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Abstract

Compressive Sensing (CS) provides a new perspective far aluction without compromising performance
when the signal of interest is sparse or has intrinsically-dtimensional structure. The theoretical foundation for
most of existing studies on CS is based on the stable emlpdde, a distance-preserving property) of vectors
that are sparse or in a union of subspaces via random meatrenatrices. To the best of our knowledge, few
existing literatures of CS have clearly discussed the stlbedding of linear subspaces via compressive measuremen
systems. In this paper, we explore a volume-based stableddiny of multi-dimensional signals based on Grassmann
manifold, via Gaussian random measurement matrices. Thes@rann manifold is a topological space in which
each point is a linear vector subspace, and is widely redaedean ideal model for multi-dimensional signals
generated from linear subspaces. In this paper, we formtliat linear subspace spanned by multi-dimensional signal
vectors as points on the Grassmann manifold, and use theneadund the product of sines of principal angles (also
known as the product of principal sines) as the generalizethrand distance measure for the space of Grassmann
manifold. We prove a volume-preserving embedding propfatypoints on the Grassmann manifold via Gaussian
random measurement matrices, i.e., the volumes of all lphrdpes from a finite set in Grassmann manifold are
preserved upon compression. This volume-preserving editggroperty is a multi-dimensional generalization of
the conventional stable embedding properties, which oahcern the approximate preservation of lengths of vectors
in certain unions of subspaces. Additionally, we use theima-preserving embedding property to explore the stable
embedding effect on a generalized distance measure ofi@aassmanifold induced from volume. It is proved that the
generalized distance measure, i.e., the product of pahsipes between different points on the Grassmann manifold
is well preserved in the compressed domain via Gaussiaronamdeasurement matrices. Numerical simulations are
also provided for validation.

Index Terms
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I. INTRODUCTION

Compressive Sensing (CS) [1][2][31[4][5] provides a newgmective for data reduction without compromising

performance when the signal of interest is sparse or hamsitally low-dimensional structure. Typically the
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problem of CS is described as= ®x, wherex € R" is a k-sparse original signal vectdfa|lo < k,k << N),
y € RM(M < N) is the compressed measurement vector, @d RM*V is the measurement matrix (or the
sensing matrix). In the CS literatures, to sufficiently @rsunique signal representation and robust signal recpvery
the measurement matrix should approximately preserveetigth of all sparse vectors. i.e., there exists a constant
0 < 6 < 1, such that

(1= 8)lll3 < [|®x]l3 < (1+0)[l=3 1

holds for all k-sparse vectors with ||x||o < k. This expression is the well-knowRestricted |sometry Property
(RIP) of the measurement matrix [6][7][8]. It can be deritkdt for two k-sparse vectons, andx, with ||z1]jo < k
and ||zz2llp < k, if the measurement matri$e satisfies RIP of order 2k, i.e[1(1) holds for all 2k-sparsetwss,
then

(1= 8)[lr — a3 < | B21 — B3 < (1+6)[|1 — a3 @

This means that approximately preserves the Euclidean distance betwegrpain of k-sparse vectors. This
distance-preserving property il (2) is a more general fofRI® and is commonly referred to as the property of
stable embedding for sparse vectors [9]. In addition, there are theoretiealilts showing that the angles between
any pair of sparse vectors are approximately preserved hghOHL1].

Furthermore, in[[12][13[[14][15], the signals of interastCS has been extended from the conventional sparse
vectors to vectors that belong to a union of subspaces. Tlmsiof subspaces model incorporates many signal
models previously considered in original CS settings [1%]][ and plays an important role in many subfields of
CS, e.g., Multiple Measurement Vector (MMV) in CS [16][18lock Sparse Recovery [15][17], and Model-Based
Compressive Sensing [18]. 1al[BI[14][15], results analegido RIP, known as theA-RIP" [14] or "Block RIP"
[15], were proposed. It was proven [n [14][9] that the rantiogenerated measurement matéxcan approximately
preserve the length of a vector as well as the distance battvee vectors that lie in a union of subspaces with a
notably high probability, i.e.[{1) an@(2) hold for all vecs that lie in a union of subspaces. It is known that this
distance-preserving property also ensures the uniquelsigpresentation and robust recovery performance of CS
for signals from unions of subspacés|[14][15], and this progpis typically referred to as the stable embedding
property for unions of subspaces [9].

Recently, the stable embedding property was extended talsignodeled as low-dimensional Riemannian sub-
manifolds in Euclidean space [19][20][21]. Similar resudtbout the preservation of Euclidean distances of vectors
that lie on a low-dimensional sub-manifold via random measient matrices were proved, i.d.] (1) ahd (2) also
hold for all vectors that lie on a Riemannian sub-manifoidtHese settings, the Riemannian sub-manifold model
is a generalization of the sparse signal model relying oredas dictionaries [22][23][24][25] and incorporates
sophisticated low-dimensional nonlinear geometricalctires.

The previous studies on CS mentioned above involve a commabiesembedding property of individual vectors,
i.e., the preservation of distances (or equivalently lbsgamong vectors that are sparse, or lie on a sub-manifiold, o

belong to a certain union of subspaces, via random measuatenagrices. Although the unions of subspaces model is
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the most popular signal model and is extensively used irouarCS applications, there is few theoretical analysis
describing the embedding effect on these linear subspaeesamdom measurement matrices. Whereas in this
paper, we explore a volume-based stable embedding projedyscribe the embedding effect on linear subspaces
via Gaussian random measurement matrices based on knemddg@rassmann manifold [26]. The Grassmann
manifold is a topological space with each point represgnéinlinear subspace, if a linear subspace spanned by
multi-dimensional signal vectors is formulated as a pointtbe Grassmann manifold, a multi-dimensional data
matrix will be the basic element representing this pointe Tirassmann manifold is widely regarded as an ideal
model for multi-dimensional signals and has been extehsisteidied in various subfields of signal processing,
e.g., wireless communication [26][2[7]28][29]130], imagrocessing [31][32], and machine learnihgl[33][34]. The
reason why the Grassmann manifold is used to explore thdestahbedding of linear subspaces via random
measurement matrices is twofold. First, the Grassmannfoidrtias rich topological structure such as geodesics
and metrics[[26], and various distance measures can be ddfirdescribe the relationships between points on the
Grassmann manifold [35][36][37][34]; and second, it alfous to formulate and analyze linear subspaces as points
in a continuous space, as a matter of fact, the Grassmanrfaithis a natural generalization of the unions of
subspaces in the sense that a union of subspaces is actuallysat of several isolated points in the Grassmann
manifold. Thus from this point of view, the Grassmann maddifis intrinsically preferable in our exploration for
stable embedding of linear subspaces.

It should be mentioned that another important work by Weiyuaxd Babak Hassibi [38][39] discussed a certain
topic of CS using the Grassmann manifold. The principaledéfhce between the work of Weiyu Xu et al. in
[38][39] and this paper is that, their analyzes|inl[38] anf][8nly involved the conventional vector-form signals,
i.e., the approximately sparse signal vectors, and thesBraisn manifold was used as an analytical framework to
analyze the null-space property of random measuremenicesiti38]; whereas our work proves a new volume-
based stable embedding property of points on the Grassmanifaid, and reveals a general stable embedding of
linear subspaces via Gaussian random measurement matrices

The main contributions of this paper are threefold. First, farmulate multi-dimensional signals as points on
the Grassmann manifold, to study the stable embedding o§sBrann manifold via Gaussian random matrices.
This formulation allows us to use volume as a generalizednnfoinction, and the product of principal sines as a
generalized distance measure, to describe this genebdé stembedding of linear subspaces based on Grassmann
manifold.

