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Gaussian Random matrices
Hailong Shi, Hao Zhang, Gang Li, and Xiqin Wang

Abstract

Compressive Sensing (CS) provides a new perspective for data reduction without compromising performance

when the signal of interest is sparse or has intrinsically low-dimensional structure. The theoretical foundation for

most of existing studies on CS is based on the stable embedding (i.e., a distance-preserving property) of vectors

that are sparse or in a union of subspaces via random measurement matrices. To the best of our knowledge, few

existing literatures of CS have clearly discussed the stable embedding of linear subspaces via compressive measurement

systems. In this paper, we explore a volume-based stable embedding of multi-dimensional signals based on Grassmann

manifold, via Gaussian random measurement matrices. The Grassmann manifold is a topological space in which

each point is a linear vector subspace, and is widely regarded as an ideal model for multi-dimensional signals

generated from linear subspaces. In this paper, we formulate the linear subspace spanned by multi-dimensional signal

vectors as points on the Grassmann manifold, and use the volume and the product of sines of principal angles (also

known as the product of principal sines) as the generalized norm and distance measure for the space of Grassmann

manifold. We prove a volume-preserving embedding propertyfor points on the Grassmann manifold via Gaussian

random measurement matrices, i.e., the volumes of all parallelotopes from a finite set in Grassmann manifold are

preserved upon compression. This volume-preserving embedding property is a multi-dimensional generalization of

the conventional stable embedding properties, which only concern the approximate preservation of lengths of vectors

in certain unions of subspaces. Additionally, we use the volume-preserving embedding property to explore the stable

embedding effect on a generalized distance measure of Grassmann manifold induced from volume. It is proved that the

generalized distance measure, i.e., the product of principal sines between different points on the Grassmann manifold,

is well preserved in the compressed domain via Gaussian random measurement matrices. Numerical simulations are

also provided for validation.

Index Terms

stable embedding, RIP, union of subspaces, Grassmann manifold, principal angle

I. I NTRODUCTION

Compressive Sensing (CS) [1][2][3][4][5] provides a new perspective for data reduction without compromising

performance when the signal of interest is sparse or has intrinsically low-dimensional structure. Typically the
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problem of CS is described asy = Φx, wherex ∈ R
N is a k-sparse original signal vector (‖x‖0 ≤ k, k << N ),

y ∈ RM (M < N) is the compressed measurement vector, andΦ ∈ RM×N is the measurement matrix (or the

sensing matrix). In the CS literatures, to sufficiently ensure unique signal representation and robust signal recovery,

the measurement matrix should approximately preserve the length of all sparse vectors. i.e., there exists a constant

0 < δ < 1, such that

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 (1)

holds for all k-sparse vectorsx with ‖x‖0 ≤ k. This expression is the well-knownRestricted Isometry Property

(RIP) of the measurement matrix [6][7][8]. It can be derivedthat for two k-sparse vectorsx1 andx2 with ‖x1‖0 ≤ k

and ‖x2‖0 ≤ k, if the measurement matrixΦ satisfies RIP of order 2k, i.e., (1) holds for all 2k-sparse vectors,

then

(1− δ)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + δ)‖x1 − x2‖22. (2)

This means thatΦ approximately preserves the Euclidean distance between any pair of k-sparse vectors. This

distance-preserving property in (2) is a more general form of RIP and is commonly referred to as the property of

stable embedding for sparse vectors [9]. In addition, there are theoretical results showing that the angles between

any pair of sparse vectors are approximately preserved as well [10][11].

Furthermore, in [12][13][14][15], the signals of interestin CS has been extended from the conventional sparse

vectors to vectors that belong to a union of subspaces. The unions of subspaces model incorporates many signal

models previously considered in original CS settings [14][15], and plays an important role in many subfields of

CS, e.g., Multiple Measurement Vector (MMV) in CS [16][15],Block Sparse Recovery [15][17], and Model-Based

Compressive Sensing [18]. In [9][14][15], results analogous to RIP, known as the "A-RIP" [14] or "Block RIP"

[15], were proposed. It was proven in [14][9] that the randomly generated measurement matrixΦ can approximately

preserve the length of a vector as well as the distance between two vectors that lie in a union of subspaces with a

notably high probability, i.e., (1) and (2) hold for all vectors that lie in a union of subspaces. It is known that this

distance-preserving property also ensures the unique signal representation and robust recovery performance of CS

for signals from unions of subspaces [14][15], and this property is typically referred to as the stable embedding

property for unions of subspaces [9].

Recently, the stable embedding property was extended to signals modeled as low-dimensional Riemannian sub-

manifolds in Euclidean space [19][20][21]. Similar results about the preservation of Euclidean distances of vectors

that lie on a low-dimensional sub-manifold via random measurement matrices were proved, i.e., (1) and (2) also

hold for all vectors that lie on a Riemannian sub-manifold. In these settings, the Riemannian sub-manifold model

is a generalization of the sparse signal model relying on bases or dictionaries [22][23][24][25] and incorporates

sophisticated low-dimensional nonlinear geometrical structures.

The previous studies on CS mentioned above involve a common stable embedding property of individual vectors,

i.e., the preservation of distances (or equivalently lengths) among vectors that are sparse, or lie on a sub-manifold, or

belong to a certain union of subspaces, via random measurement matrices. Although the unions of subspaces model is
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the most popular signal model and is extensively used in various CS applications, there is few theoretical analysis

describing the embedding effect on these linear subspaces via random measurement matrices. Whereas in this

paper, we explore a volume-based stable embedding propertyto describe the embedding effect on linear subspaces

via Gaussian random measurement matrices based on knowledge of Grassmann manifold [26]. The Grassmann

manifold is a topological space with each point representing a linear subspace, if a linear subspace spanned by

multi-dimensional signal vectors is formulated as a point on the Grassmann manifold, a multi-dimensional data

matrix will be the basic element representing this point. The Grassmann manifold is widely regarded as an ideal

model for multi-dimensional signals and has been extensively studied in various subfields of signal processing,

e.g., wireless communication [26][27][28][29][30], image processing [31][32], and machine learning [33][34]. The

reason why the Grassmann manifold is used to explore the stable embedding of linear subspaces via random

measurement matrices is twofold. First, the Grassmann manifold has rich topological structure such as geodesics

and metrics [26], and various distance measures can be defined to describe the relationships between points on the

Grassmann manifold [35][36][37][34]; and second, it allows us to formulate and analyze linear subspaces as points

in a continuous space, as a matter of fact, the Grassmann manifold is a natural generalization of the unions of

subspaces in the sense that a union of subspaces is actually asubset of several isolated points in the Grassmann

manifold. Thus from this point of view, the Grassmann manifold is intrinsically preferable in our exploration for

stable embedding of linear subspaces.

It should be mentioned that another important work by Weiyu Xu and Babak Hassibi [38][39] discussed a certain

topic of CS using the Grassmann manifold. The principal difference between the work of Weiyu Xu et al. in

[38][39] and this paper is that, their analyzes in [38] and [39] only involved the conventional vector-form signals,

i.e., the approximately sparse signal vectors, and the Grassmann manifold was used as an analytical framework to

analyze the null-space property of random measurement matrices [38]; whereas our work proves a new volume-

based stable embedding property of points on the Grassmann manifold, and reveals a general stable embedding of

linear subspaces via Gaussian random measurement matrices.

The main contributions of this paper are threefold. First, we formulate multi-dimensional signals as points on

the Grassmann manifold, to study the stable embedding of Grassmann manifold via Gaussian random matrices.

This formulation allows us to use volume as a generalized norm function, and the product of principal sines as a

generalized distance measure, to describe this general stable embedding of linear subspaces based on Grassmann

manifold.

Second, the property of Gaussian random matrices that approximately preserves the volume of all parallelotopes

residing in a finite set in Grassmann manifold is proved, and asufficient condition on the dimension of Gaussian

random measurement matrices to guarantee this corresponding stable embedding is given. To the best of our

knowledge, this volume-preserving embedding property hasnot been discussed previously, and this novelty is one

of the main contributions of our work. The volume is chosen asa generalized metric or distance measure of points

on the Grassmann manifold, in order to explore the stable embedding of linear subspaces via Gaussian random

measurement matrices. The reason for the choice of volume isthat, in conventional Euclidean space, each point is a
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vector and the metric measure is induced by the vector norm function, whereas for a linear subspace, a set of linearly

independent vectors spanning this subspace, i.e., a basis,is commonly used to specify this subspace; therefore, we

can treat the volume of the parallelotope spanned by a set of vectors as a multi-dimensional generalization of the

norm (or length) of an individual vector. Volume is a key characteristic for the space of Grassmann manifold.

Typically, the volume of parallelotopes spanned by the bases of subspaces has been used to provide a measure

of separation between different subspaces [35][36]; and aswe know that principal angles provide a wide class of

metrics and distance measures on the Grassmann manifold [37], the volume is also closely related to the principal

angles between subspaces [36]. Motivated by these factors,we use the volume as a generalized norm function of

points on the Grassmann manifold, and prove the volume-preserving embedding property of Grassmann manifold.

This volume-based stable embedding property, analogous tothe RIP and stable embedding property based on

length, is given in a probabilistic formulation, i.e., thisvolume-preserving property is satisfied with a notably high

probability under a certain condition on the dimension of measurement matrices. We provide a rigorous proof of

this volume-based stable embedding property, as well as discussions on its differences from and connections with

the previous result of RIP [7] and stable embedding of unionsof subspaces [14][9]. To derive our result, we use

such techniques as the theory of random matrices to derive the concentration inequality for the determinant of

random matrices, and knowledge of high-dimensional geometry to obtain an improved result of covering numbers,

as well as the matrix perturbation theory and the union bound. It is shown that the result is a high-dimensional

generalization of the results of stable embedding for unions of subspaces and RIP. Indeed, if we only consider

1-dimensional "parallelotopes" in our theorem, the volume-preserving embedding property reduces back to the

conventional length-preserving embedding property for individual vectors lying in certain unions of subspaces.

