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Abstract
This paper presents a segmentation method that extends geodesic active region methods by the
incorporation of a statistical classifier trained using feature selection. The classifier provides class
probability maps based on class representative local features, and the geodesic active region
formulation enables the partitioning of the image according to the region information. We
demonstrate automatic segmentation results of the myocardium in cardiac late gadolinium-
enhanced magnetic resonance imaging (CE-MRI) data using coupled level set curve evolutions, in
which the classifier is incorporated both from a region term and from a shape term from particle
filtering. The results show potential for clinical studies of scar tissue in late CE-MRI data.
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I. Introduction
ATRIAL fibrillation is a disorder found in about 2.2 million Americans, and about 15% of
strokes occur in people with the disorder. Ventricular arrhythmias are the major cause of the
more than 350,000 sudden cardiac deaths annually in the United States [1]. Catheter ablation
of paroxysmal atrial fibrillation has emerged as a first line effective therapy that has the
potential to prevent arrhythmia recurrences and improve quality of life. With increasing
clinical acceptance and experience, catheter ablation of ventricular arrythmia has been
increasingly used and can potentially reduce the need for implanted defibrillators.

Catheter ablation involves the selective destruction of the cardiac tissue responsible for the
initiation and maintenance of arrhythmias via percutaneously placed catheters. Currently,
cardiac and peripheral vascular interventions are typically guided by fluoroscopic X-ray.
This imaging modality yields only limited anatomic information, uses ionizing radiation,
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and iodine-based contrast agents are necessary to visualize the vessels. The use of cardiac
late gadolinium-enhanced magnetic resonance imaging (CE-MRI) in such procedures
eliminates the concerns of both exposure and contrast, and enables the visualization of areas
of myocardial scar that contain the arrhythmia substrate [2]. Delineations of scar tissue can
be useful both in preoperative MRI registered to intraoperative imaging during ablation, and
in clinical studies of myocardial scar and its impact on cardiac disorders [3].

With sufficient tissue contrast and signal-to-noise ratio of the current CE-MRI technique,
accurate intensity-based delineation of the scar extent is possible if myocardial segmentation
can be accurately performed. Currently, clinical analysis of these types of data rely on
manual labor and the segmentation of cardiac CE-MRI data is considered nontrivial [4];
hence, significant inter- and intraobserver variability can be expected. Automating the
myocardium segmentation process not only eliminates the observer variability, but also
relieves the cardiologists from time-consuming labor.

For an automated segmentation of the myocardium in CE-MRI, there are a number of
challenges to consider besides low image contrast and noise. Irregular appearance can be
found both within the myocardium where scar tissue can occur at random locations, and
inside the left ventricle due to the papillary muscles. Scar tissue and protruding papillary
muscles can also be a cause for missing or ambiguous boundary information between the
myocardium and surrounding tissues.

Voxel-based statistical classification can deal with non-Gaussian intensity distributions, but
lacks global boundary or shape information. It has been shown that adding global
information can improve statistical classification results [5].

Level set methods are useful tools in image segmentation because they can change topology,
and geodesic active contours enables evolution toward image boundary information while
preserving regularity [6]. They have been extended to an elegant geodesic active region
formalism [7] that enables a partitioning of the image according to the given region
information.

Methods providing prior global shape or appearance information can be helpful when
dealing with ambiguous boundary information [8]. However, global appearance models
cannot capture intensity variations at random locations inside objects. Active appearance
models [9] utilize a linear model of appearance by applying principal component analysis
(PCA) on the intensities inside an object, something that can produce unreliable results if the
intensities are not Gaussian distributed. For application to data with irregular appearance,
regional statistics need to account for local and nonlinear intensity variations [10].

