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A Class of Narrow-Sense BCH Codes
Shixin Zhu, Zhonghua Sun, and Xiaoshan Kai

Abstract

BCH codes are an important class of cyclic codes which have applications in satellite communications, DVDs,
disk drives, and two-dimensional bar codes. Although BCH codes have been widely studied, their parameters are
known for only a few special classes. Recently, Ding et al. made some new progress in BCH codes. However, we
still have very limited knowledge on the dimension of BCH codes, not to mention the weight distribution of BCH
codes. In this paper, we generalize the results on BCH codes from several previous papers.

(i) The dimension of narrow-sense BCH codes of length qm´1

λ
with designed distance 2 ď δ ď

qrpm`1q{2s ´1

λ
` 1

is settled, where λ is any factor of q ´ 1.

(ii) The weight distributions of two classes of narrow-sense BCH codes of length qm´1

2
with designed distance

δ “
pq´1qqm´1´qtpm´1q{2u´1

2
and δ “

pq´1qqm´1´qtpm`1q{2u´1

2
are determined.

(iii) The weight distribution of a class of BCH codes of length
qm´1

q´1
is determined.

In particular, a subclass of this class of BCH codes is optimal with respect to the Griesmer bound. Some optimal
linear codes obtained from this class of BCH codes are characterized.

Keywords: Cyclic codes, BCH codes, Weight distribution

I. INTRODUCTION

A. Backgrounds

Let q be a prime power and Fq be the finite field with q elements. Let n, k be positive integers with 1 ď k ď n.

An rn, ks linear code C is a subspace of the vector space Fn
q with dimension k. If this linear code C is, in

addition, closed under the cyclic shift, i.e., pcn´1, c0, c1, . . . , cn´2q P C for any pc0, c1, . . . , cn´1q P C, then C is

called a cyclic code. Each vector c “ pc0, c1, . . . , cn´1q is customarily identified with its polynomial representation

cpxq “ c0 ` c1x ` ¨ ¨ ¨ ` cn´1x
n´1, and a code is identified with the set of polynomial representations of its

codewords. A linear code C of length n over Fq is cyclic if and only if C is an ideal of Fqrxs{xxn ´ 1y. It is

well known that every ideal of Fqrxs{xxn ´ 1y is principal. Hence, there is a monic divisor gpxq of xn ´ 1 such

that C “ xgpxqy. The polynomial gpxq is called the generator polynomial of C, and hpxq “ xn´1

gpxq is called the

parity-check polynomial of C. If hpxq has t irreducible factors over Fq, we say such a cyclic code C has t nonzeros.

Suppose n is a positive integer with gcdpn, qq “ 1. Let m “ ordnpqq, i.e., the multiplicative order of q modulo
n is m, and α be a primitive element in Fqm . Assume that qm ´ 1 “ nλ and θ “ αλ, then θ is a primitive n-th

root of unity. For each 0 ď i ď n ´ 1, let mipxq be the minimum polynomial of θi over Fq . A cyclic code of

length n over Fq is called a BCH code with designed distance δ if its generator polynomial is of the form

lcmpmbpxq,mb`1pxq, . . . ,mb`δ´2pxqq,

where lcm denotes the least common multiple of the polynomials, 2 ď δ ď n and b ě 0. Denote such a BCH
code with designed distance δ by Cpq,m,λ,δ,bq. If b “ 1 it is called a narrow-sense BCH code and we denote it by

Cpq,m,λ,δq. Clearly, Cpq,m,λ,δ`1,0q Ď Cpq,m,λ,δq. We denote Cpq,m,λ`1,0q by pCpq,m,λ,δq.

BCH codes were invented by Hocquenghem [18], and independently by Bose and Ray-Chaudhuri [5]. One of

the key features of BCH codes is a precise control over the number of symbol errors correctable by the code.

Another advantage of BCH codes is that they have efficient encoding and decoding algorithms. Due to BCH codes
have such good properties, they are widely used in DVDs, solid-state drives, compact disc players, disk drives,

two-dimensional bar codes and satellite communications.

The authors are with the School of Mathematics, Hefei University of Technology, Hefei 230009, China. Their research is supported by the
National Natural Science Foundation of China under Grants 61772168 and 61572168. Emails: zhushixin@hfut.edu.cn; sunzhonghuas@163.com;
kxs6@sina.com.
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TABLE I: KNOWN RESULTS ON DIMENSION OF Cpq,m,λ,δq

λ δ Reference

λ “ 1

δ “ qt [39]

δ “ qm´2 ` 1 [9]

2 ď δ ď qrm{2s ` 1;
[48]

qm{2 ` 2 ď δ ď 2qm{2 ` 1, m even

2 ď δ ď qrm{2s`1 [29]

λ “ q ´ 1
2 ď δ ď qm{2 , m even [28]

2 ď δ ď qpm`1q{2 , m odd [29]

λ “ qℓ ´ 1,
m “ 2ℓ

3 ď δ ď qtpℓ´1q{2u ` 2 [28]

2 ď δ ď qtpℓ`1q{2u ` 1 [29]

2 ď δ ď 2qℓ{2 ` 3, ℓ even;
[33]

2 ď δ ď 2qpℓ`1q{2 ` 2q, ℓ odd.

B. Known Results

BCH codes have been extensively studied in the literature ([1], [2], [4]–[11], [14], [16], [18]–[29], [33]–[40],

[42], [45]–[48]). Nonetheless, their parameters are known for only a few special classes. As pointed out by Charpin

[6], the dimension and minimum distance of BCH codes are difficult to determine in general. The dimensions of
the BCH codes Cpq,m,λ,δq were investigated in a lot of papers. We roughly list them in the Table I. Besides the

results in Table I, for qtm{2u ă n ď qm ´ 1 and 2 ď δ ď nqrm{2s

qm´1
, the dimension of Cpq,m,λ,δq was settled by Aly et

al. [3]. Recently, the dimensions of some BCH codes Cpq,m,λ,δ,bq with b ‰ 0, 1 were settled in [28], [29], [35].
The exact minimum distance of BCH codes has been studied in many literatures ( [7], [9]–[11], [14], [20], [23],

[34], [36]). The reader is referred to [9] for a recent summary of various results on minimum distance of BCH

codes. In general, the problem of determining the weight distribution of BCH codes is very difficult, and it is known
for only a few special classes. Not much work has been done on determining the weight distribution of BCH codes.

We list them in the following two cases.

(i) Case 1: λ “ 1. For δ “ pq ´ 1qqm´1 ´ qtpm´1q{2u ´ 1 and δ “ pq ´ 1qqm´1 ´ qtpm`1q{2u ´ 1, when q “ 2,

the weight distribution of Cpq,m,λ,δq was settled by Kasami [23]; when q is a prime, the weight distribution

of Cpq,m,λ,δq and pCpq,m,λ,δq was settled by Ding et al. [11]. For δ “ q3 ´ q2 ´ q ´ 2 and m “ 3, the

weight distribution of Cpq,m,λ,δq was determined by Yan [45]. Recently, For δ “ qm ´ qm´1 ´ qi ´ 1, where
m´2

2
ď i ď m´ tm

3
u ´ 1, the weight distribution of pCpq,m,λ,δiq was determined by Li [34].

(ii) Case 2: λ “ 2 and q “ 3. For δi “ 3m´1 ´ 1 ´ 3
tpm`2i´3q{2u´1

2
, where 1 ď i ď 2, the weight distribution of

Cpq,m,λ,δiq and pCpq,m,λ,δiq was settled by Li et al. [36].

C. The contribution of the present paper

The objective of this paper is to study narrow-sense BCH codes over Fq of length qm´1

λ
, where λ is a positive

factor of q ´ 1. The main contributions are the following:

(i) For 2 ď δ ď qrpm`1q{2s´1

λ
` 1, the dimension of the BCH code Cpq,m,λ,δq is completely determined. These

results generalize those from [28], [29].

(ii) For λ “ 2 and δi “ pq´1qqm´1´qtpm`2i´3q{2u´1

2
with i “ 1, 2, we give a trace representation for the codewords

in Cpq,m,2,δiq and pCpq,m,2,δiq. By using exponential sums, the weight distribution of the BCH code Cpq,m,λ,δiq

and pCpq,m,λ,δiq is settled. These results generalize those from [36].
(iii) For m “ apq´1q`1 or apq´1q`2 for some integer a ě 1, the first largest q-cyclotomic coset leader modulo

qm´1

q´1
is determined, and then the weight distribution of a class of BCH codes of length qm´1

q´1
is determined.

The paper is organized as follows. In Section II, we give some background and recall some basic results on

character sums. By using cyclotomic cosets, the dimension of this class of narrow-sense BCH codes is determined

in Section III. In Section IV, we find a trace representation for the codewords in Cpq,m,2,δiq and pCpq,m,2,δiq, where

δi “ pq´1qqm´1´qtpm`2i´3q{2u´1

2
with i “ 1, 2. In addition, by using exponential sums and the theory of quadratic

forms over finite fields, the weight distributions of Cpq,m,2,δiq and pCpq,m,2,δiq are determined. Moreover, the weight

distribution of a class of BCH codes of length qm´1

q´1
is also determined. Furthermore, a subclass of such BCH
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codes meeting the Griesmer bound is presented. Compared with the table of the best known linear codes maintained
by Markus Grassl at http://www.codetables.de/, which is called the Database later in this paper, these two classes

of BCH codes are sometimes among the best liner codes known. Finally, the conclusion of the paper is given in

Section V.

II. PRELIMINARIES

Throughout this paper, let λ be a positive divisor of q ´ 1 and n “ qm´1

λ
, where m ě 2 is a positive integer.

Clearly, gcdpn, qq “ 1 and ordnpqq “ m.

Let α be a primitive element of Fqm and put θ “ αλ, then θ is a primitive n-th root of unity. For any 0 ď i ď n´1,
the q-cyclotomic coset of i modulo n is defined as Ci “

 
iqj pmod nq : 0 ď j ď li ´ 1

(
, where li is the least

positive integer such that iqli ” i pmod nq and is the size of Ci. Obviously, li | m. The smallest element in Ci is
called the coset leader of Ci. For every 2 ď δ ď n and b ě 0, we define

gpq,m,λ,δ,bqpxq “
ź

zPD

px´ θzq, where D “
δ´2ď

j“0

Cb`j .

Obviously, gpq,m,λ,δ,bq is the generator polynomial of Cpq,m,λ,δ,bq. If b “ 1, the dimension of Cpq,m,λ,δq is

dimpCpq,m,λ,δqq “ n´ |
δ´1ď

i“1

Ci|.

Moreover, dimppCpq,m,λ,δqq “ dimpCpq,m,λ,δqq ´ 1. The following is the well known BCH bound.

Lemma 1. [40, Ch. 7, Th. 8] The minimum distance of Cpq,m,λ,δ,bq is at least δ.

Let p be the characteristic of Fq , then q is a power of p. Let Trq
m

q be the trace mapping from Fqm to Fq and

ζp “ e
2πi
p , where m is a positive integer. For any given a P Fq , the function χapxq “ ζ

Tr
q
ppaxq

p is an additive

character of Fq . The character χ1 is called the canonical character of Fq . Let β be a fixed primitive element of Fq.

For each 0 ď j ď q ´ 2, the function ψj with ψjpβkq “ ζ
jk
q´1

for 0 ď k ď q ´ 2 defines a multiplicative character

of Fq, and every multiplicative character of Fq can be defined in this way. The character ψ0 is called the trivial
multiplicative character of Fq. When q is odd, the character ψ q´1

2

is called the quadratic character of Fq, and is

usually denoted by η. Let ψ be a multiplicative character and χ an additive character of Fq. Then the Gaussian

sum Gpψ, χq is defined by Gpψ, χq “ ř
xPF˚

q
ψpxqχpxq. From now on we shall denote the Gaussian sum Gpη, χ1q

over Fq by Gq . The explicit value of Gq is known.

Lemma 2. [32, Theorems 5.15, 5.33] Let q “ ps, where p is an odd prime and s is a positive integer. Then

Gq “
#

p´1qs´1
?
q if p ” 1 pmod 4q,

p´1qs´1p
?

´1qs?
q if p ” 3 pmod 4q,

and for each a P F˚
q ,

ÿ

xPF˚
q

ζ
Tr

q
ppax2q

p “ ηpaqGq ´ 1,

where η is the quadratic character of Fq.

We recall the following trace representation of cyclic codes, which is a direct consequence of Delsarte’s Theorem

[13].

