
HAL Id: hal-01294780
https://hal.science/hal-01294780v1

Submitted on 29 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting Road Events Using Distributed Data Fusion:
Experimental Evaluation for the Icy Roads Case

Jovan Radak, Bertrand Ducourthial, Véronique Cherfaoui, Stéphane Bonnet

To cite this version:
Jovan Radak, Bertrand Ducourthial, Véronique Cherfaoui, Stéphane Bonnet. Detecting Road Events
Using Distributed Data Fusion: Experimental Evaluation for the Icy Roads Case. IEEE Transactions
on Intelligent Transportation Systems, 2016, 17 (1), pp.184-194. �10.1109/TITS.2015.2464707�. �hal-
01294780�

https://hal.science/hal-01294780v1
https://hal.archives-ouvertes.fr


1

Detecting road events using distributed data fusion:
experimental evaluation for the icy roads case

Jovan Radak, Bertrand Ducourthial, Véronique Cherfaoui and Stéphane Bonnet
Sorbonnes Universités, Université de Technologie de Compiègne,

CNRS, Heudiasyc, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
contact author: Bertrand.Ducourthial@utc.fr

Abstract—One of the main ideas in the area of intelligent
transport systems is to use all possible information, coming
from vehicles and infrastructure, in order to make the system
”smarter” and avoid potentially dangerous situations – collisions,
accidents, bottlenecks... However data is sometimes unreliable due
to source and communication network quality, leading vehicles or
even the whole system to wrong decisions. We present a generic
method for detecting dangerous events on the road. To support
unreliable data sources, it uses distributed data fusion. Moreover,
to deal with network failures, it relies on a self-stabilizing generic
distributed algorithm. Our method mixes measurements obtained
from vehicle onboard sensors as well as wireless sensors placed
close to the road and connected to road side units. Each vehicle
computes how confident it is about a potential dangerous event
using both local and remote data. To evaluate our approach, we
implemented it using a specific hardware and software platform.
Moreover, we instantiated a simple, yet efficient application to
detect icy roads, based on temperature measurements. Thanks to
both in-lab and actual on-the-road experiments, we demonstrate
the possibility to deduce proper results from unreliable data and,
consequently, the correctness and usefulness of our approach.

Keywords: event detection, distributed data fusion, belief
function, VANET, V2V and V2I communication, road experiment.

I. Introduction
A. Motivations

Data fusion of large amounts of data in the context of
intelligent transportation systems is often a solution to the
data source inaccuracy and unreliability problem. In general,
data may come from different sources and is heterogeneous by
nature. It is relatively easy to come up with a conclusion on
how to mix two pieces of information together when their data
sources are homogeneous, reliable and give similar readings.
But, in order to process large amounts of heterogeneous data,
some form of data fusion has to be applied. Many different
data fusion techniques are proposed [1], [2], depending on the
specific problem to be solved and the data sources [3]. However,
in the case of conflicting or missing data sources, it may be
problematic to reach a decision. The properties of the theory
of belief functions make it specially suitable in the presence
of imprecise, uncertain and incomplete data [4].

From another point of view, intelligent transportation systems
rely on the smartness of each part of the system. Enabling
vehicles and additional communication infrastructure with
”smart” algorithms may help solving some of the major safety

problems [5] in vehicular networks. In general, the intelligence
of vehicles heavily depends on a large amount of gathered data,
that is processed and then used to give drivers or vehicles useful
information. Fusion of such information can be used in different
applications, from various positioning problems [6] to detecting
false nodes in networks [7]. It appears to be specially suitable
for future smart cities equipped with a large number of sensors
that may act as data sources not only for their citizens but for
vehicles as well. However, it relies on unstable networks with
very short useful communication times, especially between
vehicles and road-side units. An approach supporting both
unreliable data sources and network failures is then required.

B. Our approach
In this paper, we present a generic method to handle multiple

data sources in unreliable vehicular networks, that can be used
to design applications in the context of intelligent transportation
systems for advance detection of dangerous events on the road.
This work completes our previous paper [8]. It presents results
from road experiments using sensors, road-side units (RSU)
and vehicles equipped with on-board units (OBU) [9].

Our approach relies on distributed data fusion: it takes
conflicting pieces of information into account and applies
calculations on them until it reaches a decision. For this purpose,
the theory of belief functions framework is used. The data
sources are standalone sensors connected (wirelessly) to some
road-side units. In-vehicle data sources, connected to on-board
units, are also taken into account. OBUs and RSUs communicate
when they are in range of each others. However, a moving
vehicle may converge to an erroneous confidence because it
considered data sent by sources which are now too far away
to be pertinent. To prevent such a situation, data fusion is
performed thanks to a self-stabilizing distributed algorithm,
meaning it is able to converge after transient failures, including
neighborhood updates [10]. The algorithm is generic and is
data- representation agnostic. Hence, many applications can be
derived from our method.