Second, the property of Gaussian random matrices that =ipmately preserves the volume of all parallelotopes
residing in a finite set in Grassmann manifold is proved, amsdfficient condition on the dimension of Gaussian
random measurement matrices to guarantee this corresgpistible embedding is given. To the best of our
knowledge, this volume-preserving embedding propertyrfaseen discussed previously, and this novelty is one
of the main contributions of our work. The volume is choseraagneralized metric or distance measure of points
on the Grassmann manifold, in order to explore the stableeedihg of linear subspaces via Gaussian random

measurement matrices. The reason for the choice of voluthaisin conventional Euclidean space, each point is a
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vector and the metric measure is induced by the vector nonetifun, whereas for a linear subspace, a set of linearly
independent vectors spanning this subspace, i.e., a [ms@mmonly used to specify this subspace; therefore, we
can treat the volume of the parallelotope spanned by a setaibrs as a multi-dimensional generalization of the
norm (or length) of an individual vector. Volume is a key dchaeristic for the space of Grassmann manifold.
Typically, the volume of parallelotopes spanned by the dasfesubspaces has been used to provide a measure
of separation between different subspaces [35][36]; andeagknow that principal angles provide a wide class of
metrics and distance measures on the Grassmann manifdldfj@Aolume is also closely related to the principal
angles between subspaces|[36]. Motivated by these fastersise the volume as a generalized norm function of
points on the Grassmann manifold, and prove the volumespriesy embedding property of Grassmann manifold.
This volume-based stable embedding property, analogoubetdRIP and stable embedding property based on
length, is given in a probabilistic formulation, i.e., thislume-preserving property is satisfied with a notably high
probability under a certain condition on the dimension ofam@ement matrices. We provide a rigorous proof of
this volume-based stable embedding property, as well assksons on its differences from and connections with
the previous result of RIR_[7] and stable embedding of uniminsubspaces [14][9]. To derive our result, we use
such techniques as the theory of random matrices to der&ecdincentration inequality for the determinant of
random matrices, and knowledge of high-dimensional gegntetobtain an improved result of covering numbers,
as well as the matrix perturbation theory and the union bolini shown that the result is a high-dimensional
generalization of the results of stable embedding for umiohsubspaces and RIP. Indeed, if we only consider
1-dimensional "parallelotopes" in our theorem, the volwpneserving embedding property reduces back to the
conventional length-preserving embedding property fdividual vectors lying in certain unions of subspaces.

Third, using the theorem of volume-based stable embeddwegalso derive a theorem to describe the stable
embedding effect on a generalized distance measure, hiee product of principal sines, between points on the
Grassmann manifold, via Gaussian random measurementastli is shown that our generalized distance measure,
i.e., the product of principal sines, can be directly datifi®em volume. Then we prove that the product of principal
sines is theoretically preserved via Gaussian random memasmt matrices using knowledge of our volume-based
stable embedding property.

Throughout this paper, we use small bold letterto denote vectors, capital bold letteks to denote matrices;
we use|| X ||, and ||x||, to denote the/, norm of the matrixX and vectorz, and usel; to denote the identity
matrix of dimensiond. span(X) is used for representation of the linear subspace spannedlbgnn vectors of
the matrix X, and [X, Y] for the juxtaposition of the matrixXX andY. P and E denotes the probability and
expectation respectively.

The remainder of this paper is organized as follows. FirstSéection Il, necessary definitions, such as the
Grassmann manifold, volume, principal angles, and stablbeelding based on length of vectors are presented.
Next, the main results of this paper, i.e., the theorem fentlume-based stable embedding property of Grassmann
manifold, as well as the stable embedding effect on a gamedatistance measure for points on the Grassmann

manifold, is stated and discussed in Section Ill. The slegtgbroof of our main results is provided in section 1V,
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and finally detailed proofs are included in appendices.

Il. PRELIMINARY BACKGROUND
A. Grassmann Manifold and Unions of Subspaces

The unions of linear subspaces model is a general signal Intodemonly used in CS [15][16][17][18]. The

signalx in this model is assumed as a vector from a union of linearpades, defined as [12][14]
X = CJ}Q CRY, X ={x=Xio, X; e RV** a; e RF}, (3)
=1

where the matrixX;'s column vectors form the basis of the corresponding sutespg with span(X;) = &;, and
dim(X;) = k < N. The unions of linear subspaces model is a generalizatitheo€onventional sparse model (for
the sparse model, the columns Xf’s are the canonical bases ahd= (JZ)) and incorporates many signal models
in the conventional Compressive Sensing settings.

The Grassmann manifold Gr, V) is defined as a topological space in which each point isdimensional
linear vector subspace & (or CV). In general, a union of subspaces[ih (3) is equivalently ieficollection of
different points in Gtk, N), that is,

G(k,N,L) = {X,,--, X}, X eGrk,N),1<i<L. (4)

As far as we know, although the unions of subspaces modeliis ganeral and offers extensive applications in
various fields of CS, there is no theoretical analysis dbsagithe relationships between these subspaces and the
implication of their relationships in CS, whereas the Gmaaasn manifold enables us to describe these relationships
by exploiting its topological structure. As in [B4][36][BB7], different metrics and distance measures have been
used to describe the topological structure of the Grassmmaamifold. From this point of view, the Grassmann
manifold is intrinsically preferable for describing retatships between subspaces, and enables the study on stable

embedding of subspaces.

B. Sable Embedding Property for Unions of Subspaces

The stable embedding of unions of subspaces, also equilyateferred to as A-RIP"[14] or "Block-RIP"[15],
describes the length-preserving embedding property ofov&dn a certain union of subspaces via compressive
measurement matrices| [Q]]14]. A well-known sufficient citiosh for the stable embedding property via Gaussian
random measurement matrices was given by M.E Davies et &009 [14] and stated that, for i.i.d. Gaussian

random matrice® € RM*N with each entryp; ; satisfies

1
bij ~ N(0, M)a (5)
if for any ¢ > 0, and any constarit < ¢ < 1,
2 12
> -~
M_Cé(log(2L)—|—klog(§)—|—t), (6)
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then the property of length-preservation
(1= )l < [[@]l3 < (1+8)]ll3, @)
holds for all vectors in a union of subspaces X = UiL X; with probability
P>1—e". (8)

As is known, this length-preserving embedding property exftors in unions of subspaces via Gaussian random
sensing matrices can be equivalently generalized to thandis-preserving embedding property(inl[14]:

For i.i.d. Gaussian random matricésc R™*N with each entry satisfyind(5), for any> 0, and any constant
0<d<1,let

M > %(10g(2i} + klog (%) + t), 9)

where L = L(L — 1)/2, then the property of distance-preservation
(1= 0)l[e1 — 223 < [|B21 — Px2]|3 < (1+0)[|21 — 223, (10)

holds for all vectorse, z- in a union of subspaces with probabili/> 1 — ¢,

C. Volumes in the Grassmann manifold

As is known, any element of G, N), i.e., anyk-dimensional linear subspace c R¥ is usually specified by
a matrix of full column rank
X =[x, 20, ,xx] € RV k< N, (11)

with columns forming the basis of the corresponding subspee.,span(X) = X € Gr(k, N).
The d-dimensional volume of a full-rank matri§ = [s1, - - - s4] € RV*9, with 1 < d < k andspan(S) C X €
Gr(k, N), is defined as[[40]

d
vola(8) =[] o, (12)
1=1

whereo; > 09 > -+ > 04 > 0 are singular values of matrig. The volume of the matri)S is also referred to as

the d-dimensional parallelotope spanned by the column vectos. ®ecauseS is of full column rank, the volume

volg(S) = /det(STS). (13)

Particularly, ifd = 1, S = [s1], vola(S) equals|/s1 |2, i.e., the length of this single vector; & = 2, voly(.S)

is equivalently [[40][36]

becomes the area of the parallelogram spanned by the tworsegtand s., and if d = 3, vols(S) is the volume
of the parallelepiped spanned by the three vectarss, and s3. From this point of view, we can say that the
volume of a parallelotope is a multi-dimensional geneadion of the length of a vector. For convenience, we call
voly(S) in (I2) the volume of subspaepan(S) corresponding to matri € RV*<,

Volume is an important quantity in the Grassmann manifolacsp it provides a measure of separation between

two linear subspaces and is closely related to the prin@pagles between subspaces|[36][41]. In fact, for any
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two k-dimensional linear subspacas Y with X' ()Y = {0} and spanned by columns of matricAsandY’, the
principal anglesr/2 > 64,--- > 6, > 0 betweenX and) satisfy[36]

k
volak ([X, Y]) = voli(X) vol(Y) - [ [ sin 6, (14)
=1

where we refer to the expressicﬂhf:1 sin #; asthe product of principal sines [36]. Indeed, we can define a wide

class of metric measures using the principal angles[3F][84)., the geodesic distanek;(X,)) = Zk 6?

i=1"%>°

and the projection distancép(X,)) = (Zle sin? Gi)l/Q. According to [37], various measure functions that

may not be as strict as metrics (which must satisfy the ttengequality) also can be used as distance measures
for different points on the Grassmann manifold, and follogvthe terminology used im [37], without verifying the
triangle inequality, we choose the product of principaksiinduced by the volume in{14) as a generalized distance

measure on the Grassmann manifold in the following analyzes

[1l. MAIN RESULTS
A. Formulating Multi-dimensional Signals as Points on the Grassmann manifold

The definition of Grassmann manifold indicates that it iSfgnable to study multi-dimensional signals generated
from linear subspaces. In this section, we introduce thefibation of multi-dimensional signals as points on the
Grassmann manifold. This formulation implies that, theibatement to be received and processed will be a multi-
dimensional data matrix, with columns containing an arrbglifierent sampled vectors, and the definition in terms
of signals on the Grassmann manifold will be:

Definition 1: The multi-dimensional data matrix received from the sigmedjuisition front-end
X =[xy, - ,xp] e Rk 2, e RV 1 <0 <k, (15)

is called a signal on the Grassmann manifold, where x;'s are different sampled vectors composing this multi-
dimensional signal.