Third, using the theorem of volume-based stable embedding,we also derive a theorem to describe the stable

embedding effect on a generalized distance measure, i.e., the product of principal sines, between points on the

Grassmann manifold, via Gaussian random measurement matrices. It is shown that our generalized distance measure,

i.e., the product of principal sines, can be directly derived from volume. Then we prove that the product of principal

sines is theoretically preserved via Gaussian random measurement matrices using knowledge of our volume-based

stable embedding property.

Throughout this paper, we use small bold lettersx to denote vectors, capital bold lettersX to denote matrices;

we use‖X‖p and‖x‖p to denote theℓp norm of the matrixX and vectorx, and useId to denote the identity

matrix of dimensiond. span(X) is used for representation of the linear subspace spanned bycolumn vectors of

the matrixX, and [X,Y ] for the juxtaposition of the matrixX and Y . P and E denotes the probability and

expectation respectively.

The remainder of this paper is organized as follows. First, in Section II, necessary definitions, such as the

Grassmann manifold, volume, principal angles, and stable embedding based on length of vectors are presented.

Next, the main results of this paper, i.e., the theorem for the volume-based stable embedding property of Grassmann

manifold, as well as the stable embedding effect on a generalized distance measure for points on the Grassmann

manifold, is stated and discussed in Section III. The sketched proof of our main results is provided in section IV,
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and finally detailed proofs are included in appendices.

II. PRELIMINARY BACKGROUND

A. Grassmann Manifold and Unions of Subspaces

The unions of linear subspaces model is a general signal model commonly used in CS [15][16][17][18]. The

signalx in this model is assumed as a vector from a union of linear subspaces, defined as [12][14]

X =

L
⋃

i=1

Xi ⊂ R
N , Xi = {x = Xiαi,Xi ∈ R

N×k,αi ∈ R
k}, (3)

where the matrixXi’s column vectors form the basis of the corresponding subspaceXi, with span(Xi) = Xi, and

dim(Xi) = k < N . The unions of linear subspaces model is a generalization ofthe conventional sparse model (for

the sparse model, the columns ofXi’s are the canonical bases andL =
(

N
k

)

) and incorporates many signal models

in the conventional Compressive Sensing settings.

The Grassmann manifold Gr(k,N) is defined as a topological space in which each point is ak-dimensional

linear vector subspace ofRN (or CN ). In general, a union of subspaces in (3) is equivalently a finite collection of

different points in Gr(k,N), that is,

G(k,N, L) := {X1, · · · ,XL}, Xi ∈ Gr(k,N), 1 ≤ i ≤ L. (4)

As far as we know, although the unions of subspaces model is quite general and offers extensive applications in

various fields of CS, there is no theoretical analysis describing the relationships between these subspaces and the

implication of their relationships in CS, whereas the Grassmann manifold enables us to describe these relationships

by exploiting its topological structure. As in [34][35][36][37], different metrics and distance measures have been

used to describe the topological structure of the Grassmannmanifold. From this point of view, the Grassmann

manifold is intrinsically preferable for describing relationships between subspaces, and enables the study on stable

embedding of subspaces.

B. Stable Embedding Property for Unions of Subspaces

The stable embedding of unions of subspaces, also equivalently referred to as "A-RIP"[14] or "Block-RIP"[15],

describes the length-preserving embedding property of vectors in a certain union of subspaces via compressive

measurement matrices [9][14]. A well-known sufficient condition for the stable embedding property via Gaussian

random measurement matrices was given by M.E Davies et al. in2009 [14] and stated that, for i.i.d. Gaussian

random matricesΦ ∈ RM×N with each entryφi,j satisfies

φi,j ∼ N (0,
1

M
), (5)

if for any t > 0, and any constant0 < δ < 1,

M ≥ 2

cδ

(

log(2L) + k log
(12

δ

)

+ t
)

, (6)
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then the property of length-preservation

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22, (7)

holds for all vectors in a union of subspacesx ∈ X =
⋃L

i Xi with probability

P ≥ 1− e−t. (8)

As is known, this length-preserving embedding property of vectors in unions of subspaces via Gaussian random

sensing matrices can be equivalently generalized to the distance-preserving embedding property in [14]:

For i.i.d. Gaussian random matricesΦ ∈ RM×N with each entry satisfying (5), for anyt > 0, and any constant

0 < δ < 1, let

M ≥ 2

cδ

(

log(2L̄) + k log
(12

δ

)

+ t
)

, (9)

whereL̄ = L(L− 1)/2, then the property of distance-preservation

(1− δ)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + δ)‖x1 − x2‖22, (10)

holds for all vectorsx1,x2 in a union of subspaces with probabilityP ≥ 1− e−t.

C. Volumes in the Grassmann manifold

As is known, any element of Gr(k,N), i.e., anyk-dimensional linear subspaceX ⊂ RN is usually specified by

a matrix of full column rank

X = [x1,x2, · · · ,xk] ∈ R
N×k, k < N, (11)

with columns forming the basis of the corresponding subspace, i.e.,span(X) = X ∈ Gr(k,N).

The d-dimensional volume of a full-rank matrixS = [s1, · · · sd] ∈ RN×d, with 1 ≤ d ≤ k andspan(S) ⊂ X ∈
Gr(k,N), is defined as [40]

vold(S) :=

d
∏

i=1

σi, (12)

whereσ1 ≥ σ2 ≥ · · · ≥ σd > 0 are singular values of matrixS. The volume of the matrixS is also referred to as

thed-dimensional parallelotope spanned by the column vectors of S. BecauseS is of full column rank, the volume

is equivalently [40][36]

vold(S) =
√

det(STS). (13)

Particularly, if d = 1, S = [s1], vold(S) equals‖s1‖2, i.e., the length of this single vector; ifd = 2, vold(S)

becomes the area of the parallelogram spanned by the two vectorss1 ands2, and if d = 3, vold(S) is the volume

of the parallelepiped spanned by the three vectorss1, s2, ands3. From this point of view, we can say that the

volume of a parallelotope is a multi-dimensional generalization of the length of a vector. For convenience, we call

vold(S) in (12) the volume of subspacespan(S) corresponding to matrixS ∈ RN×d.

Volume is an important quantity in the Grassmann manifold space, it provides a measure of separation between

two linear subspaces and is closely related to the principalangles between subspaces [36][41]. In fact, for any
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two k-dimensional linear subspacesX ,Y with X ⋂Y = {0} and spanned by columns of matricesX andY , the

principal anglesπ/2 ≥ θ1, · · · ≥ θk > 0 betweenX andY satisfy[36]

vol2k([X,Y ]) = volk(X) volk(Y ) ·
k
∏

i=1

sin θi, (14)

where we refer to the expression
∏k

i=1 sin θi as the product of principal sines [36]. Indeed, we can define a wide

class of metric measures using the principal angles[37][34], e.g., the geodesic distancedG(X ,Y) =
∑k

i=1 θ
2
i ,

and the projection distancedP (X ,Y) =
(
∑k

i=1 sin
2 θi
)1/2

. According to [37], various measure functions that

may not be as strict as metrics (which must satisfy the triangle inequality) also can be used as distance measures

for different points on the Grassmann manifold, and following the terminology used in [37], without verifying the

triangle inequality, we choose the product of principal sines induced by the volume in (14) as a generalized distance

measure on the Grassmann manifold in the following analyzes.

III. M AIN RESULTS

A. Formulating Multi-dimensional Signals as Points on the Grassmann manifold

The definition of Grassmann manifold indicates that it is preferable to study multi-dimensional signals generated

from linear subspaces. In this section, we introduce the formulation of multi-dimensional signals as points on the

Grassmann manifold. This formulation implies that, the basic element to be received and processed will be a multi-

dimensional data matrix, with columns containing an array of different sampled vectors, and the definition in terms

of signals on the Grassmann manifold will be:

Definition 1: The multi-dimensional data matrix received from the signalacquisition front-end

X = [x1, · · · ,xk] ∈ R
N×k, xi ∈ R

N , 1 ≤ i ≤ k, (15)

is called a signal on the Grassmann manifold, wherexi’s are different sampled vectors composing this multi-

dimensional signal.

Generally, thesexi are linearly independent, thus we havespan(X) ∈ Gr(k,N), and each data matrixX will

specify a point on the Grassmann manifold Gr(k,N); therefore a signal on the Grassmann manifold is represented

by the data matrixX as in (15).

A simple example of this formulation can be found in [30]. In the multiple-antenna communication systems, there

existM transmit andN receive antennas withM ≤ N , and the channel fading coefficients form aN ×M matrix

H , the received multi-dimensional signal over a period ofD (D > M ) samples from theN receive antennas can

be written in a matrix form:

Y = HX +W ,

whereX ∈ R
M×D, with row vectorsxi ∈ R

D corresponding to the transmitted data at theith transmit antenna

andY ∈ RN×D with rows yj ∈ RD corresponding to the received data for thejth received antenna. In addition,

W ∈ R
M×D denotes the additive noise. The data matrixXT can be formulated as a signal on the Grassmann

October 30, 2018 DRAFT
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manifold Gr(M,D) and Y T as the version ofXT corrupted by noiseW . This is a typical example of the

formulation of signals on the Grassmann manifold.