To the best of our knowledge, no study is similar enough to
our approach to be directly compared. Hence, the bulk of our
effort is in implementing the whole system, including harware
and software elements, to prove the validity and practicality of
our approach through real-world, on-the-road experiments. To
this aim, we instantiated our method to design a temperature-
sensor-based icy-road detection application. A large part of our
work is thus practical and dedicated to experiments. On-the-road



2

experiments were carried out according to several predefined
scenarios. They were supplemented by in-lab experiments,
thanks to a network emulation program that allows road tests
to be replayed and extended. We show that the application
correctly assesses the risk of dangerous icy road conditions
even in the presence of conflicting information sources and
when blending stationary and moving sources. Hence, this
technique surpasses a simple alert diffusion and is more robust
to deficient sensors and to unstable neighborhoods.

The remainder of this article details the method and the
practical development used for its validation. We start our
presentation describing the related work (Section II). Next, we
define the basic concepts and introduce our generic approach
for detecting dangerous events. Then we explain how it can
be instantiated, here as an application assessing the risk of
encountering icy roads. (Section III). In Section IV we explain
how this application is implemented using a detection system
relying on sensors, road-side units, on-board units and dedicated
software. Section V presents our experimental study. We
did an extensive evaluation using both our testbed and a
network emulator using real data obtained from the testbed. In
Section VI, we conclude on our findings and a few directions
for our future work.

II. Related work

The need for smart transportation systems, namely smart cars,
has been noticed in early works [11]. The authors emphasized
control of these devices as a main problem. The presence of
numerous data sources are making decision problems even
more complex. Different solutions were proposed to deal with
large amounts of data sources in various applications [2]. The
area of information fusion has been especially well studied for
various applications of wireless sensor networks [12], [13]. We
are proposing a different approach using one or more wireless
sensors within the range of exactly one road-side unit, avoiding
multihop communication between sensors and allowing only
RSUs to exchange information with sensors. In this way, we
are simplifying communication requirements and using wireless
sensors efficiently in terms of energy.

In the last few years, we have witnessed a great effort
to standardize communication protocols aimed at vehicular
networks. The IEEE 802.11p standard is especially suited
to applications in vehicular networks [14], in both vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure communication
(V2I) cases. Also, the ETSI has standardized vehicular wireless
communications in the network and transport layers of the
communication stack. It has proposed facilities that support
vehicle safety through cooperative awareness and warning
messages sent asynchronously to vehicles. These facilities
include two specialized types of messages: CAM – cooperative
awareness message and DEMN – decentralized environmental
notification message [15].

An important aspect in the functioning of intelligent transport
systems is the way drivers are alerted of possibly dangerous
driving conditions on the road [16] and the impact of drivers’
behavior on the whole system [17]. In [18], the authors
demonstrated the importance of early alerts and appropriate

signaling of the possibility of dangerous events on the road to
drivers. An interesting solution that puts together in-car mobile
applications, hazardous events and alerts signalling to drivers
is presented in [19]. The authors have developed a system that
detects speed bumps and potholes based on synchronized sensor
readings and extraction from a video feed taken simultaneously
with these readings. Although an interesting solution, it is
limited to usage of smartphones and specific capabilities of
certain types of mobile phones. This study is also limited
in terms of data dissemination, i.e. it is not clear how other
users can make use of this data and if some calculations can
be done cooperatively. In [20], the authors present a testbed
enabling communication between vehicles and the infrastructure.
This test infrastructure gives interesting results and shows the
significance of the approach. However, due to the different
scope of the article, the authors do not cover the possibility of
equipping the infrastructure with sensors that may communicate
with vehicles.

We are presenting a solution that links these two interesting
points along with the problems presented in previous paragraphs.
We investigate how to use multiple stationary and mobile
sources of the same data type to deal with uncertainties and
inaccuracies of these data sources. We show how to make use of
inaccurate data sources, with the help of robust distributed data-
fusion algorithms. Finally, in order to evaluate our approach, a
solution that gives an assessment of the risk of finding ice on
the road is proposed. We discuss results and how this approach
is suitable to generate early warnings to drivers even in the
presence of erroneous sensors and disturbing vehicles.

III. Distributed data fusion for dangerous event detection

Data fusion can be described as a mechanism that combines
data retrieved from different sources to reduce its uncertainty
and/or to generate decisions. In general, data fusion is either
centralized (collecting data and applying an algorithm in some
kind of central unit) or distributed (each unit is capable of
applying the algorithm on data gathered locally from its
neighborhood). In the remainder of this section we present the
basic concepts of the theory of belief functions (Section III-A),
a generic distributed data fusion algorithm based on this
framework (Section III-B) and its instantiation to detect icy
roads (Section III-C).