Generally, these; are linearly independent, thus we hayewn(X) € Gr(k, N), and each data matriX will
specify a point on the Grassmann manifold &tV); therefore a signal on the Grassmann manifold is repredente
by the data matrixX as in [I15).

A simple example of this formulation can be found|in][30]. e tmultiple-antenna communication systems, there
exist M transmit andV receive antennas with/ < N, and the channel fading coefficients formVax M matrix
H, the received multi-dimensional signal over a periodo{D > M) samples from théV receive antennas can
be written in a matrix form:

Y=HX+W,

where X € RM*P with row vectorsz; € R? corresponding to the transmitted data at ttie transmit antenna
andY € RV*P with rows y; € RP corresponding to the received data for ik received antenna. In addition,

W ¢ RMxD denotes the additive noise. The data matki¥ can be formulated as a signal on the Grassmann
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manifold Gi(M, D) and YT as the version ofX” corrupted by noisé¥. This is a typical example of the
formulation of signals on the Grassmann manifold.

For another famous example in_[34], in the subspace-baseditg problems, where the data to be learned and
classified are generated from linear subspaces, data ematcin[(15) are formulated as signals on the Grassmann
manifold. Then various metric functions in Grassmann naditan be used as kernel functions, to enhance the
learning and classifying performance of Linear DiscrinmhAnalysis [34].

Similar to [1%), we also formulate multi-dimensional sitmi the compressed domain in termsanfnpressed
measurement signals on the Grassmann manifold, and what is received as an element from the compressive
measurement front-end is also a multi-dimensional dataixpahe definition is:

Definition 2: The data matrix from the compressive measurement fronf@maed as
Y =[y1, -, yi] = [®z1, -, Bxy] € RM*F (16)

is called a compressed measurement signal on the Grassmann manifold, where ® ¢ RM*N M < N is the
measurement matrix, anel;’s are different orignal signal vectors before compression

As is mentioned, in most general settings of CS, the origsigthal vectors are supposed to lie in a union of
subspaces, i.e., a finite set in Grassmann manifold. Thusriéal signal on Grassmann manifold specifies a
point X;(1 <4 < L) in afinite setG(k, N, L) as in [4), and the compressed measurement signal on then@naiss

manifold, i.e.,Y’, specifies a poin®X; (1 <+ < L) in another finite set
gl(kvaL) = {¢le 7¢XL}7 (17)

where®X; := span(®X;) C Gr(k, M)H represents the subspaces transformed by the measurentent dha

Our objective in this paper is to study the stable embedditly r@spect to these two finite sets on the Grassmann
manifold, i.e., the set of signals on the Grassmann manigqll N, L) and the set of compressed measurement
signals on the Grassmann manif@d(k, M, L).

Next, we will use the volume if{12) as a generalized norm fiong and the product of principal sines in{14)
as a generalized distance measure, to explore the stabledeing of points in a finite set in Grassmann manifolds.
Before we start, a definition of the general stable embeddiogerty of Grassmann Manifold based on volumes
is required:

Definition 3: (volume-based stable embedding property) We say that thesumement matrix@® provides a
volume-based stable embedding of a finite set in Grassmamifotth i.e., G(k,N,L) C Gr(k,N), with the
dimension of volumed (d < k) and coefficient(4, ), if for every matrix § € RV*4 with span(S) C &; €

G(k,N,L),1 <i<L, we have

vola(®S) _ 4 . (18)

log ~01(8) =

11t is noted that for the random matrik, if k is sufficiently small, the dimension of the subspa@d’; is the same as; almost surely. So

it will be a general assumption throughout this paper that(®X;) = dim(X;) = k.
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alternately,
A — e <log(voly(®5S)) — log(voly(S)) < A+e. (19)

We will show that this definition of volume-based stable ediieg property will be supported by theoretical results

from the following several theorems.

B. The Volume-based Sable Grassmann Manifold Embedding

Theorem1: Consider a finite set in Grassmann manifg@dk, N, L) and a random matrip € RM*N with
elementsp; ; being i.i.d Gaussian random variables with mean 0 and veeiap\/; for any constant < Cs < 1

and any integet < d < k, for the matrix
S = [317"' 7Sd] € RNXd’ |‘Sj||2 =1, 1<j<d,

where

span(S) C X; € G(k,N,L), 1 <i< L,

satisfyingvol;(S) > Cs, we have

d
:%Z(w[(]Vf—P+1)/2]—|—1og2—10gM). (20)

p=1

VOld(‘I)S)

Elog 70108

And there exist constants > 0, andC, C’ > 0, only depending orC’;, such that for any) < ¢ < d24,(1 + C")

and¢ > 0, if
M s A0 0/)221 D A iogar) + A3k~ 1)log(e - d) +d- pos( X 1) -1 @)
then
‘ o8 Viﬁ?s? ~Elog Viﬁ?s? =¢ 22

holds for every matrixS with probability
P>1-e" (23)

wherey(z) = % logT'(2)| .= is the Digamma function (for Digamma function, refer fol[¥2]

Theoren{ 1L describes the approximately volume-preservingesty of a finite set in Grassmann manifold via
Gaussian random measurement matrices. A sufficient conditi)M, i.e., the number of compressive measurements,
in (21) to guarantee the volume preservationdn (22) is givefmheorentlL. IfM is bounded ad(21), the volumes
of all matrices from the finite set in Grassmann manifold canapproximately preserved with an overwhelming
probability, as in[(2R). Here are some further discussion:

1) The matrices discussed in Theorem 1 are conditioned te hait-norm column vectors, i.gl|s;|lo = 1,1 <
j < d. This constraint is for convenience of proof and implies osslof generality; actually, if there is any column
s; of § =[s1, -+, 84] that is not unit-norm, such dss;||2 = ¢ # 1, then the volume of the column-normalized
matrix § = [s1,---,8;/|s5ll2,- - , 8a] Will be volg § = ¢~ - voly(S), the only difference is a multiplication of

a constant. Therefore, it is sufficient that we only consitter parallelotopes spanned by unit-norm vectors.
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2) An axillary paramete€’; is introduced in Theoreid 1. It is the lower bound of the volwhenatrix § € RV >4
to ensure the validity of conclusion. Indeed, for fixed> 0, if Cs becomes smaller, thefi’” will become larger,
causing the lower bound i (P1) to increase, meaning thasthkle embedding is more difficult to achieve for
smaller volumes. In fact, if the volume & is too small, i.e.,volg(S) is tending to zero, then the dimension of
the corresponding subspaggan(.S) will become less thad. The volume-preserving properties for dimensibn
are somewhat meaningless for these subspaces with dimdas® thand.

3) The main result of volume preservation is shown[inl (22) @®). The parameted ande from Definition
can be easily derived frori_(22). Furthermoreif satisfies the bound i (P1), then log ratiowfl;(®.S) and
volg(S) will concentrate around its expectation

d
%Z(w[(M—p—l—1)/2]+10g2—10gM), (24)
p=1

It should be noted that this expectation value depends onlWibandd, so N > M is not relevant here.

The curve of [[24) is plotted in Figufd 1, wheid ranges from 500 to 5000 antiranges from 10 to 70. It can

Curve of E{log[Vol, (®S5)/Vol, (S)]}

00L S —— "

|
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|
=
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E{log[Vol, (®S)/Vol, (S)] }

ok R e R e SR ]

d
£{108[Vol, (95)/Vol, ()]} =} 2(V1(M-p+1)/2] +10g2-logM)
p:
—2.5§ R R R S R '
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
M

Fig. 1: the expectation curve the log ratio of volumed,;(®.S) andvoly(S) in which we choose\/ from 500 to
5000 andd from 10 to 70

be observed that the value ¢f{24) is slightly less than Oclhheans the effects of the random measurement
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matrix on the volume of subspaces are slightly "biased". antbiased", we mean the log ratio 0bl;(®.S) and
volg(S) does not concentrate approximately around O but around fdfitionally, asM increases,[(24) grows
closer to 0, which indicates that more measurements pradess "bias" of the volumes of subspace. However,
when d becomes larger[(24) deviates away from 0, which means themeopreservation becomes worse when
the dimension of subspace increase.