For another famous example in [34], in the subspace-based learning problems, where the data to be learned and

classified are generated from linear subspaces, data matrices as in (15) are formulated as signals on the Grassmann

manifold. Then various metric functions in Grassmann manifold can be used as kernel functions, to enhance the

learning and classifying performance of Linear Discriminant Analysis [34].

Similar to (15), we also formulate multi-dimensional signals in the compressed domain in terms ofcompressed

measurement signals on the Grassmann manifold, and what is received as an element from the compressive

measurement front-end is also a multi-dimensional data matrix, the definition is:

Definition 2: The data matrix from the compressive measurement front-endformed as

Y = [y1, · · · ,yk] = [Φx1, · · · ,Φxk] ∈ R
M×k, (16)

is called a compressed measurement signal on the Grassmann manifold, whereΦ ∈ R
M×N ,M < N is the

measurement matrix, andxj ’s are different orignal signal vectors before compression.

As is mentioned, in most general settings of CS, the originalsignal vectors are supposed to lie in a union of

subspaces, i.e., a finite set in Grassmann manifold. Thus theoriginal signal on Grassmann manifold specifies a

pointXi(1 ≤ i ≤ L) in a finite setG(k,N, L) as in (4), and the compressed measurement signal on the Grassmann

manifold, i.e.,Y , specifies a pointΦXi (1 ≤ i ≤ L) in another finite set

G
′(k,M,L) := {ΦX1, · · · ,ΦXL}, (17)

whereΦXi := span(ΦXi) ⊂ Gr(k,M) 1 represents the subspaces transformed by the measurement matrix Φ.

Our objective in this paper is to study the stable embedding with respect to these two finite sets on the Grassmann

manifold, i.e., the set of signals on the Grassmann manifoldG(k,N, L) and the set of compressed measurement

signals on the Grassmann manifoldG′(k,M,L).

Next, we will use the volume in (12) as a generalized norm function, and the product of principal sines in (14)

as a generalized distance measure, to explore the stable embedding of points in a finite set in Grassmann manifolds.

Before we start, a definition of the general stable embeddingproperty of Grassmann Manifold based on volumes

is required:

Definition 3: (volume-based stable embedding property) We say that the measurement matrixΦ provides a

volume-based stable embedding of a finite set in Grassmann manifold, i.e., G(k,N, L) ⊂ Gr(k,N), with the

dimension of volumed (d ≤ k) and coefficient(A, ε), if for every matrixS ∈ RN×d with span(S) ⊂ Xi ∈
G(k,N, L), 1 ≤ i ≤ L, we have

∣

∣

∣

∣

log
vold(ΦS)

vold(S)
−A

∣

∣

∣

∣

≤ ε, (18)

1It is noted that for the random matrixΦ, if k is sufficiently small, the dimension of the subspaceΦXi is the same asXi almost surely. So

it will be a general assumption throughout this paper thatdim(ΦXi) = dim(Xi) = k.
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alternately,

A− ε ≤ log(vold(ΦS)) − log(vold(S)) ≤ A+ ε. (19)

We will show that this definition of volume-based stable embedding property will be supported by theoretical results

from the following several theorems.

B. The Volume-based Stable Grassmann Manifold Embedding

Theorem1: Consider a finite set in Grassmann manifoldG(k,N, L) and a random matrixΦ ∈ RM×N with

elementsφi,j being i.i.d Gaussian random variables with mean 0 and variance 1/M ; for any constant0 < Cs < 1

and any integer1 ≤ d ≤ k, for the matrix

S = [s1, · · · , sd] ∈ R
N×d, ‖sj‖2 = 1, 1 ≤ j ≤ d,

where

span(S) ⊂ Xi ∈ G(k,N, L), 1 ≤ i ≤ L,

satisfyingvold(S) > Cs, we have

E log
vold(ΦS)

vold(S)
=

1

2

d
∑

p=1

(

ψ[(M − p+ 1)/2] + log 2− logM
)

. (20)

And there exist constantsδs > 0, andC,C′ > 0, only depending onCs, such that for any0 < ε < d
3
2 δs(1 + C′)

and t > 0, if

M ≥ 4(1 + C′)2(1 + C) · d
ε2

[

log(2L) + d(
3

2
k − 1) log(e · d) + d · k log(⌈3(1 + C′)

ε
⌉) + t

]

+ d− 1, (21)

then
∣

∣

∣

∣

log
vold(ΦS)

vold(S)
− E log

vold(ΦS)

vold(S)

∣

∣

∣

∣

≤ ε (22)

holds for every matrixS with probability

P ≥ 1− e−t, (23)

whereψ(x) = ∂
∂z log Γ(z)|z=x is the Digamma function (for Digamma function, refer to [42]).

Theorem 1 describes the approximately volume-preserving property of a finite set in Grassmann manifold via

Gaussian random measurement matrices. A sufficient condition onM , i.e., the number of compressive measurements,

in (21) to guarantee the volume preservation in (22) is givenin Theorem 1. IfM is bounded as (21), the volumes

of all matrices from the finite set in Grassmann manifold can be approximately preserved with an overwhelming

probability, as in (22). Here are some further discussion:

1) The matrices discussed in Theorem 1 are conditioned to have unit-norm column vectors, i.e.,‖sj‖2 = 1, 1 ≤
j ≤ d. This constraint is for convenience of proof and implies no loss of generality; actually, if there is any column

sj of S = [s1, · · · , sd] that is not unit-norm, such as‖sj‖2 = c 6= 1, then the volume of the column-normalized

matrix Ŝ = [s1, · · · , sj/‖sj‖2, · · · , sd] will be vold Ŝ = c−1 · vold(S), the only difference is a multiplication of

a constant. Therefore, it is sufficient that we only considerthe parallelotopes spanned by unit-norm vectors.
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2) An axillary parameterCs is introduced in Theorem 1. It is the lower bound of the volumeof matrixS ∈ R
N×d

to ensure the validity of conclusion. Indeed, for fixedε > 0, if Cs becomes smaller, thenC′ will become larger,

causing the lower bound in (21) to increase, meaning that thestable embedding is more difficult to achieve for

smaller volumes. In fact, if the volume ofS is too small, i.e.,vold(S) is tending to zero, then the dimension of

the corresponding subspacespan(S) will become less thand. The volume-preserving properties for dimensiond

are somewhat meaningless for these subspaces with dimension less thand.

3) The main result of volume preservation is shown in (22) and(20). The parameterA and ε from Definition

3 can be easily derived from (22). Furthermore, ifM satisfies the bound in (21), then log ratio ofvold(ΦS) and

vold(S) will concentrate around its expectation

1

2

d
∑

p=1

(

ψ[(M − p+ 1)/2] + log 2− logM
)

, (24)

It should be noted that this expectation value depends only on M and d, so N > M is not relevant here.

The curve of (24) is plotted in Figure 1, whereM ranges from 500 to 5000 andd ranges from 10 to 70. It can

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
M

−2.5

−2.0

−1.5

−1.0

−0.5

0.0


{ lo

g[
V
ol
d
(Φ
S
)/
V
ol
d
(S

)]
}

d = 10

d = 25
d = 40 d = 55 d = 70


{
log[Vold (ΦS)/Vold (S)]

}
=1

2

d∑
p=1

(ψ[(M−p+1)/2] +log2−logM)

Curve of 
{
log[Vold (ΦS)/Vold (S)]

}

Fig. 1: the expectation curve the log ratio of volumesvold(ΦS) andvold(S) in which we chooseM from 500 to

5000 andd from 10 to 70

be observed that the value of (24) is slightly less than 0, which means the effects of the random measurement
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matrix on the volume of subspaces are slightly "biased". andby "biased", we mean the log ratio ofvold(ΦS) and

vold(S) does not concentrate approximately around 0 but around (24). Additionally, asM increases, (24) grows

closer to 0, which indicates that more measurements produces less "bias" of the volumes of subspace. However,

when d becomes larger, (24) deviates away from 0, which means the volume preservation becomes worse when

the dimension of subspace increase.

Indeed, if we use asymptotic expansion [42] of the Digamma functionψ(x), which isψ(x) = log x− 1
2x+O(

1
|x|2 ),

then we have

1

2

d
∑

p=1

(

ψ[(M −p+1)/2]+log2− logM
)

=
1

2

d
∑

p=1

(

log(M −p+1)− logM − 1

M − p+ 1
+O(

1

(M − p+ 1)2
)
)

,

(25)

and it can be observed that asM → ∞ andd/M <∞, (24) will tend to 0, and asd grows larger, (24) will tend

away from 0. This explains the curve in Figure 1.

4) As is shown, Theorem 1 describes the volume-preserving embedding for all matrices with a given number of

columnsd, different values ofd determines different measurement bounds in (21) as well as different concentration

inequalities in (22). Particularly, ifd = 1, the 1-dimensional volume is length, i.e.,vol1(s) = ‖s‖2, and we obtain

E log
‖Φs‖2
‖s‖2

=
1

2

(

ψ[M/2] + log 2− logM
)

, (26)

and if

M ≥ 4(1 + C′)2(1 + C)

ε2

[

log(2L) + (
3

2
k − 1) log(e) + k log(⌈3(1 + C′)

ε
⌉) + t

]

, (27)

then
∣

∣

∣

∣

log
‖Φs‖2
‖s‖2

− E
{

log
‖Φs‖2
‖s‖2

}

∣

∣

∣

∣

≤ ε (28)

holds with probability of at least1− e−t.

Compared with the length-preserving embedding of unions ofsubspaces proposed by Davies et al, the measure-

ment bound in (27) shows a little difference with (9). The main reason for these differences is that we use a different

approximation method to analyze the probabilistic concentration of volumes of multi-dimensional parallelotopes,

and this method may be slightly rougher for the 1-dimensional "parallelotope". As a whole, the measurement bound

(27) for d = 1 is of the same order with (9) by Davies et al.