A. Theory of belief functions

The theory of belief functions, or Dempster-Shafer theory,
is one of the frameworks used in data fusion [3]. This
theory belongs to the probabilistic approaches for dealing with
unreliable sources [21]. The Bayesian approach can be used to
solve a similar set of problems. There is a lot of controversy and
different arguments about which approach is the best suited [22].
We use the theory of belief functions to model uncertainties and
lack of information [23]. It generalizes both the set-membership
approach and the probability theory. In the Dempster-Shafer
theory, the set Ω = ω1, ..., ωn of mutually exclusive propositions
is called the frame of discernment. The main difference relative
to the probability theory is the fact that the mass of evidence



3

is attributed not only to single hypotheses ωi, but to any subset
of Ω, including the empty set.

Following the general framework for the belief representa-
tion [4], we define the state of belief of the node v on the global
frame of discernment Ω. A state of belief is assigned using
basic belief assignment, most commonly represented as a mass
function, denoted mΩ. A mass function mΩ is a mapping from
2Ω (the set of subsets of Ω) to the interval [0, 1] ∈ R. The sum
of all masses is equal to 1. A mass value is directly proportional
to confidence: mΩ(A) increases as the node gets more confident
in A ⊂ Ω. The masses can be combined with different types of
operators such as the conjunctive operator, which emphasizes
agreement when it combines two mass functions that are reliable
and independent, or the Dempster’s operator, which ignores
conflict, spreading it to the other sets. These two operators are
associative and commutative. In this work, we are using the
cautious operator, denoted ? [24]. This operator is associative,
commutative and idempotent. Idempotency is an important
property because it allows data coming from sources that are
not independent to be combined.

In our explanations we use the term direct confidence to
denote mass values of data obtained solely from the node itself,
and the term distributed confidence to denote the combination
of the mass values obtained from the node itself and those
received from its neighbors. In this case, distributed confidence
combines all data sources in the network. Moreover, we use the
term discounting to denote the modification of a confidence so
that it is less informative. In our algorithm it is used to prioritize
confidences from closer nodes in comparison to confidences
from nodes farther away. To calculate values that we can use in
decision making, we are applying a pignistic transformation of
the mass functions (given as direct and distributed confidences).
This transformation computes the contribution of each subset W
of Ω to a given hypothesis A knowing that W will contribute if
A ∈ W. The pignistic transformation [25] of the mass function
mΩ(A) for all subsets W of Ω containing A set is defined as:

BetPΩ(A) =
∑

W⊆Ω,A∈W

1
|W |

mΩ(W)(
1 − mΩ(∅)

) (1)

B. Distributed data fusion
We will now describe our generic approach for distributed

data fusion. It relies on Algorithm 1, previously studied in [10].
This algorithm is divided into two event-driven rules.

The first rule (Lines 1–3) handles data received from
communication with other nodes. It is activated each time node
v receives a message from one of its neighbors and its input
memory INv is updated with data sent by the neighbor (Line 3).
A message contains the distributed confidence computed by
the sender. This is done by the second rule.

The second rule does the distributed data fusion computation
and sending (Lines 4–11). It is done periodically by each
node. Nodes are not synchronized and each one of them
starts calculations when its timer expires. This rule assumes
that each node is able to compute its direct confidence from
a local measurement obtained from an external data source
(such as a sensor) using the function compute direct confidence

(Line 5). The basic belief assignment is done using sigmoid-
like functions that map the measurement to a mass function,
spreading confidence on subsets of the frame of discernment
Ω. This function depends on the targeted application; we give
an example in the next subsection.

Algorithm 1: Distributed confidence calculation for the node v

1 Upon the arrival of a new message:
2 receive( dist conf ) from node u
3 INv[u] ← dist conf

4 Upon the expiration of the timer of the node v:
5 OUTv ← compute direct confidence()
6 for each u in INv do
7 OUTv ← OUTv ? r(INv[u])
8 end for
9 send( OUTv ) in the neighborhood
10 Remove old messages in INv

11 Restart the timer

The distributed confidence is computed iteratively combining
the direct confidence of the node (stored in OUTv) with all
data received from neighbors (Lines 5–8). It relies on the
cautious operator ? and the discounting r (Line 7). Old data is
removed from the input memory INv so that if a node leaves the
neighborhood, its data will not be taken into account anymore
after a fixed number of timers (considering several timers
is useful to prevent message loss). Finally, the result – the
distributed confidence of the node stored in OUTv – is sent to
the neighborhood (Line 9) and the timer is restarted to program
the next computation (Line 11).

Each node computes its distributed confidences using those
received from its neighbors. Thus, the direct confidence of a
node will be taken into account by its neighbors, then by the
neighbors of its neighbors and so on. In this way, each node is
contributing to the computation of what we call the distributed
confidence.