Indeed, if we use asymptotic expansioni[42] of the Digamnmetion (x), which isy(x) = log :c——+O(IL)

then we have

N~

d
1 1
1;(1og (M—p+1)—logM — M—p+1+0((M—p+1)2))’
(25)

and it can be observed that & — co andd/M < oo, (24) will tend to 0, and ad grows larger,[(24) will tend

d
%Z (¢[(M—p+1)/2]+10g2—1ogM) —
—1

away from 0. This explains the curve in Figlde 1.
4) As is shown, Theorein 1 describes the volume-preservirgedding for all matrices with a given number of
columnsd, different values ofl determines different measurement bound$in (21) as weliffeseiht concentration

inequalities in[(2R). Particularly, i# = 1, the 1-dimensional volume is length, i.eql; (s) = ||s||2, and we obtain

[®s]2 1

El = —(Y|M/2] +1log2 —log M), 26
og o ® = 5 (4(M/2] +10g2 ~log M) (26)

and if

41+CH1+C 3 3(1+C

M > (1+ 6)2( + )[1og(2L)+(ik—l)log(e)—i—klog((%])—i—t, (27)

then
‘bg [®s]l2 ||<I’8|2}‘ (28)

IIsl2 sl

holds with probability of at least — e*.
Compared with the length-preserving embedding of unionsubkpaces proposed by Davies et al, the measure-
ment bound in[(27) shows a little difference wilh (9). The ma@ason for these differences is that we use a different
approximation method to analyze the probabilistic conegioin of volumes of multi-dimensional parallelotopes,
and this method may be slightly rougher for the 1-dimenditperallelotope”. As a whole, the measurement bound
(Z37) for d = 1 is of the same order withi ]9) by Davies et al.
In addition, it appears if_(26) that[M/ /2] + log2 — log M is less than 0, which means
|53

ez ) < (29)

and the result by Davies and Baraniuk et al. stetes[[14][7]

o 1213

513
The reason is that what we focus on is the concentration ofofpeatio of ||®s|» and||s||2, and the difference

E(log

)=1. (30)

between[(20) and_(B0) can be explained by Jensen’s Ineguiait,

2 2
Y[M/2] +log 2 — log M = E(log H‘I>s||2) < logE( ”(I)SHQ) =0. (31)

Isli3 * 513
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In brief, the result of Theorefd 1 for 1-dimensional "paraliepes" reduces back to the length-preserving embedding
of unions of subspaces proposed by Davies et al, whereagd@mEbcan be further extended to multi-dimensional
scenarios.

5) The bound in[(21) is the sufficient condition for a Gaussiandom matrix® < R*¥ to provide the

volume-preserving embedding property. Héreshould be of the order of:
M ~ O(d -log(L) + d* - klog(e - d)). (32)

Particularly, whenl = 1,
M ~ O(log(L) + k), (33)

which coincides with the result of stable embedding for nsiof subspaces by Davies et al. Additionally] i &,
then M should be of the order of:
M ~ O(k -log(L) + k*log(k)). (34)

These results indicate that we require additional compesseasurements to ensure the volume-based stable
embedding property.
To be more specific, if we consider the conventional sparsdemda L = (],f) < (eN/k)*, then M should be
of the order of:
M ~ O(d -k -log(N/k) + d* - klog(e - d)), (35)

and if d = 1, (38) becomes the conventional RIP result, id.,~ O(k - log(N/k)).

C. Effect of stable embedding on a generalized distance measure for Grassmann manifold

In this section, we discuss the effect of the volume-praagrembedding on a generalized distance measure
of compressed measurement signals on the Grassmann rdahnifithout loss of generality, we prefer to consider
each point in the original set in Grassmann manifold to b@ilis which means different points iG(k, N, L) =
{X, -, X} satisfyX; X, = {0},i # j HH Before we present the second theorem, a corollary, whiderised
from Theorent 1L, is presented first.

Corollary 1: Consider thel, := L(L—1)/2 pairs of subspace¥; & X; from the finite set in Grassmann manifold
G(k,N, L), with X; (N X; = {0}, # 4, and a random matri® € RM*N with elementsp; ; being i.i.d Gaussian

random variables with mean O and variarigé/; for any constand < C; < 1, and for every matrix

X =[xy, x4 RV |zy|la=1,1<1<d

2| X; N &; # {0}, different methods exists to address the relationshipweset principal angles and volumes. These relationships are
slightly complicated and trivial, so we simply focus on thesntypical X; (| X; = {0} scenario and leave th&; " X; # {0} for future
work.

3The result in Theorefl1 as well as the result in Corol@ry 1 wiilsure thagbX; N ®X; = {0}.
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with number of columnd < d < 2k, wherespan(X) C &; ¢ &; and satisfyingvols(X) > C,, we have

d
E{log%} = %;(¢[(M—p+1)/2]+1og2—10gM), (36)

and there existg; > 0, andC,C’ > 0, only depending orC;, such that for any) < ¢ < d,(1 + C’), if:

12 . B /
My 80EC {; +C) -k [10g(2L)+2k- (3k—1) log(2ek) +41? log((@])—i—bg@k)—i—t} +2k—1, (37)
then
vola($X) vola(X)
e Ea) Rl Snifninll) 97
’k’g vol(x)  Eloe oy | S © (38)
holds with probability
P>1-— eft, (39)

wherey(z) is the Digamma function.

This corollary states a similar probabilistic result of thiume-preserving embedding property for all dimensions
1 < d < 2k, instead of the result for any given dimension in Theokém dcokding to Corollary 11, we obtain the
second main result of this paper:

Theorem2: Consider thelL := L(L — 1)/2 pairs of subspaceqd; @ &; from the finite set in Grassmann
manifold G(k, N, L), with X; N X; = {0},i # j, and a measurement matrd& € R™*Y which satisfies the
volume-preserving embedding property for all dimensians. d < 2k, i.e., ® satisfies corollary]l; then the
principal angles denoted by/2 > 6, (X;, X;) > --- > 0,(X;, X;) > 0 betweenX; and X, as well as the principal
anglest/2 > 6,(®X;, ®X;) > --- > 0, (®X;, PX;) > 0 between®X; and @ X for 1 < i # j < L will satisfy:

. 15, sin 6, (®X;, ®X;)
[T, sin 6, (X, ;)

- %Z (WM —p—k+1)/2] —¢[(M —p+ 1)/2]) < 3e, (40)

p=1

wherey(z)is the Digamma function.

Theoren{ 2 describes the effect of the volume-preservingeeidibg in Theorerill1 on the generalized distance
measure of Grassmann manifold. It is proved that, the pitoofugrincipal sines between points on the Grassmann
manifold is theoretically approximately preserved, ashisven in [40). Similar to previous results, the log ratio of
H:@ sin 6, (®X;, X;) and H:@ sin 0,, (X;, X;) in (40) concentrates around a center, which is

k
5 3 (IOT —p— k4 1)/2] — l(M ~ p+1)/2)). (41)

It also appears thaf (#1) is slightly less than 0, and/if—+ co andk/M < oo, (41) will tend to 0.

The Monte-Carlo simulation results verifying the resultTéfeoren{ 2 are demonstrated in Figlte 2 to Fidure 5,
inspired by the simulation strategy in [11]. In the simwatiwe choose a randomly generated measurement matrix
® ¢ RM*N with each entryp;; independently drawn fromV'(0,1/M); and typically, we choos& = 5000, and
the number of measurement$ as500 and1000. For each®, we generat800 sets of randomly chosen principal
anglesfy, - - - 8, under the constrairibg H’fn sin 6, (X;, X;) > —5. And for each set of angles, 100 arbitrary pairs

of points X; and X; on Gr(k, N) are generated, with dimensiosequal to10 and 20, respectively. For each
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test pairk; and X, the values ofog ]‘[:T sin 6, (X;, X;) andlog an sin 6, (®X;, 2X;) as well as the theoretical
center [[411) are plotted in these figures. From these figuresaneclearly verify the result of Theordm 2.