Lemma 3. [36, Proposition 18] Let q be a prime power and m “ ordnpqq. Let θ be a primitive n-th root of unity

in Fqm and C be a cyclic code of length n over Fq. Suppose C has t nonzeros and let θi1 , θi2 , . . . , θit be the t
roots of its parity-check polynomial which are not conjugate with each other. Denote the size of the q-cyclotomic

coset Cij to be mj , 1 ď j ď t. Then C has the following trace representation

C “
 
cpa1, a2, . . . , atq : aj P Fq

mj , 1 ď j ď t
(
,

where cpa1, a2, . . . , atq “
´řt

j“1
Trq

mj

q pajθ´ℓij q
¯n´1

ℓ“0

.

http://www.codetables.de/
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We give a brief introduction to the theory of quadratic forms over finite fields, which is used to calculate the
weight distribution of BCH codes. Quadratic forms have been well studied ([15], [30], [31], [44], [49]). The form

is called a quadratic form over Fq if is a homogeneous polynomial of degree two in the form

Qpx1, x2, . . . , xmq “
ÿ

1ďiďjďm

aijxixj , aij P Fq.

If q is odd, for a quadratic form Qpx1, x2, . . . , xmq in m variables over Fq , there exists a symmetric matrix A
of order m over Fq such that Qpxq “ xAx1, where x “ px0, x1, . . . , xm´1q P Fm

q and x
1 denotes the transpose

of x. Let r “ rankA, then there exists M P GLmpFqq such that B “ MAM 1 is a diagonal matrix and B “
diagpa1, a2, . . . , ar, 0, . . . , 0q, where ai P F˚

q . Let ▽ “ a1a2 ¨ ¨ ¨ar and assume that ▽ “ 1 when r “ 0. Let η be

the quadratic character of Fq, then ηp▽q is an invariant of M under the conjugate action of M P GLmpFqq. We
identify Fqm with the m-dimensional Fq-vector space. The following results are useful in the sequel.

Lemma 4. [30, Lemma 1] Let q be an odd prime power and Qpxq be a quadratic form in m variables of rank r
over Fq. Then

ÿ

xPFqm

ζ
Tr

q
ppQpxqq

p “
#

˘qm´ r
2 if q ” 1pmod 4q,

˘p
?

´1qrqm´ r
2 if q ” 3pmod 4q.

The following identity holds (see [36, Lemma 9]):
ÿ

xPFqm

ζ
Tr

q
ppyQpxqq

p “ ηpyrq
ÿ

xPFqm

ζ
Tr

q
ppQpxqq

p , @y P F˚
q ,

where η is the quadratic character of Fq.

III. THE DIMENSION OF BCH CODE OF LENGTH n “ qm´1

λ

In this section, we will determine the dimension of the BCH codes Cpq,m,λ,δq for δ ´ 1 ď q
r m`1

2 s´1

λ
. Recall

dimpCpq,m,λ,δqq “ n´ |
δ´1ď

i“1

Ci|.

Let Γ1 “ ti : 1 ď i ď δ ´ 1 and i ı 0 pmod qqu. Then dimpCpq,m,λ,δqq “ n´ |ŤiPΓ1
Ci|, since if i ” 0 pmod qq

there exists an integer j with 1 ď j ă i such that Cj “ Ci. Let Γ2 denote the set of coset leaders in Γ1 and Γ3

the set of non coset leader in Γ1. Then Γ1 “ Γ2

Ť
Γ3. Note that if i P Γ3, there is an integer 1 ď j ă i such that

j P Ci and j is a coset leader of Ci. That is, for every i P Γ3, there exists an integer j P Γ2 such that Ci “ Cj . It

follows that

dimpCpq,m,λ,δqq “ n´
ÿ

iPΓ2

|Ci|

“ n´
ÿ

iPΓ1

|Ci| `
ÿ

iPΓ3

|Ci|.

Hence, to determine the dimension of the code Cpq,m,λ,δq, we need to find out the coset leader of Ci and its

cardinality for each i P Γ1.
The following result given in [3] will be useful for determining coset leaders when δ is small.

Lemma 5. [3, Lemmas 8, 9] Let n be an integer with qt m
2

u ă n ď qm ´ 1, where m “ ordnpqq. Then the

q-cyclotomic coset Ci has cardinality m for all i in the range 1 ď i ď nq
r m

2
s

qm´1
. Moreover, the following assert holds:

every i with i ı 0 pmod qq in this range is a q-cyclotomic coset leader modulo n.

When m is odd, by Lemma 5, we have the following conclusion.

Theorem 1. Let m ě 3 be odd. For every integer δ with 1 ď δ ´ 1 ď q
m`1

2 ´1

λ
, Cpq,m,λ,δq has length n “ qm´1

λ
,

minimum distance d ě δ and dimension n´m
Q

pδ´1qpq´1q
q

U
.

Now we consider the dimension of Cpq,m,λ,δq when m “ 2h ě 4 and δ´1 ď qh`1´1

λ
. When λ “ 1, the following

result was prove in [3], [29], [46], [48].
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Lemma 6. Let m “ 2h ě 4. Let i be an integer with 1 ď i ď qh`1´1

λ
and i ı 0 pmod qq. Let fpa, b, cq “

aqh ` bpqh´1q
λ

` c, where a, b, c are integers. Then i is not a q-cyclotomic coset leader modulo n if and only if

i P ∆0

Ť
∆1

Ť
∆2, where

∆0 “
"
fpa, 0, cq : 1 ď c ă a ď q ´ 1

λ

*
,

∆1 “
"
fpa, b, cq : 1 ď c ď a ă q ´ 1

λ
, 1 ď b ă λ

*
,

∆2 “
"
fpa, b, a` 1q : 0 ď a ă q ´ 1

λ
,
λ

2
ă b ă λ

*
.

Proof: We claim that an integer 1 ď i ă n is not the coset leader in the q-cyclotomic coset of i modulo n if

and only if λi is not the coset leader in the q-cyclotomic coset of λi modulo λn. In fact, i is not a coset leader
if and only if there exists an integer j with 1 ď j ă i such that i ” jqs pmod nq, for some integer s. Note that

i ” jqs pmod nq is equivalent to λi ” λjqs pmod λnq. Hence, the above assert holds.
We divide λ into two cases to prove our result.

(i) If λ “ 1, an integer i with 1 ď i ď qh`1 ´1 and i ı 0 pmod qq is not a coset leader if and only if i “ aqh `c,
where 1 ď c ă a ď q ´ 1, which has been proven in [29].

(ii) If λ ě 2, an integer i with 1 ď i ď qh`1´1

λ
and i ı 0 pmod qq is not the coset leader in the q-cyclotomic

coset of i modulo n if and only if λi is not the coset leader in the q-cyclotomic coset of λi modulo λn. From

Case (i), λi “ ihq
h ` i0 for integers 1 ď i0 ă ih ď q ´ 1.

(a) If λ | ih, then λ | i0. Suppose ih “ λa and i0 “ λc. Then, i “ aqh ` c, where 1 ď c ă a ď q´1

λ
. That is,

i P ∆0.

(b) If λ ∤ ih, there exist integers a, b such that ih “ λa ` b, where 1 ď b ă λ and 0 ď a ă q´1

λ
. Note that

i0 ` ih ” 0 pmod λq, thus, i0 “ λc ´ b, where c ě 1. Notice that ih ´ i0 “ λpa ´ cq ` 2b ą 0. We claim
a´ c ě ´1. Otherwise, ih ´ i0 ď 2pb´ λq ă 0. We continue our discussions by distinguishing the following

two subcases.

– If a´ c ě 0, i.e., 1 ď c ď a, then i P ∆1.

– If a´ c “ ´1, then ih ´ i0 “ 2b´ λ ą 0. It gives λ
2

ă b ă λ. Hence, i “ aqh ` bpqh´1q
λ

` a` 1, where

0 ď a ă q´1

λ
and λ

2
ă b ă λ. That is, i P ∆2.

The result follows.

Note that

gcdpq ´ 1, qh ` 1q “
#
1 if q is even,

2 if q is odd.
(1)

Define ∆ “
 
cpqh ` 1q : 1 ď c ď q´1

λ

(
when λ is odd. Otherwise,

∆ “
"
cpqh ` 1q

2
: 1 ď c ď 2pq ´ 1q

λ

*
.

We have the following conclusion.

Lemma 7. Let ∆ be defined as above. Let m “ 2h ě 4, and i be an integer with 1 ď i ď qh`1´1

λ
. Then |Ci| “ h

if and only if i P ∆.

Proof: Clearly, |Ci| divides m. Notice that iqℓ ă n for each 1 ď ℓ ď h´ 1. Hence, |Ci| “ h if and only if

iqh ” i pmod nq ðñ λi ” 0 pmod qh ` 1q. (2)

(i) If λ is odd, from (1), gcdpλ, qh ` 1q “ 1. It follows from (2) that

iqh ” i pmod nq ðñ i ” 0 pmod qh ` 1q.

(ii) If λ is even, from (1), gcdpλ, qh ` 1q “ 2. It follows from (2) that

iqh ” i pmod nq ðñ i ” 0 pmod pqh ` 1q{2q.

The result follows.
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Combining with Lemmas 6 and 7, we have the following conclusion.

Theorem 2. Let m “ 2h ě 4. Let i be an integer with 1 ď i ď qh`1´1

λ
and i ı 0 pmod qq. Then i is not a

q-cyclotomic coset leader modulo n if and only if i P ∆0

Ť
∆1

Ť
∆2, where ∆0, ∆1 and ∆2 are defined as Lemma

6. Moreover,

|Ci| “
#
h if i P ∆,

m otherwise,

where ∆ is defined as above.

Proof: The first statement of this theorem comes from Lemma 6. We now prove that all cosets have only two

possible sizes. For every integer i with 1 ď i ď qh`1´1

λ
, it is clear that iqℓ ă n for all 1 ď ℓ ď h ´ 1. This gives

that |Ci| ě h. Notice that |Ci| divides m, we have |Ci| “ m or h. According to Lemma 7, the result follows.

The following corollary can be deduced from Theorem 2.

Corollary 1. Let m “ 2h ě 4, then

(i) if λ ě 3 is odd, the smallest i with i ı 0 pmod qq that is not a q-cyclotomic coset leader modulo n is
pλ`1qqh`λ´1

2λ
;

(ii) if λ “ 2, the smallest i with i ı 0 pmod qq that is not a q-cyclotomic coset leader modulo n is 3qh`1

2
;

(iii) if λ ě 4 is even, the smallest i with i ı 0 pmod qq that is not a q-cyclotomic coset leader modulo n is
pλ`2qqh`λ´2

2λ
.

Proof: Recall ∆i defined as Lemma 6. Let minp∆iq denote the smallest number in ∆i for i “ 0, 1, 2. It is easy

to check that fpa, b, cq has the following properties. If a ą a1, then fpa, b, cq ą fpa1, b1, c1q for all 0 ď b, b1 ă λ
and 1 ď c, c1 ď q ´ 1. If b ą b1, then fpa, b, cq ą fpa, b1, c1q for all 1 ď c, c1 ď q ´ 1. Hence, if ∆i ‰ H, we have
minp∆0q “ fp2, 0, 1q, minp∆1q “ fp1, 1, 1q and minp∆2q “ fp0, rλ`1

2
s, 1q. This gives that the smallest i with

i ı 0 pmod qq that is not a coset leader is minp∆2q if λ ě 3. Hence, the results of Cases (i) and (iii) are follow.

If λ “ 2 and q ą 3, then ∆1 ‰ H and ∆2 “ H. It follows that the smallest i with i ı 0 pmod qq that is not a

coset leader is minp∆1q. If λ “ 2 and q “ 3, then ∆0 “ ∆1 “ ∆2 “ H. That is, every integer i ď 3
h`1´1

2
with

i ı 0 pmod 3q is a coset leader. Notice that
p3h`1`1q3h´1

2
” 3

h´1`1

2
pmod nq, we have that 3

h`1`1

2
is not a coset

leader. The proof is completed.

For λ “ 1, the result that the smallest i with i ı 0 pmod qq that is not a a q-cyclotomic coset leader modulo n
is 2qh ` 1 was shown in [46]. Moreover, for δ ď qh`1 ´ 1, the dimension of Cpq,m,λ,δq was determined in [29].

For λ “ q ´ 1, if δ ď qh, the dimension of Cpq,m,λ,δq was determine in [28]. Theorem 3 is a generalization of the

results in [28]. With the conclusions on cyclotomic cosets in Theorem 2, we determine the dimension of Cpq,m,λ,δq

with λ ě 2 as follows.

