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Optimal Multiplexed Erasure Codes for Streaming

Messages with Different Decoding Delays
Silas L. Fong, Ashish Khisti, Baochun Li, Wai-Tian Tan, Xiaoqing Zhu, and John Apostolopoulos

Abstract

This paper considers multiplexing two sequences of messages with two different decoding delays over a packet

erasure channel. In each time slot, the source constructs a packet based on the current and previous messages and

transmits the packet, which may be erased when the packet travels from the source to the destination. The destination

must perfectly recover every source message in the first sequence subject to a decoding delay Tv and every source

message in the second sequence subject to a shorter decoding delay Tu ≤ Tv. We assume that the channel loss

model introduces a burst erasure of a fixed length B on the discrete timeline. Under this channel loss assumption,

the capacity region for the case where Tv ≤ Tu +B was previously solved. In this paper, we fully characterize the

capacity region for the remaining case Tv > Tu + B. The key step in the achievability proof is achieving the non-

trivial corner point of the capacity region through using a multiplexed streaming code constructed by superimposing

two single-stream codes. The main idea in the converse proof is obtaining a genie-aided bound when the channel is

subject to a periodic erasure pattern where each period consists of a length-B burst erasure followed by a length-Tu

noiseless duration.

I. INTRODUCTION

Video streaming applications including video conferencing, virtual reality (VR) and online gaming are expected to

dominate 82 percent of the Internet traffic by 2022, up from 75 percent in 2017 [1]. Since the user experience for a

video streaming application is directly impacted by the latency and reliability guarantees supported by the underlying

connection, we are motivated to find effective error correction strategies for general low-latency applications over

the Internet including video streaming.

Two main error control schemes have been implemented at the data link layer and the transport layer to alleviate

the effect of packet losses on applications that are run over the Internet: Automatic repeat request (ARQ) and forward

error correction (FEC). In order to implement error correction for low-latency applications, FEC is preferred over

ARQ when retransmitting lost packets is costly. Consider the example of remotely controlling a critical device

over the Tactile Internet [2] where a sensor wants to communicate with an actuator in real time through a control

server with round-trip latency less than 1 ms as illustrated in [3, Fig. 3]. The latency goals for processing delay
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at the terminals, transmission delay over the air interfaces between the terminals and the control server and data

processing delay at the control server are 0.3 ms, 0.2 ms and 0.5 ms respectively. If an ARQ scheme is used for error

control, then retransmissions compete the precious time resources with data computation at the terminals and the

control server. The advantage of FEC over ARQ is most obvious when retransmitting lost packets directly affects

the quality of service. For example, retransmitting a Voice-over-IP (VoIP) packet incurs an extra round-trip delay

(backward + forward) which will result in an overall three-way delay (forward + backward + forward) that may

exceed the 150 ms delay recommended by International Telecommunication Union [4] (see [5] for an overview of

the ubiquitous H.264/AVC video coding standard). Given the fact that the three-way propagation delay (forward

+ backward + forward) is at least 200 ms for communication between two diametrically opposite points on the

earth’s circumference [6], FEC has a clear advantage over ARQ for long-distance low-latency communication.

This paper focuses on low-latency FEC schemes implemented at the transport layer, where a source packet is

either received by the destination without error or dropped by the network (possibly due to unreliable links or

network congestion). In other words, a source packet is either perfectly recovered by the destination or completely

erased. Since packet erasures often occur in a bursty rather than sparse manner [7,8], we model the connection

between the source and the destination as a packet erasure channel that introduces burst erasures. In order to

capture the nature of streaming messages and the low-latency requirements, we assume that a source message is

generated in every time slot and a decoding delay constraint T is imposed on every message, where each message

is encoded into a channel packet before being transmitted through the erasure channel. If the destination cannot

decode a message within T time slots from the time when the message is generated, the message is considered

lost. Ideally, we would like to characterize the maximum achievable rates for statistical models that generate burst

erasures such as the well-known Gilbert-Elliott channel [9,10] and its generalization the Fritchman channel [11].

However, such characterizations seem intractable due to the decoding delay constraint and the fact that statistical

models that generate burst erasures are not memoryless. Therefore, Martinian and Sundberg [12] have instead fully

characterized the capacity, i.e., maximum coding rate, for a simpler deterministic model where a burst erasure of

length B is introduced on the discrete timeline and every message has to be perfectly recovered at the destination

with a decoding delay of T time slots. They proposed a streaming code that not only achieves the capacity T
T+B

for the deterministic model, but also can significantly outperform traditional FEC schemes for the Gilbert-Elliott

channel. Various generalizations of the packet erasure model and the streaming codes studied in [12] have been

proposed in [13]–[17].

Note that an Internet application may consist of multiple types of data streams (video, audio, text, etc.), and also

within a single data stream such as video there are different subsets of data that have different delivery deadlines.

Moreover, multiplexing streams of different latency constraints has been implemented in the QUIC transport protocol

to reduce latency of Google Search responses and reduce rebuffer rates of YouTube playbacks [18]. Therefore,

Badr et al. [19] extended the study of single-stream codes in [12] and initiated the study of streaming codes which

multiplex a stream of urgent messages with a stringent delay constraint and a stream of less-urgent messages with

a less stringent delay constraint. Simulation results in [19, Sec. VIII] demonstrate that using multiplexed streaming

codes can significantly outperform concatenating multiple single-stream codes for the Gilbert-Elliott channel. In the
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multiplexed streaming model studied in [19], every urgent message has to be decoded within Tu time slots from the

time when the urgent message is generated, and every less-urgent message has to be decoded within Tv time slots

from the time when the less-urgent message is generated. It is assumed that Tu ≤ Tv, consistent with the notion

that the urgent messages have to be decoded with less decoding delay than the less-urgent messages. Similar to

the single-stream case, we assume that the channel introduces a burst erasure of length B on the discrete timeline

and define the capacity region to be the set of rate pairs (Rv, Ru) which are supported by streaming codes that

correct any length-B burst erasure where Rv and Ru denote the rates of the less-urgent stream and urgent stream

respectively. For the case Tu ≤ Tv ≤ Tu +B, systematic streaming codes have been proposed in [19] to achieve the

capacity region. However, for the remaining non-trivial case Tv > Tu +B, it is unclear whether the capacity region

can be achieved by the multiplexed streaming codes proposed in [19]. Therefore, we are motivated to investigate

the capacity region for the case Tv > Tu +B.