It can be observed that from Theoréin 2, we obtain a theotadicarantee for the close relationship between
1_[:T sin 6, (®X;, &) and 1_[:T sin 6, (X;, X;). Because we know that

k volor (B[ X;, X))

1;[ sin 0, (®X;, X)) = vol, (®X;) volg (P X )’ “
k
. o volag ([ X, XJ])
ln:[sm O (X3, X)) = voly, (X;) vol, (X))’ *

therefore, we can usé _(42) to measure the distance betwéfenedt compressed measurement signals on the
Grassmann manifold specified by the data matrigs= ®X; andY; = ®X;. Using this distance measure as
in (@2) has intrinsic advantages. First, it is easy to caleylwe only need to calculate a determinant directly on
the received data matriX;, Y; and[Y;,Y;]. Second, as mentioned, the relationship of this distancasore for
G'(k, M, L) with the distance measure for origing(k, N, L) is theoretically preserved by Theoréin 2. Thus, we

believe that the distance measure[inl (42) is both theotltitastworthy and computationally efficient.

IV. PROOF OF THE MAIN THEOREM
A. Proof of Theorem[

This section presents the proof of Theorlem 1. Motivated[ ) éhd [9) proposed by Davies et al. in[14], we
know that the Gaussian random measurement métiian approximately preserve the distances between all gfairs
vectors in union of subspaces with tremendous high proibabiihis intuitively implies that the volume of subspace
spanned by these mutually distance-preserved vectorsshtadd be approximately preserved, as demonstrated in
Figure[®. This is just the statement of Theorigm 1.

Our proof of Theorerfill includes three steps, namely, theartnation inequality, the covering number, and the
union bound. In each step, several lemmas will be given @snregdiate conclusions.

1) Sep 1. The Concentration Inequality: The main conclusion of this step is:

Lemmal: For any full rank matrixS € RV*4 N > d and random matrix@® € RM*N with elementss; ;

being i.i.d Gaussian random variables with mean 0 and veeiaji)/; the volumesvoly(S) and volg(®.S) will

satisfy
VOld(q)S) VOld(q)S)
—a = _ — =<
P{’k’g vol,(5) s Tey | =€
d 1 1
> _ _ 2
>1 2exp{ 6/<4;[M—p+1+C(M—p+1)2]>} (44)
holds for anyz > 0, whereC > 0 is a constant parameter,
d
VOld(‘I)S) - 1
E{ log oli(S) b= 2; (1/1[(]\/[ p+1)/2] +log2 logM)7

andy(z) = % logT'(2)| .= is the Digamma function.
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Fig. 2: Monte-Carlo simulation result qu[fn sin 6,,,(X;, X;) and an sinf,, (®X;, 2X;) as well as the
theoretical center il (40), antll = 500,k = 10
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Fig. 3: Monte-Carlo simulation result qu[’:n sin 6, (X;, X;) and H’:n sinf,, (®X;, 2X;) as well as the
theoretical center iM{40), antif = 1000,k = 10
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Fig. 4: Monte-Carlo simulation result f(lf[f; sin 6,,,(X;, X;) and ]_[f; sinf,, (®X;, 2X;) as well as the
theoretical center il (40), antll = 500, k = 20
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Fig. 5: Monte-Carlo simulation result f(lf[f; sin 6, (X;, X;) and Hf; sinf,, (®X;, 2X;) as well as the
theoretical center iM{40), antif = 1000, k¥ = 20
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Fig. 6: The mutual distance between Euclidean points isaqimately preserved by the measurement madrix

via the stable embedding property

Proof of LemmdL: See AppendiX A.

This lemma demonstrates that for any magix RV >4, the log ratio of the volumes, i.dag(vol(®S)/ vola(S)),
concentrates around its expectation with a probabilisticcentration inequality (44). We can verify the result of
this lemma via Monte-Carlo simulations, as shown in Figur&iven any arbitraryS, N = 10000, d = 50, and M
from 100 to 5000, 1000 times Monte-Carlo simulations forueal oflog(vol;(®S)/ vola(S)) in correspondence
with different M is demonstrated in Figufé 7. The figure shows that most of éheeg oflog(voly(®S)/ vola(S))
indeed concentrate around its expected value.

2) Step 2.Covering Numbers: As mentioned, without loss of generality, we only considex so-called "Unit-
Norm" Grassmann manifold, that is, the corresponding matith respect to each point on Grassmann manifold
has unit-norm columns. In this step, several lemmas arengagefollows.

Lemmaz2: Given any pointt’ on the "Unit-Norm" Grassmann manifold @&, V), fix a constand) < Cs < 1
and an integetl < d < k, there exists a constant” > 0 depending orCs. For any0 < §p < 5, we have a
finite set of matrices

Q:{Qla"' an}

where the cardinality£Q := m only depends o, andd, andQ;,-- - , Q,, € RY*? are full-rank matrices with
span(Q1), - - - ,span(Q,,) C X; such that for any matrix§ € RV*? satisfyingspan(S) C &, voly(S) > Cy, we
can find a

Qr:[QM"'Qd]GQ, T:17"'m7

with q; # qi,j # [, and

. . . g 50)F
The cardinality ofQ satisfies#(Q) < (L(?’/dO) J).
Proof of LemmdR: See AppendiX B.
This lemma states that, for all matric&s= [s1,- - , 84], span(S) C X with unit-norm columns angol,(S) >

C,, if a sufficiently smalloy is chosen, we can always find a finite €tof matrices with different columns, such
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Monte-Caro simulation of log(Voly(®S)/V ol4(S))

log(V ol g(®S)/Volg(S))

Monte—Caro Results,d=10 5

+

O Monte-Caro Results,d=30| :
SISPE *  Monte-Caro Results,d=50
: : Expected Center, d=10 :

i ; N Expected Center, d=30

: == Expected Center, d=50

200 1000 2000 3000 4000 5000
M

Fig. 7: Monte-Carlo simulations for the distribution of uek of log(vol;(®S)/ vola(S)), where S is taken

arbitrarily

that each Euclidean point; on the unit sphere can be covered by at least one ball cerdérgdwith radiusdy
(1 < j < d). Indeed, the theory of covering numbers states that forgivsn o, all unit-norm Euclidean points
in a k-dimensional subspac& can be covered by a finite set of balls with radiigs and the cardinality of this
finite set is bounded $/5,)*[43][7]. This lemma simultaneously covers different psist, - - - , s, satisfying
voly(S) > Cs with balls centered at different; , - - - , g4 for any given0 < Cs < 1. Obviously, the cardinality of
Q is bounded by the combination number of the cardingltys,)*. The intuition of LemmdXR is demonstrated
in 3-dimensional Euclidean space in Figliie 8.

Lemmal2 shows that if the radiu® is notably small,qy,- -, g will be highly close tosy,- - ,s4. Thus,
intuitively, we expect the volumes @, and S to be arbitrarily close, which is stated in the following lema.

Lemma3: Given any pointX’ on the "Unit-Norm" Grassmann manifold @& N) and a random matrix@® €
RM*N with elementsp; ; being i.i.d Gaussian random variables with mean 0 and vegiajiM, fix a constant
0 < Cs < 1 and an integeil < d < k, there exists a constant > 0 depending orCs. For any0 < §p < d5, we
have a finite set of mattices

Q:{Qla"' 7QM}7
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Fig. 8: Covering all of the unit norm Euclidean poings, s2, s3 simultaneously with a finite number of balls

centered aty, g2, g3 in 3-dimensional Euclidean space
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Fig. 9: The volume of a parallelotope spanneddy-: - - , g4 is similar to the volume spanned By, --- ., sq4
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where the cardinality#Q := m only depends on, andd, andQy,--- , Q,, € RY*¢ are full-rank matrices with
span(Q1), - - - ,span(Q,,) C X; such that for any matrix§ € RV*? satisfyingspan(S) C &, volyg(S) > Cy, we

can find aQ, € Q(r=1,--- ,m), and

volg(Q) - exp(—d28y/C1) < volg(S) < vola(Q,) - exp(d?8y/Cs), (46)
volg(8Q,) - exp(—d? Cpdy/C1) < volg(®S) < volg(@Q,) - exp(d? Cydy/Ca). (47)

where C1,Cs > 0 are constant parameters related(g and0 < Cs < oo is a constant parameter related to
matrix . In addition, the cardinality of2 satisfies#(Q) < (L/%)")).