Theorem 3. Let m “ 2h ě 4. For every integer δ with 1 ď δ ´ 1 ď qh`1´1

λ
, let δ ´ 1 “ řh

j“0
δjq

j and

δ “
Q

pδ´1qpq´1q
q

U
, where 0 ď δj ď q ´ 1. Then Cpq,m,λ,δq has length n “ qm´1

λ
, minimum distance d ě δ and

dimension k, where

(i) if δ ď qh ` 1, define ε “
Y

pδ´2qλ
qh´1

]
, then

k “

$
’&
’%

n ´mδ if ε ă
X
λ
2

\
,

n ´mδ `mpε´ λ´1

2
q if

X
λ
2

\
ď ε ă λ,

n ´mδ `mpλ´1

2
q if ε “ λ.
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(ii) if δ ě qh ` 2 and δh ă q´1

λ
, define ϑ “

Y
pδ´2´δhq

hqλ
qh´1

]
, then

k “

$
’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’%

n ´mδ `m
λδ2h`2pδ0´δhq`1

2
if δ ď δhq

h ` δh,

n ´mδ `m
λδ2h
2

if δhq
h ` δh ă δ ď δhq

h ` qh´1

λ
` 1,

n ´mδ `m
λδ2h
2

`mrpϑ ´ 1qδh ` δ0 ´ ϑpq´1q
λ

s
if δhq

h ` ϑpqh´1q
λ

` 1 ă δ ď δhq
h ` ϑpqh´1q

λ
` δh ` 1 and 1 ď ϑ ď λ

2
,

n ´mδ `m
λδ2h
2

`mrpϑ ´ 1qδh ` δ0 ´ ϑpq´1q
λ

s `mpϑ ´ λ`1

2
q

if δhq
h ` ϑpqh´1q

λ
` 1 ă δ ď δhq

h ` ϑpqh´1q
λ

` δh ` 1 and ϑ ą λ
2
,

n ´mδ `m
λδ2h
2

`mϑδh

if δhq
h ` ϑpqh´1q

λ
` δh ` 1 ă δ and 1 ď ϑ ă λ

2
,

n ´mδ `m
λδ2h
2

`mϑδh `mpϑ´ λ´1

2
q

if δhq
h ` ϑpqh´1q

λ
` δh ` 1 ă δ and ϑ ě λ

2
.

(iii) if δ ě qh ` 2 and δh “ q´1

λ
, then

k “
#
n´mδ `m

λδ2h`2pδ0´δhq`1

2
if δ ď δhq

h ` δh,

n´mδ `m
λδ2h
2

if δ ą δhq
h ` δh.

Proof: The lower bound on the minimum distance comes from Lemma 1. For every integer δ with 1 ď δ´1 ď
qh`1´1

λ
, it follows from Theorem 2 that |Ci| “ m except for i P ∆, and i P Γ1 is a coset leader except for

i P ∆0

Ť
∆1

Ť
∆2. Hence, the dimension of the BCH code Cpq,m,λ,δq is

k “ n´m|Γ1|`m

2
|Γ1

č
∆|`m

2ÿ

j“0

|Γ1

č
∆j |, (3)

where Γ1, ∆, ∆0, ∆1 and ∆2 are defined as above. It is easy to see that |Γ1| “ δ. To determine the dimension,

we just need to calculate the values of |Γ1

Ş
∆| and |Γ1

Ş
∆j | for j “ 0, 1, 2, respectively.

We prove the conclusion on the dimension only for the case that δhq
h` ϑpqh´1q

λ
`1 ă δ ď δhq

h` ϑpqh´1q
λ

`δh`1

and ϑ ą λ
2

, where δh ă q´1

λ
, λ ě 2 is even integer. The proofs of the other cases are similar, and details are

omitted here.

Let Γ “ ti : 1 ď i ď δhq
h, and i ı 0 pmod qqu and Γ1 “ ti : δhqh ` 1 ď i ď δ ´ 1, and i ı 0 pmod qqu, then

Γ1 “ Γ
Ť

Γ1. It follows from (3) that

k “ n´mδ ` m

2
|Γ

č
∆| `m

2ÿ

j“0

|Γ
č

∆j |

`m

2
|Γ1

č
∆| `m

2ÿ

j“0

|Γ1
č

∆j |.

It is easy to check the following results are established.

Γ
č

∆ “
"
cpqh ` 1q

2
: 1 ď c ď 2δh ´ 1

*
,

Γ
č

∆0 “ tfpa, 0, cq : 1 ď c ă a ď δh ´ 1u ,

Γ
č

∆1 “ tfpa, b, cq : 1 ď c ď a ď δh ´ 1, 1 ď b ă λu ,

and

Γ
č

∆2 “
"
fpa, b, a` 1q : 0 ď a ď δh ´ 1,

λ

2
ă b ă λ

*
,
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where fpa, b, cq is defined as Lemma 6. It follows that

k “n´mδ `m

ˆ
λδ2h ´ 2δh ` 1

2

˙

` m

2

ˇ̌
ˇΓ1

č
∆
ˇ̌
ˇ `m

2ÿ

i“0

ˇ̌
ˇΓ1

č
∆i

ˇ̌
ˇ .

For δhq
h ` ϑpqh´1q

λ
` 1 ă δ ď δhq

h ` ϑpqh´1q
λ

` δh ` 1 and ϑ ą λ
2
, we have

δ ´ 1 “ δhq
h ` ϑpq ´ 1q

λ
rqh´1 ` ¨ ¨ ¨ ` qs ` δ0,

where
ϑpq´1q

λ
` 1 ď δ0 ď ϑpq´1q

λ
` δh. Clearly,

Γ1
č

∆ “
"
δhpqh ` 1q, p2δh ` 1qpqh ` 1q

2

*
,

Γ1
č

∆0 “ tfpδh, 0, cq : 1 ď c ă δhu ,

Γ1
č

∆1 “ tfpδh, b, cq : 1 ď c ď δh, 1 ď b ď ϑ ´ 1u
ď"

fpδh, ϑ, cq : 1 ď c ď δ0 ´ ϑpq ´ 1q
λ

*
.

and

Γ1
č

∆2 “
"
fpδh, b, δh ` 1q : λ` 2

2
ď b ď ϑ ´ 1

*
.

It follows that

k “ n´mδ `m
λδ2h
2

`m

„
pϑ ´ 1qδh ` δ0 ´ ϑpq ´ 1q

λ


`m

ˆ
ϑ´ λ` 1

2

˙
.

The result follows.

IV. THE WEIGHT DISTRIBUTION OF TWO CLASSES OF BCH CODES

In this section, we study the weight distribution of BCH codes of length n “ qm´1

λ
, where m ě 2 is an integer.

Our main task is to find a trace representation for the codewords in this class of BCH codes. For this reason, we
need to find the first few largest q-cyclotomic coset leaders modulo n.

When λ “ 1, the first few largest q-cyclotomic coset leaders modulo n were determined in [11] and [34]. When

λ “ 2 and q “ 3, the first few largest q-cyclotomic coset leaders modulo n were determined in [36]. It seems to
be a hard problem to determine the first few largest q-cyclotomic coset leaders modulo n for all q, m and λ. We

only deal with the cases λ “ 2 and λ “ q ´ 1.

For every integer i with 0 ď i ď n´1, the q-adic expansion of i is defined by
řm´1

ℓ“0
iℓq

ℓ, where 0 ď iℓ ď q´1.

We will study the properties of the cyclotomic cosets by using q-adic expansion in the following paper. Let rasn
be the smallest non-negative integer such that a”rasn pmod nq.

Lemma 8. Let 1 ď i ď n´ 1 be an integer. Denote the q-adic expansion of i by
řm´1

ℓ“0
iℓq

ℓ. If i is a q-cyclotomic

coset leader modulo n, then 0 ď im´1 ď q´1

λ
´ 1 and iℓ ě im´1 for all 0 ď ℓ ď m ´ 2.

Proof: Note that n“ p q´1

λ
qřm´1

ℓ“0
qℓ. From iďn´ 1, there exists an index v with 0 ď v ď m ´ 1 such that

iv ď q´1

λ
´ 1. If v “ m ´ 1, then im´1 ď q´1

λ
´ 1. If v ď m´ 2, we have

riqm´1´vsn “
vÿ

ℓ“0

iℓq
m´1´v`ℓ `

m´1ÿ

ℓ“v`1

iℓq
ℓ´v´1.

From i ď riqm´1´vsn, we deduce im´1 ď iv ď q´1

λ
´ 1.

We now prove iℓ ě im´1 for all 0 ď ℓ ď m´2. If there is an index u such that iu ă im´1, then riqm´1´usn ă i,
which contradicts the fact that i is a coset leader.
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A. The weight distribution of BCH codes of length pqm ´ 1q{2
Throughout this subsection, let q be an odd prime power and m ě 2 be an integer. We will find the first few

largest q-cyclotomic coset leaders modulo n “ qm´1

2
. Let δi denote the i-th largest coset leader, then δ1, δ2 and

δ3 are explicitly given in [36] when q “ 3.

Lemma 9. The largest q-cyclotomic coset leader modulo n “ qm´1

2
is

δ1 “ qm ´ 1 ´ qm´1 ´ qt m´1

2
u

2
.

Furthermore, |Cδ1 | “ m when m is odd and |Cδ1 | “ m
2

when m is even.

Proof: When q “ 3, δ1 was determined in [36]. Now assume q ě 5, we distinguish two cases for even and

odd m.
Case 1. m ě 3 is odd. It is easy to see that

Cδ1 “
#
qm ´ 1 ´ qℓ´1 ´ qℓ` m´1

2

2
: 1 ď ℓ ď m´ 1

2

+

ď
#
qm ´ 1 ´ qℓ´1 ´ qℓ´ m`1

2

2
:
m ` 1

2
ď ℓ ď m

+
,

and the q-adic expansion of δ1 is

ˆ
q ´ 3

2

˙
qm´1 ` pq ´ 1q

m´2ÿ

i“ m´1

2

qi `
ˆ
q ´ 1

2

˙ m´3

2ÿ

i“0

qi.

Hence, |Cδ1 | “ m and δ1 is the smallest integer in Cδ1 . We will prove that δ1 is the largest integer in the set of

all coset leaders. Suppose there exists an integer s with δ1 ă să n is a q-cyclotomic coset leader modulo n, by
Lemma 8, the q-adic expansion of s must be of the form

ˆ
q ´ 3

2

˙
qm´1 ` pq ´ 1q

m´2ÿ

i“ m´1

2

qi `
m´3

2ÿ

i“0

siq
i,

where si ě q´3

2
and

řm´3

2

i“0
siq

i ą p q´1

2
qř

m´3

2

i“0
qi.

When m “ 3, we have q`1

2
ď s0 ď pq ´ 1q. Moreover,

rsq2sn “
ˆ
s0 ´ q ` 1

2

˙
q2 ` pq ´ 1qq ` q ´ 1

2
.

It follows that rsq2sn ď δ1 ă s, and so we arrive at a contradiction. Now consider the case m ě 5 in the following.
Case 1.1. There exists an index v such that sv “ q´3

2
. From s ą δ1, we obtain 0 ď v ď m´5

2
, and

rsqm´1´vsn “
vÿ

i“0

siq
i`m´1´v `

ˆ
q ´ 3

2

˙
qm´2´v

`pq ´ 1q
m´2ÿ

i“ m´1

2

qi´1´v `
m´3

2ÿ

i“v`1

siq
i´v´1.

Note that m´ 2 ´ v ě m`1

2
, we have rsqm´1´vsn ă s, which gives a contradiction.

Case 1.2. There exists an index v with 0 ď v ď m´3

2
such that q´1

2
ă sv ă q ´ 1. Then

rsqm´1´vsn “
vÿ

i“0

ˆ
si ´ q ´ 1

2

˙
qi`m´1´v ´ qm´2´v

`
ˆ
q ´ 1

2

˙ m´2ÿ

i“ m´1

2

qi´1´v `
m´3

2ÿ

i“v`1

ˆ
si ´ q ´ 1

2

˙
qi´1´v

ď
ˆ
q ´ 3

2

˙
qm´1 `

ˆ
q ´ 1

2

˙m´2ÿ

i“0

qi ă δ1.
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Hence, rsqm´1´vsn ă s, a contradiction.

Case 1.3. There exists an index v with 1 ď v ď m´3

2
such that sv “ q´1

2
and sv´1 “ q ´ 1. Similar to Case

1.2, we have rsqm´1´νsn ă s, a contradiction.

Summarizing the discussions above, we just need to prove that for s “ p q´3

2
qqm´1 ` pq ´ 1qřm´2

i“v qi `
p q´1

2
q
řv´1

i“0
qi, there exists an integer i P Cs such that i ă s, where 0 ď v ď m´5

2
. At this point,

rsqm´1´vsn “ qm ´ 1 ´ qm´1 ´ qm´2´v

2

ď qm ´ 1 ´ qm´1 ´ q
m`1

2

2
ă δ1 ă s.