A. System Model

In order to describe the existing results for the packet-erasure channel model, we would like to briefly describe

the channel model. A formal description will appear later in the paper. The channel consists of a source and

a destination. In each time slot, the source generates a collection of ku urgent symbols and a collection of kv

less-urgent symbols. Then, the source encodes the ku + kv symbols into a collection of n symbols followed by

transmitting the n symbols through the channel. The collection of n symbols transmitted in a time slot are either

received perfectly by the destination or erased (lost). The fractions ku/n and kv/n specify the rates of the urgent

and less-urgent streams respectively. We call the ku symbols chosen by the source, the kv symbols chosen by the

source, the n symbols transmitted by the source and the n symbols received by the destination the urgent source

packet, the less-urgent source packet, the transmitted packet and the received packet respectively. We assume that

every urgent source packet generated in a time slot must be decoded with delay Tu, i.e., within the future Tu time

slots, and every less-urgent source packet generated in a time slot must be decoded with delay

Tv ≥ Tu. (1)

In order to capture the packet loss behavior over the Internet, we consider the simple scenario where the channel

introduces on the discrete timeline a burst erasure of length B. We assume without loss of generality (wlog) that

Tv ≥ B, (2)

or otherwise a burst erasure of length B starting from a certain time slot would prevent the destination to timely

recover (within Tv time slots) both the urgent and less-urgent source packets generated in the same time slot. If the

channel is noiseless where B = 0, no coding is needed to asymptotically achieve all the rate pairs (kv/n, ku/n)

on the boundary of the capacity region that satisfy ku/n+ kv/n = 1. Therefore, we assume wlog that

B ≥ 1. (3)
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B. Existing Results

For the case Tu < B under the assumption Tv ≥ B ≥ 1 by (2) and (3), it can be observed that a burst erasure

of length B starting from a certain time slot would prevent the destination to timely recover (within Tu time slots)

the urgent source packet transmitted in the same time slot. Consequently, no rate pair (kv/n, ku/n) with ku/n > 0

is achievable, which implies that the capacity region reduces to the interval [0,C(Tv, B)] on the horizontal axis

where

C(T,B) ,
T

T +B
(4)

denotes the maximum coding rate of streaming codes with delay T that correct any length-B burst erasure [12,

Th. 1 and Th. 2] (see also [17, Sec. III-C]). Since the case Tu < B degenerates the multiplexing problem to the

previously known single-stream problem described above, we assume wlog that

Tu ≥ B. (5)

For the case Tu = Tv, since the urgent and less-urgent source packets can be viewed as single-stream source

packets with delay Tu, any rate pair (kv/n, ku/n) must satisfy ku/n+kv/n ≤ C(Tu, B) (recall that the capacity of

the single-stream problem equals C(T,B) by [12]). In addition, the boundary of the capacity region ku/n+kv/n =

C(Tu, B) can be asymptotically achieved by partitioning each source packet of an optimal code with rate C(Tu, B)

into an urgent source packet and a less-urgent source packet. Consequently, the case Tu = Tv degenerates the

multiplexing problem to a single-stream problem described above. Therefore, in view of (1), we assume wlog that

Tv > Tu. (6)

Summarizing the assumptions (3), (5) and (6), we assume in the rest of the paper that

Tv > Tu ≥ B ≥ 1. (7)

Any condition that does not satisfy (7) leads to known results as explained in this and the previous subsections.

For the special case where

1 ≤ B ≤ Tu < Tv ≤ Tu +B, (8)

systematic streaming codes have been proposed in [19] to achieve the capacity region, which is the set of rate pairs

(Rv, Ru) satisfying (
1 +

Tu +B − Tv

Tu

)
Rv +

Ru

C(Tu, B)
≤ 1

and

Rv +Ru ≤ C(Tv, B) (9)

as illustrated in Figure 1(a). In addition, other systematic streaming codes have been proposed in [19] to achieve
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(b) Case Tv > Tu +B

Fig. 1. Capacity region

two different rate regions for the cases Tu + B < Tv < Tu + 2B and Tv ≥ Tu + 2B respectively, denoted by

R{Tu+B<Tv<Tu+2B} and R{Tv≥Tu+2B} respectively. In particular, if only systematic streaming codes are allowed,

R{Tv≥Tu+2B} was shown in [19] to be the largest.

C. Main Contribution

Under the assumption (7), the capacity region for case (8) was proved in [19]. This paper solves the only

remaining case

Tv > Tu +B (10)

and characterize the capacity region to be the set of rate pairs (Rv, Ru) satisfying (9) and

Rv +
Ru

C(Tu, B)
≤ 1 (11)

as illustrated in Figure 1(b).

In order to prove the achievability, we propose a non-systematic streaming code that achieves the non-trivial corner

point
(
Tv−Tu

Tv+B ,
Tu

Tv+B

)
. The proposed multiplexed streaming code is constructed by superimposing two single-stream

codes with respective rates Tv−Tu

Tv−Tu+B and Tu

Tu+B and respective delays Tv−Tu and Tu. In order to prove the converse,

we first prove a genie-aided outer bound when the channel is subject to a periodic erasure pattern where each period

consists of a length-B burst erasure followed by a length-Tu noiseless duration. The genie provides the least amount

of information to the destination so that both the urgent and less-urgent streams can be perfectly recovered at the

destination. Then, we average the genie-aided bound over all offsets of the periodic erasure pattern and combine

the averaged genie-aided bound with the existing trivial bound Rv +Ru ≤ C(Tv, B), resulting an outer bound with

four corner points as shown in Figure 1(b). In particular, for the case Tv ≥ Tu + 2B, the converse proof combined

with the result in [19] as described at the end of Section I-B implies that systematic streaming codes alone are

sufficient to achieve the capacity region.
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D. Paper Outline

This paper is organized as follows. The notation in this paper is explained in the next subsection. Section II

presents the formulation of multiplexed streaming codes for the packet erasure channel and states the main result

— the capacity region for the case Tv > Tu + B. Section III contains the achievability proof of the main result

which involves the construction of a multiplexed streaming code that achieves the non-trivial corner point of the

capacity region. Section IV presents the converse proof of the main result which involves obtaining a genie-aided

bound. Section V concludes this paper.

E. Notation

The sets of natural numbers, integers, non-negative integers, and non-negative real numbers are denoted by N,

Z, Z+ and R+ respectively. All the elements of any matrix considered in this paper are taken from a common

finite field F, where 0 and 1 denote the additive identity and the multiplicative identity respectively. The set of

k-dimensional row vectors over F is denoted by Fk, and the set of k × n matrices over F is denoted by Fk×n.

A row vector in Fk is denoted by a , [a0 a1 . . . ak−1] where a` denotes the (` + 1)th element of a. The k-

dimensional identity matrix is denoted by Ik and the L×B all-zero matrix is denoted by 0L×B . An L×B parity

matrix of a systematic maximum-distance separable (MDS) (L+B,L)-code is denoted by VL×B , which possesses

the property that any L columns of [IL VL×B ] ∈ FL×(L+B) are independent. It is well known that a systematic

maximum-distance separable (MDS) (L+B,L)-code always exists as long as |F| ≥ L+B [20]. We will take all

logarithms to base 2 throughout this paper. For any discrete random tuple (X,Y, Z), we let H(X|Z) denote the

entropy of X given Z, and let I(X;Y |Z) denote the mutual information between X and Y given Z.