Lemmal[3 shows that because we can simultaneously cover #flecEuclidean points, - - - , s4 that satisfy
voly(S) > Cs with a finite set of balls centered at poinjs, - - - , g4 with radiusd, then an arbitrarily small radius
do will ensure thatvol(S) andvoly(Q,) are arbitrarily similar. The intuition of this lemma can bendonstrated
in 3-dimensional Euclidean space in Figlie 9.

According to these two lemmas, we can obtain the followingre.

Lemma4: Given any pointX on the "Unit-Norm" Grassmann manifold @& N) and a random matrix® €
RM>N with elementsg; ; being i.i.d Gaussian random variables with mean 0 and vegiap)/; fix a constant
0 < Cs < 1 and an integeit < d < k, there exists a constant > 0 depending orC,. For any0 < §y < d,, we

have a finite set of matrices

Q:{le"' aQ’m}a

where the cardinality#Q := m only depends o, andd, andQ1,-- - ,Q,, € RY*? are full-rank matrices with
span(Q1),- - - ,span(Q,,) C X; such that for any matrix§ € RV*? satisfyingspan(S) C &, volg(S) > Cs, we
can find aQ, € Q(r=1,--- ,m), and
3 VOld(q)S) VOld(q)Qr) 3
—d2 < — < d:z
dzC"§y < log voly(S) log oL@ = dz2C"6y, (48)
where0 < C’ < oo is a constant only depend d@rl, and @, and the cardinality of the s&® satisfies

13/00)"
D)

#QS(

Proof: According to Lemmal2 and Lemnja 3, we obtain

volg(®Q),) < volg(®.5) < voly(®Q,)
volg(Qr) ~— wvolg(S) — wvola(Qr)
If we take ¢’ = max{Cqs/C1 + 1/C5,Cs/C2 + 1/C1}, then we obtain
voly(2Q,) _ vola(@S) _ vola(2Q,)
volg(Qr) — wvolg(S) — voli(Q.)

Lemmal4 is now proved. [ |

exp{—d? (Cp00/Cy + 60/Ca)} - -exp{d? (Cpdo/Cs + 60 /C1)}. (49)

exp{—d3C" - 8o} - cexp{d3C’ - 8} (50)
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3) Sep 3. Union Bound: An immediate result from Lemnid 1 and Lemira 4 is stated asvistlo
Lemma5: Consider any point on the Grassmann manifalde Gr(k, N), and a random matri®@ € RM*¥N
with elementsp; ; being i.i.d Gaussian random variables with mean 0 and vegiap)\/; for any0 < Cs < 1 and
any integerl < d < k, for every matrixS € RV*4 span(S) C &, with unit-norm columns angol,(S) > Cs,
we state that there exisfig > 0, andC, C’ > 0, only depend orC,, such that for any) < = < dgés(l + ), we
have:
volg(®S) volg(®S)

log L2H22) o YOUPO) | o 51
‘Og voly(S) %8 oLy (S) ‘—5’ (1)

which holds with probability

Po1_a. (L(Mg(ltlc,)/a)ﬂ)e)(p{_52/(4(1+0/)2§:[M—1p+1+C(M—]19+1)2])}' (52)
p=1

Proof: According to the results from Lemnid 4, we know that for anyegid < C, < 1 and any integer
1 < d <k, for any given0 < §p < d; we can always find a finite s&® such that[(48) holds for every matri&
, span(S) C X with unit-norm columns andol,;(S) > Cs. Combining the result of Lemnid 1, Lemrh 4 and the

union bound, we obtain:

’ 3 VOld(‘I>S) VOld(‘I>S) ’ 3

— —dz < [ A — — K 2

e —d2C"§y < log vol,(S) Elog vola(S) = e +d2C"9 (53)
holds for every matrixS and anys’ > 0 with probability
[(3/60)" (S~ 1
>1-2- - .

P>1-2 ( ) exp{ e /(4;_1:[ — 1+ _p+1)2])} (54)
If we takee’ = d2 8, and lete = (1 + C")d2 6, then we producd (51) and{52). n

Next, we finish the proof of Theorefi 1.

Proof of Theorem [Tt

The result of Lemm@]5 shows the concentration inequalitafiamatrices in one poink; on Grassmann manifold,
and we can use the union bound to extend the result to eveny fpom the set in Grassmann manifddk, N, L).
Thus, for every matrixS satisfyingspan(S) C X; in every point of the seg(k, N, L), with voly(S) > Cs, (B1)
holds with probability

(343 (1 +C")/e)¥) nexey 1 1
11»21_2/:.( J >exp{—€2/(4(1+0)2;[M_p+1—|—C(M_p+1)2])}. (55)
Next, according to the Stirling’s Inequality:
(L(gdg ! ch)/g)k” < (e[ (32 (1 +CN/e)* | /)" < (e-d=F 1 [B(1+C") /)M, (56)

we state that if
d

1 1
1/(Z[M—p+1 +C(M—p+1)2]) =

p=1

4(1+C")?
e2

3(1+C")

[1og(2L) +d- (gk— 1) log(ed) +d - klog([ D+, (57)
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thenP > 1 — e~*. Because

56[ L, 1 | < d__,__Cd
M —p+1 " (M —p+ 1P T M—d+1 (M—d+1)?
d
< - -
- M-d+1
Therefore, for the sufficient condition that {57) holds, wsain

A1+ C)2(1+C)-d
52

Thus, Theorenll is proved.

(1+0). (58)

3(1+C")

M > 1og(2L)+d-(gk—l)log(e-d)—i—d-klog([ D+t +d—1. (59)

B. Proof of Corollary [I

According to Theorenll, if we simultaneously consider twongX;, X; € G(k,N,L),1 < i # j < L in
the finite setG(k, N, L) with X; (N X; = {0}, then [36) is a direct conclusion. Next, we know that all o th

L = L(L — 1)/2 linear subspaced; & X; will form a new finite set in Grassmann manifold, i.e.,
G(2k,N,L) :={X; @ Xj;,1 <i+#j <L}

Next, for any given0 < Cs; < 1 and any dimensiofl < d < 2k, the Gaussian random measurement matrix
& c RM*N will provide the volume-based stable embedding for everyrimaX < RY*4, with voly(X) >

Cs,span(X) C &; @ X;, which means that there exisis > 0 andC, C’ > 0 such that for any

0<e<d?d,(1+C"), (60)
if
M > 4(1—!—0’)251 +¢) .d[log(2f/)+d- 3k —1)log(e-d)+d- 2k10g((@])+t} +d—-1, (61)
then
d
—5§10g%—%;(w[(JVf—p+1)/2]+10g2—10gM)§5, (62)

holds with probabilityP > 1 — e™*.

Therefore, according to the union bound in probability, & wequire the volume-based stable embedding property
of all matricesX for all dimensionsl < d < 2k andvola(X) > Cs, the sufficient condition is that there exists
ds > 0 andC,C’ > 0 such that for any) < ¢ < d;(1+C") (i.e., less than the lowest bound In(60) whee- 1), if
M satisfies the largest measurement bound fod'alli.e., the bound in[{61) whed = 2k), then the concentration
inequality [38) will hold with probability

P>1-2k-e % (63)

By replacingt with ¢ + log(2k), we obtain the result of Corollafy 1.
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C. Proof of Theorem[2

Theoreni 2 is proven using the result of Corollary 1. Cons@dery pair of pointsY; andX; in the setG(k, N, L),
if we take their unit norm basisx; € RV** and X; € RV**, satisfyingspan(X;) = A;,span(X;) = X; as
well asspan([X;, X;]) = &; & &}, then for a giverd < Cs < 1, volax ([ X5, X;]) > Cs for everyi # j 1. The
relationship between volume and principal angles implies

k
volyi (B[X:, Xj]) = vole(®X;)  vol(BX;) - [ [ sin b0 (DX;, BX;), (64)

k
voloi ([Xi, X;]) = vol(X) - voli(X;) - [ [ sin Om (s, &;). (65)

Because of the unit-norm condition on the columnsXofand X ;, we havevol;(X;) < 1 andvol;(X;) < 1, the

relationship in[(6b) also indicates thabl, (X;) > Cs andvol,(X;) > Cs, and thus

ko
log 1L, 21n O (BX;, BX;) ~ log volok (R[X;, X)) log voly (®X;) log vol, (®X;) ' (66)
15 sinf,, (X, &) volak ([ X, X)) voli (X) voli (X;)

Next, according to[(38) in Corollafyl 1, if the measurementrina® provides volume-based stable embedding for

every matrix X with every dimensionl < d < 2k andvoly(X) > Cy in the setG(2k, N, L), then

volor (@[ X1, X)) 2k

1
el e a0 (VM = p+1)/2] +10g2 ~log M) <&, (67)
k
—sglog%—%;(w[(JVf—p+1)/2]+10g2—10gM) <e, (68)

k
volu(®X;) 1
—& 1 5 Z

<1og TS ($1(M = p+1)/2] +log2 — log M) < ¢, (69)

and combined with[{86), we prove this theorem.