A. Related Work
In the literature, there are a number of shape models reported to perform well in image
segmentation tasks; however, we limit the discussion to level set shape representations due
to our level set framework. Leventon et al. [11] capture shape variations by applying PCA
directly on distance function representations of objects in training data. Linear combinations
of distance maps are typically not distance maps, and scale and rotation are handled
implicitly in the shape model. Charpiat et al. [12] have generalized the distance function
shape representation and modeling to a nonlinear setting. Tsai et al. [8] extended Leventon's
model to estimate shapes with the pose parameters explicitly, where the model parameters
are optimized via gradient descent using regional intensity statistics. The method does not
require point correspondences during training, and the region-based optimization framework
is quite general and could be extended to incorporate other features than intensity. The
method has been extended to a mutual-information-driven shape estimation, which makes
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no explicit assumptions on the class intensity distributions by estimating them using Parzen
windowing [13]. However, PCA-based shape inference allows only combinations of shape
variations found in the training data and cannot capture previously unseen fine details in a
test image. Huang et al. use a distance map shape representation, and employ PCA to
capture variations in shape and appearance in their registration-based segmentation that
efficiently segments tagged cardiac MRI. However, a global linear model of appearance
may be unreliable if the intensities are not normally distributed, and the model fit may be
impaired by local intensity variations.

Rousson and Paragios [14] have developed a level-set-based shape model by finding a mean
distance function from a set of aligned training distance maps in a maximum-likelihood
sense. This mean shape is constrained to be a level set representation, and the variability at
each grid location is taken into account. A level set function is then evolved that becomes
optimal when it is a rigid transformation of the prior shape model. Paragios et al. [15] have
also developed a geodesic active region method for myocardium segmentation with a region
term derived by assuming separable Gaussian class intensity distributions. Cremers et al.
[16] adopted the distance function shape representation and introduced a dynamic labeling
in a Chan–Vese segmentation framework that can handle occlusions but assumes intensity
homogeneity.

Pichon et al. [17] developed a level set segmentation method in which the contour grows
toward a maximum a posteriori region. Parzen windows are employed for unsupervised
estimation of intensity probability density functions. Parzen windowing is not restricted to
normal intensity distributions; however, the method does not include shape information, and
is semiautomatic. It is restricted to region growing, which might not be ideal when coupled
contours are interacting.

Zeng et al. segment brain MRI data using level sets evolving toward locations with high
probabilities of being tissue boundaries assuming Gaussian within tissue intensity
distributions combined with a strong coupling force [18].

B. Overview of the Presented Work
We propose to incorporate supervised learning in terms of a statistical classifier, which
makes no explicit assumptions on underlying class density functions, into a geodesic active
region framework in order to deal with irregular appearance. The numerics for the two
methods fit well together since all calculations are done directly at pixel level. We use a
kNN classification framework trained by multiclass feature selection [19] in order to find
suitable features for discrimination between classes. Candidate features include position,
intensity smoothed on different scales, and local geometric features, as described in Sections
II-A and Section II-B.

The myocardium is segmented using two coupled level sets that constrains the endo- and
epicardium to remain within a certain distance relative to each other (Section II-E). A
geodesic active contour term is included in order to account for boundary information
(Section II-C).

Due to boundary information ambiguities in the data, we incorporate a shape term. We use a
level set shape representation that fits naturally into our level set framework (Section II-D).
Using a signed distance function as a shape representation could provide some tolerance to
slight misalignments of the training shapes since slightly misaligned pixels in a distance map
are generally correlated. This can be seen as an attempt to avoid having to solve the general
correspondence problem [11], and can be advantageous for objects without well-defined
anatomical landmarks, as is the case for many objects including the myocardium. Shape is
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inferred by shape particle filtering [10], which, like the region term, is based on the class
probability maps from classification.

For automatic myocardium segmentation, we initialize two level set representations from the
shape estimates. Since these are rigid transformations of a mean shape, we allow the
contours to deform locally by evolving the coupled level sets using regional information
from the classification while still respecting boundary information and global shape.

II. Segmentation Method
A. Statistical Pattern Classification

In voxel-based statistical classification, each voxel is represented by d features in a d-
dimensional space, and the objective is to establish decision boundaries between different
classes in this feature space. Supervised methods typically establish boundaries using
manually labeled training data. The k nearest neighbor (kNN) classifier determines class
boundaries from the distance to the k nearest neighboring training data points in feature
space, hence makes no assumptions on class distribution functions.

Each pixel j is described by a feature vector uj, and the posterior probability of being class
ωc is

where kc is the number of training points of the k nearest neighbors with class label ωc. The
myocardium segmentation is a three-class classification problem: with the myocardium
(myo), left ventricle (lv), and background (b). We use an approximate kNN classifier [20],
which allows for faster computations if an error in the distance calculations is tolerated. The
classifier is trained on images throughout the heart from different persons with different
positioning in the scanner and different degree of scar tissue in order to cope with these
variations that can occur in a test image.