In addition, it appears in (26) thatψ[M/2] + log 2− logM is less than 0, which means

E(log
‖Φs‖22
‖s‖22

) < 0, (29)

and the result by Davies and Baraniuk et al. states [14][7]

E(
‖Φs‖22
‖s‖22

) = 1. (30)

The reason is that what we focus on is the concentration of thelog ratio of ‖Φs‖2 and‖s‖2, and the difference

between (29) and (30) can be explained by Jensen’s Inequality, i.e.,

ψ[M/2] + log 2− logM = E(log
‖Φs‖22
‖s‖22

) ≤ logE(
‖Φs‖22
‖s‖22

) = 0. (31)
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In brief, the result of Theorem 1 for 1-dimensional "parallelotopes" reduces back to the length-preserving embedding

of unions of subspaces proposed by Davies et al, whereas Theorem 1 can be further extended to multi-dimensional

scenarios.

5) The bound in (21) is the sufficient condition for a Gaussianrandom matrixΦ ∈ RM×N to provide the

volume-preserving embedding property. HereM should be of the order of:

M ∼ O(d · log(L) + d2 · k log(e · d)). (32)

Particularly, whend = 1,

M ∼ O(log(L) + k), (33)

which coincides with the result of stable embedding for unions of subspaces by Davies et al. Additionally, ifd = k,

thenM should be of the order of:

M ∼ O(k · log(L) + k3 log(k)). (34)

These results indicate that we require additional compressive measurements to ensure the volume-based stable

embedding property.

To be more specific, if we consider the conventional sparse model, if L =
(

N
k

)

≤ (eN/k)k, thenM should be

of the order of:

M ∼ O(d · k · log(N/k) + d2 · k log(e · d)), (35)

and if d = 1, (35) becomes the conventional RIP result, i.e.,M ∼ O(k · log(N/k)).

C. Effect of stable embedding on a generalized distance measure for Grassmann manifold

In this section, we discuss the effect of the volume-preserving embedding on a generalized distance measure

of compressed measurement signals on the Grassmann manifold. Without loss of generality, we prefer to consider

each point in the original set in Grassmann manifold to be disjoint, which means different points inG(k,N, L) =

{X1, · · · ,XL} satisfyXi

⋂Xj = {0}, i 6= j 2 3. Before we present the second theorem, a corollary, which isderived

from Theorem 1, is presented first.

Corollary 1: Consider thēL := L(L−1)/2 pairs of subspacesXi⊕Xj from the finite set in Grassmann manifold

G(k,N, L), with Xi

⋂Xj = {0}, i 6= j, and a random matrixΦ ∈ RM×N with elementsφi,j being i.i.d Gaussian

random variables with mean 0 and variance1/M ; for any constant0 < Cs < 1 , and for every matrix

X = [x1, · · · ,xd] ∈ R
N×d, ‖xl‖2 = 1, 1 ≤ l ≤ d

2If Xi

⋂
Xj 6= {0}, different methods exists to address the relationships between principal angles and volumes. These relationships are

slightly complicated and trivial, so we simply focus on the most typicalXi

⋂
Xj = {0} scenario and leave theXi

⋂
Xj 6= {0} for future

work.

3The result in Theorem 1 as well as the result in Corollary 1 will ensure thatΦXi

⋂
ΦXj = {0}.
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with number of columns1 ≤ d ≤ 2k, wherespan(X) ⊂ Xi ⊕Xj and satisfyingvold(X) > Cs, we have

E
{

log
vold(ΦX)

vold(X)

}

=
1

2

d
∑

p=1

(

ψ[(M − p+ 1)/2] + log 2− logM
)

, (36)

and there existsδs > 0, andC,C′ > 0, only depending onCs, such that for any0 < ε < δs(1 + C′), if:

M ≥ 8(1 + C′)2(1 + C) · k
ε2

[

log(2L̄)+2k ·(3k−1) log(2ek)+4k2 log(⌈3(1 + C′)

ε
⌉)+log(2k)+t

]

+2k−1, (37)

then
∣

∣

∣

∣

log
vold(ΦX)

vold(X)
− E log

vold(ΦX)

vold(X)

∣

∣

∣

∣

≤ ε, (38)

holds with probability

P ≥ 1− e−t, (39)

whereψ(x) is the Digamma function.

This corollary states a similar probabilistic result of thevolume-preserving embedding property for all dimensions

1 ≤ d ≤ 2k, instead of the result for any given dimension in Theorem 1. According to Corollary 1, we obtain the

second main result of this paper:

Theorem2: Consider theL̄ := L(L − 1)/2 pairs of subspacesXi ⊕ Xj from the finite set in Grassmann

manifold G(k,N, L), with Xi

⋂Xj = {0}, i 6= j, and a measurement matrixΦ ∈ R
M×N which satisfies the

volume-preserving embedding property for all dimensions1 ≤ d ≤ 2k, i.e., Φ satisfies corollary 1; then the

principal angles denoted byπ/2 ≥ θ1(Xi,Xj) ≥ · · · ≥ θk(Xi,Xj) > 0 betweenXi andXj , as well as the principal

anglesπ/2 ≥ θ1(ΦXi,ΦXj) ≥ · · · ≥ θk(ΦXi,ΦXj) > 0 betweenΦXi andΦXj for 1 ≤ i 6= j ≤ L will satisfy:
∣

∣

∣

∣

∣

log

∏k
m sin θm(ΦXi,ΦXj)
∏k

m sin θm(Xi,Xj)
− 1

2

k
∑

p=1

(

ψ[(M − p− k + 1)/2]− ψ[(M − p+ 1)/2]
)

∣

∣

∣

∣

∣

≤ 3ε, (40)

whereψ(x)is the Digamma function.

Theorem 2 describes the effect of the volume-preserving embedding in Theorem 1 on the generalized distance

measure of Grassmann manifold. It is proved that, the product of principal sines between points on the Grassmann

manifold is theoretically approximately preserved, as is shown in (40). Similar to previous results, the log ratio of
∏k

m sin θm(ΦXi,ΦXj) and
∏k

m sin θm(Xi,Xj) in (40) concentrates around a center, which is

1

2

k
∑

p=1

(

ψ[(M − p− k + 1)/2]− ψ[(M − p+ 1)/2]
)

. (41)

It also appears that (41) is slightly less than 0, and ifM → ∞ andk/M <∞, (41) will tend to 0.

The Monte-Carlo simulation results verifying the result ofTheorem 2 are demonstrated in Figure 2 to Figure 5,

inspired by the simulation strategy in [11]. In the simulation, we choose a randomly generated measurement matrix

Φ ∈ RM×N , with each entryφij independently drawn fromN (0, 1/M); and typically, we chooseN = 5000, and

the number of measurementsM as500 and1000. For eachΦ, we generate800 sets of randomly chosen principal

anglesθ1, · · · θk under the constraintlog
∏k

m sin θm(Xi,Xj) ≥ −5. And for each set of angles, 100 arbitrary pairs

of pointsXi and Xj on Gr(k,N) are generated, with dimensionsk equal to10 and 20, respectively. For each
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test pairXi andXj , the values oflog
∏k

m sin θm(Xi,Xj) and log
∏k

m sin θm(ΦXi,ΦXj) as well as the theoretical

center (41) are plotted in these figures. From these figures wecan clearly verify the result of Theorem 2.

It can be observed that from Theorem 2, we obtain a theoretical guarantee for the close relationship between
∏k

m sin θm(ΦXi,ΦXj) and
∏k

m sin θm(Xi,Xj). Because we know that

k
∏

m

sin θm(ΦXi,ΦXj) =
vol2k(Φ[Xi,Xj ])

volk(ΦXi) volk(ΦXj)
, (42)

k
∏

m

sin θm(Xi,Xj) =
vol2k([Xi,Xj])

volk(Xi) volk(Xj)
, (43)

therefore, we can use (42) to measure the distance between different compressed measurement signals on the

Grassmann manifold specified by the data matricesYi = ΦXi andYj = ΦXj . Using this distance measure as

in (42) has intrinsic advantages. First, it is easy to calculate, we only need to calculate a determinant directly on

the received data matrixYi, Yj and [Yi,Yj ]. Second, as mentioned, the relationship of this distance measure for

G
′(k,M,L) with the distance measure for originalG(k,N, L) is theoretically preserved by Theorem 2. Thus, we

believe that the distance measure in (42) is both theoretically trustworthy and computationally efficient.

IV. PROOF OF THE MAIN THEOREM

A. Proof of Theorem 1

This section presents the proof of Theorem 1. Motivated by (10) and (9) proposed by Davies et al. in [14], we

know that the Gaussian random measurement matrixΦ can approximately preserve the distances between all pairsof

vectors in union of subspaces with tremendous high probability. This intuitively implies that the volume of subspace

spanned by these mutually distance-preserved vectors alsoshould be approximately preserved, as demonstrated in

Figure 6. This is just the statement of Theorem 1.

Our proof of Theorem 1 includes three steps, namely, the concentration inequality, the covering number, and the

union bound. In each step, several lemmas will be given as intermediate conclusions.