V. CONCLUSION

In this paper, by formulating subspaces as points on thesBrasn manifold, we studied the stable embedding
of linear subspaces via Gaussian random matrices, and ggdpa volume-preserving embedding property of
measurement matrices based on the Grassmann manifold. Tassrnn manifold enables us to establish a
new theoretical framework to study multi-dimensional silgn In this paper, we proved a volume-based stable
embedding of a finite set in Grassmann manifold via Gaussiaadam matrices. We showed that volumes of
parallelotopes in every points of Grassmann manifold isgmeed via Gaussian random measurement matrices. The
number of compressive measurements required to ensureathle embedding of Grassmann manifold with high
probability was also obtained. This property is a multi-dimional generalization of the conventional RIP or stable

embedding property, which only concerns the preservatidength of vectors. Additionally, we further explored the

4The existence of; can be guaranteed by the disjointnesstfand X, which indicatesvoly ([ X, X;]) # 0.
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application of this volume-based stable embedding prggerstudy the embedding effect on a generalized distance
measure for compressed measurement signals on the Grassmaaifold. We found that the generalized distance
measure between compressed measurement signals on tlsen@nasmanifold, i.e., the product of principal sines,
is well preserved via Gaussian random measurement matRogsrous proof and discussions as well as numerical

simulations were provided for validation.

APPENDIXA

PROOF OFLEMMA [1]

To prove Lemmall, several preliminary results are required.

Lemma6: Consider a Gaussian random matdx € RM*N N > M with each entryp; ; satisfying¢; ; ~
N(0,1/M), For any full-rank matrixS = [s1,s2,---,84] € RV*4 d < M, the volume of the parallelotope
spanned byS € RV*4 and ®S € RM*? satisfies

VOld(i’S) F

1
o8 o(S) 2

log det(<i>dT<i>d), (70)

where®, € RM*4 js also a Gaussian random matrix with entries satisfyiig 46}l the "F" above the equality
means that the right side has the same distribution funetothe left.
Proof:
From the condition of this Lemma, if the matr& € RV >4 has full column rank, then we can apply a singular

value decomposition:

S=U vT, (71)

whereU € RV*N vV ¢ RF*F are orthogonal matrices of the left and right singular vestand
Ed = dia@KUIaU% e 70d)

is a diagonal matrix whose entries are singular valwesr, - - - , og4.

According to the definition of volume if_(13),

(vold(@S))2  det(STBT®S)
volg(S) det(STS)
hIF)
det(V [£4, 0] UTSTSU vT)
o
hIF)
det(V [£4,0]UTU VT)
@)
1,
det(VE, [Iy, 0| UT@TSU =,V
N det(VEIVT)
_ det(X7 T ®4X0) 72)
det(XTX,)
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where

. I
d,—0U | ! | erM x,—3,vT c RIXC

(0]

It is not difficult to prove that®, ¢ RV *? is still a Gaussian random matrix with entries satisfyinly (5

Next with the knowledge of the multiplication property oftketerminant of square matrices, we obtain

det(XT®T®,X ;) _ det(X7T) det(®T ) det(X ) _ Jaeu @y 73)
det(XTX,) det(XT) det(X ) a=d)
and combined with[{42), the result of this lemma is proved. [ ]

Lemma7: (Bartelett Decomposition| [42]) For a Gaussian random mab; € R >4 d < M with each entry
¢i; satisfyinge; ; ~ N'(0,1/M), the random variabléog det(®7®,) has the same distribution as the sumdof

independentog x? random variables, that is:

d
log det (97 d,) £ Z [log X3 pi1) — log M. (74)
p=1
The "F" above the equality indicates equality in distribuati andé‘(ﬁ_erl denotes a chi-square random variable
of orderM —p + 1.
Combining the result of Lemnid 6 and Lemfida 7, we prove Lerma 1.
Proof of Lemma [1t

According to Lemmal6 and Lemnia 7, we must derive the condémranequality of the sum ofl independent

log x2 random variables il (74), becausg[42]

E( S Log(A3; 1)) = S (V11 = p+1)/2] +1og2], (75)

p=1 p=1

where(x) is the Digamma function mentioned previously. Given that émtries of a Gaussian random matrix
satisfy ¢;; ~ N (0,1/M), we obtain

volg(®S), 1<

vola(S) } ~ 5}; (V1M = p+1)/2] + 10g2 ~ log M). (76)

E{log

Thus, the problem becomes the concentration inequalityhisrrandom variable

d d
. volg( (I>S 1 F 9
Z=log = Z( [(M—p+1)/2)+log2— 1og]V[) £ ;bg(xM,pH ; { [(M—p+1 /2]+10g2}
(77)
According to Markov’s Inequality, we state
P{Z > e} =P{e* > e*} < E(e”) for anye > 0,A > 0 (78)
et =Pe e S T y e ) )
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whereE(e*?), X € R is the Moment Generation Function. Thus ([42], A.7 [of[44])

E(exp(AZ
d

— H E(exp(Alog X437 ps1)) -

p=1
d

3
_

1
1

d

logE{exp(\Z)} = Z (logI‘[(M —p+1)/24+ N —logT[(M —p+1)/2] = Wp[(M —p+ 1)/2])

p=1

If we use the asymptotic expansion of the Gamma function aigeéwrBma function[42], we obtain

)

1

1

exp{A(Y[(M —p+1)/2] +log2)}

B0 ool —p T D] P
(M —p+1)/2+ A 5 1
(3 —p+ 1)/ exph - O[0f —pt Dy2]} 2
(M —p+1)/2+ ) 1

(M —p+1)/2]  exp{A-9[(M —p+1)/2]}

whereI'(z) is the Gamma function. Taking tHeg of both sides, we obtain

1 1

logl'(z) = zlogz—z-— —10g—+—+O

P(z) = logz— 2—12 + O(

Using Taylor expansion, we obtain

logT[(M —p+1)/2+ A —logT[(M

= Alog[(M —p+1)/2] -

—Alog[(M —p+1)/2] +/\M

(

Consider the remainder term

in 84), for sufficiently largeM, there existsM, € N, Cy > 0 such that for allM > Mo,

If we take

and let

October 30, 2018

1

|z

or | 12z (|z|2)

2

—p+1)/2] = W[(M —p+1)/2]

+\? 1

/\M—

p+1 M-p+1

/\2
+O(

1 1

-p+1

O
M—p+1+ ((M—p—i-

Rar = O(1/(M —

i)

p+1)%)

Ry < Co/(M —p+1)2.

Cy =Ry - (M —p+1)%

C = max{Cp, -

p <M < My

7OMO7 OO}’

(M —p+1)?

)

26

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)
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then
Ry <CJ/(M —p+1)? (87)

holds for all M > p. Thus, the result i ({79) will become:
d

E(exp(AZ)) < exp{)\Qg [M_1p+1 t 0 _i+ 1)2}} (88)

holds for a constanf’ > 0, and [78) becomes
d

1P>{Z>s}§exp{—Ae+AQZ[M_1p+l+(M_ZJrl)zH, (89)
p=1

which holds for any\ > 0. Thus, we can choosk such that
d

. 1 C
P{Z > e} Sargr/&llg{exp{ —/\s—l—/\ngl [M—p—i—l + (M—p—i—l)z}}}’ (90)
If we take 4
1 c

/\minzg/(Z;[M—pHJr(M—p+1)2])’ oD

then .

1 c

P{Z>5}§6Xp{_52/(4Z[M—p+1+(M—p+1)2])}' (92)

p=1

We can easily prove the same result Br—~Z > <}; as a result, Lemmla 1 is proved.