This gives a contradiction.

Collecting all the conclusions above, we conclude that δ1 is the largest coset leader for the case that m is odd.

Case 2. m ě 2 is even. It is easy to see that

Cδ1 “
"
qm ´ 1 ´ qℓ´1 ´ qℓ` m

2
´1

2
: 1 ď ℓ ď m

2

*
.

Clearly, |Cδ1 | “ m
2

and δ1 is the coset leader of Cδ1 . Similarly as in the case that m is odd, one can prove that δ1
is the largest coset leader for the case that m is even. Details are omitted here.

This completes the proof.

Similarly, we can calculate the second and the third largest q-cyclotomic coset leaders modulo qm´1

2
.

Lemma 10. The second largest q-cyclotomic coset leader modulo n “ qm´1

2
is

δ2 “ qm ´ 1 ´ qm´1 ´ qt m`1

2
u

2

and |Cδ2 | “ m.

Proof: When q “ 3, δ2 was determined in [36]. Now consider the case q ě 5. The proof is divided into the

following two cases according to the parity of m.

Case 1. m ě 3 is odd. It is easy to see that

Cδ2 “
#
qm ´ 1 ´ qℓ´1 ´ qℓ` m`1

2

2
: 1 ď ℓ ď m´ 3

2

+

ď
#
qm ´ 1 ´ qℓ´1 ´ qℓ´ m´1

2

2
:
m ´ 1

2
ď ℓ ď m

+
,

and the q-adic expansion of δ2 is

ˆ
q ´ 3

2

˙
qm´1 ` pq ´ 1q

m´2ÿ

i“ m`1

2

qi `
ˆ
q ´ 1

2

˙ m´1

2ÿ

i“0

qi.

Therefore, |Cδ2 | “ m and δ2 is the smallest integer in Cδ2 . Suppose there exists an integer s with δ2 ă s ă δ1 is

a q-cyclotomic coset leader modulo n, by Lemma 8, the q-adic expansion of s must be of the form

ˆ
q ´ 3

2

˙
qm´1 ` pq ´ 1q

m´2ÿ

i“ m`1

2

qi `
m´1

2ÿ

i“0

siq
i,

where q´3

2
ď si ď q ´ 1 and

ˆ
q ´ 1

2

˙ m´1

2ÿ

i“0

qi ă
m´1

2ÿ

i“0

siq
i ă pq ´ 1q qm´1

2 `
ˆ
q ´ 1

2

˙ m´3

2ÿ

i“0

qi. (4)

We continue our discussions by distinguishing the following three cases.
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Case 1.1. sm´1

2

“ q´1

2
. From (4), there exists an index ι with 0 ď ι ď m´3

2
such that sι ą q´1

2
. Let v be the

largest index such that sv ą q´1

2
. Similar to the proof of Case 1.2 in Lemma 9, we have rsqm´2´vsn ă s, which

contradicts the fact that s is a coset leader.

Case 1.2. q´1

2
ă sm´1

2

ă q ´ 1. Similar to Case 1.2 in Lemma 9, we have rsqm´1

2 sn ă s, a contradiction.

Case 1.3. sm´1

2

“ q ´ 1. From (4), there exists an index ι with 0 ď ι ď m´3

2
such that sι ă q´1

2
. Let v be the

largest index such that sv ă q´1

2
, Similar to Lemma 9, one can prove that rsqm´1´vsn ă s. Hence, s cannot be a

coset leader.

Summarizing all the conclusion above, we obtain that δ2 is the second largest coset leader for the case that m
is odd.

Case 2. m ě 2 is even. It is easy to see that

Cδ2 “
"
qm ´ 1 ´ qℓ´1 ´ qℓ` m

2

2
: 1 ď ℓ ď m ´ 2

2

*

ď"
qm ´ 1 ´ qℓ´1 ´ qℓ´ m

2

2
:
m

2
ď ℓ ď m

*
.

Hence, |Cδ2 | “ m and δ2 is the coset leader in Cδ2 . Similarly as in the case that m is odd, one can prove that δ2
is the second largest coset leader for the case that m is even. Details are omitted here.

The desired result follows.

Lemma 11. Let m ě 6. Then the third largest q-cyclotomic coset leader modulo n “ qm´1

2
is

δ3 “ qm ´ 1 ´ qm´1 ´ qt m`3

2
u

2
.

In addition, |Cδ3 | “ m.

Proof: When q “ 3, δ3 was determined in [36] for m ě 9. We can verify that δ3 is the third largrst coset

leader for the case that 6 ď m ď 8. Now consider the case q ě 5. The proof is divided into the following two
cases.

Case 1. m ě 7 is odd. We have

Cδ3 “
#
qm ´ 1 ´ qℓ´1 ´ qℓ` m`3

2

2
: 1 ď ℓ ď m´ 5

2

+

ď
#
qm ´ 1 ´ qℓ´1 ´ qℓ´ m´3

2

2
:
m´ 3

2
ď ℓ ď m

+

and the q-adic expansion of δ3 is

ˆ
q ´ 3

2

˙
qm´1 ` pq ´ 1q

m´2ÿ

i“ m`3

2

qi `
ˆ
q ´ 1

2

˙ m`1

2ÿ

i“0

qi.

Therefore, |Cδ3 | “ m and δ3 is the coset leader in Cδ3 . Suppose there exists an integer s with δ3 ă s ă δ2 is a
q-cyclotomic coset leader modulo n, by Lemma 8, the q-adic expansion of s must be of the form

ˆ
q ´ 3

2

˙
qm´1 ` pq ´ 1q

m´2ÿ

i“ m`3

2

qi `
m`1

2ÿ

i“0

siq
i,

where q´3

2
ď si ď q ´ 1 and

ˆ
q ´ 1

2

˙ m`1

2ÿ

i“0

qi ă
m`1

2ÿ

i“0

siq
i ă pq ´ 1q qm`1

2 `
ˆ
q ´ 1

2

˙ m´1

2ÿ

i“0

qi. (5)

Similar to Lemma 10, we can prove that the following Cases 1.1 and 1.2 are hold.

Case 1.1. sm`1

2

“ q´1

2
. Let v be the largest index such that sv ą q´1

2
, then rsqm´2´vsn ă s, which gives a

contradiction.
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Case 1.2. q´1

2
ă sm`1

2

ă q ´ 1. Then rsqm´3

2 sn ă s, we obtains a contradiction.

Case 1.3. sm`1

2

“ q ´ 1. From (5), there exists an index ι with 0 ď ι ď m´1

2
such that sι “ q´3

2
. Let v be the

largest index such that sv “ q´3

2
. It follows that si “ q´1

2
for all v ` 1 ď i ď m´1

2
. Then,

rsqm´1´vsn “
vÿ

i“0

siq
m´1´v`i `

ˆ
q ´ 3

2

˙
qm´2´v

` pq ´ 1q
m´2ÿ

i“ m`1

2

qi´1´v `
ˆ
q ´ 1

2

˙ m´1

2ÿ

i“v`1

qi´1´v.

If v ď m´3

2
, we deduce rsqm´1´vsn ă s since m ´ 2 ´ v ě v ` 1. If v “ m´1

2
, we continue our discussions of

this case by distinguishing the following cases.

Case 1.3.1. If there exists an index v with 1 ď v ď m´3

2
such that sv ă q ´ 1, we have rsqm´1

2 sn ă s, a

contradiction.

Case 1.3.2. If sm´1

2

“ q´3

2
and si “ q ´ 1 for all 1 ď i ď m´3

2
, we have rsqm´3

2 sn ă s since m ´ 2 ą m`1

2
.

Summarizing all the conclusion above, we obtain that δ3 is the third largest coset leader for the case that m is
odd.

Case 2. m ě 6 is even. It is easy to see that

Cδ3 “
#
qm ´ 1 ´ qℓ´1 ´ qℓ` m`2

2

2
: 1 ď ℓ ď m´ 4

2

+

ď
#
qm ´ 1 ´ qℓ´1 ´ qℓ´ m´2

2

2
:
m´ 2

2
ď ℓ ď m

+

Obviously, |Cδ3 | “ m and δ3 is the coset leader in Cδ3 . Similarly as in the case that m is odd, one can prove that
δ3 is the third largest coset leader for the case that m is even. Details are omitted here.

The desired result follows.

Based on the lemmas above, we can calculate the weight distribution of BCH code Cpq,m,2,δiq and pCpq,m,2,δiq as
follows.

Theorem 4. The BCH code pCpq,m,2,δ1q has parameters r qm´1

2
, k, ds, where

(i) if m is odd, then k “ m and d “ pq´1qqm´1

2
.

(ii) if m is even, then k “ m
2

and d “ pq´1qpqm´1`qk´1q
2

.

In addition, pCpq,m,2,δ1q has only one nonzero weight, and meets the Griesmer bound.

Proof: Let α be a primitive element of Fqm , then α2 is a primitive n-th root of unity in Fqm . From Lemma 9,

the code pCpq,m,2,δ1q has one nonzero and α2δ1 is a root of its parity-check polynomial. The dimension of pCpq,m,2,δ1q

follows from Lemma 9.

Case 1. m is odd. Notice that gcdp2δ1, q´1q “ gcdp2, q´1q “ 2, and gcdp2δ1, q
m´1

q´1
q “ gcdpqm´1

2 `1, q
m´1

q´1
q “

gcdpqm´1

2 ` 1, qm´1q “ 1. From Theorem 11 in [41], the result follows.

Case 2. m is even. Let h “ m
2

and τ “ qm´1 ` qh´1, then ´2δ1 ” τ pmod qm ´ 1q. By Lemma 3,

pCpq,m,2,δ1q “
"´

Trq
h

q paατℓq
¯n´1

ℓ“0

: a P Fqh

*
.

Let β “ αpqh`1q. Since Trq
h

q paατℓq “ Trq
h

q paqαqτℓq, it follows that pCpq,m,2,δ1q has the same weight distribution
with the following code

"
cpaq “

´
Trq

h

q paβℓq
¯n´1

ℓ“0

: a P Fqh

*
.

Let n1 “ qh ´ 1 and

C 1 “
"
c1paq “

´
Trq

h

q paβℓq
¯n1´1

ℓ“0

: a P Fqh

*
.
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Clearly,

wpc1paqq “ n1 ´
ˇ̌
ˇ
!
ℓ : Trq

h

q paβℓq “ 0, 0 ď ℓ ď n1 ´ 1
)ˇ̌
ˇ

“ n1 ´
ˇ̌
ˇ
!
x P F˚

qh : Trq
h

q paxq “ 0
)ˇ̌
ˇ .

Hence, C 1 is a rqh ´ 1, h, qh ´ qh´1s one-weight code over Fq. It is easy to check that

cpaq “
pqh`1q{2hkkkkkkkkkikkkkkkkkkj

c1paq ‖ ¨ ¨ ¨ ‖ c1paq,

where ‖ denotes the concatenation of vectors. Hence, pCpq,m,2,δ1q is a rn, h, pq´1qpqm´1`qh´1q
2

s one-weight code over

Fq.

Let C be a linear code of length n over Fq with dimension k and minimum distance d. Recall the Griesmer

bound (see [17]) for C is n ě řk´1

i“0
r d
qi

s, where rxs denotes the smallest integer greater than or equal to x. It is

easy to check that pCpq,m,2,δ1q meets the Griesmer bound, and hence is optimal.

Remark 1. It is well known that all one-weight code with dual weight at least 2 have been completely characterized

by Wolfmann [43]. Moreover, a set of characterizations for the one-weight irreducible cyclic codes was introduced

by Vega [41]. Hence, the result of Theorem 4 is not new. However, we show that this class of BCH code is also

one-weight code.

In the following theorem, we calculate the weight distribution of BCH code Cpq,m,2,δ1q.

Theorem 5. The BCH code Cpq,m,2,δ1q has parameters r qm´1

2
, k, δ1s, where

(i) if m is odd, then k “ m ` 1 and Cpq,m,2,δ1q is a four-weight code. In addition, the weight distribution of

Cpq,m,2,δ1q is listed in Table II.

(ii) if m is even, then k “ m
2

`1 and Cpq,m,2,δ1q is a three-weight code if m ě 4. In addition, the weight distribution

of Cpq,m,2,δ1q is listed in Table III.

Proof: Let α be a primitive element of Fqm , then α2 is a primitive n-th root of unity in Fqm . From Lemma 9,

the code Cpq,m,2,δ1q has two nonzeros, and 1 and α2δ1 are two non-conjugate roots of its parity-check polynomial.
The dimension of Cpq,m,2,δ1q follows from Lemma 9.