II. MULTIPLEXED STREAMING CODES FOR CHANNELS WITH BURST ERASURES

A. Problem formulation

The source wants to simultaneously send a sequence of length-ku packets u∞ , {ui}∞i=0 with decoding delay

Tu and a sequence of length-kv packets v∞ , {vi}∞i=0 with decoding delay Tv ≥ Tu to the destination, where ku

and kv denote the sizes of each urgent packet ui and each less-urgent packet vi respectively. Each ui is an element

in Fku and each vi is an element in Fkv where F is some finite field. In each time slot i ∈ Z+, the source packets

vi and ui are encoded into a length-n packet xi ∈ Fn to be transmitted to the destination through an erasure

channel, and the destination receives yi ∈ Fn ∪ {∗} where the received packet yi equals either the transmitted

packet xi or the erasure symbol ‘∗’. The urgent and less-urgent streams are subject to the delay constraints of Tu

and Tv time slots respectively, meaning that the destination must produce an estimate of ui, denoted by ûi, upon

receiving yi+Tu and produce an estimate of vi, denoted by v̂i, upon receiving yi+Tv . As mentioned in Section I-A,

we assume that the channel introduces a burst erasure of length B. Recall that we assume (7) wlog.

B. Standard definitions

Definition 1: An (n, kv, ku, Tv, Tu)F-streaming code consists of the following:
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1) A sequence of less-urgent source packets v∞ where vi ∈ Fkv .

2) A sequence of urgent source packets u∞ where ui ∈ Fku .

3) An encoder fi : Fku+kv × . . .× Fku+kv︸ ︷︷ ︸
i+1 times

→ Fn for each i ∈ Z+, where fi is used by the source at time i to

encode ui and vi such that

xi = fi((u0,v0), (u1,v1), . . . , (ui,vi)).

4) A decoding function ϕ
(v)
i+Tv

: Fn ∪ {∗} × . . .× Fn ∪ {∗}︸ ︷︷ ︸
i+Tv+1 times

→ Fkv for each i ∈ Z+, where ϕ(v)
i+Tv

is used by

the destination at time i+ Tv to estimate vi such that

v̂i = ϕ
(v)
i+Tv

(y0,y1, . . . ,yi+Tv
). (12)

5) A decoding function ϕ
(u)
i+Tu

: Fn ∪ {∗} × . . .× Fn ∪ {∗}︸ ︷︷ ︸
i+Tu+1 times

→ Fku for each i ∈ Z+, where ϕ(u)
i+Tu

is used by

the destination at time i+ Tu to estimate ui according to

ûi = ϕ
(u)
i+Tu

(y0,y1, . . . ,yi+Tu
). (13)

In addition, the code is said to be systematic if xi = [vi ui ai] for some ai ∈ Fn−kv−ku at each time i ∈ Z+.

The formal definition of a length-B burst erasure is given below.

Definition 2: An erasure sequence is a binary sequence denoted by e , {ei}∞i=0 where

ei = 1{erasure occurs at time i}.

If
∑∞

i=0 ei = B holds with all the 1’s occupying consecutive positions, e is called a B-erasure sequence. The

set of B-erasure sequences is denoted by ΩB . Similarly, for any n ≥ B, a length-n binary sequence denoted by

en , {ei}n−1
i=0 is called a B-erasure sequence if en satisfies

∑n−1
i=0 ei = B with all the 1’s occupying consecutive

positions. The set of length-n B-erasure sequences is denoted by Ωn
B .

Definition 3: The mapping gn : Fn × {0, 1} → Fn ∪ {∗} of the erasure channel is defined as

gn(x, e) =

x if e = 0,

∗ if e = 1.
(14)

For any erasure sequence e and any (n, kv, ku, Tv, Tu)F-streaming code, the following input-output relation holds

for the erasure channel for each i ∈ Z+:

yi = gn(xi, ei). (15)

Definition 4: An (n, kv, ku, Tv, Tu)F-streaming code is said to correct a B-erasure sequence e ∈ ΩB if the

following holds: For all i ∈ Z+ and all [ui vi] ∈ Fku+kv , we have

[ûi v̂i] = [ui vi]
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where

ûi = ϕ
(u)
i+Tu

(
gn(x0, e0), . . . , gn(xi+Tu

, ei+Tu
)
)

and

v̂i = ϕ
(v)
i+Tv

(
gn(x0, e0), . . . , gn(xi+Tv

, ei+Tv
)
)

due to (13), (12) and (15).

The following corollary is a direct consequence of Definition 1 and Definition 4, and its proof is relegated to

Appendix A.

Corollary 1: Suppose an (n, kv, ku, Tv, Tu)F-streaming code that corrects any B-erasure sequence exists. Then

for each q ∈ N, we can construct a (qn, qkv, qku, Tv, Tu)F-streaming code that corrects any B-erasure sequence.

Definition 5: A rate pair (Rv, Ru) ∈ R2
+ is said to be (Tv, Tu, B)-achievable if there exists an (n, kv, ku, Tv, Tu)F-

streaming code which corrects any B-erasure sequence such that kv

n ≥ Rv and ku

n ≥ Ru.

The following corollary is a direct consequence of Definition 5 and the existing single-stream result [12, Th. 2]

(see also [17, Th. 1])) stated as follows: Suppose T ≥ B ≥ 1. Then, there exists a streaming code with rate C(T,B)

which guarantees the recovery of every streaming message with delay T when the channel is subject to any length-B

burst erasure on the discrete timeline.

Corollary 2 ( [12, Th. 2]): The rate pairs (C(Tv, B), 0) and (0,C(Tu, B)) are (Tv, Tu, B)-achievable.

Definition 6: Fix any (Tv, Tu, B) that satisfies (7). The (Tv, Tu, B)-achievable rate region, denoted by CTv,Tu,B ,

is the closure of the set of (Tv, Tu, B)-achievable rate pairs.

The following convexity statement regarding CTv,Tu,B will help us simplify the achievability proof of our main

result. The proof is standard and is therefore relegated to Appendix B.

Corollary 3: For any (Tv, Tu, B) that satisfies (7), CTv,Tu,B is convex.

C. Main Result

The following theorem is the main result of this paper, which states the capacity region in terms of the single-

stream capacity function C(·, ·) as defined in (4).

Theorem 1: Fix any (Tv, Tu, B) that satisfies (7) and (10). Define

R{Tv>Tu+B} ,

{
(Rv, Ru) ∈ R2

+

∣∣∣∣∣Rv + Ru

C(Tu,B) ≤ 1,

Rv +Ru ≤ C(Tv, B)

}
(16)

as illustrated in Figure 1(b). Then,

CTv,Tu,B = R{Tv>Tu+B}.