B. Feature Selection
Feature selection can not only increase computational efficiency and reduce memory usage,
but can also make the classification less vulnerable to the curse of dimensionality. In
sequential forward selection (SFS), an initially empty feature set is expanded by iteratively
adding a feature from a bank of candidate features according to the outcome of a criterion
function. We apply sequential backward selection (SBS) on the features found by the SFS
by iteratively excluding the least significant feature. The SFS is repeated until the classifier
performance clearly has peaked, the SBS is then iterated until there is a clear performance
degradation. All features are examined in every iteration, so the same feature can be selected
several times that allows for an indirect weighting of important features [19]. This scheme
does not guarantee a global optimum, but SFS followed by SBS examines a larger amount
of possible combinations of features than, e.g., by SFS alone.

The feature selection is performed on the training data, and we use the Dice similarity
coefficient (DSC) [21] as a criterion function between the classification outcome (labeled by
assigning pixels to the most probable class) and manually delineated training data. For a
two-class classification system, the classifier can be evaluated using the area under the
receiver operating characteristics (ROC) curve [22], which evaluates the performance for all
possible thresholds of the classifier. However, the myocardium is a three-class classification
problem, and there are no direct extensions of the ROC for more than two classes [19]. Also,
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the classifier does not need to be thresholded since both the geodesic active region term and
the particle filtering use the probability map, hence soft labels, and not hard labels by
thresholding. DSC measures the spatial volume overlap between two different
segmentations and is defined as DSC(A, B) = (2 × |A ∩ B|)/(|A| + |B|) for segmentations A
and B.

The feature bank consists of the three-jet, which consists of all first-, second-, and third-
order derivatives with respect to (x, y, z), and forms a basis that describes all geometric
features up to third order [23]. Numerical differentiation can enhance higher spatial
frequencies, an effect that increases with the order of the differentiation. Blom [24] shows
that the spatial averaging in Gaussian scale–space derivatives causes a noise reduction that
counteracts the noise amplification caused by differentiation. Hence, all the derivatives
mentioned in this paper are Gaussian derivatives. Other candidate features are the intensity
(raw and Gaussian smoothed on different scales), the position, and eigenvectors and
eigenvalues of the Hessian and the structure tensor [25]. All features that involve smoothing
or differentiation are evaluated on all possible combinations of six scales: 0.9, 1.5, 2.5, 3.5,
5, and 8 pixels, chosen to cover characteristics of the left ventricle and myocardium. The
Hessian describes the local second-order structure:

The structure tensor [25] examines the local first-order structure:

C. Statistical Classification in Geodesic Active Regions
Caselles et al. [26] and Kichenassamy et al. [27] derived the geodesic active contour
formulation for image segmentation, which is a geometric alternative of snakes [28]. A
common approach to implementing the motion equation is level set methods [6], where a
curve is represented implicitly by a higher dimensional function Φ.

Contour- and region-based energetic modules for evolving interfaces can be implemented
using the following definitions of approximations of the Dirac and Heaviside distributions
[29]:

In these equations, α is the region in which the distributions are approximated, and Φ is
assumed to be negative inside the contour it represents. Using these definitions, Rousson and
Paragios [14] define the following active contour term:
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(1)

Assuming that the class probability maps from classification are conditionally independent,
we seek curve evolutions that maximize the likelihood for each region [30]. This is
achieved, as in [15], by minimizing

where ΦI and ΦO represent the endo- and epicardium.

Using calculus of variations and Greens theorem, the authors in [30] derived functional
derivatives of integrals along contours and over regions, which results in the following level
set evolution equations [15] for the inner and outer contours:

(2)

(3)

These are adaptive inflationary forces that aim to shrink or expand the contours according to
the classification outcome toward maximum a posteriori regions. These functions assume
that the contours do not overlap, something that in our framework is made highly unlikely
because of the coupling and shape terms.

D. Shape Modeling
We use a distance function shape representation and a shape model that accounts for local
variations by assuming a mean shape ΦM with local degrees of shape variability σM. The
distribution in each pixel is assumed to be Gaussian, and the mean shape is estimated from a
set of aligned training shapes in a maximum-likelihood sense under the constraint that the
mean shape remains a signed distance function [14].