Case 1. m is odd. Let τ “ qm´1 ` q
m´1

2 . From Lemmas 3 and 9,

Cpq,m,2,δ1q “
"´

Trq
m

q paατℓq ` b
¯n´1

ℓ“0

: a P Fqm , b P Fq

*
.

Note that gcdpτ, qm ´ 1q “ gcdpqm´1

2 ` 1, qm ´ 1q “ gcdpqm´1

2 ` 1, q ´ 1q “ 2. Hence, Cpq,m,2,δ1q has the same
weight distribution with the following code

"
cpa, bq “

´
Trq

m

q paα2ℓq ` b
¯n´1

ℓ“0

: a P Fqm , b P Fq

*
.

If a “ 0, then wpcpa, bqq “ qm´1

2
for each b P F˚

q . If b “ 0, from Theorem 4, wpcpa, bqq “ pq´1qqm´1

2
for each

a P F˚
qm . If a ‰ 0 and b ‰ 0, then

wpcpa, bqq “ n ´
n´1ÿ

ℓ“0

1

q

ÿ

yPFq

ζ
Trqppy Trq

m

q paα2ℓq`ybq
p

“ n ´ 1

q

ÿ

yPFq

ζ
Trqppybq
p

n´1ÿ

ℓ“0

ζ
Trq

m

p payα2ℓq
p

“ pq ´ 1qn
q

´ 1

q

ÿ

yPF˚
q

ζ
Trqppybq
p

n´1ÿ

ℓ“0

ζ
Trq

m

p payα2ℓq
p .
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Note that

ÿ

xPF˚
qm

ζ
Trq

m

p payx2q
p “

2n´1ÿ

ℓ“0

ζ
Trq

m

p payα2ℓq
p

“
n´1ÿ

ℓ“0

„
ζ

Trq
m

p payα2ℓq
p ` ζ

Trq
m

p payα2pℓ`nqq
p

 (6)

and ordpαq “ 2n, thus,

n´1ÿ

ℓ“0

ζ
Trq

m

p payα2ℓq
p “ 1

2

ÿ

xPF˚
qm

ζ
Trq

m

p payx2q
p .

It follows that

wpcpa, bqq “ pq ´ 1qn
q

´ 1

2q

ÿ

yPF˚
q

ζ
Trqppybq
p

ÿ

xPF˚
qm

ζ
Trq

m

p payx2q
p .

From Lemma 2,

ÿ

xPF˚
qm

ζ
Trq

m

p payx2q
p “ ηpayqGqm ´ 1.

where η is the quadratic character of Fqm . We define a function η1pyq “ ηpyq, y P Fq. Since m is odd, η1 is the

quadratic character of Fq . Hence,

wpcpa, bqq “ pq ´ 1qn
q

´ 1

2q

ÿ

yPF˚
q

ζ
Trqppybq
p pηpayqGqm ´ 1q

“ pq ´ 1qn
q

´ 1

2q
´ ηpaqGqm

2q

ÿ

yPF˚
q

ζ
Trqppybq
p ηpyq.

Note that

ÿ

yPF˚
q

ζ
Trqppybq
p ηpyq “

ÿ

yPF˚
q

ζ
Trqppybq
p η1pyq

“ η1pb´1qGq “ ηpbqGq ,

we have wpcpa, bqq “ qm´qm´1´1

2
´ ηpabqGqGqm

2q
.

Assume s “ rFq : Fps, from Lemma 2, if p ” 1 pmod 4q, then wpcpa, bqq “ qm´qm´1´ηpabqq
m´1

2 ´1

2
. If

p ” 3 pmod 4q, then

wpcpa, bqq “ qm ´ qm´1 ´ ηpabqp´1q pm`1qs
2 q

m´1

2 ´ 1

2
.

Let nε “
ˇ̌ 

pa, bq P F˚
qm ˆ F˚

q : ηpabq “ ε
(ˇ̌

, where ε “ 1 or ´1, it is easy to check that n1 “ n´1 “ pq´1qpqm´1q
2

.

The weight distribution then follows.

Case 2. m is even. Similar to Case 1, Cpq,m,2,δ1q has the same weight distribution with the following code

"
cpa, bq “

´
Trq

h

q paβℓq ` b
¯n´1

ℓ“0

: a P Fqh , b P Fq

*
,

where h “ m
2

and β “ αpqh`1q.
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TABLE II: THE WEIGHT DISTRIBUTION OF Cpq,m,2,δ1q WHEN m IS ODD

Weight Frequency

0 1

qm´qm´1´q
m´1

2 ´1

2

pq´1qpqm´1q
2

qm´qm´1

2
qm ´ 1

qm´qm´1`q
m´1

2 ´1

2

pq´1qpqm´1q
2

qm´1

2
q ´ 1

TABLE III: THE WEIGHT DISTRIBUTION OF Cpq,m,2,δ1q WHEN m IS EVEN

Weight Frequency

0 1

qm´qm´1´q
m
2

´1
´1

2
pq ´ 1q

´
q

m
2 ´ 1

¯

pq´1qpqm´1`q
m
2

´1
q

2
q

m
2 ´ 1

qm´1

2
q ´ 1

If a “ 0, we have wpcpa, bqq “ qm´1

2
for each b P F˚

q . If b “ 0, it follows from Theorem 4 that wpcpa, bqq “
pq´1qpqm´1`qh´1q

2
for each a P F˚

qh
. If a ‰ 0 and b ‰ 0, then

wpcpa, bqq “ n´
n´1ÿ

ℓ“0

1

q

ÿ

yPFq

ζ
TrqppyTrq

h

q paβℓq`ybq
p

“ n´ 1

q

ÿ

yPFq

ζ
Trqppybq
p

n´1ÿ

ℓ“0

ζ
Trq

h

p payβℓq
p

“ n´ 1

q

ÿ

yPFq

ζ
Trqppybq
p

qh´2ÿ

ℓ2“0

qh´1

2ÿ

ℓ1“0

ζ
Trq

h

p payβrpqh´1qℓ1`ℓ2sq
p .

Note that ordpβq “ qh ´ 1, we have

wpcpa, bqq “ n´ qh ` 1

2q

ÿ

yPFq

ζ
Trqppybq
p

qh´2ÿ

ℓ2“0

ζ
Trq

h

p payβℓ2q
p

“ n´ qh ` 1

2q

ÿ

yPFq

ζ
Trqppybq
p

ÿ

xPF˚

qh

ζ
Trq

h

p payxq
p

“ n´ qh ` 1

2q

ÿ

yPFq

ζ
Trqppybq
p

ÿ

xPF
qh

ζ
Trq

h

p payxq
p

By using the orthogonality relations for additive characters, we have

wpcpa, bqq “ n ´ qh ` 1

2q
qh “ qm ´ qm´1 ´ qh´1 ´ 1

2
.

This completes the proof.

Example 1. When pq,mq “ p3, 3q, the BCH code Cpq,m,2,δ1q is a r13, 4, 7s code over F3 with weight enumerator

1 ` 26z7 ` 26z9 ` 26z10 ` 2z13. It has the same parameters with the best known linear code in the Datebase.

Example 2. When pq,mq “ p5, 3q, the BCH code Cpq,m,2,δ1q is a r62, 4, 47s code over F5 with weight enumerator

1 ` 248z47 ` 124z50 ` 248z52 ` 4z62. The best known linear code over F5 with length 62 and dimension 4 has

minimum distance 48.
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Let m ě 3 be odd and α be a primitive element of Fqm , then α2 is a primitive n-th root of unity in Fqm . From

Lemmas 9 and 10, the code pCpq,m,2,δ2q has two nonzeros, and α2δ1 and α2δ2 are two non-conjugate roots of its

parity-check polynomial. Let ρ1 “ qm´1 ` q
m´1

2 and ρ2 “ qm´1 ` q
m`1

2 . By Lemma 3,

pCpq,m,2,δ2q “
"´

Trq
m

q paαℓρ1 ` bαℓρ2q
¯n´1

ℓ“0

: a, b P Fqm

*
.

Note that Trq
m

q paαℓρ1 q “ Trq
m

q paq
m`1

2 αq
m`1

2 ℓρ1q and q
m`1

2 ρ1 ” q
m´1

2 ` 1 pmod qm ´ 1q, we have

Trq
m

q paαℓρ1 q “ Trq
m

q paq
m`1

2

αpq
m´1

2 `1qℓq.

Similarly, we have Trq
m

q pbαℓρ2q “ Trq
m

q pbq
m´1

2 αpq
m´3

2 `1qℓq. Hence, pCpq,m,2,δ2q has the same weight distribution

with the following code V1 “ tv1pa, bq : a, b P Fqmu, where

v1pa, bq “
ˆ

Trq
m

q paαpq
m´1

2 `1qℓ ` bαpq
m´3

2 `1qℓq
˙n´1

ℓ“0

.

Clearly, wpv1pa, bqq “ 0 for pa, bq “ p0, 0q. If pa, bq P F2

qmztp0, 0qu, then

wpv1pa, bqq “ n´
n´1ÿ

ℓ“0

1

q

ÿ

yPFq

ζ
TrqppyTrq

m

q paαpq
m´1

2 `1qℓ`bαpq
m´3

2 `1qℓqq
p .

Note that both q
m´1

2 ` 1 and q
m´3

2 ` 1 are even integers, then we have

2n´1ÿ

ℓ“0

ζ
TrqppyTrq

m

q paαpq
m´1

2 `1qℓ`bαpq
m´3

2 `1qℓqq
p

“ 2

n´1ÿ

ℓ“0

ζ
TrqppyTrq

m

q paαpq
m´1

2 `1qℓ`bαpq
m´3

2 `1qqℓq
p .

It follows that

wpv1pa, bqq “ n´ 1

2q

ÿ

yPFq

ÿ

xPF˚
qm

ζ
TrqppyQa,bpxqq
p

“ n´ qm ´ 1

2q
´ 1

2q

ÿ

yPF˚
q

ÿ

xPF˚
qm

ζ
TrqppyQa,bpxqq
p

“ pq ´ 1qn
q

´ 1

2q

ÿ

yPF˚
q

¨
˝ ÿ

xPFqm

ζ
TrqppyQa,bpxqq
p ´ 1

˛
‚

“ pq ´ 1qqm´1

2
´ 1

2q

ÿ

yPF˚
q

ÿ

xPFqm

ζ
TrqppyQa,bpxqq
p ,

where Qa,bpxq “ Trq
m

q paxq
m´1

2 `1 ` bxq
m´3

2 `1q.
Clearly, Qa,bpxq is a quadratic form in m variables over Fq, and

Qa,bpx` yq ´Qa,bpxq ´Qa,bpyq “ Trq
m

q pga,bpxq ¨ yq,

where

ga,bpxq “ bq
m`3

2

xq
m`3

2 ` aq
m`1

2

xq
m`1

2 ` axq
m´1

2 ` bxq
m´3

2

.

Assume the rank of Qa,bpxq is ra,b, then ra,b “ r if and only if ga,bpxq “ 0 has qm´r solutions in Fqm . The

number of solutions of the above equation equals the number of solutions of the following equation

bq
m`3

2

xq
3 ` aq

m`1

2

xq
2 ` axq ` bx “ 0,

which has at most q3 solutions. Thus, we have the following result.
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Lemma 12. For pa, bq P F2

qmztp0, 0qu, let ra,b be the rank of Qa,bpxq.

(i) If m “ 3, the possible values of ra,b are m, m´ 1 and m´ 2.

(ii) If m ě 5 is odd, the possible values of ra,b are m, m´ 1, m´ 2 and m ´ 3.

By Lemma 4, we have

wpv1pa, bqq “ pq ´ 1qqm´1

2
´ T pa, bq

2q

ÿ

yPF˚
q

ηpyra,bq, (7)

where T pa, bq “ ř
xPFqm

ζ
TrqppQa,bpxqq
p . In order to determine the value distribution of T pa, bq, we need the following

results on moments of T pa, bq.

Lemma 13. Let m be odd and T pa, bq be defined as above, and let Spa, bq “ ř
yPF˚

q
T pay, byq.

(i)
ř

a,bPFqm
T pa, bq “ q2m.

(ii) If q ” 3 pmod 4q, then
ř

a,bPFqm
T pa, bq2 “ q2m. If q ” 1 pmod 4q, then

ÿ

a,bPFqm

T pa, bq2 “ p2qm ´ 1qq2m.

(iii)
ř

a,bPFqm
T pa, bq3 “ rqm ` qm´1 ´ 1sq2m`1.

(iv)
ř

a,bPFqm
Spa, bq2 “ pq ´ 1q2q3m.

Proof: (i) The identity is trivially true.