1) Step 1. The Concentration Inequality: The main conclusion of this step is:

Lemma1: For any full rank matrixS ∈ RN×d, N > d and random matrixΦ ∈ RM×N with elementsφi,j

being i.i.d Gaussian random variables with mean 0 and variance 1/M ; the volumesvold(S) and vold(ΦS) will

satisfy

P

{
∣

∣

∣

∣

log
vold(ΦS)

vold(S)
− E log

vold(ΦS)

vold(S)

∣

∣

∣

∣

≤ ε

}

≥1− 2 exp

{

−ε2/
(

4
d
∑

p=1

[
1

M − p+ 1
+ C

1

(M − p+ 1)2
]

)}

(44)

holds for anyε > 0, whereC > 0 is a constant parameter,

E
{

log
vold(ΦS)

vold(S)

}

=
1

2

d
∑

p=1

(

ψ[(M − p+ 1)/2] + log 2− logM
)

,

andψ(x) = ∂
∂z log Γ(z)|z=x is the Digamma function.
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Fig. 2: Monte-Carlo simulation result for
∏k

m sin θm(Xi,Xj) and
∏k

m sin θm(ΦXi,ΦXj) as well as the

theoretical center in (40), andM = 500, k = 10

Fig. 3: Monte-Carlo simulation result for
∏k

m sin θm(Xi,Xj) and
∏k

m sin θm(ΦXi,ΦXj) as well as the

theoretical center in (40), andM = 1000, k = 10
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Fig. 4: Monte-Carlo simulation result for
∏k

m sin θm(Xi,Xj) and
∏k

m sin θm(ΦXi,ΦXj) as well as the

theoretical center in (40), andM = 500, k = 20

Fig. 5: Monte-Carlo simulation result for
∏k

m sin θm(Xi,Xj) and
∏k

m sin θm(ΦXi,ΦXj) as well as the

theoretical center in (40), andM = 1000, k = 20
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ℝN ℝM

Φ

Fig. 6: The mutual distance between Euclidean points is approximately preserved by the measurement matrixΦ

via the stable embedding property

Proof of Lemma 1: See Appendix A.

This lemma demonstrates that for any matrixS ∈ RN×d, the log ratio of the volumes, i.e.,log(vold(ΦS)/ vold(S)),

concentrates around its expectation with a probabilistic concentration inequality (44). We can verify the result of

this lemma via Monte-Carlo simulations, as shown in Figure 7. Given any arbitraryS, N = 10000, d = 50, andM

from 100 to 5000, 1000 times Monte-Carlo simulations for values of log(vold(ΦS)/ vold(S)) in correspondence

with differentM is demonstrated in Figure 7. The figure shows that most of the values oflog(vold(ΦS)/ vold(S))

indeed concentrate around its expected value.

2) Step 2.Covering Numbers: As mentioned, without loss of generality, we only consider the so-called "Unit-

Norm" Grassmann manifold, that is, the corresponding matrix with respect to each point on Grassmann manifold

has unit-norm columns. In this step, several lemmas are given as follows.

Lemma2: Given any pointX on the "Unit-Norm" Grassmann manifold Gr(k,N), fix a constant0 < Cs < 1

and an integer1 ≤ d ≤ k, there exists a constantδ(1)s > 0 depending onCs. For any0 < δ0 < δ
(1)
s , we have a

finite set of matrices

Q = {Q1, · · · ,Qm}

where the cardinality#Q := m only depends onδ0 andd, andQ1, · · · ,Qm ∈ RN×d are full-rank matrices with

span(Q1), · · · , span(Qm) ⊂ X ; such that for any matrixS ∈ RN×d satisfyingspan(S) ⊂ X , vold(S) > Cs, we

can find a

Qr = [q1, · · ·qd] ∈ Q, r = 1, · · ·m,

with qj 6= ql, j 6= l, and

‖sj − qj‖2 ≤ δ0, j = 1, · · · , d. (45)

The cardinality ofQ satisfies#(Q) ≤
(⌊(3/δ0)k⌋

d

)

.

Proof of Lemma 2: See Appendix B.

This lemma states that, for all matricesS = [s1, · · · , sd], span(S) ⊂ X with unit-norm columns andvold(S) >

Cs, if a sufficiently smallδ0 is chosen, we can always find a finite setQ of matrices with different columns, such
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Fig. 7: Monte-Carlo simulations for the distribution of values of log(vold(ΦS)/ vold(S)), where S is taken

arbitrarily

that each Euclidean pointsj on the unit sphere can be covered by at least one ball centeredat qj with radiusδ0

(1 ≤ j ≤ d). Indeed, the theory of covering numbers states that for anygiven δ0, all unit-norm Euclidean points

in a k-dimensional subspaceX can be covered by a finite set of balls with radiusδ0, and the cardinality of this

finite set is bounded by(3/δ0)k[43][7]. This lemma simultaneously covers different points s1, · · · , sd satisfying

vold(S) > Cs with balls centered at differentq1, · · · , qd for any given0 < Cs < 1. Obviously, the cardinality of

Q is bounded by the combination number of the cardinality(3/δ0)
k. The intuition of Lemma 2 is demonstrated

in 3-dimensional Euclidean space in Figure 8.

Lemma 2 shows that if the radiusδ0 is notably small,q1, · · · , qd will be highly close tos1, · · · , sd. Thus,

intuitively, we expect the volumes ofQr andS to be arbitrarily close, which is stated in the following lemma.

Lemma3: Given any pointX on the "Unit-Norm" Grassmann manifold Gr(k,N) and a random matrixΦ ∈
R

M×N with elementsφi,j being i.i.d Gaussian random variables with mean 0 and variance 1/M , fix a constant

0 < Cs < 1 and an integer1 ≤ d ≤ k, there exists a constantδs > 0 depending onCs. For any0 < δ0 < δs, we

have a finite set of mattices

Q = {Q1, · · · ,Qm},
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Fig. 8: Covering all of the unit norm Euclidean pointss1, s2, s3 simultaneously with a finite number of balls

centered atq1, q2, q3 in 3-dimensional Euclidean space

Fig. 9: The volume of a parallelotope spanned byq1, · · · , qd is similar to the volume spanned bys1, · · · , sd
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where the cardinality#Q := m only depends onδ0 andd, andQ1, · · · ,Qm ∈ R
N×d are full-rank matrices with

span(Q1), · · · , span(Qm) ⊂ X ; such that for any matrixS ∈ RN×d satisfyingspan(S) ⊂ X , vold(S) > Cs, we

can find aQr ∈ Q(r = 1, · · · ,m), and

vold(Qr) · exp(−d
3
2 δ0/C1) ≤ vold(S) ≤ vold(Qr) · exp(d

3
2 δ0/C2), (46)

vold(ΦQr) · exp(−d
3
2CΦδ0/C1) ≤ vold(ΦS) ≤ vold(ΦQr) · exp(d

3
2CΦδ0/C2). (47)

whereC1, C2 > 0 are constant parameters related toCs, and 0 < CΦ < ∞ is a constant parameter related to

matrix Φ. In addition, the cardinality ofQ satisfies#(Q) ≤
(⌊(3/δ0)k⌋

d

)

.

Lemma 3 shows that because we can simultaneously cover all ofthe Euclidean pointss1, · · · , sd that satisfy

vold(S) > Cs with a finite set of balls centered at pointsq1, · · · , qd with radiusδ0, then an arbitrarily small radius

δ0 will ensure thatvold(S) andvold(Qr) are arbitrarily similar. The intuition of this lemma can be demonstrated

in 3-dimensional Euclidean space in Figure 9.

According to these two lemmas, we can obtain the following lemma.

Lemma4: Given any pointX on the "Unit-Norm" Grassmann manifold Gr(k,N) and a random matrixΦ ∈
RM×N with elementsφi,j being i.i.d Gaussian random variables with mean 0 and variance 1/M ; fix a constant

0 < Cs < 1 and an integer1 ≤ d ≤ k, there exists a constantδs > 0 depending onCs. For any0 < δ0 < δs, we

have a finite set of matrices

Q = {Q1, · · · ,Qm},

where the cardinality#Q := m only depends onδ0 andd, andQ1, · · · ,Qm ∈ RN×d are full-rank matrices with

span(Q1), · · · , span(Qm) ⊂ X ; such that for any matrixS ∈ RN×d satisfyingspan(S) ⊂ X , vold(S) > Cs, we

can find aQr ∈ Q(r = 1, · · · ,m), and

− d
3
2C′δ0 ≤ log

vold(ΦS)

vold(S)
− log

vold(ΦQr)

vold(Qr)
≤ d

3
2C′δ0, (48)

where0 < C′ <∞ is a constant only depend onCs andΦ, and the cardinality of the setQ satisfies

#Q ≤
(⌊(3/δ0)k⌋

d

)

.