The training shapes are aligned by finding a rigid transform (A = T, θ, s) with respect to
translation, rotation, and scale. The optimization criterion is the sum of squared differences
between the source shape  and a target shape :

and shape alignment can be achieved using gradient descent by keeping the initial pose of
one shape and align the remaining shapes to it. For more details, see [14] and references

Folkesson et al. Page 6

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2014 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



therein. We constrain the shapes for the epi- and endocardium in an image to have the same
pose parameters since they are closely connected.

1) Shape Particle Filtering—In a test image, we wish to make region-based shape
inference based on the class probability maps. This can be realized in a variety of ways: we
use shape particle filtering as in [10] since the method has demonstrated accurate results for
shape inference based on kNN classification. The particle filtering does not easily get
trapped in local maxima nor does it need initialization close to optimal solution. We use
shape particle filtering to determine the best transformation of the mean shape model given
the appearance model, which in our case is the kNN classification. A set of f = 1, …, N
myocardium shape hypotheses (particles) are sampled randomly relative to translation,
rotation, and scale variations in the training data. Each hypothesis is associated with an
image labeling that is compared to the label probability maps from classification. Particles
are weighted by these likelihood terms for each region

where c is a constant controlling the randomness of the process and m is the number of
pixels inside the template [10]. A new set of N hypotheses are generated from the current set
by random sampling proportional to the weights Wf and random perturbation of duplicate
particles, so that successful particles will multiply while unlikely shapes will vanish. This
resampling is repeated until convergence to the maximum-likelihood solution, which is
when the change of the strongest local mode of the particle distribution becomes negligible.

Using particle filtering we find the optimal rigid transformation of the mean shape model
[annotated ΦM,i(Ai)] given the classification of a test image. In the evolution we include a
shape term that evolves toward the inferred shape weighted by the shape variability; hence,
the shape term is less influential in locations with large prior shape variability [14]:

(4)

E. Coupling Force
The distance between the epi- and endocardial contours is approximately constant; therefore,
we introduce a coupling force that respects this anatomical constraint. The distance between
the contours can be found with little computational expense from the distance functions. In
[18], a coupling force is designed to slow down and eventually stop the evolution if the
contours move too far away from each other given a predefined allowed distance. In [15],
the coupling forces are ±1 when distances between contours are outside the allowed range
and 0 otherwise.

We design a coupling force that takes advantage of prior information by calculating the
distance between the epi- and endocardial contours for all contour points in the training data.
We let the coupling force h be inactive in the interval of the average distance plus/minus
half a standard deviation. Outside that range, the magnitude of the force increases as a
Gaussian function with variance proportional to that of the training data, as can be seen in
Fig. 1. The coupling terms for the inner and outer contour are described by
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(5)

(6)

When the distance between the endo- and epicardial contours are within the normal range,
the coupling terms are passive, and outside that range, these forces will act as attraction/
repellation between the contours when they are too far away/close to each other. In total, the
curve evolution criterion for the inner contour is

where the terms on the right-hand side are the boundary term, region term from
classification, shape from classification, and coupling force. The evolution for the outer
contour can be found in the same manner from (1), (3), (4), and (6).

The contours are initialized from the shape term, which is restricted to a rigid transformation
of the mean shape from the training phase. These initial contours are typically fairly close to
convergence, and the evolution will adjust the contours for local boundary and region
information while preserving contour regularity and respecting inferred global shape.

III. Experimental Results
A. Data Set

CE-MRI short-axis data were acquired as in [3] using a 1.5 T cardiovascular magnetic
resonance (CMR) system (Signa CV/i, GE Healthcare, USA), with late gadolinium
enhancement (LGE) imaging (TR/TE 4.8/1.3 ms, TI 200–300 ms) for myocardial scar. An
inversion-recovery sequence for LGE was used starting 15 min after cumulative 0.15 mmol/
kg dose of gadolinium-DPTA. The in-plane resolution was 1.5 mm × 2 mm with thickness
of 8 mm. Epicardial and endocardial boundaries were manually outlined. Example slices and
manual segmentations can be seen in Figs. 2 and 3. The data set consists of 11 patients, and
we use 57 slices from 7 of them for training the method and 30 slices from 4 patients for
evaluation.