Remark 1: Consider the special case where Tv ≥ Tu + 2B. It has been shown in [19, Th. 1] that systematic

streaming codes (cf. Definition 1) achieve R{Tv>Tu+B}. Therefore, it follows from Theorem 1 that systematic

streaming codes are sufficient to achieve the capacity region.
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Remark 2: Consider the special case where Tu +B < Tv < Tu + 2B. The systematic streaming codes proposed

in [19, Th. 1] cannot achieve the non-trivial corner point
(
Tv−Tu

Tv+B ,
Tu

Tv+B

)
of the capacity region CTv,Tu,B . On the

other hand, our achievability proof presented in Section III proposes a non-systematic streaming code that achieves

the non-trivial corner point. It remains open whether systematic streaming codes are sufficient to achieve the capacity

region.

III. ACHIEVABILITY PROOF OF MAIN RESULT

The achievability proof of Theorem 1 consists of two steps. The first step involves constructing a multiplexed

block code which corrects any B-erasure sequence. The second step involves constructing a multiplexed streaming

code which corrects any B-erasure sequence by periodically interleaving the multiplexed block code. The formal

definitions and existing results related to multiplexed block codes and periodic interleaving are presented in the

following subsection.

A. Preliminaries

Definition 7: An (n, kv, ku, Tv, Tu)F-block code consists of the following:

1) A vector of kv less-urgent source symbols in F denoted by ~v ,
[
v[0] v[1] . . . v[kv − 1]

]
.

2) A vector of ku urgent source symbols in F denoted by ~u ,
[
u[0] u[1] . . . u[ku − 1]

]
.

3) A generator matrix G ∈ F(kv+ku)×n. The codeword is generated according to

[
x[0] x[1] . . . x[n− 1]] = [~v ~u

]
G.

4) A decoding function ϕ(v)
i+Tv

: F ∪ {∗} × . . .× F ∪ {∗}︸ ︷︷ ︸
i+Tv+1 times

→ F for each i ∈ {0, 1, . . . , kv − 1}, where ϕ(v)
i+Tv

is

used by the destination at time i+ Tv to estimate v[i] according to

v̂[i] =


ϕ

(v)
i+Tv

(y[0], y[1], . . . , y[i+ Tv]) if i+ Tv ≤ n− 1

ϕ
(v)
i+Tv

(y[0], . . . , y[n− 1], ∗, . . . , ∗︸ ︷︷ ︸
i+Tv+1 symbols

) if i+ Tv > n− 1.

5) A decoding function ϕ(u)
i+Tu

: F ∪ {∗} × . . .× F ∪ {∗}︸ ︷︷ ︸
i+Tu+1 times

→ F for each i ∈ {0, 1, . . . , ku − 1}, where ϕ(u)
i+Tu

is

used by the destination at time i+ Tu to estimate u[i] according to

û[i] =


ϕ

(u)
i+Tu

(y[0], y[1], . . . , y[i+ Tu]) if i+ Tu ≤ n− 1

ϕ
(u)
i+Tu

(y[0], . . . , y[n− 1], ∗, . . . , ∗︸ ︷︷ ︸
i+Tu+1 symbols

) if i+ Tu > n− 1.

The following definition concerns the error-correcting capability of a block code.

Definition 8: An (n, kv, ku, Tv, Tu)F-block code is said to correct a B-erasure sequence en ∈ Ωn
B if the following

holds: Let y[i] = g1(x[i], ei) be the symbol received by the destination at time i for each i ∈ {0, 1, . . . , n − 1}

where g1 is defined in (14). Then, v̂[i] = v[i] holds for all i ∈ {0, 1, . . . , kv − 1} and all v[i] ∈ F, and û[i] = u[i]

holds for all i ∈ {0, 1, . . . , ku − 1} and all u[i] ∈ F, where v̂[i] and û[i] are as defined in Definition 7.
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XXXXXXXXXXSymbol
Time m

i− 2 i− 1 i i+ 1 i+ 2 i+ 3 i+ 4

xm[0] = vm[0] vi−2[0] vi−1[0] vi[0] vi+1[0] vi+2[0] vi+3[0] vi+4[0]

xm[1] = vm[1] vi−2[1] vi−1[1] vi[1] vi+1[1] vi+2[1] vi+3[1] vi+4[1]

xm[2] = um[0] ui−2[0] ui−1[0] ui[0] ui+1[0] ui+2[0] ui+3[0] ui+4[0]

xm[3] = vm−3[0]
+ um−1[0]

. . . . . . . . . vi−2[0]
+ ui[0]

vi−1[0]
+ ui+1[0]

vi[0]
+ ui+2[0]

. . .

xm[4] = vm−3[1]
+ um−2[0]

. . . . . . . . . . . . vi−1[1]
+ ui[0]

vi[1]
+ ui+1[0]

vi+1[1]
+ ui+2[0]

TABLE I
SYMBOLS YIELDED BY A (5, 2, 1, 3, 2)F-STREAMING CODE THROUGH INTERLEAVING A (5, 2, 1, 3, 2)F-BLOCK CODE.

The following lemma implies that constructing a streaming code which corrects any length-B burst erasure is not

more difficult than constructing a block code which corrects any length-B burst erasure. The proof of the following

lemma is deferred to Appendix C because it follows the standard argument of interleaving a block code into a

streaming code by means of periodic interleaving [21] (see also [12, Sec. IV-A]).

Lemma 4: Given an (n, kv, ku, Tv, Tu)F-block code which corrects any B-erasure sequence, we can construct an

(n, kv, ku, Tv, Tu)F-streaming code which corrects any B-erasure sequence.

Example 1: Suppose we are given a (5, 2, 1, 3, 2)F-block code which corrects any length-2 burst erasure with

generator matrix

G =


1 0 0 1 0

0 1 0 0 1

0 0 1 1 1

 .
Let {vi}i∈Z+ and {ui}i∈Z+ be the messages of the less-urgent stream and urgent stream respectively where vi =[
vi[0] vi[1]

]
∈ F2 and ui = ui[0] ∈ F. From time i−2 to i+4, the symbols yielded by the (5, 2, 1, 3, 2)F-streaming

code constructed by interleaving the block code according to Lemma 4 are shown in Table I. The symbols in Table I

which are highlighted in the same color diagonally (in↘ direction) are the components of the same codeword with

generator matrix G. Given the fact that the (5, 2, 1, 3, 2)F-block code corrects any length-2 burst erasure, we can

see from Table I that
[
vi[0] vi[1]

]
and ui[0] can be perfectly recovered by time i + 3 and time i + 2 respectively

as long as the erasure sequence is taken from Ω5
2.