APPENDIXB
PROOF OFLEMMA [2
Lemmal2 is a direct derivation of the theory of covering nursb&rom the knowledge of covering numbers
[7][45], for any givend, > 0 and any giverk dimensional linear subspacdé, there exists a sea® of finite elements
with cardinality #(Q) < [(3/d0)*|, such that for every € X, ||s||» = 1, we can find at least ong € Q with
lgll2 = 1 satisfying

s —gll2 < do. (93)

Then for any matrixS = [s1,- - , 84|, span(S) C X with unit-norm columns aneol,(S) > C;, we can also find
g, for eachs;, such that

Is; —qjlla < 0o, j=1,---,d.

What we need to prove is that for an arbitrarily sm&l] theseg; in corresponding withs; will be different for

different ;.
As known from geometry, the volume of parallelotope sparimed = [s1, - - - , s4] equals the distance between
any vectors; and the hyperplane spanned By;;y := [s1,--- ,8;-1,8j11,- - , 84 multiplied by the volume of
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S{124y; that is:
C? <vol3(8) = det(STS)
_ det( ;fsj ;;T Stz )
Suzny®i SuznSuzi
-1

= det (S Spizsy) - det (785 — 8T S 12y (ST Suiiy) Sty )
= voliy (Suwi) - I Pigy il 54

where Py, := In — Suzjy (S{l#}s{l#})_lsiﬂ#} is the matrix of projection onto the orthogonal completion

of span(Sy,.;,). Because ofjs;||; = 1,j = 1,--- ,d, using Hadamard's Inequality, we statel;_1 (S;;) < 1,

and thus
1Pisjysill3 > volg s (Squzsy) - 1Ppigsysill3 > CZ. (95)
Intuitively, we also state
1Pissysillz < 1P sjll2, V1 # . (96)

The inequality [(9B) is not difficult to prove, because we knibnat

(Pisj, Pisjy85) = 0, (97)
(Pis;j, Pi"sj) =0, (98)
SO
(Psj, Pirsj — P{Jl‘#}sj> =0. (99)
and we obtain
Ps; + Pisj — P{il#}sj =sj— P{il#}sj = PS5, (100)
thus
1Pis; |13+ 1P = Ppigyysill3 = 1Pz 513 (101)

As a result]| Py, 55113 > || Ps; 13, because
{ }

then [@6) is proven, and we obtain
1P sjlla > | Py sillz > Cs, (102)

which holds for anyl < j #1 < d. Because
1P 85113 = lls; 113 — (s, s0) Pl sull3, (103)
If we let s; := s;+ 64, with H(stHQ =0j1, then

(s, 801> = [(s5, 1) + (85, 8,;,)1> > (1= 6;1)°, (104)
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where the inequality comes from the Cauchy-Schwarz inégudk;,d; ;)| < ||s;l|2//d;,:]|2 and|s;||2 = 1, thus
L= (1 =8 = 185113 = (s sn)P[lsull3 > €, (105)

which means
1+/1-0C2>6;,>1—-+/1-C2 (106)

holds for anyl < j #1[ < d; that is

Isj —silla=3d;1>1—+/1-C2, V1<j#l<d. (207)

Thus, we need only to take a certaift’ that satisfiesi") < (1—-+/1—C2)/2, and for any0 < Jp < 5, we

State

lg; — aillz > [Is; — sill2 = lIsj — gjll2 = [[st —qull2 > 1 — /1 = C2 — 250 > 0. (108)

In other words, ifdy is sufficiently small, we can always find a group of differgpt such that the differens;

will be simultaneously covered by balls centered at diffiéeg with radiusdy. From this point of view, the se®

is a subset that satisfids (108) from @lcombinations of elements i@ with #(Q) < |(3/80)¥]. Thus, we obtain
5o)*

#(Q) < ().

APPENDIXC

PROOF OFLEMMA [3

Next, we prove LemmBl3. First, we consider](46).

According to Lemmal2, for ang < Cs < 1 and any integeil < d < k, there existsSgl) > 0 such that for any
0 < 8o < 6, we can always find a finite s&® composed of matrice®.. = [q1, - - , q4],span(Q,) C X, with
q; # qi,1 < j #1<d, such that for all matrice$ = [s1,-- -, sq],span(S) C X, with vols(S) > Cs, there is a
Q. € Q that satisfied|s; — g2 < do,j=1,--- ,d.

If we consider the matrixQ,. as a perturbation of by a matrix E, where
Q. =S+E, (109)

andE = [e1, - ,eq),|lejll2 < do,5 = 1,--- ,d is the perturbation matrix, then we can use matrix pertimhat
theory to analysis the relationship between the volume®Q 0faind S.

We denotes; > 09 > --- > g4 > 0 by the singular values of matri§, andry > > --- > 74 > 0 by the
singular values of matrig.., therefore, according to the Mirsky’s Theorem of singulalue perturbation (Theorem
4.11 of [46]), we obtain

lov =7 <[IS = Qrll2=El2, I=1,---.d. (110)

According to the definition of matrix norm, we state

HEH2 = max {HEmHQ} = Amax(ETE)v (111)
lell2=1" [|2]|2 v
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where A\« (ET E) is the maximum eigenvalue of matrik” E. Next, according to the theorem of Gershgorin’s

Circle[47], there is an integer < | < d, such that
d

Mmax(E"E) — [lell3] < lefe;| < (d — 1), (112)
J#l
SO
IE|l2 < Vd- do. (113)

Combined with [(1110), we obtain

—Vdsy < o < 7 + Vddo, (114)
Ul—\/E(song SO’[-F\/E(so, (115)

From the lemma’s condition, we know that

d
vola(8) = [[ o > C, (116)
and because .,
> ot =tr(STS) =d. (117)
=1
we obtain
d—1
ol =d— o2 <d, (118)

~

1
According to the inequality between the geometric averagkaithmetic average,

“ 1 & d o
C§<a§-£[lo?§oﬁ-(m;o?) <oi- (=) . (119)
we obtain
04> C, - (%)7ﬁ. (120)
However, according to the left side ¢f (115), we obtain
szad—\/ﬁ%zcs-(dfl) T _ s, (121)

As a result, if we take a certail”) such thap < 5% -(d%) @D , then for anysy < &, := min{s{", 5%},

Vd
d _2d11
a2 Gy (7)) T = Vas®. (122)

Then according td(114) and(115), we obtain

d
VOld(S)ZHO'i S HT[+\/— 50
=1

=1

d d
= [[=]JC+Vd-éo/n), (123)

-1 1=

—
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According to [12R), if we take

02 = CS . (%)72@71) _ \/E6§2), (124)

where(Cs is related toCy, thenty > C5, which means
d

volg(S) = volg(Q,) H(l +Vd-8/7)

~
—

-
vola(Q,) [J(1 + Vd - 60/C2)

A

~
—

d
= volyg(Q,) exp{Zlog(l +Vd - 80/Cs)}

=1
volg(Q,) exp{d? - 6o/Cs}. (125)

IN

The last inequality is due to the fact thiag(1 + ) < = for = > 0. Thus, the right side of(46) is proved. With
knowledge of [(11b), we also state

d
voly(Q,) = HTl < H(Ul +Vd- o)
=1

d
o [[+ Vd-do/a), (126)

=1 =

|
E&.

—

and according to[(120), if we take
C1i=C, - (L)_“*”, (127)

then

d d
vola(Q,) < [[aJJ(x+Vd-do/on)

=1 =1

d
< volg(S) [J(1 + Vd- 60/C1)

=1
< volg(S) exp{d? - 6y/C1}. (128)
Thus, [486) is now proved. Next, we consider](47). For a lineansform®, because all linear transforms are

bounded linear operators, then there exists a conétant 0, such that
[@z|2 < Colz|2, (129)

holds for allz € X, whereX is a given linear subspace. It is noted tldats an i.i.d. Gaussian random matrix with
elementsp; ; having zero mean and variangg)M, then [12D) holds almost surely for a sufficiently lage > 0,
andCg can be irrelevant to the dimension @f [43]. So we can generally state th@g is a constant irrelevant to

M and N.
Next, if we denotesy > &9 > --- > 64 > 0 by the singular values of matri$S and7; > 7 > --- > 73 >0

by the singular values of matri®Q,., then similar to[(11I0), we obtain

|00 — 71| < || @S — @Q. |2 = | RPE|2. (130)
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And we state|®e;||2 < Csdo,j =1,--- ,d, thus, similarly we obtain
volg(®S) < volg(®Q,)exp{d? - Cpdy/Cal, (131)
volg(8Q,) < volg(®S)exp{d? - Co0/Ch}. (132)

Therefore, Lemmé&l3 is now proved.
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