Discounting is applied to each distributed confidence received
to give priority to closer sources over farther ones. Thus, a
distant information source will still be taken into account in the
computation of the distributed confidence of a given node but
with decreasing importance as its output will be discounted at
each hop (given as the r function at Line 7). As a consequence,
the distributed confidence computed by each node may be
different, as even though the same information sources (the
direct confidences of each node of the network) are taken into
account by each node, they are discounted differently depending
on the position of the node in the network. The result reflects
the local situation in the vicinity of the node without ignoring
information from other, more distant nodes.

Data incest appears when a single piece of information,
coming from a single source, is used in the fusion process more
than once. Such a situation can appear with our distributed data
fusion algorithm; however it is solved thanks to the idempotency
of the cautious operator ?. The properties of the cautious
operator ? and the discounting r both ensure convergence of
the algorithm even in the presence of transient failure [10].

This approach accepts any kind of frame of discernment
and can be applied to a large set of applications in the



4

zi
gbee

autonomous

temperature

sensor

autonomous

road side unit
wifi

LIBRARY

Aiftware D rplugSois.

PARKING

GARAGE

AIRPLUG

XBE

MET

AIRPLUG

XBE

MET

AIRPLUG

XBE

MET

AIRPLUG

MET
Aiftware D rplugSois.

AIRPLUG

MET

Ai ftware DrplugSo is.

AIRPLUG

MET

Fig. 1: Testbed with Xbee sensors, road-side units and software support from Airplug platform

Intelligent Transportation System field. To evaluate its interest
and robustness, we instantiate it through a simple yet efficient
application for icy road detection.

C. Application to the robust detection of icy roads
In this section, we explain how to instantiate our generic

method to detect a given road hazard: icy roads. This con-
sists in designing a model adapted to this problem and
assigning direct confidences from measurements (function
compute direct confidence in Algorithm 1).

While it is clear that the road is dangerous for some
temperatures and not for others, there exists a range of
temperatures where there is a doubt. We define three road states,
corresponding roughly to three temperature ranges. These states
lead to the definition of the following frame of discernment:
Ω = {freezing, slippery, safe}.

We assign basic belief assignments from temperature sensor
measurements using sigmoid-like functions defined for the
subsets of the Ω set (Fig. 2). The idea is to give a large mass
to the state corresponding to the measured temperature and
smaller ones to the other subsets of Ω. As the measurement
gets closer to a threshold between two states, the mass gets
more and more spread over several subsets of Ω. Moreover, we
do not completely trust sensors and a mass is always given to
the subset Ω itself, representing their unreliability (given as α,
0 < α < 1). We chose not to consider the subset {freezing, safe}
corresponding to disjoint events. When assigning masses for
the direct confidence, there is no value for the subset ∅ because
it represents the “conflict” proposition (some values may appear
for ∅ after combination of several sources in the distributed
confidence).

Thresholds and reference values that define road states are
chosen in such a way that they correspond to real values. Tcur
is the current temperature – value read from the sensor, Tref ,
Tthr1, Tthr2 and λ are the reference values chosen in such a way
that sigmoids have appropriate shapes (Fig. 2) as well as to
fit the values needed to describe icy roads. These parameters
can be changed easily and we can create a model that can be

tested with higher temperatures than those that produce an icy
road (which is useful to perform tests during any season).

For our purposes, the road is safe for temperatures above
6◦C, between safe and slippery in the interval {3◦C, 6◦C},
most probably slippery in the temperature interval {−1◦C, 3◦C},
between freezing and slippery in the interval {−1◦C,−4◦C}, and
most probably freezing for temperatures below −4◦C. α is fixed
to 0.2; it corresponds to the belief of an incorrect temperature
(unreliable sensor).

m({freezing}) = (1 − α) − 1−α
1+e−λ(Tcur−Tref +Tthr2)

m({ f reezing, slippery}) = 1−α
1+e−λ(Tcur−Tref +Tthr2) −

1−α
1+e−λ(Tcur−Tref +Tthr1)

m({slippery}) = 1−α
1+e−λ(Tcur−Tref +Tthr1) −

1−α
1+e−λ(Tcur−Tref−Tthr1)

m({slippery, sa f e}) = 1−α
1+e−λ(Tcur−Tref−Tthr1) −

1−α
1+e−λ(Tcur−Tref−Tthr2)

m({sa f e}) = 1−α
1+e−λ(Tcur−Tref−Tthr2)

m({Ω}) = α

Fig. 2: Sigmoid-like functions definitions for subsets of Ω.

Note that instantiating our method on a given problem (here
icy road detection) requires expertise in the related field to
define the frame of discernment, the sigmoids-like functions
and the thresholds.



5

IV. Implementation of the detection system
In this section, we present the hardware and software

implementation of our road event detection system. We present
the system architecture, its hardware components, the framework
used to implement the applications and the software components
of the system. Its instantiation for icy road detection only
impacts the type of sensors used and the software parameters.