B. Selected Features
After feature selection on the training data, the feature set consists of the following features
in decreasing significance: the position, the intensity smoothed on scales 5 and 8, Iy on
scales 5 and 8 (selected twice), Iyy on scales 5 and 8, Ix on scales 5 and 8, eigenvalues of the
structure tensor, T(8, 8), eigenvalues of the Hessian [H(3.5) and H(8)], Iyyy on scales 5 and
8, Ixy on scales 2.5 and 3.5, eigenvalues of T(0.9, 1.5), T(2.5, 0.9), T(1.5, 0.9) (selected
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trice), T(5, 1.5), and T(8, 5), Ixyy on scales 5 and 8, eigenvalues of T(5, 0.9), and T(3.5, 0.9).
It can be noted that the original image intensity information is never selected as a feature,
and that among the most significant features, both first- and second-order structure on high
scales are predominant. Eigenvalues of the structure tensor are selected several times; hence,
smoothed low-scale first-order structure is useful for discrimination between classes. The
eigenvectors are not selected, which could be related to the changes in gradient direction
around the myocardium contours. The features are normalized prior to classification.

C. Segmentation Evaluation
The automatic segmentation method is evaluated by comparison with manual segmentation
by cardiologists. Catheter ablation involves sensing the heart walls; therefore, we evaluate a
distance measure, the mean point to curve distance. In clinical studies, the percent area of
the myocardium covered by scar tissue is a biomarker for coronary artery disease, and
therefore, we also evaluate volume overlap using DSC. Example images along with manual
and automatic segmentations and classification results can be seen in Fig. 2 and Fig. 3.

The segmentation failed to converge for 2 of the 30 test images due to inferior image quality
and the extent to which scar tissue covers the myocardium. This could be the result of the
limited amount of training data and the large appearance variations in the data. For the
remaining 28 images, the results are presented in Table I for the classification, shape
estimation, and the automatic segmentation. As can be seen in the figures and the table, the
classification alone is not sufficient for a reliable segmentation. The incorporation of the
classification-based shape estimate clearly improves the performance, and is used as the
initialization for the curve evolution as in (7). The shape is a rigid transformation of the
mean shape, so local adjustments of the shape to the image information needs to be
incorporated. The evolution allows for such local adaptation of the mean shapes given
region and boundary image information. Once the evolution has converged, there is a
significant improvement compared to the shape estimate both in terms of DSC (p = 0.0004)
and distance to contour d (p = 0.015).

In order to evaluate the influence of the region term on the final segmentation, we ran the
experiments in the same way only without this term. This resulted in a significant decrease
of DSC to 0.77 and an increase in the distance to contour, d = 1.48. Leaving out the
boundary term lead to a small performance drop for the DSC (DSC = 0.78, d = 1.44).
Leaving out the coupling force also lead to a small performance deterioration (DSC = 0.78,
d = 1.49). Leaving out the shape term lead to the most striking performance degradation
with DSC = 0.71 and d = 2.84; however, this is still an improvement compared to the
classification on its own. Hence, the shape term is the most important term, which is most
likely a product of the missing or ambiguous boundary information in the data, followed by
the region term. The statistical classification contributes greatly to the results since it is
incorporated both in the region term, and in the region-based shape inference. We did not
attempt to substitute the region term with a Gaussian mixture model based on the intensities
as in [15] since the classes cannot be discriminated using their intensity properties alone.