Lemma 4 reduces the problem of finding high-rate streaming codes which correct any B-erasure sequence to the

problem of finding high-rate block codes which correct any B-erasure sequence. We will construct high-rate block

codes by superimposing the codewords of two single-stream block codes, and therefore we need the following

definition of a single-stream block code.

Definition 9: An (n, k, 0, T, 0)F-block code is also called an (n, k, T )F-block code. The (n, k, T )F-block code is

said to correct a B-erasure sequence en if the equivalent (n, k, 0, T, 0)F-block code corrects en.

By Definition 9, an (n, k, T )F-block code ignores the urgent stream of messages by letting the message size for
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the urgent stream be zero. The following lemma is a restatement of an existing construction [12, Th. 2] (see also

[17, Remark 3]) of an (n, k, T )F-block code with rate k/n = C(T,B) which corrects any length-B burst erasure.

Lemma 5: Suppose T ≥ B ≥ 1 and let k , T and n , k + B. Fix any F with |F| ≥ T such that a systematic

MDS (T, T − B)-code always exists. Let P denote the parity matrix of the MDS code such that the generator

matrix of the MDS code equals [IT−B P]. Then, the (n, k, T )F-block code with rate k/n = C(T,B) and generator

matrix G defined as

G ,

 IB 0B×(T−B) IB

0(T−B)×B IT−B P


corrects any length-B burst erasure.

B. Achievability Proof of Theorem 1

Fix any (Tv, Tu, B) that satisfies (7) and (10). Our goal is to show that CTv,Tu,B ⊇ R{Tv>Tu+B} where

R{Tv>Tu+B} is defined in (16) and illustrated in Figure 1(b). By Corollary 3, it suffices to show that the four corner

points of R{Tv>Tu+B} are (Tv, Tu, B)-achievable. Since the corner points (0, 0), (C(Tv, B), 0) and (0,C(Tu, B))

are (Tv, Tu, B)-achievable by Corollary 2, it suffices to show that the remaining corner point
(
Tv−Tu

Tv+B ,
Tu

Tv+B

)
is

(Tv, Tu, B)-achievable. To this end, we let kv , Tv − Tu > 0, ku , Tu and n , Tv + B, and will construct

an (n, kv, ku, Tv, Tu)F-block code which corrects any length-B burst erasure, which together with Lemma 4 will

imply that
(
Tv−Tu

Tv+B ,
Tu

Tv+B

)
is (Tv, Tu, B)-achievable. The construction of the (n, kv, ku, Tv, Tu)F-block code is

described as follows. Fix any F with |F| ≥ max{Tu, Tv−Tu}. The vectors of less-urgent source symbols and urgent

source symbols are denoted by ~v = [v[0] v[1] . . . v[Tv − Tu − 1]] and ~u = [u[0] u[1] . . . u[Tu − 1]] respectively.

Let V and U be the parity matrices of a systematic MDS (Tv − Tu, Tv − Tu − B)-code and a systematic MDS

(Tu, Tu −B)-code respectively, and let

G ,


ITv−Tu

IB

V
0(Tv−Tu)×B

0Tu×(Tv−Tu)
IB

0(Tu−B)×B

0B×(Tu−B) IB

ITu−B U

 (17)

be the generator matrix of the (n, kv, ku, Tv, Tu)F-block code. The intuition behind the construction of G is to

superimpose the codeword generated from the less-urgent symbols

[x(v)[0] x(v)[1] . . . x(v)[Tv − Tu +B − 1]] , ~v

 ITv−Tu

IB

V

 (18)

and the codeword generated from the urgent symbols

[x(u)[0] x(u)[1] . . . x(u)[Tu +B − 1]] , ~u

 ITu

IB

U

 (19)

such that the two streams interfere with each other in the resultant codeword at B consecutive positions. Applying

Lemma 5 to (18) and (19), we obtain the following two properties for the less-urgent symbols and urgent symbols
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respectively for each en ∈ Ωn
B :

(i) For each i ∈ {0, 1, . . . , Tv − Tu − 1}, v[i] can be perfectly recovered from the following set of packets that

are not erased by the length-B burst erasure specified by en:{
x(v)[`]

∣∣∣ ` ∈ {0, 1, . . . ,min{i+ Tv − Tu, Tv − Tu +B − 1}}, e` = 0
}
.

(ii) For each i ∈ {0, 1, . . . , Tu − 1}, u[i] can be perfectly recovered from the non-erased packets{
x(u)[`]

∣∣∣ ` ∈ {0, 1, . . . ,min{i+ Tu, Tu +B − 1}}, e` = 0
}
.

Combining (17), (18) and (19), we obtain

[x[0] x[1] . . . x[n− 1]] = x(v)[0] . . . x(v)[Tv − Tu − 1]

x(v)[Tv − Tu]

+

x(u)[0]

. . .

x(v)[Tv − Tu +B − 1]

+

x(u)[B − 1]

x(u)[B] . . . x(u)[Tu +B − 1]


(20)

where the last B symbols of the less-urgent stream codeword interfere with the first B symbols of the urgent stream

codeword. In order to show that the (n, kv, ku, Tv, Tu)F-block code defined by (17) corrects any length-B burst

erasure, we fix an arbitrary en ∈ Ωn
B and would like to show the following two properties:

(I) For each i ∈ {0, 1, . . . , Tv − Tu − 1}, suppose the less-urgent symbol v[i] is generated at time i. Then, v[i]

can be perfectly recovered with delay Tv by time i+Tv from the following set of packets that are not erased

by the length-B burst erasure specified by en:

{x[`]| ` ∈ {0, 1, . . . ,min{i+ Tv, n− 1}}, e` = 0} . (21)

(II) For each i ∈ {0, 1, . . . , Tu − 1}, suppose the urgent symbol u[i] is generated at time Tv − Tu + i. Then, u[i]

can be perfectly recovered with delay Tu by time (Tv − Tu + i) + Tu = i + Tv from the set of non-erased

packets as stated in (21).

We will show Properties (i) and (ii) in each of the following two cases:

Case { i ∈ {0, 1, . . . , Tv − Tu − 1}| ei = 1} = ∅:

By the hypothesis, ~v can be perfectly recovered by time Tv−Tu−1 and hence Property (I) holds. It remains to prove

Property (II). To this end, we first observe from (20) that x(v)[Tv−Tu], x(v)[Tv−Tu +1], . . . , x(v)[Tv−Tu +B−1]

can be perfectly recovered by time Tv − Tu − 1 because they are functions of ~v by (18). Therefore, it follows

from (20) and (19) that the destination can construct{
x(u)[`]

∣∣∣ ` ∈ {0, 1, . . . ,min{i+ Tu, Tu +B − 1}}, e` = 0
}

by time i + Tv for each i ∈ {0, 1, . . . , Tu − 1}, which implies from the fact en ∈ Ωn
B and Property (ii) that the

destination can perfectly recover x(u)[i] by time i + Tv for each i ∈ {0, 1, . . . , Tu − 1}, and hence Property (II)
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holds.