(ii) We observe that

ÿ

a,bPFqm

T pa, bq2 “
ÿ

a,bPFqm

ÿ

x,yPFqm

ζ
TrqppQa,bpxq`Qa,bpyqq
p

“
ÿ

x,yPFqm

ÿ

aPFqm

ζ
Trq

m

p pafmpx,yqq
p

ÿ

bPFqm

ζ
Trq

m

p pbfm´2px,yqq
p

“ A ¨ q2m,

where fipx, yq “ xq
i´1

2 `1 ` yq
i´1

2 `1 for every positive odd i and A denotes the number of the pair px, yq P F2
qm ,

which is a solution of the following system of equations:

$
&
%
xq

m´1

2 `1 ` yq
m´1

2 `1 “ 0,

xq
m´3

2 `1 ` yq
m´3

2 `1 “ 0.

Clearly, p0, 0q is a solution of the above system of equations. If y ‰ 0, the system above is equivalent to

$
&
%

px
y

qq
m´1

2 `1 “ ´1,

px
y

qq
m´3

2 `1 “ ´1.
(8)

Let B be the number of pair px, yq P F2
qm , which is a solution of the system of equations (8). Clearly, A “ B ` 1.

Thus, it suffices to determine the value of B.

Now assume the system of equations (8) has a solution px, yq. Note that gcdp2pqm´1

2 `1q, 2pqm´3

2 `1qq “ 4, from

(8), ordpx
y

q divides 4. We claim ordpx
y

q “ 4. Otherwise, we have 1 “ px
y

qq
m´1

2 `1 “ ´1, which is impossible. Thus,

if the system of equations (8) has solutions, then q
m´1

2 `1 ” q
m´3

2 `1 ” 2 pmod 4q, which deduces q ” 1 pmod 4q.

Now assume q ” 1 pmod 4q, then the system (8) is equivalent to px
y

q2 “ ´1. Thus, B “ 2pqm ´ 1q. Note that

B “ 0 if q ” 3 pmod 4q. The result follows.

(iii) Similar to (ii), we have

ÿ

a,bPFqm

T pa, bq3 “ M ¨ q2m,
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where M is the number of triple px, y, zq P F3

qm , which is a solution of the following system of equations:
$
&
%
xq

m´1

2 `1 ` yq
m´1

2 `1 ` zq
m´1

2 `1 “ 0,

xq
m´3

2 `1 ` yq
m´3

2 `1 ` zq
m´3

2 `1 “ 0.

From (ii), the number of triples px, y, 0q P F3
qm which are solutions of the above system of equations is equal to

A. If z ‰ 0, the above system is equivalent to
$
’&
’%

px
z

qq
m´1

2 `1 ` py
z

qq
m´1

2 `1 ` 1 “ 0, (9)

px
z

qq
m´3

2 `1 ` py
z

qq
m´3

2 `1 ` 1 “ 0. (10)

Assume the above system of equations has a solution px, y, zq P F3
qm . Raising to the q-th power both sides of

(10), we have

px
z

qq
m´1

2 `q ` py
z

qq
m´1

2 `q ` 1 “ 0. (11)

Taking the difference between (11) and (9), we obtain

px
z

qq
m´1

2 `1rpx
z

qq´1 ´ 1s ` py
z

qq
m´1

2 `1rpy
z

qq´1 ´ 1s “ 0. (12)

From (12), if one of x
z
, y
z

is in Fq, then the other must also be in Fq. We claim both x
z

and y
z

are in Fq. Otherwise,

we will gives a contradiction. On the one hand, it follows from (12) that

px
y

qq
m´1

2 `1 “ zq´1 ´ yq´1

xq´1 ´ zq´1
.

On the other hand, notice that both x
z

and
y
z

are in Fqm . Raising to the q
m`3

2 -th power both sides of (9) and (10),
we have

$
&
%

px
z

qq
m`3

2 `1 ` py
z

qq
m`3

2 `1 ` 1 “ 0,

px
z

qq
m`3

2 `q ` py
z

qq
m`3

2 `q ` 1 “ 0,

which deduces

px
z

qq
m`3

2 `1rpx
z

qq´1 ´ 1s ` py
z

qq
m`3

2 `1rpy
z

qq´1 ´ 1s “ 0.

This gives that

px
y

qq
m`3

2 `1 “ zq´1 ´ yq´1

xq´1 ´ zq´1
.

Therefore, px
y

qq
m´1

2 `1 “ px
y

qq
m`3

2 `1. It follows that

px
y

qq
m`3

2 ´q
m´1

2 “ 1,

since x
y

R Fq . Notice that x
y

P Fqm and gcdpqm`3

2 ´ q
m´1

2 , qm ´ 1q “ q ´ 1, we obtain px
y

qq´1 “ 1. Now we

assume x “ σy, where σ P F˚
q . Taking it into the equations (9) and (10), we have

$
&
%

pσ2 ` 1qpy
z

qq
m´1

2 `1 ` 1 “ 0,

pσ2 ` 1qpy
z

qq
m´3

2 `1 ` 1 “ 0.

Obviously, both σ2 ` 1 and y
z

are nonzero elements. Hence, py
z

qq
m´1

2 `1 “ py
z

qq
m´3

2 `1. Note that y
z

P Fqm ,

it follows that py
z

qq´1 “ 1, which contradicts the fact that y
z

R Fq . Therefore, the equations (9) and (10) have a

solution px, y, zq P F3

qm , then both x
z

and y
z

are in Fq . Let D “
ˇ̌ 

px, yq P F2

q : x2 ` y2 ` 1 “ 0
(ˇ̌

, then the number

of triples px, y, zq P F3

qm which are solutions of (9) and (10) is equal to pqm ´ 1qD.
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Noticing the quadratic equation over Fq has been studied by Wan, as an application of his results (see [44, Ch. 1,
Th. 1.27 ]), we have D “ q´1 if q ” 1 pmod 4q, and D “ q`1 if q ” 3 pmod 4q. Note that M “ A`pqm ´1qD,

the result follows.
The proof of (iv) is very similar to that of (ii), and thus is omitted here.

Let m ě 3 be odd. According to Lemma 4, if q ” 1 pmod 4q, for ǫ “ ˘1 and 0 ď i ď 3, we define that

Nǫ,i “
!

pa, bq P F2

qmz tp0, 0qu : T pa, bq “ ǫq
m`i

2

)
.

If q ” 3 pmod 4q, for ǫ “ ˘1 and i P t0, 2u, we define that

Nǫ,i “
!

pa, bq P F2

qmz tp0, 0qu : T pa, bq “ ǫq
m`i

2

?
´1

)
.

For i P t1, 3u, define

Nǫ,i “
!

pa, bq P F2

qmz tp0, 0qu : T pa, bq “ ǫq
m`i

2

)
.

And nǫ,i “ |Nǫ,i|.
Lemma 14. Let m ě 3 be odd, then the value distribution of T pa, bq is listed in Table IV.

Proof: We choose an element ω P F˚
q such that ηpωq “ ´1, where η is the quadratic character of Fq. When

i P t0, 2u, for any pa, bq P N1,i, from Lemma 4, we have T pωa, ωbq “ ´T pa, bq, since m ´ i is odd. Then the

map pa, bq ÞÑ pωa, ωbq gives a 1-to-1 correspondence from N1,i to N´1,i. Thus, n1,0 “ n´1,0 and n1,2 “ n´1,2.
It follows from Lemma 13 that ÿ

a,bPFqm

T pa, bq

“ qm ` pn1,1 ´ n´1,1qqm`1

2 ` pn1,3 ´ n´1,3qqm`3

2

“ q2m,
ÿ

a,bPFqm

T pa, bq3

“ q3m ` pn1,1 ´ n´1,1qq 3m`3

2 ` pn1,3 ´ n´1,3qq 3m`9

2

“ rqm ` qm´1 ´ 1sq2m`1.

It deduces that n1,1 ´ n´1,1 “ pqm ´ 1qqm´1

2 and n1,3 “ n´1,3. If n1,3 ą 0, from (7), we have

wpv1pa, bqq “ pq ´ 1qqm´1

2
´ pq ´ 1qqm`1

2

2
ă δ2 ` 1.

However, from Lemma 1, the minimum distance of pCpq,m,2,δ2q is at least δ2 ` 1. Hence, n1,3 “ 0. That is,
n1,3 “ n´1,3 “ 0. At this point, from (iv) of Lemma 13,

ÿ

a,bPFqm

Spa, bq2 “ pq2 ´ 1qrq2m ` pn1,1 ` n´1,1qqm`1s

“ pq2 ´ 1qq3m.
Notice that if q ” 1 pmod 4q,

ÿ

a,bPFqm

T pa, bq2

“q2m ` 2n1,0q
m ` pn1,1 ` n´1,1qqm`1 ` 2n1,2q

m`2

“p2qm ´ 1qq2m.
If q ” 3 pmod 4q, then

ÿ

a,bPFqm

T pa, bq2

“q2m ´ 2n1,0q
m ` pn1,1 ` n´1,1qqm`1 ´ 2n1,2q

m`2

“q2m.



20

TABLE IV: THE VALUE DISTRIBUTION OF T pa, bq

Rank ra,b Value T pa, bq Multiplicity

m q
m
2

b
p´1q

q´1

2
pqm´1qpqm`2´qm`1´qm`q2q

2pq2´1q

m ´q
m
2

b
p´1q

q´1

2
pqm´1qpqm`2´qm`1´qm`q2q

2pq2´1q

m ´ 1 q
m`1

2
pqm´1qpqm´1`q

m´1

2 q
2

m ´ 1 ´q
m`1

2
pqm´1qpqm´1´q

m´1

2 q
2

m ´ 2 q
m`2

2

b
p´1q

q´1

2
pqm´1qpqm´1´1q

2pq2´1q

m ´ 2 ´q
m`2

2

b
p´1q

q´1

2
pqm´1qpqm´1´1q

2pq2´1q
0 qm 1

Moreover, 1 ` 2n1,0 ` n1,1 ` n´1,1 ` 2n1,2 “ q2m. Simplifying the above equations leads to
$
’’’&
’’’%

n1,1 ´ n´1,1 “ pqm ´ 1qqm´1

2 ,

n1,1 ` n´1,1 “ pqm ´ 1qqm´1,

2n1,0 ` 2q2n1,2 “ pqm ´ 1qqm,
2n1,0 ` 2n1,2 “ pqm ´ 1qpqm ´ qm´1 ` 1q.

The value distribution of T pa, bq then follows.

Let m ě 2 be even and α be a primitive element of Fqm , then α2 is a primitive n-th root of unity in Fqm . From

Lemmas 9 and 10, the code pCpq,m,2,δ2q has two nonzeros, and α2δ1 and α2δ2 are two non-conjugate roots of its

parity-check polynomial. Let h “ m
2

, ρ1 “ qm´1 ` qh´1 and ρ2 “ qm´1 ` qh. By Lemma 3,

pCpq,m,2,δ2q “
 
cpa, bq : a P Fqh , b P Fqm

(
,

where

cpa, bq “
´

Trq
h

q paαℓρ1 q ` Trq
m

q pbαℓρ2q
¯n´1

ℓ“0

.

Since Trq
h

q paαℓρ1 q “ Trq
h

q paqαpqh`1qℓq and

Trq
m

q pbαℓρ2q “ Trq
m

q pbqhαpqh´1`1qℓq,

it follows that pCpq,m,2,δ2q has the same weight distribution with the code

V2 “
 
v2pa, bq : a P Fqh , b P Fqm

(
,

where

v2pa, bq “
´

Trq
h

q paαpqh`1qℓq ` Trq
m

q pbαpqh´1`1qℓq
¯n´1

ℓ“0

.

Clearly, wpv2pa, bqq “ 0 for pa, bq “ p0, 0q. If pa, bq P Fqh ˆ Fqmztp0, 0qu, similar to the odd case m ě 3, we

have

wpv2pa, bqq “ pq ´ 1qqm´1

2
´ 1

2q

ÿ

yPF˚
q

ÿ

xPFqm

ζ
TrqppyQa,bpxqq
p

“ pq ´ 1qqm´1

2
´ T pa, bq

2q

ÿ

yPF˚
q

ηpyra,bq,

where Qa,bpxq “ Trq
h

q paxqh`1q ` Trq
m

q pbxqh´1`1q, ra,b is the rank of Qa,bpxq and

T pa, bq “
ÿ

xPFqm

ζ
TrqppQa,bpxqq
p .
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TABLE V: THE VALUE DISTRIBUTION OF T pa, bq

Rank ra,b Value T pa, bq Multiplicity

m q
m
2

pqm´1qpq
m`2

2 `qq
2pq`1q

m ´q
m
2

pq
m
2 ´1qpqm`1´2qm`qq

2pq´1q

m ´ 1 q
m`1

2

b
p´1q

q´1

2
pqm´1qq

m´2

2

2

m ´ 1 ´q
m`1

2

b
p´1q

q´1

2
pqm´1qq

m´2

2

2

m ´ 2 ´q
m`2

2
pqm´1qpq

m´2

2 ´1q
q2´1

0 qm 1

TABLE VI: THE WEIGHT DISTRIBUTION OF pCpq,m,2,δ2q WHEN m IS ODD

Weight Frequency

0 1

pq´1qpqm´1´q
m´1

2 q
2

pqm´1qpqm´1`q
m´1

2 q
2

pq´1qqm´1

2
pqm ´ 1q

`
qm ´ qm´1 ` 1

˘

pq´1qpqm´1`q
m´1

2 q
2

pqm´1qpqm´1´q
m´1

2 q
2

Clearly, in order to determine the weight of v2pa, bq, it suffices to determine the value distribution of T pa, bq.
Fortunately, the value distribution of T pa, bq was determine in [31], and we list it in Table V .