Proof: According to Lemma 2 and Lemma 3, we obtain

exp{−d 3
2 (CΦδ0/C1 + δ0/C2)} ·

vold(ΦQr)

vold(Qr)
≤ vold(ΦS)

vold(S)
≤ vold(ΦQr)

vold(Qr)
· exp{d 3

2 (CΦδ0/C2 + δ0/C1)}. (49)

If we takeC′ = max{CΦ/C1 + 1/C2, CΦ/C2 + 1/C1}, then we obtain

exp{−d 3
2C′ · δ0} ·

vold(ΦQr)

vold(Qr)
≤ vold(ΦS)

vold(S)
≤ vold(ΦQr)

vold(Qr)
· exp{d 3

2C′ · δ0}. (50)

Lemma 4 is now proved.
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3) Step 3. Union Bound: An immediate result from Lemma 1 and Lemma 4 is stated as follows:

Lemma5: Consider any point on the Grassmann manifoldX ∈ Gr(k,N), and a random matrixΦ ∈ RM×N

with elementsφi,j being i.i.d Gaussian random variables with mean 0 and variance1/M ; for any0 < Cs < 1 and

any integer1 ≤ d ≤ k, for every matrixS ∈ RN×d, span(S) ⊂ X , with unit-norm columns andvold(S) > Cs,

we state that there existsδs > 0, andC,C′ > 0, only depend onCs, such that for any0 < ε < d
3
2 δs(1 + C′), we

have:
∣

∣

∣

∣

log
vold(ΦS)

vold(S)
− E log

vold(ΦS)

vold(S)

∣

∣

∣

∣

≤ ε, (51)

which holds with probability

P ≥ 1− 2 ·
(⌊(3d 3

2 (1 + C′)/ε)k⌋
d

)

exp
{

− ε2/
(

4(1 + C′)2
d
∑

p=1

[
1

M − p+ 1
+ C

1

(M − p+ 1)2
]
)}

. (52)

Proof: According to the results from Lemma 4, we know that for any given 0 < Cs < 1 and any integer

1 ≤ d ≤ k, for any given0 < δ0 < δs we can always find a finite setQ such that (48) holds for every matrixS

, span(S) ⊂ X with unit-norm columns andvold(S) > Cs. Combining the result of Lemma 1, Lemma 4 and the

union bound, we obtain:

− ε′ − d
3
2C′δ0 ≤ log

vold(ΦS)

vold(S)
− E log

vold(ΦS)

vold(S)
≤ ε′ + d

3
2C′δ0 (53)

holds for every matrixS and anyε′ > 0 with probability

P ≥ 1− 2 ·
(⌊(3/δ0)k⌋

d

)

exp
{

− ε′2/
(

4
d
∑

p=1

[
1

M − p+ 1
+ C

1

(M − p+ 1)2
]
)}

. (54)

If we takeε′ = d
3
2 δ0, and letε = (1 + C′)d

3
2 δ0, then we produce (51) and (52).

Next, we finish the proof of Theorem 1.

Proof of Theorem 1:

The result of Lemma 5 shows the concentration inequality forall matrices in one pointXi on Grassmann manifold,

and we can use the union bound to extend the result to every point from the set in Grassmann manifoldG(k,N, L).

Thus, for every matrixS satisfyingspan(S) ⊂ Xi in every point of the setG(k,N, L), with vold(S) > Cs, (51)

holds with probability

P ≥ 1− 2L ·
(⌊(3d 3

2 (1 + C′)/ε)k⌋
d

)

exp
{

− ε2/
(

4(1 + C′)2
d
∑

p=1

[
1

M − p+ 1
+ C

1

(M − p+ 1)2
]
)}

. (55)

Next, according to the Stirling’s Inequality:
(⌊(3d 3

2 (1 + C′)/ε)k⌋
d

)

≤ (e⌊(3d 3
2 (1 + C′)/ε)k⌋/d)d ≤ (e · d 3

2k−1⌈(3(1 + C′)/ε)⌉k)d, (56)

we state that if

1/
(

d
∑

p=1

[
1

M − p+ 1
+ C

1

(M − p+ 1)2
]
)

≥

4(1 + C′)2

ε2

[

log(2L) + d · (3
2
k − 1) log(ed) + d · k log(⌈3(1 + C′)

ε
⌉) + t

]

, (57)
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thenP ≥ 1− e−t. Because

d
∑

p=1

[
1

M − p+ 1
+ C

1

(M − p+ 1)2
] ≤ d

M − d+ 1
+

C · d
(M − d+ 1)2

≤ d

M − d+ 1
(1 + C). (58)

Therefore, for the sufficient condition that (57) holds, we obtain

M ≥ 4(1 + C′)2(1 + C) · d
ε2

[

log(2L) + d · (3
2
k − 1) log(e · d) + d · k log(⌈3(1 + C′)

ε
⌉) + t

]

+ d− 1. (59)

Thus, Theorem 1 is proved.

B. Proof of Corollary 1

According to Theorem 1, if we simultaneously consider two points Xi,Xj ∈ G(k,N, L), 1 ≤ i 6= j ≤ L in

the finite setG(k,N, L) with Xi

⋂Xj = {0}, then (36) is a direct conclusion. Next, we know that all of the

L̄ = L(L− 1)/2 linear subspacesXi ⊕Xj will form a new finite set in Grassmann manifold, i.e.,

G(2k,N, L̄) := {Xi ⊕Xj , 1 ≤ i 6= j ≤ L}.

Next, for any given0 < Cs < 1 and any dimension0 < d ≤ 2k, the Gaussian random measurement matrix

Φ ∈ RM×N will provide the volume-based stable embedding for every matrix X ∈ RN×d, with vold(X) >

Cs, span(X) ⊂ Xi ⊕Xj , which means that there existsδs > 0 andC,C′ > 0 such that for any

0 < ε < d
3
2 δs(1 + C′), (60)

if

M ≥ 4(1 + C′)2(1 + C) · d
ε2

[

log(2L̄) + d · (3k − 1) log(e · d) + d · 2k log(⌈3(1 + C′)

ε
⌉) + t

]

+ d− 1, (61)

then

− ε ≤ log
vold(ΦX)

vold(X)
− 1

2

d
∑

p=1

(

ψ[(M − p+ 1)/2] + log 2− logM
)

≤ ε, (62)

holds with probabilityP ≥ 1− e−t.

Therefore, according to the union bound in probability, if we require the volume-based stable embedding property

of all matricesX for all dimensions1 ≤ d ≤ 2k andvold(X) > Cs, the sufficient condition is that there exists

δs > 0 andC,C′ > 0 such that for any0 < ε < δs(1+C
′) (i.e., less than the lowest bound in (60) whend = 1), if

M satisfies the largest measurement bound for alld’s (i.e., the bound in (61) whend = 2k), then the concentration

inequality (38) will hold with probability

P ≥ 1− 2k · e−t. (63)

By replacingt with t+ log(2k), we obtain the result of Corollary 1.
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C. Proof of Theorem 2

Theorem 2 is proven using the result of Corollary 1. Considerevery pair of pointsXi andXj in the setG(k,N, L),

if we take their unit norm basisXi ∈ RN×k andXj ∈ RN×k, satisfyingspan(Xi) = Xi, span(Xj) = Xj as

well as span([Xi,Xj]) = Xi ⊕ Xj , then for a given0 < Cs < 1, vol2k([Xi,Xj ]) > Cs for every i 6= j 4. The

relationship between volume and principal angles implies

vol2k(Φ[Xi,Xj ]) = volk(ΦXi) · volk(ΦXj) ·
k
∏

m

sin θm(ΦXi,ΦXj), (64)

vol2k([Xi,Xj ]) = volk(Xi) · volk(Xj) ·
k
∏

m

sin θm(Xi,Xj). (65)

Because of the unit-norm condition on the columns ofXi andXj , we havevolk(Xi) ≤ 1 andvolk(Xj) ≤ 1, the

relationship in (65) also indicates thatvolk(Xi) > Cs andvolk(Xj) > Cs, and thus

log

∏k
m sin θm(ΦXi,ΦXj)
∏k

m sin θm(Xi,Xj)
= log

vol2k(Φ[Xi,Xj ])

vol2k([Xi,Xj])
− log

volk(ΦXi)

volk(Xi)
− log

volk(ΦXj)

volk(Xj)
. (66)

Next, according to (38) in Corollary 1, if the measurement matrix Φ provides volume-based stable embedding for

every matrixX with every dimension1 ≤ d ≤ 2k andvold(X) > Cs in the setG(2k,N, L̄), then

− ε ≤ log
vol2k(Φ[Xi,Xj])

vol2k([Xi,Xj ])
− 1

2

2k
∑

p=1

(

ψ[(M − p+ 1)/2] + log 2− logM
)

≤ ε, (67)

−ε ≤ log
volk(ΦXi)

volk(Xi)
− 1

2

k
∑

p=1

(

ψ[(M − p+ 1)/2] + log 2− logM
)

≤ ε, (68)

−ε ≤ log
volk(ΦXi)

volk(Xj)
− 1

2

k
∑

p=1

(

ψ[(M − p+ 1)/2] + log 2− logM
)

≤ ε, (69)

and combined with (66), we prove this theorem.

V. CONCLUSION

In this paper, by formulating subspaces as points on the Grassmann manifold, we studied the stable embedding

of linear subspaces via Gaussian random matrices, and proposed a volume-preserving embedding property of

measurement matrices based on the Grassmann manifold. The Grassmann manifold enables us to establish a

new theoretical framework to study multi-dimensional signals. In this paper, we proved a volume-based stable

embedding of a finite set in Grassmann manifold via Gaussian random matrices. We showed that volumes of

parallelotopes in every points of Grassmann manifold is preserved via Gaussian random measurement matrices. The

number of compressive measurements required to ensure the stable embedding of Grassmann manifold with high

probability was also obtained. This property is a multi-dimensional generalization of the conventional RIP or stable

embedding property, which only concerns the preservation of length of vectors. Additionally, we further explored the

4The existence ofCs can be guaranteed by the disjointness ofXi andXj , which indicatesvol2k([Xi,Xj ]) 6= 0.
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application of this volume-based stable embedding property to study the embedding effect on a generalized distance

measure for compressed measurement signals on the Grassmann manifold. We found that the generalized distance

measure between compressed measurement signals on the Grassmann manifold, i.e., the product of principal sines,

is well preserved via Gaussian random measurement matrices. Rigorous proof and discussions as well as numerical

simulations were provided for validation.

APPENDIX A

PROOF OFLEMMA 1

To prove Lemma 1, several preliminary results are required.

