then (r1 : s1) /∈ C (if m > 3), we obtain the subcase 2b) where

it is proven that k = σ, r = σ + 3.

May 8, 2015 DRAFT



16

For codes in item 3) of Proposition IV.3 the shape is 3. We begin by taking a Hadamard Z4-linear code D with

r21 = u and length 2m−1, τ = 2 and σ = m− 2. This code is of type 2σ−242 and the number of Z4 components is

2m−2 [9]. If s1 is constructed with all components in {b,a2b} then all swappers of s1 with elements of A(C) are

in C and we have a linear code according to sub-case 3a) of Proposition IV.3. If s1 takes values in {b,a2b} for

all components where r2 has order four, plus one more component (which can be randomly selected), and we take

the rest of the components of s1 in {ab,a3b}, then (r1 : s1) /∈ C, (r2 : s1) ∈ C and we are fulfilling item 3b) of

Proposition IV.3, where it is proven that k = σ + 1 and r = σ + 4. Finally, if we fill one of the components of s1

with a value in {b,a2b} and the remainder components with values in {ab,a3b} then (r1 : s1) /∈ C, (r2 : s1) ̸∈ C,

(r1r2 : s1) ̸∈ C and we obtain the subcase 3c) of Proposition IV.3, where it is proven that k = σ, r = σ + 5.

For codes in item 4) of Proposition IV.3 the shape is 2 or 3. We start by taking a Hadamard Z4-linear code D

with r21 = u and length 2m−1, σ+τ = m−2. This code is of type 2σ−τ4τ [9]. If we select all components of s1 in

{b,a2b} then (s1 : r1) = e, we are in the case 4a), where it is proven that k = σ+ τ − τ +1, r = σ+ τ +1+
(
τ
2

)
.

If we select an element x ∈ T (C) which is not the square of any other element in A(C) and we replace its zero

components by b and the components a2 by ab, then (s1 : r1) = x and so we are in the case 4b) where it is proven

that k = σ + 1 and r = σ + τ + 1 +
(
τ+1
2

)
. To reach the upper bound for the rank in the case 4c), k = σ and

r = σ + τ + 1 +
(
τ
2

)
+ 1, we need the following construction.

Split all components in two sets taken into account if the value of r2 either has order four or not. Split each one

of these two sets according if the value of r3 is either of order four or not. Repeat the process again and again

for each ri until rτ . Since ⟨r21, r22, . . . , r2τ ⟩ is a linear subspace of the Hadamard code we obtain 2τ−1 sets with

k3/2
τ−1 components in each one. Now, construct the element s1 with the value b in all components, except for

one component in each one of the previous sets, where we put the value ab. In this way (s1, ri) ̸∈ C for any

2 ≥ i ≥ τ , which assure to obtain the maximum rank σ + τ + 1 +
(
τ−1
2

)
+ τ = σ + τ + 1 +

(
τ
2

)
+ 1.

A value of the rank equal to one less than the above maximum can be reached if in the constructed s1 we put the

value b in all components where r2 has order four. Repetitively, we can decrease by one the value of the previous

rank by putting the value b in all components where r2 or r3 has order four and so on. The lower rank we obtain

is σ + τ + 1 +
(
τ−1
2

)
+ 1. To obtain the lower limit for the rank, r = σ + τ + 1 +

(
τ−1
2

)
, we take the value b in

a component of s1 if some of the generators r2 . . . rτ has the respective component of order four. Otherwise the

value ab. Example V.3 shows these constructions.

Now, we deal with codes in item 4, c) of Proposition IV.3, of shape 3. The starting point is a Hadamard Z2Z4-linear

code D with r21 ̸= u and length 2m−1, σ+τ = m−2. This code is of type 2σ−τ4τ and has 2σ−1 binary components

and (2τ − 1)2σ−2 quaternary components [9]. After applying χ1, χ2 to the binary and quaternary components,

respectively, we define s1 taking in all the quaternary components de value 1 and using the same technique as

before, splitting the quaternionic components, to decide the values in these components. We obtain (2τ − 1) sets

with 2σ−2 components in each one. The maximum rank we obtain is σ+ τ +1+
(
τ
2

)
+ τ = σ+ τ +1+

(
τ+1
2

)
. The

minimum is not as before, but σ + τ + υ +
(
τ
2

)
+ 1. Indeed, when the rank is σ + τ + υ +

(
τ
2

)
, the constructed s1

belongs to the kernel and so k = σ + 1 (this corresponds to the case 4a). Example V.4 shows these constructions.

For codes in item 5) of Proposition IV.3 we must construct a code of shape 5. We begin by taking a Hadamard
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Z4-linear code D with r21 = u, length 2m−2, τ = 2 and σ = m − 4. This code is of type 2σ−342 and the

number of quaternary components is 2m−3 [9]. Now, as we said before, we can obtain A(C) as χ2(χ3(D)) and

C = ⟨A(C), s1, s2⟩. The following matrix is a generator matrix for C:
A(C) = χ2(χ3(D))

s
(1)
1 . . . s

(2m−3)
1 1 a2 2m−3

. . . 1 a2

1 a2 2m−3
. . . 1 a2 s

(2m−3+1)
2 . . . s

(2m−2)
2


If all components of order four of s1 and s2 are in {b,a2b} then all swappers of s1 and s2 with elements of A(C)

are in C, so we have the linear case according to item 5a) of Proposition IV.3. Say that the first component of r1

is of order four, but the first component of r2 is of order at most two. Take s
(1)
1 = ab and the rest of components

of order four of s1 and s2 are equal to b then (s1s2 : r1r2) ̸∈ C, (s2 : r2) ∈ C and item 5b) of Proposition IV.3

is fulfilled, reaching a code with k = σ + 2 and r = σ + 5. Finally, if s
(1)
1 = s

(2m−3+1)
2 = ab and the rest

of components of order four of s1 and s2 are equal to b then (s1s2 : r1r2) ̸∈ C, (s2 : r2) /∈ C and item 5c) of

Proposition IV.3 is fulfilled, reaching a code with k = σ and r = σ + 6.