Case { i ∈ {0, 1, . . . , Tv − Tu − 1}| ei = 1} 6= ∅:

In view of the hypothesis and (20) and using the fact en ∈ Ωn
B , we conclude that the destination receives x(u)[i]

at time Tv − Tu + i for each i ∈ {B,B + 1, . . . , Tu + B − 1} and hence Property (II) holds. It remains to prove

Property (I). To this end, we first observe from Property (ii) that the destination can perfectly recover x(u)[i] = u[i]

by time i+ Tv for each i ∈ {0, 1, . . . , Tu − 1}. Therefore, it follows from (20) that the destination can construct{
x(v)[`]

∣∣∣ ` ∈ {0, 1, . . . ,min{i+ Tv, Tv − Tu +B − 1}}, e` = 0
}

by time i + Tv for each i ∈ {0, 1, . . . , Tv − Tu + B − 1}, which implies from the fact en ∈ Ωn
B and Property (i)

that the destination can perfectly recover x(v)[i] by time i + Tv for each i ∈ {0, 1, . . . , Tv − Tu − 1}, and hence

Property (I) holds.

Combining the above two cases, we conclude the Properties (I) and (II) hold for all en ∈ Ωn
B , which implies

that the (n, kv, ku, Tv, Tu)F-block code defined by (17) corrects any length-B burst erasure, which together with

Lemma 4 implies that
(
Tv−Tu

Tv+B ,
Tu

Tv+B

)
is (Tv, Tu, B)-achievable (cf. Definition 5).

IV. CONVERSE PROOF OF MAIN RESULT

Our goal is to show that CTv,Tu,B ⊆ R{Tv>Tu+B}. Equivalently, we would like to show that (9) and (11) hold.

To this end, we let (Rv, Ru) be a rate pair in CTv,Tu,B . Fix an arbitrary δ > 0. By Definition 5 and Definition 6,

there exists an (n, kv, ku, Tv, Tu)F-streaming code which corrects any B-erasure sequence such that

kv

n
≥ Rv − δ (22)

and

ku

n
≥ Ru − δ. (23)

A. Sum-Rate Bound (9)

By Definition 1, the (n, kv, ku, Tv, Tu)F-streaming code can be viewed as an (n, kv + ku, 0, Tv, 0)F-streaming

code which corrects any B-erasure sequence. Consequently, the sum-rate for the (n, kv, ku, Tv, Tu)F-streaming

codes must not exceed the single-stream capacity C(Tv, B) (cf. Section I-B), which implies that

kv + ku

n
≤ C(Tv, B). (24)

Combining (24), (22) and (23), we have

Ru +Rv ≤ C(Tv, B) + 2δ,

which then implies (9) by taking the limit δ → 0.
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Fig. 2. The periodic erasure sequence ε(0).

B. Genie-Aided Bound (11)

Given the (n, kv, ku, Tv, Tu)F-streaming code that corrects any B-erasure sequence and satisfies (22) and (23),

we use Corollary 1 to construct for each q ∈ N a (qn, qkv, qku, Tv, Tu)F-streaming code that corrects any B-erasure

sequence and satisfies (22) and (23). Fix any q ∈ N. In order to develop a genie-aided bound associated with the

(qn, qkv, qku, Tv, Tu)F-streaming code, we let u0 and v0 be the urgent and less-urgent source packets which are

uniformly distributed on Fqku and Fqkv respectively, and assume that {(ui,vi)}i∈Z+
are independent and identically

distributed (i.i.d.). The genie-aided bound associated with the (qn, qkv, qku, Tv, Tu)F-streaming code is obtained by

considering the following set of periodic erasure patterns: Define

nu , Tu +B

and construct for each ∆ ∈ {0, 1, . . . , Tu +B − 1} a periodic erasure pattern ε(∆) = {ε(∆)
i }∞i=0 as

ε
(∆)
i ,

1 if i−∆ ∈ {κnu, κnu + 1, . . . , κnu +B − 1} for some κ ∈ Z,

0 otherwise.
(25)

In other words, we construct ε(∆) by offsetting the periodic erasure sequence ε(0) by ∆ time slots to the right,

where ε(0) is illustrated in Figure 2. By construction, each ε(∆) has a period of nu time slots and each period

consists of an initial length-B burst erasure followed by a length-Tu noiseless duration. Fix a erasure pattern ε(∆),

and we will obtain a corresponding genie-aided bound associated with the (qn, qkv, qku, Tv, Tu)F-streaming code

in the following. Let

βm = H
(
xm

∣∣u∞, {x`}m−1
`=0

)
(26)

be the conditional entropy of xm conditioned on (u∞, {x`}m−1
`=0 ) for each m ∈ {0, 1, . . . , qnu−1}, which specifies

the approximate number of bits required to construct xm based on the knowledge of (u∞, {x`}m−1
`=0 ). Suppose we use

a standard arithmetic code [22, Ch. 13.3] to compress xm conditioned on each outcome assumed by (u∞, {x`}m−1
`=0 )

for each m ∈ {0, 1, . . . , qnu − 1}, and let X̂m be the noiseless compressed version of xm accessible to the genie

that satisfies the equality

H
(
xm

∣∣u∞, {x`}m−1
`=0 , X̂m

)
= 0 (27)
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and the inequality (cf. [22, Ch. 13.3])

H(X̂m) ≤ H
(
xm

∣∣u∞, {x`}m−1
`=0

)
+ 2

= βm + 2 (28)

where the last equality is due to (26). According to the arithmetic code, the random variable X̂m is constructed by

first generating {u`}m`=0 and {x`}m−1
`=0 followed by generating X̂m based on the conditional distribution pX̂m|{u`}m`=0,{x`}m−1

`=0
.