Lemma6: Consider a Gaussian random matrixΦ ∈ RM×N , N > M with each entryφi,j satisfyingφi,j ∼

N (0, 1/M), For any full-rank matrixS = [s1, s2, · · · , sd] ∈ RN×d, d < M , the volume of the parallelotope

spanned byS ∈ R
N×d andΦS ∈ R

M×d satisfies

log
vold(ΦS)

vold(S)

F
=

1

2
log det(Φ̂T

d Φ̂d), (70)

whereΦ̂d ∈ RM×d is also a Gaussian random matrix with entries satisfying (5), and the "F" above the equality

means that the right side has the same distribution functionas the left.

Proof:

From the condition of this Lemma, if the matrixS ∈ R
N×d has full column rank, then we can apply a singular

value decomposition:

S = U





Σd

O



V T , (71)

whereU ∈ RN×N ,V ∈ Rk×k are orthogonal matrices of the left and right singular vectors, and

Σd = diag(σ1, σ2, · · · , σd)

is a diagonal matrix whose entries are singular valuesσ1, σ2, · · · , σd.

According to the definition of volume in (13),
(vold(ΦS)

vold(S)

)2

=
det(ST

Φ
T
ΦS)

det(STS)

=

det(V [Σd,O]UT
Φ

T
ΦU





Σd

O



V T )

det(V [Σd,O]UTU





Σd

O



V T )

=

det(V Σd [Id,O]UT
Φ

T
ΦU





Id

O



ΣdV
T )

det(V Σ
2
dV

T )

=
det(XT

d Φ̂
T
d Φ̂dXd)

det(XT
d Xd)

, (72)
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where

Φ̂d := ΦU





Id

O



 ∈ R
M×d, Xd = ΣdV

T ∈ R
d×d.

It is not difficult to prove thatΦ̂d ∈ RN×d is still a Gaussian random matrix with entries satisfying (5).

Next with the knowledge of the multiplication property of the determinant of square matrices, we obtain
√

det(XT
d Φ̂

T
d Φ̂dXd)

det(XT
d Xd)

=

√

det(XT
d ) det(Φ̂

T
d Φ̂d) det(Xd)

det(XT
d ) det(Xd)

=

√

det(Φ̂T
d Φ̂d), (73)

and combined with (72), the result of this lemma is proved.

Lemma7: (Bartelett Decomposition, [42]) For a Gaussian random matrix Φ̂d ∈ RM×d, d < M with each entry

φi,j satisfyingφi,j ∼ N (0, 1/M), the random variablelog det(Φ̂T
d Φ̂d) has the same distribution as the sum ofd

independentlogχ2 random variables, that is:

log det(Φ̂T
d Φ̂d)

F
=

d
∑

p=1

[

log(X 2
M−p+1)− logM

]

. (74)

The "F" above the equality indicates equality in distribution, andX 2
M−p+1 denotes a chi-square random variable

of orderM − p+ 1.

Combining the result of Lemma 6 and Lemma 7, we prove Lemma 1.

Proof of Lemma 1:

According to Lemma 6 and Lemma 7, we must derive the concentration inequality of the sum ofd independent

logχ2 random variables in (74), because[42]

E

(

d
∑

p=1

log(X 2
M−p+1)

)

=

d
∑

p=1

[

ψ[(M − p+ 1)/2] + log 2
]

, (75)

whereψ(x) is the Digamma function mentioned previously. Given that the entries of a Gaussian random matrix

satisfyφij ∼ N (0, 1/M), we obtain

E{log vold(ΦS)

vold(S)
} =

1

2

d
∑

p=1

(

ψ[(M − p+ 1)/2] + log 2− logM
)

. (76)

Thus, the problem becomes the concentration inequality forthis random variable

Z := log
vold(ΦS)

vold(S)
−1

2

d
∑

p=1

(

ψ[(M−p+1)/2]+log2−logM
)

F
=

d
∑

p=1

log(X 2
M−p+1)−

d
∑

p=1

[

ψ[(M−p+1)/2]+log2
]

.

(77)

According to Markov’s Inequality, we state

P{Z > ε} = P{eλZ > eλε} ≤ E(eλZ)

eλε
, for any ε > 0, λ > 0, (78)
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whereE(eλZ), λ ∈ R is the Moment Generation Function. Thus ([42], A.7 of [44])

E(exp(λZ)) (79)

=

d
∏

p=1

E(exp(λ logχ2
M−p+1)) ·

1

exp{λ
(

ψ[(M − p+ 1)/2] + log 2
)

}

=

d
∏

p=1

E(χ2
M−p+1)

λ · 1

exp{λ · ψ[(M − p+ 1)/2]} · 2λ

=
d
∏

p=1

Γ[(M − p+ 1)/2 + λ]

Γ[(M − p+ 1)/2]
· 2λ · 1

exp{λ · ψ[(M − p+ 1)/2]} · 2λ

=

d
∏

p=1

Γ[(M − p+ 1)/2 + λ]

Γ[(M − p+ 1)/2]
· 1

exp{λ · ψ[(M − p+ 1)/2]} , (80)

whereΓ(z) is the Gamma function. Taking thelog of both sides, we obtain

logE{exp(λZ)} =

d
∑

p=1

(

log Γ[(M − p+ 1)/2 + λ]− log Γ[(M − p+ 1)/2]− λψ[(M − p+ 1)/2]
)

. (81)

If we use the asymptotic expansion of the Gamma function and Digamma function[42], we obtain

log Γ(z) = z log z − z − 1

2
log

z

2π
+

1

12z
+O(

1

|z|2 ) (82)

ψ(z) = log z − 1

2z
+O(

1

|z|2 ). (83)

Using Taylor expansion, we obtain

log Γ[(M − p+ 1)/2 + λ]− log Γ[(M − p+ 1)/2]− λψ[(M − p+ 1)/2]

= λ log[(M − p+ 1)/2]− λ
1

M − p+ 1
+ λ2

1

M − p+ 1

−λ log[(M − p+ 1)/2] + λ
1

M − p+ 1
+O(

λ2

(M − p+ 1)2
)

= λ2
( 1

M − p+ 1
+O(

1

(M − p+ 1)2
)
)

. (84)

Consider the remainder term

RM := O(1/(M − p+ 1)2) (85)

in (84), for sufficiently largeM , there existsM0 ∈ N, C0 > 0 such that for allM > M0,

RM ≤ C0/(M − p+ 1)2.

If we take

CM := RM · (M − p+ 1)2, p ≤M ≤M0

and let

C := max{Cp, · · · , CM0 , C0}, (86)
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then

RM ≤ C/(M − p+ 1)2 (87)

holds for allM ≥ p. Thus, the result in (79) will become:

E(exp(λZ)) ≤ exp
{

λ2
d
∑

p=1

[ 1

M − p+ 1
+

C

(M − p+ 1)2

]}

(88)

holds for a constantC > 0, and (78) becomes

P{Z > ε} ≤ exp
{

− λε+ λ2
d
∑

p=1

[ 1

M − p+ 1
+

C

(M − p+ 1)2

]}

, (89)

which holds for anyλ > 0. Thus, we can chooseλ such that

P{Z > ε} ≤ argmin
λ>0

{

exp
{

− λε+ λ2
d
∑

p=1

[ 1

M − p+ 1
+

C

(M − p+ 1)2

]}

}

, (90)

If we take

λmin = ε/

(

2 ·
d
∑

p=1

[ 1

M − p+ 1
+

C

(M − p+ 1)2

]

)

, (91)

then

P{Z > ε} ≤ exp
{

− ε2/
(

4

d
∑

p=1

[ 1

M − p+ 1
+

C

(M − p+ 1)2
])

}

. (92)

We can easily prove the same result forP{−Z > ε}; as a result, Lemma 1 is proved.

APPENDIX B

PROOF OFLEMMA 2

Lemma 2 is a direct derivation of the theory of covering numbers. From the knowledge of covering numbers

[7][45], for any givenδ0 > 0 and any givenk dimensional linear subspaceX , there exists a setQ of finite elements

with cardinality#(Q) ≤ ⌊(3/δ0)k⌋, such that for everys ∈ X , ‖s‖2 = 1, we can find at least oneq ∈ Q with

‖q‖2 = 1 satisfying

‖s− q‖2 ≤ δ0. (93)

Then for any matrixS = [s1, · · · , sd], span(S) ⊂ X with unit-norm columns andvold(S) > Cs, we can also find

qj for eachsj , such that

‖sj − qj‖2 ≤ δ0, j = 1, · · · , d.

What we need to prove is that for an arbitrarily smallδ0, theseqj in corresponding withsj will be different for

different j.