For a generic Hadamard Z2Z4Q8-code, the range of values for the rank as well as the range of values given by

the dimension of the kernel depends on the specific shape of the code. However, summing up the Proposition IV.3

and all results in this section about constructions, we can establish a tight upper and lower bound for the values

of the rank and dimension of the kernel for Hadamard Z2Z4Q8-codes. The next theorem gives these bounds,

which improve the ones previously given in [3]. Further, in this section we have given constructions of Hadamard

Z2Z4Q8-codes covering all allowable values for the pair rank, dimension of the kernel.

Theorem V.2. Let C a Hadamard Z2Z4Q8-code of length 2m and |T (C)| = 2σ , where T (C) is the subgroup

of elements in C of order two; |C/A(C)| = 2υ; |A(C)/T (C)| = 2τ ; |R(C)/T (C)| = 2τ ; |C/T (C)| = 2τ+υ and

m+ 1 = σ + τ + υ. Then the rank r and the dimension of the kernel k of C satisfy the following conditions.

1) The values of the dimension of the kernel are 1 ̸= m + 1 − k ∈ {0, 4, τ − 1, τ, τ + 1}. The specific case

m+1− k = 0 is obtained in codes where τ ≤ 1 or in codes of shape 5. The specific case m+1− k = 4 is

obtained in codes of shape 5.

2) a) If m+ 1− k = 0 then we have r − (m+ 1) = 0,

b) If m+ 1− k = 4 and υ = 2 then we have r − (m+ 1) = 2,

c) If m+ 1− k = τ − 1 ≥ 2 then we have r − (m+ 1) =
(
τ−1
2

)
,

d) If m+ 1− k = τ ≥ 2 then we have r − (m+ 1) =
(
τ
2

)
,

e) If m+ 1− k = τ + 1 and τ <= 1 then we have r − (m+ 1) = τ .

f) If m+ 1− k = τ + 1 and τ = τ − 1 ≥ 2 then we have r − (m+ 1) ∈ {
(
τ−1
2

)
, . . .

(
τ
2

)
+ 1}.

g) If m+ 1− k = τ + 1 and τ = τ ≥ 2 then we have r − (m+ 1) ∈ {
(
τ
2

)
+ 1, . . .

(
τ+1
2

)
}.

Example V.3. The following example shows constructions of codes of length n = 2m = 27 = 128, with τ = 3 ≥

τ = 2 ≥ 2, υ = 1 (item 4 of Proposition IV.3) and σ = 4. The resulting codes are of shape 2 and, before the Gray

map, subgroups of Q32
8 . All possible pairs of rank and dimension of the kernel are presented:
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Let r1, r2, r3, x1 ∈ Q16
8 be the vectors:

r1 = (a a a a a a a a a a a a a a a a)

r2 = (a a a3 a3 a a a3 a3 1 1 a2 a2 1 1 a2 a2)

r3 = (a a3 a a3 1 a2 1 a2 a a3 a a3 1 a2 1 a2)

x1 = (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

x2 = (a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2)

and now, take the following vectors in Q32
8 :

r1 = (r1, r1)

r2 = (r2, r2)

r3 = (r3, r3)

x1 = (x1, x2)

Let y1, y2, y3, y4, y5, y6 ∈ Q16
8 be the vectors:

y1 = (b b b b b b b b b b b b b b b b)

y2 = (ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab)

y3 = (b b b ab b b b ab b b b ab b b b ab)

y4 = (b b b b b b b b b b b ab b b b ab)

y5 = (b b b b b b b b b b b b b b b ab)

y6 = (b b b b b b b b b b b b ab ab ab ab)

The codes with all possible pairs of values rank,dimension of the kernel are generated by r1, r2, r3 and s1 which

is taken following Theorem V.1. We show the vector s1 and the values of the pair rank, dimension of the kernel.

When s1 = (y1, y1) the constructed code has k = 6, r = 9.

When s1 = (y2, y1) the constructed code has k = 5, r = 11.

When s1 = (y3, y3) the constructed code has k = 4, r = 12.

When s1 = (y4, y4) the constructed code has k = 4, r = 11.

When s1 = (y5, y5) the constructed code has k = 4, r = 10.

When s1 = (y6, y6) the constructed code has k = 4, r = 9.

Example V.4. The following example shows constructions of codes of length 32, with τ = τ = 2, υ = 1 (item 4

of Proposition IV.3) and σ = 3. The resulting codes are of shape 3 and, before the Gray map, subgroups of Z4
4Q

6
8.

All possible pairs of rank and dimension of the kernel are presented.

Take the following vectors in Z4
4Q

6
8:

r1 = (0 2 0 2 1 a2 a a a a)

r2 = (0 0 2 2 a a 1 a2 a a3)

The codes with all possible pairs of values rank, dimension of the kernel are generated by r1, r2 and s1 which is

taken following Theorem V.1. We show the vector s1 and the values of the pair rank, dimension of the kernel.

When s1 = (1, 1, 1, 1,b,b,b,b,b,b) the constructed code has k = 4, r = 7.
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When s1 = (1, 1, 1, 1,b,ab,b,ab,b,ab) the constructed code has k = 3, r = 9.

When s1 = (1, 1, 1, 1,b,ab,b,b,b,b) the constructed code has k = 3, r = 8.
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