Theorem 6. The BCH code pCpq,m,2,δ2q has parameters r qm´1

2
, k, ds, where

(i) if m is odd, then k “ 2m, d “ pq´1qpqm´1´q
m´1

2 q
2

and pCpq,m,2,δ2q is a there-weight code. In addition, the

weight distribution of pCpq,m,2,δ2q is listed in Table VI.

(ii) if m is even, then k “ 3m
2

, d “ pq´1qpqm´1´q
m´2

2 q
2

and pCpq,m,2,δ2q is a four-weight code for m ě 4. In

addition, the weight distribution of pCpq,m,2,δ2q is listed in Table VII.

Proof: We only prove the case that m ě 3 is odd, and the even case is similar. If ra,b is odd, from (7), we
have

wpv1pa, bqq “ pq ´ 1qpqm ´ 1q
2

.

Hence, the number of such codewords is equal to n1,0 ` n´1,0 ` n1,2 ` n´1,2. If ra,b is even, from (7), then

wpv1pa, bqq “ pq´1qqm´1

2
´ pq´1qT pa,bq

2q
. By Lemma 14, the weight distribution of the code then follows.

It is observed that the weight of the BCH code in Theorem 6 has a common divisor q´1

2
. Hence, we consider a

punctured code of this class of BCH codes. Let N “ qm´1

q´1
. If m ě 3 is odd, we define V3 “ tv3pa, bq : a, b P Fqmu,

TABLE VII: THE WEIGHT DISTRIBUTION OF pCpq,m,2,δ2q WHEN m IS EVEN

Weight Frequency

0 1

pq´1qpqm´1´q
m´2

2 q
2

pqm´1qpq
m
2

`1
`qq

2pq`1q
pq´1qqm´1

2
q

m´2

2 pqm ´ 1q

pq´1qpqm´1`q
m´2

2 q
2

pq
m
2

`1
´qqpqm´2qm´1`1q

2pq´1q

pq´1qpqm´1`q
m
2 q

2

pqm´1qpq
m´2

2 ´1q
q2´1
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TABLE VIII: PUNCTURING CODE FROM pCpq,m,2,δ2q WHEN m IS ODD

Weight Frequency

0 1

qm´1 ´ q
m´1

2
pqm´1qpqm´1`q

m´1

2 q
2

qm´1 pqm ´ 1q
`
qm ´ qm´1 ` 1

˘

qm´1 ` q
m´1

2
pqm´1qpqm´1´q

m´1

2 q
2

TABLE IX: PUNCTURING CODE FROM pCpq,m,2,δ2q WHEN m IS EVEN

Weight Frequency

0 1

qm´1 ´ q
m´2

2
pqm´1qpq

m
2

`1
`qq

2pq`1q

qm´1 q
m´2

2 pqm ´ 1q

qm´1 ` q
m´2

2
pq

m
2

`1
´qqpqm´2qm´1`1q

2pq´1q

qm´1 ` q
m
2

pqm´1qpq
m´2

2 ´1q
q2´1

where

v3pa, bq “
ˆ

Trq
m

q paαℓpq
m´1

2 `1q ` bαℓpq
m´3

2 `1qq
˙N´1

ℓ“0

.

If m ě 2 is even, define

V3 “
!
v3pa, bq : a P F

q
m
2
, b P Fqm

)
,

where

v3pa, bq “
ˆ

Trq
m
2

q paαℓpq
m
2 `1qq ` Trq

m

q pbαℓpq
m´2

2 `1qq
˙N´1

ℓ“0

.

Let γ “ αN , then γ is a primitive element of Fq . Sequentially, γq
i`1 “ γ2 for every positive integer i. Let

t “ q´1

2
, we have

v2pa, bq “ v3pa, bq ‖ γ2v3pa, bq ‖ ¨ ¨ ¨ ‖ γ2pt´1qv3pa, bq,

where v2pa, bq is defined as above and ‖ denotes the concatenation of vectors. Hence we obtain a punctured linear
code V3 of the code V2. By Theorem 6, we directly obtain the following result.

Theorem 7. Let V3 be defined as above. Then V3 has parameters r qm´1

q´1
, k, ds, where

(i) if m is odd, then k “ 2m, d “ qm´1´q
m´1

2 and V3 is a there-weight code. In addition, the weight distribution

of V3 is listed in Table VIII.

(ii) if m is even, then k “ 3m
2

, d “ qm´1 ´ q
m´2

2 and V3 is a four-weight code for m ě 4. In addition, the weight

distribution of V3 is listed in Table IX.

Example 3. When pq,mq “ p3, 3q, the BCH code pCpq,m,2,δ2q is a r13, 6, 6s code over F3 with weight enumerator

1 ` 156z6 ` 494z9 ` 78z12. This code has the same parameters with the best known in the Datebase.

Example 4. When q is odd and m “ 2, the linear code V3 is a rq ` 1, 3, q ´ 1s MDS code over Fq with weight

enumerator 1 ` qpq2´1q
2

zw1 ` pq2 ´ 1qzw2 ` qpq2´2q`1q
2

zw3 , where w1 “ q ´ 1, w2 “ q, w3 “ q ` 1.

Example 5. When pq,mq “ p5, 3q, the linear code V3 is a r31, 6, 20s code over F5 with weight enumerator

1 ` 1860z20 ` 12524z25 ` 1240z30. This code has the same parameters with the best known in the Datebase.

Theorem 8. The BCH code Cpq,m,2,δ2q has parameters r qm´1

2
, k, δ2s, where
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TABLE X: THE WEIGHT DISTRIBUTION OF Cpq,m,2,δ2q WHEN m IS ODD

Weight Multiplicity

0 1

qm´qm´1´q
m`1

2 ´1

2

pqm´1qpqm´1´1q
2pq`1q

qm´qm´1´q
m`1

2 `q
m´1

2

2

pqm´1qpqm´1`q
m´1

2 q
2

qm´qm´1´q
m´1

2 ´1

2

pqm´1qpqm`2´qm´qm´1´q
m`3

2 `q
m´1

2 `q2q
2pq`1q

qm´qm´1

2
pqm ´ 1qpqm ´ qm´1 ` 1q

qm´qm´1`q
m´1

2 ´1

2

pqm´1qpqm`2´qm´qm´1`q
m`3

2 ´q
m´1

2 `q2q
2pq`1q

qm´qm´1`q
m`1

2 ´q
m´1

2

2

pqm´1qpqm´1´q
m´1

2 q
2

qm´qm´1`q
m`1

2 ´1

2

pqm´1qpqm´1´1q
2pq`1q

qm´1

2
q ´ 1

TABLE XI: THE WIGHT DISTRIBUTION OF Cpq,m,2,δ2q WHEN m IS EVEN

Weight Multiplicity

0 1

qm´qm´1´q
m
2 ´1

2

pqm´1qpq
m`2

2 `q
m´2

2 ´2q
2pq`1q

qm´qm´1´q
m
2 `q

m´2

2

2

pqm´1qpq
m`2

2 `qq
2pq`1q

qm´qm´1´q
m´2

2 ´1

2

pq
m
2 ´1qpqm`1´2qm`qq

2

qm´qm´1

2
pqm ´ 1qq

m´2

2

qm´qm´1`q
m´2

2 ´1

2

pqm´1qpq
m`2

2 `qqpq´1q
2pq`1q

qm´qm´1`q
m
2 ´q

m´2

2

2

pq
m`2

2 ´qqpqm´2qm´1`1q
2pq´1q

qm´qm´1`q
m
2 ´1

2

pqm´1qpq
m
2 ´q

m´2

2 q
2

qm´qm´1`q
m`2

2 ´q
m
2

2

pqm´1qpq
m´2

2 ´1q
q2´1

qm´1

2
q ´ 1

(i) if m is odd, then k “ 2m` 1 and the weight distribution of Cpq,m,2,δ2q is listed in Table X.

(ii) if m is even, then k “ 3m
2

` 1 and the weight distribution of Cpq,m,2,δ2q is listed in Table XI.

Proof: Let α be a primitive element of Fqm , then α2 is a primitive n-th root of unity in Fqm . From Lemmas 9

and 10, the code Cpq,m,2,δ2q has three nonzeros, and 1, α2δ1 and α2δ2 are three non-conjugate roots of its parity-check
polynomial. The dimension of Cpq,m,2,δ2q follows from Lemmas 9 and 10.

Case 1. m is odd. Similar to the above discussion, Cpq,m,2,δ2q has the same weight distribution with the code

tv4pa, b, cq : a, b P Fqm , c P Fqu ,

where

v4pa, b, cq “
ˆ

Trq
m

q paαpq
m´1

2 `1qℓ ` bαpq
m´3

2 `1qℓq ` c

˙n´1

ℓ“0

.
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When c “ 0, the weight distribution of v4pa, b, cq is determined in Theorem 6. When c ‰ 0, we have

wpv4pa, b, cqq

“n´
n´1ÿ

ℓ“0

1

q

ÿ

yPFq

ζ
TrqppyTrq

m

q paαpq
m´1

2 `1qℓ`bαpq
m´3

2 `1qℓq`ycq
p

“n´ 1

q

ÿ

yPFq

ζ
Trqppycq
p

n´1ÿ

ℓ“0

ζ
TrqppyTrq

m

q paαpq
m´1

2 `1qℓ`bαpq
m´3

2 `1qℓqq
p

“n´ 1

2q

ÿ

yPFq

ζ
Trqppycq
p

2n´1ÿ

ℓ“0

ζ
TrqppyTrq

m

q paαpq
m´1

2 `1qℓ`bαpq
m´3

2 `1qℓqq
p

“n´ 1

2q

ÿ

yPFq

ζ
Trqppycq
p

ÿ

xPF˚
qm

ζ
TrqppyQa,bpxqq
p

“n´ 1

2q

ÿ

yPFq

ζ
Trqppycq
p

ÿ

xPFqm

ζ
TrqppyQa,bpxqq
p

“qm ´ qm´1 ´ 1

2
´ 1

2q

ÿ

yPF˚
q

ζ
Trqppycq
p

ÿ

xPFqm

ζ
TrqppyQa,bpxqq
p ,

where Qa,bpxq “ Trq
m

q paxq
m´1

2 `1`bxq
m´3

2 `1q. Let η be the quadratic character of Fq, ra,b be the rank of Qa,bpxq,

and T pa, bq “ ř
xPFqm

ζ
TrqppQa,bpxqq
p . From Lemma 4,

ÿ

xPFqm

ζ
TrqppyQa,bpxqq
p “ ηpyra,bqT pa, bq.

It follows that the weight of codeword v4pa, b, cq is

qm ´ qm´1 ´ 1

2
´ T pa, bq

2q

ÿ

yPF˚
q

ζ
Trqppycq
p ηpyra,bq.

There are two cases.
If ra,b is even, then

wpv4pa, b, cqq “ qm ´ qm´1 ´ 1

2
` T pa, bq

2q
.

If ra,b is odd, then

wpv4pa, b, cqq “ qm ´ qm´1 ´ 1

2
´ T pa, bq

2q

ÿ

yPF˚
q

ζ
Tr

q
ppycq

p ηpyq

“ qm ´ qm´1 ´ 1

2
´ ηpcqT pa, bqGq

2q
.

Combining Lemmas 4 and 14, the desired conclusion on the weight distribution then follows.
Case 2. m is even. Similar to Case 1, Cpq,m,2,δ2q has the same weight distribution with the code

!
v5pa, b, cq : a P F

q
m
2
, b P Fqm , c P Fq

)
,

where

v5pa, b, cq “
ˆ
Trq

m
2

q paαpq
m
2 `1qℓq ` Trq

m

q pbαpq
m´2

2 `1qℓq ` c

˙n´1

ℓ“0

.