As known from geometry, the volume of parallelotope spannedby S = [s1, · · · , sd] equals the distance between

any vectorsj and the hyperplane spanned byS{l 6=j} := [s1, · · · , sj−1, sj+1, · · · , sd] multiplied by the volume of
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S{l 6=j}; that is:

C2
s < vol2d(S) = det(STS)

= det

(





sTj sj sTj S{l 6=j}

ST
{l 6=j}sj ST

{l 6=j}S{l 6=j}





)

= det
(

ST
{k 6=j}S{l 6=j}

)

· det
(

sTj sj − sTj S{l 6=j}
(

ST
{l 6=j}S{l 6=j}

)−1
ST
{l 6=j}sj

)

= vol2d−1

(

S{l 6=j}
)

· ‖P⊥
{l 6=j}sj‖22, (94)

whereP⊥
{l 6=j} := IN −S{l 6=j}

(

ST
{l 6=j}S{l 6=j}

)−1
ST
{l 6=j} is the matrix of projection onto the orthogonal completion

of span(S{l 6=j}). Because of‖sj‖2 = 1, j = 1, · · · , d, using Hadamard’s Inequality, we statevold−1

(

S{l 6=j}
)

≤ 1,

and thus

‖P⊥
{l 6=j}sj‖22 ≥ vol2d−1

(

S{l 6=j}
)

· ‖P⊥
{l 6=j}sj‖22 > C2

s . (95)

Intuitively, we also state

‖P⊥
{l 6=j}sj‖2 ≤ ‖P⊥

l sj‖2, ∀l 6= j. (96)

The inequality (96) is not difficult to prove, because we knowthat

〈Plsj ,P
⊥
{l 6=j}sj〉 = 0, (97)

〈Plsj ,P
⊥
l sj〉 = 0, (98)

so

〈Plsj ,P
⊥
l sj − P⊥

{l 6=j}sj〉 = 0. (99)

and we obtain

Plsj + P⊥
l sj − P⊥

{l 6=j}sj = sj − P⊥
{l 6=j}sj = P{l 6=j}sj , (100)

thus

‖Plsj‖22 + ‖P⊥
l sj − P⊥

{l 6=j}sj‖22 = ‖P{l 6=j}sj‖22. (101)

As a result‖P{l 6=j}sj‖22 ≥ ‖Plsj‖22, because

‖P{l 6=j}sj‖22 + ‖P⊥
{l 6=j}sj‖22 = ‖Plsj‖22 + ‖P⊥

l sj‖22 = ‖sj‖22,

then (96) is proven, and we obtain

‖P⊥
l sj‖2 ≥ ‖P⊥

{l 6=j}sj‖2 > Cs, (102)

which holds for any1 ≤ j 6= l ≤ d. Because

‖P⊥
l sj‖22 = ‖sj‖22 − |〈sj , sl〉|2‖sl‖22, (103)

If we let sl := sj + δj,l, with ‖δj,l‖2 := δj,l, then

|〈sj , sl〉|2 = |〈sj , sl〉+ 〈sj , δj,l〉|2 ≥ (1− δj,l)
2, (104)
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where the inequality comes from the Cauchy-Schwarz inequality |〈sj , δj,l〉| ≤ ‖sj‖2‖δj,l‖2 and‖sj‖2 = 1, thus

1− (1− δj,l)
2 ≥ ‖sj‖22 − |〈sj , sl〉|2‖sl‖22 > C2

s , (105)

which means

1 +
√

1− C2
s > δj,l > 1−

√

1− C2
s (106)

holds for any1 ≤ j 6= l ≤ d; that is

‖sj − sl‖2 = δj,l > 1−
√

1− C2
s , ∀1 ≤ j 6= l ≤ d. (107)

Thus, we need only to take a certainδ(1)s that satisfiesδ(1)s ≤ (1−
√

1− C2
s )/2, and for any0 < δ0 ≤ δ

(1)
s , we

state

‖qj − ql‖2 ≥ ‖sj − sl‖2 − ‖sj − qj‖2 − ‖sl − ql‖2 > 1−
√

1− C2
s − 2δ0 > 0. (108)

In other words, ifδ0 is sufficiently small, we can always find a group of differentqj , such that the differentsj

will be simultaneously covered by balls centered at different qj with radiusδ0. From this point of view, the setQ

is a subset that satisfies (108) from alld combinations of elements inQ with #(Q) ≤ ⌊(3/δ0)k⌋. Thus, we obtain

#(Q) ≤
(⌊(3/δ0)k⌋

d

)

.

APPENDIX C

PROOF OFLEMMA 3

Next, we prove Lemma 3. First, we consider (46).

According to Lemma 2, for any0 < Cs < 1 and any integer1 ≤ d ≤ k, there existsδ(1)s > 0 such that for any

0 < δ0 ≤ δ
(1)
s , we can always find a finite setQ composed of matricesQr = [q1, · · · , qd], span(Qr) ⊂ X , with

qj 6= ql, 1 ≤ j 6= l ≤ d, such that for all matricesS = [s1, · · · , sd], span(S) ⊂ X , with vold(S) > Cs, there is a

Qr ∈ Q that satisfies‖sj − qj‖2 ≤ δ0, j = 1, · · · , d.

If we consider the matrixQr as a perturbation ofS by a matrixE, where

Qr = S +E, (109)

andE = [e1, · · · , ed], ‖ej‖2 ≤ δ0, j = 1, · · · , d is the perturbation matrix, then we can use matrix perturbation

theory to analysis the relationship between the volumes ofQr andS.

We denoteσ1 ≥ σ2 ≥ · · · ≥ σd > 0 by the singular values of matrixS, andτ1 ≥ τ2 ≥ · · · ≥ τd > 0 by the

singular values of matrixQr, therefore, according to the Mirsky’s Theorem of singular value perturbation (Theorem

4.11 of [46]), we obtain

|σl − τl| ≤ ‖S −Qr‖2 = ‖E‖2, l = 1, · · · , d. (110)

According to the definition of matrix norm, we state

‖E‖2 = max
‖x‖2=1

{‖Ex‖2
‖x‖2

} =
√

λmax(ETE), (111)
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whereλmax(E
TE) is the maximum eigenvalue of matrixETE. Next, according to the theorem of Gershgorin’s

Circle[47], there is an integer1 ≤ l ≤ d, such that

|λmax(E
TE)− ‖el‖22| ≤

d
∑

j 6=l

|eTl ej | ≤ (d− 1)δ20 , (112)

so

‖E‖2 ≤
√
d · δ0. (113)

Combined with (110), we obtain

τl −
√
dδ0 ≤ σl ≤ τl +

√
dδ0, (114)

σl −
√
dδ0 ≤ τl ≤ σl +

√
dδ0, (115)

From the lemma’s condition, we know that

vold(S) =

d
∏

l=1

σl > Cs, (116)

and because
d
∑

l=1

σ2
l = tr(STS) = d. (117)

we obtain
d−1
∑

l=1

σ2
l = d− σ2

d ≤ d, (118)

According to the inequality between the geometric average and arithmetic average,

C2
s < σ2

d ·
d−1
∏

l=1

σ2
l ≤ σ2

d ·
( 1

d− 1

d−1
∑

l=1

σ2
l

)
1

d−1 ≤ σ2
d ·
( d

d− 1

)
1

d−1

, (119)

we obtain

σd ≥ Cs ·
( d

d− 1

)− 1
2(d−1)

. (120)

However, according to the left side of (115), we obtain

τd ≥ σd −
√
dδ0 ≥ Cs ·

( d

d− 1

)− 1
2(d−1) −

√
dδ0. (121)

As a result, if we take a certainδ(2)s such that0 < δ
(2)
s < Cs√

d
·
(

d
d−1

)− 1
2(d−1)

, then for anyδ0 ≤ δs := min{δ(1)s , δ
(2)
s },

τd ≥ Cs ·
( d

d− 1

)− 1
2(d−1) −

√
dδ(2)s . (122)

Then according to (114) and (115), we obtain

vold(S) =
d
∏

l=1

σi ≤
d
∏

l=1

(τl +
√
d · δ0)

=
d
∏

l=1

τl

d
∏

l=1

(1 +
√
d · δ0/τl), (123)
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According to (122), if we take

C2 := Cs ·
( d

d− 1

)− 1
2(d−1) −

√
dδ(2)s , (124)

whereC2 is related toCs, thenτd > C2, which means

vold(S) = vold(Qr)
d
∏

l=1

(1 +
√
d · δ0/τl)

< vold(Qr)

d
∏

l=1

(1 +
√
d · δ0/C2)

= vold(Qr) exp{
d
∑

l=1

log(1 +
√
d · δ0/C2)}

≤ vold(Qr) exp{d
3
2 · δ0/C2}. (125)

The last inequality is due to the fact thatlog(1 + x) ≤ x for x > 0. Thus, the right side of (46) is proved. With

knowledge of (115), we also state

vold(Qr) =

d
∏

l=1

τl ≤
d
∏

l=1

(σl +
√
d · δ0)

=

d
∏

l=1

σl

d
∏

l=1

(1 +
√
d · δ0/σl), (126)

and according to (120), if we take

C1 := Cs ·
( d

d− 1

)− 1
2(d−1)

, (127)

then

vold(Qr) ≤
d
∏

l=1

σl

d
∏

l=1

(1 +
√
d · δ0/σl)

≤ vold(S)

d
∏

l=1

(1 +
√
d · δ0/C1)

≤ vold(S) exp{d
3
2 · δ0/C1}. (128)

Thus, (46) is now proved. Next, we consider (47). For a lineartransformΦ, because all linear transforms are

bounded linear operators, then there exists a constantCΦ > 0, such that

‖Φx‖2 ≤ CΦ‖x‖2, (129)

holds for allx ∈ X , whereX is a given linear subspace. It is noted thatΦ is an i.i.d. Gaussian random matrix with

elementsφi,j having zero mean and variance1/M , then (129) holds almost surely for a sufficiently largeCΦ > 0,

andCΦ can be irrelevant to the dimension ofΦ [43]. So we can generally state thatCΦ is a constant irrelevant to

M andN .

Next, if we denotêσ1 ≥ σ̂2 ≥ · · · ≥ σ̂d > 0 by the singular values of matrixΦS and τ̂1 ≥ τ̂2 ≥ · · · ≥ τ̂d > 0

by the singular values of matrixΦQr, then similar to (110), we obtain

|σ̂l − τ̂l| ≤ ‖ΦS −ΦQr‖2 = ‖ΦE‖2. (130)
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And we state‖Φej‖2 ≤ CΦδ0, j = 1, · · · , d, thus, similarly we obtain

vold(ΦS) ≤ vold(ΦQr) exp{d
3
2 · CΦδ0/C2}, (131)

vold(ΦQr) ≤ vold(ΦS) exp{d 3
2 · CΦδ0/C1}. (132)

Therefore, Lemma 3 is now proved.
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