The inclusion of different information-driven terms can enhance the performance of the
segmentation method. Still, selecting the parameters λ1, …, λ4 is an issue. Based on our
experiments, the shape is the most important term due to the ambiguous boundary
information in the data, and we set λ3 = 0.2. The region term is also important, and λ2 =
0.15. The coupling force is a soft to hard constraint, and λ4 = 0.25, and the boundary term
contributes to some extent to the performance when there is strong gradients close to the
contours, λ1 = 0.25.
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IV. Summary And Discussion
Spreeuwers and Breeuwer [31] segmented the myocardium semiautomatically using coupled
active contours guided by intensity profiles in the normal direction of each node. They
report a point to contour distance of 1.5 pixels and an intraobserver variability of 1 pixel,
evaluated on eight slices from two test subjects in cine short-axis MRI data. de Bruijne and
Nielsen [10] have presented an automatic segmentation method using shape particle filtering
based on point distribution models (PDMs) that require point correspondences during the
training phase. The method is evaluated on a data set consisting of 14 short-axis end-
diastolic cardiac MRI slices with manually placed landmarks on the epi- and endocardial
contour, with similar results (mean distance to contour 1.1 ± 0.3 pixels). Stegmann et al.
[32] use an active appearance model approach to segment perfusion cardiac MRI in 4-D, and
demonstrate results of 1.3 ± 0.4 pixels mean point to curve distance on the left and right
ventricle combined. Our results in terms of distance to contour (1.4 ± 0.5 pixels) for the left
ventricle are comparable to the results in [31] though our method is fully automatic. Our
results are similar to those of Stegmann et al.; however, our method does not require point
correspondence during training. The relatively higher distance of our method compared to
[10] can be related to the ambiguous image information, in particular the enhanced scar
tissue, in CE-MRI data, making the images difficult to delineate even for a trained human
expert. Though we have no inter- or intraobserver data, we suspect that there are substantial
variations in these delineations. Still, the evaluated data set shows as good agreement with
gold standard segmentations as can be expected given the possible variations in these
delineations, and future work involves evaluating the potential of the fraction of the
myocardium covered by scar tissue obtained by the automatic algorithm as a potential
predictive biomarker for coronary artery disease, as is done by manual analysis in [3].

Due to the large distance between slices, we focus on a 2-D description of the segmentation
method in this paper, but the method can be extended to 3-D and it can be adapted to other
image segmentation problems provided there is sufficient labeled training data.

In this paper, we use particle filtering for shape inference based on probability maps from
classification, which demonstrates good performance and is independent of initialization.
But any region-based shape inference method could be incorporated; for instance, it could
be interesting to compare the performance of a gradient descent approach such as in [13],
which could be adjusted to incorporate class probability maps as regional information.

If the myocardium is in a different position than described in the training set, the location
feature might not contribute to the classifier performance. In order to adjust the
segmentation method to become more robust to variations in myocardium location, one
could redo the classification after shape inference, using the location of the inferred shape
for an adjustment of the position feature. This might improve the classification; however, the
position in the image is determined to be an important feature based on the feature selection
that is performed on unaligned images, so the unaligned position in the image is still a strong
cue to myocardium location.

In summary, we have presented a fully automatic segmentation method that unifies
statistical pattern classification and geodesic active regions by a region term and a shape
estimate that are both based on kNN classification. The level set shape representation does
not require point correspondences during the training phase and makes the registration of the
training shapes less sensitive to misalignments. The feature selection ensures that suitable
features given the training data are employed in the classification, and makes the method
able to cope with nonlinear and local appearance variations. The method also handles
missing or ambiguous boundary information due to the shape estimation. This suggests that
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our automatic segmentation method may become a useful tool in image-guided interventions
and clinical studies of myocardial scar using late CE-MRI.
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Fig. 1.
Coupling force h for the endocardiac and epicardiac contours.
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Fig. 2.
Example segmentation of the myocardium by the endo- (inner) and epi- (outer) contours.
From left to right: input image where the box indicates the closeup in the remaining images,
probability map for myocardium from classification, manual delineation by cardiologists,
and automatic segmentation result.
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Fig. 3.
Examplesegmentation. From left to right: input image, probability map for myocardium
from classification, manual delineation by cardiologists, and automatic segmentation result.
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TABLE I

Results of the Segmentation Compared to Manual Segmentations Using Sensitivity, Specificity, DSC for the
Myocardium, and Point Distance to Curve for the Left Ventricle (Pixels) Numbers in parenthesis are the
standard deviations.

Classification Shape estimate Segmentation

Sensitivity 70.2% (0.10%) 70.9% (0.08%) 75.1% (0.07%)

Specificity 99.1% (0.003%) 99.7% (0.002%) 99.7% (0.002%)

DSC 0.64 (0.11) 0.76 (0.08) 0.79 (0.07)

Distance 9.23 (6.98) 1.52 (0.51) 1.44 (0.54)
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