When c “ 0, the weight distribution of v5pa, b, cq is determined in Theorem 6. When c ‰ 0, similar to Case 1,

the weight of codeword v5pa, b, cq is

qm ´ qm´1 ´ 1

2
´ T pa, bq

2q

ÿ

yPF˚
q

ζ
Tr

q
ppycq

p ηpyra,bq,
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where T pa, bq “ ř
xPFqm

ζ
Tr

q
ppQa,bpxqq

p and

Qa,bpxq “ Trq
m
2

q paxq
m
2 `1q ` Trq

m

q pbxq
m´2

2 `1q.
Thanks to [31], the value distribution of T pa, bq is already known which is presented in Table V. There are two
cases.

If ra,b is even, then

wpv5pa, b, cqq “ qm ´ qm´1 ´ 1

2
` T pa, bq

2q
.

If ra,b is odd, then

wpv5pa, b, cqq “ qm ´ qm´1 ´ 1

2
´ ηpcqT pa, bqGq

2q
.

Thus, the desired conclusion on the weight distribution then follows.

Example 6. When pq,mq “ p3, 3q, the BCH code Cpq,m,2,δ2q is a r13, 7, 4s code over F3 with weight enumerator

1` 26z4 ` 156z6 ` 624z7 ` 494z9 ` 780z10 ` 78z12 ` 28z13. The best known linear code over F3 with length 13
and dimension 7 has minimum distance 5 in the Datebase.

Example 7. When pq,mq “ p3, 4q, the BCH code Cpq,m,2,δ2q is a r40, 7, 22s code over F3 with weight enumerator

1 ` 280z22 ` 300z24 ` 336z25 ` 240z27 ` 600z28 ` 168z30 ` 240z31 ` 20z36 ` 2z40. This code has the same

parameters with the best known in the Datebase.

B. The weight distribution of BCH codes of length pqm ´ 1q{pq ´ 1q
In this subsection, we study the weight distribution of BCH codes of length n “ pqm ´1q{pq´1q, where m ě q.

Lemma 15. Let q ą 3 and i be an integer with 1 ď i ď n ´ 1. Denote the q-adic expansion of i by
řm´1

ℓ“0
iℓq

ℓ.

If i is a q-cyclotomic coset leader modulo n, then im´1 “ 0. Suppose m ´ 1 “ apq ´ 1q ` b, where a ě 1 and

0 ď b ď q ´ 2 are integers. Let ǫ “ a ` 1 when b “ q ´ 2 and ǫ “ a when 0 ď b ď q ´ 3. If iℓ “ q ´ 1 for all

m´ 1 ´ ǫ ď ℓ ď m´ 2, then 1 ď iℓ´1 ď iℓ for all 1 ď ℓ ď m´ 2.

Proof: The first statement of this lemma comes from Lemma 8. For every positive integer µ, if iµ ‰ 0, we

have iµ´1 ď iµ. Otherwise, we have riqm´1´µsn ă i, a contradiction. It follows that pi0, i1, . . . , im´1q must be of
the form pI0, I1, . . . , Ivq, where v is some non-negative integer and

Ie “ p
ne,1hkkikkj

1 . . . 1

ne,2hkkikkj
2 . . . 2 . . .

ne,q´1hkkkkkkkikkkkkkkj
q ´ 1 . . . q ´ 1 0q, ne,f ě 0,

for every 0 ď e ď v. We now prove v “ 0. Let κ “ řq´1

f“1
n0,f , from riqm´1´κsn ě i, we have n0,q´1 ě nv,q´1.

Similarly, we have ne,q´1 ě nv,q´1 for all 0 ď e ď v. Note that

riqsn “ 2 `
m´nv,q´1´1ÿ

ℓ“1

piℓ´1 ` 1qqℓ `
m´1ÿ

m´nv,q´1`1

qℓ.

Denote the q-adic expansion of riqnv,q´1 sn by
řm´1

ℓ“0
i1ℓq

ℓ, then pi1
0
, i1

1
, . . . , i1m´1

q must be of the form pI 1
0
, I 1

1
, . . . , I 1

vq,

where

I 1
0

“ p
nv,pq´1q´1hkkikkj
1 . . . 1

n0,1`1hkkikkj
2 . . . 2

n0,2hkkikkj
3 . . . 3 . . .

n0,q´2hkkkkkkkikkkkkkkj
q ´ 1 . . . q ´ 1 0q,

I 1
e “ p

ne´1,q´1´1hkkikkj
1 . . . 1

ne,1`1hkkikkj
2 . . . 2

ne,2hkkikkj
3 . . . 3 . . .

ne,q´2hkkkkkkkikkkkkkkj
q ´ 1 . . . q ´ 1 0q,

for every 1 ď e ď v. It follows that ne,q´2 ě nv,q´1 for all 0 ď e ď v. By the same way, we have ne,f ě nv,q´1

for all 0 ď e ď v and 2 ď f ď q ´ 2, and ne,1 ě nv,q´1 ´ 1 for all 0 ď e ď v. Therefore,

m “
vÿ

e“0

˜
q´1ÿ

f“1

ne,f ` 1

¸

ě pv ` 1qpq ´ 1qnv,q´1

ě pv ` 1qpq ´ 1qǫ,
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since nv,q´1 ě ǫ. If v ě 1, we have apq ´ 1q ` b` 1 ě 2pq ´ 1qǫ, a contradiction.

Lemma 16. Let q ą 3 be a prime power and m ě q. Suppose m´ 1 “ apq ´ 1q ` b, where a ě 1, 0 ď b ď q ´ 2
are integers.

(i) If b “ 0, i.e., m “ apq ´ 1q ` 1, then the first largest q-cyclotomic coset leader modulo qm´1

q´1
is

δ “ qm ´ 1 ´ qm´1 ´ řq´2

ℓ“1
qaℓ

q ´ 1

and |Cδ| “ m.

(ii) If b “ 1, i.e., m “ apq ´ 1q ` 2, let A “ t q´1

2
u, then the first largest q-cyclotomic coset leader modulo qm´1

q´1

is

δ “
qm ´ 1 ´ qm´1 ´ řA

ℓ“1
qaℓ ´ řq´2

ℓ“A`1
qaℓ`1

q ´ 1
.

Moreover, |Cδ| “ m
2

when q is odd, and |Cδ| “ m when q ie even.

(iii) If b “ q ´ 2, i.e., m “ pa ` 1qpq ´ 1q, then the first largest q-cyclotomic coset leader modulo qm´1

q´1
is

δ “ qm ´ 1 ´ qm´1 ´ řq´2

ℓ“1
qpa`1qℓ´1

q ´ 1

and |Cδ| “ a` 1.

Proof: We just give the proof for Case (ii), since the proofs in the other cases are similar. Clearly, the q-adic

expansion of δ is of the form

Aÿ

i“1

ia´1ÿ

ℓ“pi´1qa

iqℓ `
pA`1qaÿ

ℓ“Aa

pA ` 1qqℓ `
q´1ÿ

i“A`2

iaÿ

ℓ“pi´1qa`1

iqℓ,

and it is easy to check that δ is a q-cyclotomic coset leader modulo n. Moreover, |Cδ| “ m
2

if q is odd, and
|Cδ| “ m if q is even.

We now prove that δ is the largest integer in the set of all coset leaders. Suppose there is an integer s with

δ ă s ă n which is a q-cyclotomic coset leader modulo n and the q-adic expansion of s is
řm´1

ℓ“0
sℓq

ℓ. By Lemma

15, ps0, s1, . . . , sm´1q must be of the form

p
n1hkkikkj

1 . . . 1

n2hkkikkj
2 . . . 2 . . .

nq´1hkkkkkkkikkkkkkkj
q ´ 1 . . . q ´ 1 0q,

where nq´1 ě a, nℓ ě nq´1 for 2 ď ℓ ď q ´ 2, and n1 ě nq´1 ´ 1. Firstly, nq´1 “ a. Otherwise,

m´ 1 “
q´1ÿ

ℓ“1

nℓ ě pq ´ 1qnq´1 ´ 1

ě apq ´ 1q ` q ´ 2 ą m´ 1,

a contradiction. Secondly, nℓ ď a` 1 for all 2 ď ℓ ď q ´ 2. Otherwise, there is an integer v such that nv “ a` 2,

then we have

rsqpq´vqa`2sn “
aÿ

ℓ“0

qℓ `
q´1ÿ

i“2

iaÿ

ℓ“pi´1qa`1

iqℓ ă δ,

a contradiction. Thirdly, n1 ě a. Otherwise, suppose n1 “ a ´ 1, then there are two integers 2 ď u ă v ď q ´ 2
such that nu “ nv “ a` 1. It is easy to check that

rsqpq´uqa`1sn ă s,

a contradiction. Therefore, n0 “ a and there is an integer v with A ` 2 ď v ď q ´ 2 such that nv “ a ` 1. From
rsqpq´vqa`1sn ě s, we have 2v ď q ` 1, a contradiction.

Collecting all the conclusions above, we conclude that δ is the largest coset leader.

Based on Lemma 16, we calculate the weight distribution of BCH code pCpq,m,q´1,δq as follows.

Theorem 9. Let q ą 3 be a prime power and m ě q. Suppose m´1 “ apq´1q`b, where a ě 1 and 0 ď b ď q´2
are integers.
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(i) If b “ 0 or b “ 1 and q is even, then the BCH code pCpq,m,q´1,δq is a r qm´1

q´1
,m, qm´1s one-weight code.

(ii) If b “ 1 and q is odd, then the BCH code pCpq,m,q´1,δq is a r qm´1

q´1
, m

2
, pqm

2 ` 1qqm
2

´1s one-weight code.

Proof: We just give the proof for Case (ii), since the proofs in the other cases are similar. Let α be a primitive

element of Fqm , then αq´1 is a primitive n-th root of unity in Fqm . From Lemma 16, the BCH code pCpq,m,q´1,δq

has one nonzero and αpq´1qδ is a root of its parity-check polynomial. Let τ “ qm´1 ` ř q´1

2

ℓ“1
qaℓ ` řq´2

ℓ“ q`1

2

qaℓ`1,

then ´pq ´ 1qδ ” τ pmod qm ´ 1q. By Lemma 3,

pCpq,m,q´1,δq “
"´

Trq
m
2

q paατℓq
¯n´1

ℓ“0

: a P F
q

m
2

*
.

Let β “ αq
m
2 `1. Since Trq

m
2

q paατℓq “ Trq
m
2

q paqαqτℓq and gcdpqτ, qm ´1q “ pq´1qpq
m
2 `1q

2
, it follows that the BCH

code pCpq,m,q´1,δq has the same weight distribution with the following code
"
cpaq “

´
Trq

m
2

q paβ q´1

2
ℓq
¯n´1

ℓ“0

: a P F
q

m
2

*
.

Let n1 “ 2pq
m
2 ´1q

q´1
and

C 1 “
"
c1paq “

´
Trq

m
2

q paβ q´1

2
ℓq
¯n1´1

ℓ“0

: a P F
q

m
2

*
.

Note that gcdp q
m
2 ´1

q´1
, q´1

2
q “ 1. From [12, Theorem 15], C 1 is a rn1, m

2
, 2q

m
2

´1s one-weight code over Fq. It is

easy to check that

cpaq “

n
n1hkkkkkkkkkikkkkkkkkkj

c1paq ‖ ¨ ¨ ¨ ‖ c1paq .
Hence, C is a rn, m

2
, pqm

2 ` 1qqm
2

´1s one-weight code over Fq .

V. CONCLUSION

The dimension of narrow-sense BCH codes of length qm´1

λ
over Fq has been obtained, where λ is a positive

divisor of q ´ 1. For the case λ “ 1 and q ´ 1, the dimension of Cpq,m,λ,δq was determined in [28], [29]. For the

case λ “ q ´ 1 and m is even, the dimension of Cpq,m,λ,δq with designed distance δ with 2 ď δ ď q
m
2 was settled

in [28]. We settled its dimension for all δ with 2 ď δ ď q
m`2

2 ´1

q´1
. For λ “ 2 and q ´ 1, the weight distribution of

Cpq,m,λ,δq was studied. We find the first few largest q-coset leaders modulo n “ qm´1

2
and a trace representation

for the codewords in Cpq,m,2,δiq and pCpq,m,2,δiq for i “ 1, 2. In addition, by using exponential sums and the theory

of quadratic forms over finite fields, the weight distribution of Cpq,m,2,δiq and pCpq,m,2,δiq was determined. Moreover,

the first largest q-coset leader modulo qm´1

q´1
was determined for three special cases, and the weight distribution of

a class of BCH codes of length qm´1

q´1
was also determined. A class of BCH codes meeting the Griesmer bound

has been given. These results generalized those from [28], [29], [36].
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