A. System architecture
Our detection system (Fig. 1) relies on stationary and

mobile measurements combined by using our distributed data
fusion application, described in the previous section. Stationary
measurements are performed by wireless sensors located close
to the road, sending their measurements to solar-powered road-
side units (Fig. 3). Road-side units communicate between
themselves and with on-board units in their transmission range.
Vehicles in the testbed are fitted with on-board units allowing
them to communicate with road-side units and other vehicles.

RSUs and OBUs use WiFi to communicate between them-
selves. Messages that are exchanged in this communication
are those of the distributed data fusion application, namely the
distributed confidence that is computed periodically by each
node. Communication with sensors relies on dedicated packets
exchanged through Zigbee modules – that both wireless sensors
and RSUs have. OBUs are not fitted with Zigbee modules and
receive measurements directly from vehicle sensors.

B. Hardware components
The hardware part of the testbed consists of cheap off-the-

shelf wireless sensors and a dedicated embedded hardware
platform, called the Airbox and developed in our laboratory,
that is used in both RSUs and OBUs. The testbed, as deployed,
features 3 RSUs and 3 Xbee sensors communicating wirelessly
with the RSUs via the 802.15.4 protocol. Data is gathered using
the serial ports of the RSUs. We have developed a support
program that is used to connect computing units (RSUs or
regular PCs) with wireless sensors and gather data through the
Xbee modem connected to the serial port of the RSU [9].

The wireless sensors1 are equipped with a temperature sensor.
We have deployed a simple topology – using exactly one sensor
for each RSU. The support program allows more complicated
scenarios with multiple sensors per RSU but this strictly depends
on the application for which this testbed is used.

The Airbox units are based on the IGEP platform2 – a TI
OMAP controller with 512 MB of RAM. They are running
the Linux operating system and a specialized software suite,
called Airplug and described in the next section. The driver
part of the support program is responsible for establishing a
connection between the Airbox serial port, the Xbee module
and the Xbee sensor. The application exchanges binary packets
between the RSU and the wireless sensors and decodes them
upon reception. Decoded data is further transferred to other
applications that may use them.

1http://www.digi.com/products/wireless-modems-peripherals/wireless-
range-extenders-peripherals/xbee-sensors

2https://www.isee.biz/products/igep-processor-boards

C. Airplug framework
The Airplug software distribution is a program suite aiming to

fully support development, testing and deployment of dynamic
networks. It relies on a simple framework based on a few
development rules focusing on the implementation of portable
software for highly dynamic networks. These rules are: (i) usage
of the standard input/output system to ensure independence
from the programming language used for implementation, (ii)
usage of standard ASCII text messages to ensure portability
(support of different operating systems), (iii) a simple message
addressing scheme which includes addressing of applications
with the value pair (app name, area), where area is a keyword
determining the range of broadcast (LCH to broadcast to the
localhost only, AIR to broadcast to the neighborhood) and (iv)
reliance on broadcast and on managing message visibility with
subscriptions to certain applications.

The Airplug software distribution supports several modes
– independent implementations that complement each other.
These modes include: the terminal mode – a standard UNIX-
compatible command line implementation; the emulation mode
– a network emulator that reproduces wireless communications
using inter-process communication (IPC) while keeping upper
layers identical to those used in experiments [26] and the live
mode, an efficient implementation suitable for execution on
constrained embedded systems used during real experiments.
Currently, the Airplug software distribution is mainly written in
C and Tcl/Tk; it can easily be extended by writing applications
(in any programming language) that follow those guidelines. We
used the terminal mode to develop and test the applications, the
emulation mode to test our algorithms in a realistic environment
and finally the live mode to perform experiments on the real
testbed with vehicles.

D. Software components
The application that makes the connection between wireless

sensors and RSUs is called XBE (Fig. 1). At the lower level, the
XBE application enables communication and packet exchange
using Digi International’s proprietary format through a serial
port and an Xbee module. At the higher level, the XBE
application sends temperature data gathered from an Xbee
sensor. The XBE application can be used in different scenarios.
While its basic feature is to gather data from wireless Xbee
sensors and transfer them to other applications, it can also be
used to gather data and store it in a predefined log file, to read
data from log files that were created in previous experiments
and to read user-generated data files. Basic manipulation of
gathered data is possible. For example, we can add an offset
to data to simulate different environmental conditions (useful
for recreating a specific type of environment – e.g. winter
temperatures during summer). Log files can be read at the rate
that was used during recording or at a higher rate as specified
by the parameters of the application. All these parameters can
be used both in emulation and live modes [9].

We have developed the MET application to test and develop
distributed data fusion algorithms. This application is a generic
implementation of the belief function framework explained in
Section III. MET is able to generate values needed to study



6

(a) Xbee sensor (with xbee modem) (b) Airbox – IGEP based development boards, used as RSU (c) RSU enclosed with energy harvesting unit
and Xbee sensor

Fig. 3: Hardware elements of the detection system

the robustness properties of the algorithm and to generate test
measurements according to a given function and periodicity.
This last feature has been used on the Airbox units installed in
vehicles lacking temperature sensors and for emulation purposes.
Another feature of this application is to accept measurements
coming from other applications. This functionality is used
during experiments: XBE sends the gathered data and MET
applies the data fusion algorithm to the received data (Fig. 1).