Note that for the special case where the (qn, qkv, qku, Tv, Tu)F-streaming code is systematic, it can be seen

that {x`}m−1
`=0 contains {v`}m−1

`=0 and hence setting X̂m equal to vm suffices to yield (27) and (28). How-

ever, for the general case where the streaming code can be non-systematic, the arithmetic coding argument is

needed for obtaining (27) and (28). In order to obtain the genie-aided bound corresponding to the fixed q, the

fixed (qn, qkv, qku, Tv, Tu)F-streaming code and the fixed ε(∆), we suppose the genie provides the destination with

{X̂m |m ∈ A∆} where

A∆ ,
{
i ∈ Z+

∣∣ε(∆)
i = 1

}
(29)

denotes the set of time indices at which the transmitted packets are erased according to ε(∆). To simplify notation,

we let Ac
∆ , Z+ \ A∆. Then we claim that every urgent source packet and every less-urgent source packet can

be recovered when the erasure sequence is ε(∆) (cf. (25)). To prove the claim, we consider the following chain of

inequalities:

H
(
{(ui,vi)}qnu−Tu−Tv−1

i=0

∣∣{xm : Ac
∆ ∩ [0, qnu − 1]}, {X̂m : m ∈ A∆ ∩ [0, qnu − 1]}

)
≤ H

(
{xi}qnu−Tu−1

i=0

∣∣{xm : Ac
∆ ∩ [0, qnu − 1]}, {X̂m : m ∈ A∆ ∩ [0, qnu − 1]}

)
(30)

=

qnu−Tu−1∑
i=0

H
(
xi

∣∣{x`}i−1
`=0, {xm : m ∈ Ac

∆ ∩ [i, qnu − 1]}, {X̂m : m ∈ A∆ ∩ [0, qnu − 1]}
)

≤
qnu−Tu−1∑

i=0

H
(
xi

∣∣{x`}i−1
`=0, {xm : m ∈ Ac

∆ ∩ [i, i+ Tu]}, {X̂m : m ∈ A∆ ∩ [0, qnu − 1]}
)

=

qnu−Tu−1∑
i=0

H
(
xi

∣∣{u`}i`=0, {x`}i−1
`=0, {xm : m ∈ Ac

∆ ∩ [i, i+ Tu]}, {X̂m : m ∈ A∆ ∩ [0, qnu − 1]}
)

(31)

≤
qnu−Tu−1∑

i=0

1{ε(∆)
i = 1} ×H

(
xi

∣∣{u`}i`=0, {x`}i−1
`=0, X̂i

)
(32)

= 0 (33)

where

• (30) is due to that fact that {(ui,vi)}qnu−Tu−Tv−1
i=0 is a function of {xi}qnu−Tu−1

i=0 .

• (31) is due to the fact that {u`}i`=0 is a function of ({x`}i−1
`=0, {xm : m ∈ Ac

∆ ∩ [i, i+Tu]}), which is a direct

consequence of the fact that the (qn, qkv, qku, Tv, Tu)F-streaming code corrects any B-erasure sequence.

• (32) is due to the definition of A∆ in (29).

• (33) is due to (27).
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Equation (33) implies that the urgent and less-urgent source packets generated before time qnu−Tu−Tv−1 can be

recovered by the destination by time qnu + 1 if the erasure sequence is ε(∆) and the genie provides the destination

with the side information {X̂m : m ∈ A∆ ∩ [0, qnu − 1]}. Therefore, it follows from (33) and (28) that

q(ku + kv)(qnu − Tu − Tv) = H
(
{(ui,vi)}qnu−Tu−Tv−1

i=0

)
≤ H

(
{xm : Ac

∆ ∩ [0, qnu − 1]}, {X̂m : m ∈ A∆ ∩ [0, qnu − 1]}
)

≤ H
(
{xm : Ac

∆ ∩ [0, qnu − 1]}
)

+H
(
{X̂m : m ∈ A∆ ∩ [0, qnu − 1]}

)
≤

∑
m∈Ac

∆∩[0,qnu−1]

H(xm) +
∑

m∈A∆∩[0,qnu−1]

(βm + 2). (34)

Taking average on both sides of (34) over ∆ ∈ {0, 1, . . . , Tu +B − 1}, we obtain

q(ku + kv)(qnu − Tu − Tv) ≤ 1

Tu +B

Tu+B−1∑
∆=0

( ∑
m∈Ac

∆∩[0,qnu−1]

H(xm) +
∑

m∈A∆∩[0,qnu−1]

(βm + 2)

)
,

which together with the definition of A∆ in (29) implies that

q(ku + kv)(qnu − Tu − Tv) ≤ Tu

Tu +B

qnu−1∑
m=0

H(xm) +
B

Tu +B

qnu−1∑
m=0

(βm + 2). (35)

Since H(xm) ≤ qn for each m by construction and

qnu−1∑
m=0

βm = H
(
{x`}qnu−1

`=0

∣∣u∞)
≤ H

(
{v`}qnu−1

`=0

)
≤ q2nukv

due to (26) and the fact that {x`}qnu−1
`=0 is a function of {u`,v`}qnu−1

`=0 , it follows from (35) that

q(ku + kv)(qnu − Tu − Tv) ≤ q2nnuTu

Tu +B
+
q2nukvB

Tu +B
+

2qnuB

Tu +B
. (36)

Dividing both sides of (36) by q2nnu, we obtain(
ku + kv

n

)(
1− Tu + Tv

qnu

)
≤ Tu

Tu +B
+

B

Tu +B
× kv

n
+

2B

qn(Tu +B)
,

which together with the fact nu = Tu +B implies that(
1− Tu + Tv

qnu

)
ku

n
+

(
Tu

nu
− Tu + Tv

qnu

)
kv

n
≤ Tu

nu
+

2B

qnnu
. (37)

Combining (37), the definition of C(·, ·) in (4), (22) and (23), we obtain(
1− Tu + Tv

qnu

)
(Ru − δ) +

(
C(Tu, B)− Tu + Tv

qnu

)
(Rv − δ) ≤ C(Tu, B) +

2B

qnnu
. (38)

Taking the limit q →∞ followed by letting δ → 0 on both sides of (38), we obtain (11).

November 12, 2019 DRAFT



17

V. CONCLUDING REMARKS

We have investigated streaming codes that multiplex an urgent stream of messages with delay constraint Tu and a

less-urgent stream of messages with delay constraint Tv over the deterministic burst-erasure model where Tv ≥ Tu.

The capacity region has been proved for the case Tv > Tu + B under assumption 7, which together with the

existing results described in Section I-B implies the full characterization of the capacity region for all parameters of

(Tv, Tu, B). In particular, the capacity regions for the case Tu < Tv ≤ Tu +B and the case Tv > Tu +B are shown

in Figure 1(a) and Figure 1(b) respectively. While systematic streaming codes alone achieve the capacity region for

the case Tu < Tv ≤ Tu +B and the case Tv ≥ Tu + 2B by [19, Th. 3] and Remark 2 respectively, it remains open

whether systematic streaming codes are sufficient to achieve the capacity region for the case Tu+B < Tv < Tu+2B.

The main result in this paper, i.e., Theorem 1, is readily generalized to the following deterministic model that

generates multiple burst erasures as explained in [23, Remark 1] (see also [19, Sec. II]): The channel introduces

multiple burst erasures on the discrete timeline where the length of each burst does not exceed B and the length

of the guard space between two adjacent bursts is at least Tv. Future work may generalize the main result to the

erasure model which introduces both burst and arbitrary erasures as investigated in [24] and [17].