MET can apply any user-defined frame of discernment (Ω
set) and the sigmoid functions defined for it. Independently
of the data source, MET uses the sigmoid functions defined
by user-supplied equations (Fig. 2), and calculates the direct
confidences according to the received values and the defined
frame of discernment. To ease the cautious computation, MET is
applying calculations on the weights instead of mass functions,
which are just a different representation of the basic belief
assignment obtained through the commonalities [10]. Data sets
on which MET works are then vectors of discretized weights
with one component for each subset of Ω, not including Ω.
Each vector component has a value in (0, 1].

MET receives a measurement from XBE and then computes
the local direct confidence as a mass function using the frame
of discernment and the sigmoids (Fig. 2). It then converts these
values to weight vectors and computes the distributed confidence
merging weight vectors with those received from neighbors. It
then proceeds with the calculation of the distributed confidence
as explained in Section III and sends it to the neighbors.

V. Experiments and results
This section presents the experimental study of the icy road

detection application designed to evaluate our method. We give
a detailed explanation of both the methodology and experimental
setup before presenting and commenting our results.

A. Methodology and setup
Methodology. Our aim is to show the practical interest of

our method dedicated to the detection of dangerous events
on the road, as well as its robustness against unreliable or
misplaced sources of data. For this purpose, we have deployed
our testbed (described in Section IV) to test the icy road
detection application on a realistic situation. We focus on a
limited number of vehicles and RSUs (as depicted in Figure 1)

primarily to show how a single piece of information influences
data fusion calculations. This way, we can observe how alert
generation improves with new data sources. Moreover we
compare the results between a regular and a misplaced sensor
scenario, the latter being a variant with a temperature sensor
placed indoor, in the garage of our laboratory, thus giving
erroneous measurements of the road temperature.

Our experimental study relies on real-life experiments using
both the hardware and the software platform described in
Section IV. Additionally, these experiments have been replayed
and supplemented using the Airplug network emulator. This
tool replaces inter-vehicle communications by inter-process
communications, keeping the programs as deployed on the
Airboxes during road tests [26]. It is convenient to replay and
extend real experiments while still offering accurate results. For
some scenarios, we give the results both from on-the-road and
in-lab emulation experiments for comparison purposes.

When using the Airplug network emulator, the GPS positions
of the RSUs and the vehicles are the same as in the real
experiment; they have been recorded during real tests and
are replayed during emulation. There is no real sensor in the
emulation; the XBE applications are then used in emulation
mode: they output data coming from a log file recorded during
the real tests.

Not every result can be shown here. We focus on the case
of the first vehicle encountering an icy road. We show how our
algorithm updates the distributed confidence about the icy road
event while the vehicle is approaching. Results are displayed
using the pignistic probabilities calculated using Equation 1.
These probabilities can directly be used to warn the driver.

Scenarios. We divided our study into three groups of
scenarios. The first group, called the single-vehicle scenarios,
considers the three RSUs with their sensors and a single vehicle
that is driving by the RSUs. The second group, called the two-
vehicle scenarios, completes the first one with a second vehicle
driving behind the first one the same lane. Though this vehicle
does not have more information about the icy road area, it may
influence the result of the first one. Finally, the third group,
called the three-vehicle scenarios completes the second one
with a third vehicle moving in the opposite direction (Fig. 1).
This vehicle has already encountered the icy road area and this
may affect the result of the first vehicle.

Figure 4 is based on a screenshot of the Airplug emulator



7

using OpenStreetMap tiles. It depicts the three-vehicle scenario
and the testbed as deployed in the vicinity of the laboratory.
The blue arrow shows the direction of the vehicles on the
road, which are represented by blue circles. The RSUs are
represented by black squares. The vehicles encounter RSU-L
(for Library) first, then RSU-G (for Garage) and finally RSU-P
(for car Park). Each element in the emulation features a small
histogram showing the pignistic probabilities for the direct and
the distributed confidences (see Equation 1). In our experiments,
the dangerous icy road spot is located near RSU-P and shown
as a red hexagon on Fig. 4.

Fig. 4: Map showing the positions of the road-side units (black
squares) and of three vehicles (blue circles); their direction of
movement is given by the blue arrows and the icy part of the
road is marked with a red hexagon near RSU-P.

In each group of scenarios (featuring one, two and three
vehicles), we considered two sub-cases differing in the place-
ment of the wireless sensors. The first one is the regular
case in which all sensors are placed close to the road and
output correct temperature measurements. In the second case,
one sensor, connected to RSU-G, is placed indoor in the
garage and measures higher temperatures that do not reflect
the road temperature. This is an example of a misplaced
sensor, thus we refer to this sub-case as misplaced. Our aim
is to study the behavior of our system in such a situation
and to observe how it adapts to these kind of extreme cases.
In total, we have six scenarios, namely 1R and 1M for the
single-vehicle regular/misplaced ones, 2R and 2M for the two-
vehicle regular/misplaced ones, and 3R and 3M for three-vehicle
regular/misplaced ones. Additionally, for clarity we add the
suffix -road (as in 1R-road) when the scenario has been run
on the road and -emu (as in 3M-emu) when it has been run in
the network emulator.

Parameters. Our main aim in these scenarios is to demon-
strate the possibility of detecting an icy road segment (the
dangerous spot) before the vehicle actually reaches it. We
want to show how data fusion is handling multiple sources

of data, both stationary and mobile, and how, using this data,
it properly assesses the state of the road. We also want to
show that the alert linked to the possibility of icy roads is
appropriately propagated to the vehicles even when a sensor
outputs erroneous measurements. Thus, for the regular scenarios
we have chosen road temperatures of 3◦C, −1◦C and −3◦C for
RSUs L, G and P respectively. For the misplaced scenario, the
temperature measured by the sensor of RSU-G is 21◦C – typical
indoor temperature. The other sensors outputs are identical to
the regular scenario.

In order to have realistic scenarios for both emulation and real
experiments, vehicles are generating decreasing temperatures.
The function for the temperature that the vehicle ”measures” is
constructed in such a way that the vehicle reports temperatures
similar to those of the RSUs when it is passing near them. In
the one-vehicle scenarios, the vehicle starts with a temperature
of 7◦C that decreases linearly each second by 0.133◦C. For
the two-vehicle scenarios, the leading vehicle starts with a
temperature of 5.5◦C and the second vehicle with a temperature
of 7◦C. Both measured temperatures are linearly decreasing
each second by 0.133◦C. For the three-vehicle scenarios, the
first two vehicles have the same measured temperature as in
the two-vehicle scenarios while the third vehicle, driving in the
opposite direction, starts with a temperature of −6.67◦C and
linearly increases its temperature by 0.111◦C.

Timing. In the beginning of both one-vehicle scenarios,
the vehicle is out of range of any RSU. The periods of
communication between the vehicle and the different RSUs
are: (i) the period during which the vehicle only communicates
with RSU-L from t = 12 s to t = 28 s; (ii) the period during
which the vehicle communicates with RSUs L and G from
t = 28 s to t = 41 s; (iii) the period during which the vehicle
communicates with all three RSUs from t = 41 s to t = 51 s; (iv)
communication with RSUs G and P from t = 51 s to t = 70 s
and; (v) communication with RSU P only from t = 70 s to
t = 73 s. We consider that the vehicle enters the dangerous area
(icy road) at t = 55 s.

Both two-vehicle scenarios start with vehicles communicating
with each other, but both of them are out of range of any RSU.
Vehicle 1 is starting closer to the RSUs, while Vehicle 2 is
further away at a location similar to the starting point of the
vehicle in the one-vehicle scenarios. Both vehicles are driving
around the RSUs in the same direction and on the same paths
as the vehicle in the one-vehicle scenarios, Vehicle 1 driving
10 seconds ahead of Vehicle 2. This means that timings given
in the previous paragraph apply to Vehicle 2 in this scenario,
while Vehicle 1 has exactly the same timings shifted by 10
seconds. For example, comparing this observation with the
previous scenario, we can see that the leading vehicle (Vehicle
1) starts communicating with RSU-L at t = 12 − 10 = 2 s, then
starts communicating with RSU-G at t = 28 − 10 = 18 s and
with RSU-P at t = 41 − 10 = 31 s.

In the three-vehicle scenarios the first two vehicles (with
the numbers 1 and 2 on the Fig 4) have the same timings
as in the two-vehicle scenarios. The third vehicle is moving
in the opposite direction, it first starts to communicate with
RSU-P at t = 12 s, then with RSU-G at t = 15 s and RSU-P
t = 28 s, with all three RSUs and in the last two steps with



8

RSU-G and RSU-L and finally only with RSU-L, before it loses
connection at t = 76 s with any of them. Vehicle 3 is connected
with Vehicle 1 from t = 17 s to t = 32 s and with Vehicle 2
from t = 22 s to t = 37 s. The timings given in the previous
paragraphs are calculated from the emulation scenarios. In
the real experiments these values were varying depending on
the traffic in the part of the city where the experiments were
conducted and the communication range between the vehicles.

B. Road experiments

We analyze here the on-the-road results obtained using either
a single or two vehicles. This is a proof of concept for our
method. Comparison with emulation results is discussed in the
next section.