APPENDIX A

PROOF OF COROLLARY 1

Fix an (n, kv, ku, Tv, Tu)F-streaming code that corrects any B-erasure sequence and fix any q ∈ N. Construct q

instances of the (n, kv, ku, Tv, Tu)F-streaming code. Recalling Definition 1, we concatenate the length-n transmitted

packets generated at time i by the q instances of the streaming code and construct at time i a length-(qn) transmitted

packet for each i ∈ Z+. Due to Definition 1 and Definition 4, the concatenated code associated with the sequence

of length-(qn) transmitted packets can be viewed as a (qn, qkv, qku, Tv, Tu)F-streaming code which corrects any

B-erasure sequence.

APPENDIX B

PROOF OF COROLLARY 3

By Definition 5 and Definition 6, it suffices to prove the following: For any (n(0), k
(0)
v , k

(0)
u , Tv, Tu)F-streaming

code and any (n(1), k
(1)
v , k

(1)
u , Tv, Tu)F-streaming code which correct any B-erasure sequence, there exists an

(n, kv, ku, Tv, Tu)F-streaming code which corrects any B-erasure sequence where

kv

n
=

k
(0)
v

2n(0)
+

k
(1)
v

2n(1)
(39)

and

ku

n
=

k
(0)
u

2n(0)
+

k
(1)
u

2n(1)
. (40)

In order to show (39) and (40), we concatenate n(1) instances of the length-n(0) transmitted packet generated

at time i and n(0) instances of the length-n(1) transmitted packet generated at time i and form at time i a new
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length-(2n(0)n(1)) transmitted packet for each i ∈ Z+. By construction, the concatenated code associated with the

sequence of length-(2n(0)n(1)) transmitted packets can be viewed as a (n, kv, ku, Tv, Tu)F-streaming code which

corrects any B-erasure sequence where n = 2n(0)n(1), kv = n(1)k
(0)
v + n(0)k

(1)
v and ku = n(1)k

(0)
u + n(0)k

(1)
u . In

particular, the concatenated code satisfies (39) and (40).

APPENDIX C

PROOF OF LEMMA 4

Suppose we are given an (n, kv, ku, Tv, Tu)F-block code which corrects any B-erasure sequence, and let G ∈

F(kv+ku)×n be the generator matrix. By Definition 7, the block code has the following properties:

(i) The length of the block code is n.

(ii) From time 0 to n− 1, the symbols

[
x[0] x[1] · · · x[n− 1]

]
=
[
~v ~u
]
G

are transmitted.

(iii) Upon receiving

[
y[0] . . . y[min{`+ Tv, n− 1}]

]
=
[
g1(x[0], e0) . . . g1(x[min{`+ Tv, n− 1}], emin{`+Tv,n−1})

]
,

the destination can perfectly recover v[`] by time min{`+ Tv, n− 1} for each ` ∈ {0, 1, . . . , kv − 1} as long

as en ∈ Ωn
B .

(iv) Upon receiving

[
y[0] . . . y[min{`+ Tu, n− 1}]

]
=
[
g1(x[0], e0) . . . g1(x[min{`+ Tu, n− 1}], emin{`+Tu,n−1})

]
,

the destination can perfectly recover u[`] by time min{`+ Tu, n− 1} for each ` ∈ {0, 1, . . . , k − 1} as long

as en ∈ Ωn
B .

In order to construct (n, kv, ku, Tv, Tu)F-streaming code (cf. Definition 1) which corrects any length-B burst

erasure, we first let {vi}∞i=0 denote a sequence of length-kv less-urgent packets and let {ui}∞i=0 denote a sequence

of length-ku urgent packets, and let vi[`] and ui[`] denote the (`+ 1)th element of vi and ui respectively such that

vi , [vi[0] vi[1] · · · vi[kv − 1]] (41)

and

ui , [ui[0] ui[1] · · · ui[ku − 1]] (42)

November 12, 2019 DRAFT



19

for all i ∈ Z+. Using the convention that
[
uj vj

]
, 01×(kv+ku) for any j < 0, we construct

[
xi[0] xi+1[1] · · · xi+n−1[n− 1]

]
,
[
~vi ~ui

]
G (43)

for each i ∈ {−n+ 1,−n+ 2, . . .} where

~vi ,
[
vi[0] vi+1[1] . . . vi+kv−1[kv − 1]

]
, (44)

~ui ,
[
ui+kv

[0] vi+kv+1[1] . . . vi+kv+ku−1[ku − 1]
]
, (45)

and G is the generator matrix of the (n, kv, ku, Tv, Tu)F-block code which corrects any length-B burst erasure. In

other words, we are coding {[vi ui] : i ∈ Z+} diagonally as illustrated in Table I where xm[`] denotes the symbol `

transmitted at time m. At each time i ∈ Z+, the source transmits

xi ,
[
xi[0] xi[1] · · · xi[n− 1]

]
. (46)

Based on the (n, kv, ku, Tv, Tu)F-block code which satisfies Properties (i) to (iv) as stated at the beginning of

this proof, we have constructed an (n, kv, ku, Tv, Tu)F-streaming code where vi, ui and xi satisfy (43), (44), (45)

and (46). Our remaining goal is to show that the (n, kv, ku, Tv, Tu)F-streaming code corrects any length-B burst

erasure. To this end, we fix any i ∈ Z+ and any e ∈ ΩB , and would like to show that the destination can perfectly

recover vi =
[
vi[0] vi[1] · · · vi[kv − 1]

]
based on

[y0 y1 . . . yi+Tv ] = [gn(x0, e0) gn(x1, e1) . . . gn(xi+Tv , ei+Tv)], (47)

and can perfectly recover ui =
[
ui[0] ui[1] · · · ui[ku − 1]

]
based on

[y0 y1 . . . yi+Tu
] = [gn(x0, e0) gn(x1, e1) . . . gn(xi+Tu

, ei+Tu
)], (48)

According to (46), for each i ∈ {−n + 1,−n + 2, . . .}, the symbols in
[
xi[0] xi+1[1] · · · xi+n−1[n − 1]

]
are

transmitted between time i to i+n−1. Therefore, it follows from (43), Property (iii) and (47) that for each i ∈ Z+

and each ` ∈ {0, 1, . . . , kv−1}, the destination can perfectly recover vi[`] by time i+Tv based on [y0 y1 . . . yi+Tv ].

Similarly, it follows from (43), Property (iv) and (48) that for each i ∈ Z+ and each ` ∈ {0, 1, . . . , ku − 1}, the

destination can perfectly recover ui[`] by time i+ Tu based on [y0 y1 . . . yi+Tu
]. Consequently, for any i ∈ Z+

and any e ∈ ΩB , the destination can perfectly recover vi[`] by time i + Tv for each ` ∈ {0, 1, . . . , kv − 1} and

perfectly recover ui[`] by time i+ Tu for each ` ∈ {0, 1, . . . , ku − 1}, which then implies by Definition 5 that the

(n, kv, ku, Tv, Tu)F-streaming code corrects any B-erasure sequence.
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