1R-road: single-vehicle on-the-road regular scenario. The
vehicle-computed pignistic probability is drawn in Figure 5.
We can see that the vehicle is getting an alert at t = 15 s,
when it starts communicating with RSU-L and the value for the
{slippery} state reaches the highest value of the three. We can
observe that the value for the {slippery} state drops a few times.
This is due to message losses during communication with the
RSUs. By changing the timers values in the MET application,
we may avoid such phenomena. However, the application may
be less reactive. Hence we chose to keep this setting because
it does not disturb the alert generation.

Fig. 5: [1R-road] Pignistic probabilities for the distributed
confidence computed in the vehicle.

1M-road: single-vehicle on-the-road misplaced scenario.
In this case, we show the influence of erroneous readings from
one sensor and their impact on the generation of the icy road
alert. We can see that the vehicle is alerted at t = 25 s, 10
seconds later than in the 1R-road case (Fig. 6). At this point,
the vehicle is still only in the range of the first RSU. Hence,
even if a sensor is erroneous, the vehicle still has a large-enough
time to react (about 30 s before reaching the dangerous area).

2R-road: two-vehicle on-the-road regular scenario. Re-
sults are given in Figure 7. We observe that there are some
fluctuations until t = 6 s, after that the vehicle is continuously
alerted.

In this two-vehicle scenario, the first vehicle gets connected
to RSU-L at t = 2 s. This graph should then be compared with
Figure 5 at t = 12 s (see the timing description in Section V-A).
Taking into account this 10 s shift, the first vehicle detects the
danger approximately at the same date and the same position as

Fig. 6: [1M-road] Pignistic probabilities in the vehicle.

in the 1R-road case3. This means that the second vehicle does
not disturb the first vehicle while the information it announces
may contradict the RSU (being located behind the first vehicle,
and thus farther away from the danger area).

Fig. 7: [2R-road] Pignistic probabilities in Vehicle 1.

2M-road: two-vehicle on-the-road misplaced scenario.
As in the 1M-road case, one of the sensors (connected to

RSU-G) is providing false readings, interfering with icy road
detection. Results are presented in Figure 8. The first vehicle
is alerted at approximately t = 20 s.

Compared to the 2R-road case, the alert is generated approxi-
mately 14 seconds later (to be compared with the 10 s difference
between the 1R-road and 1M-road cases). For comparison
purposes with the 1M-road case, the timing of Vehicle 1 has to
be shifted by 10 s (see the timing description in Section V-A),
leading to an alert detection at t = 30 s, to be compared with the
25 s in the 1M-road case. Hence, the presence of the second
vehicle adds an approximately 5 s delay in the case of the
misplaced-sensor scenario.

This can be explained by the fact that the second vehicle stays
under the influence of the RSU-G and its erroneous information
for a long time. The first vehicle will then be influenced by
the false measurement during a longer time, either directly
by RSU-G or indirectly by the second vehicle, also under the
influence of RSU-G.

It is worth noting that, even in this unfavorable case, our
system still generates an alert in Vehicle 1 with a comfortable
delay (about 25 s before reaching the danger area).

3The fluctuations before t = 6 s seem to correspond to the stabilization of
the algorithm at the start of the scenario.



9

Fig. 8: [2M-road] Pignistic probabilities in Vehicle 1.

C. In-lab experiment using network emulation
For this part of our study, we rely on the Airplug network

emulator which yields results that are very close to those
obtained from on-the-road experiments. We begin by presenting
the previously-studied two-vehicle scenarios for comparison
purposes between on-the-road and in-lab experiments. We then
extend our study with the three vehicles scenarios.

Validating the emulation using 2R-emu and 2M-emu.
Figures 9 and 10 display the results obtained using the Airplug
network emulator while replaying the regular and misplaced
scenarios with two vehicles. These figures can be compared
to Figures 7 and 8 respectively, obtained with on-the-road
experiments.

In contrast to results obtained during the on-the-road ex-
periments, where the value for the {slippery} state dropped a
few times, the emulation gives smooth curves. This is due
to real communication conditions during the on-the-road tests.
Nevertheless, the pignistic probabilities computed during on-the-
road experiments show the same tendency as that observed in
emulation. The icy part of the road is detected at approximately
the same time as it is in the emulations. The differences are
due to the events that occur in the real environment: vehicle
speed variations, communication channel limitations (message
losses and variation of transmission range), etc.

While some packet losses may generate small variations,
the perturbation is generally short (a single timer). An alert
generation mechanism can easily support them by adding a
minimal delay after which the alert is effectively confirmed.
Moreover, it is possible to avert packet losses from a neighbor
that has already sent its data by reusing the previous one. But
this would give a less reactive system, especially when taking
the departure of a neighbor into account. That is why we chose
to keep this setting.

This similarity between the on-the-road and the in-lab
experiments confirm our previous results with one vehicle in [8].
In the following, we use network emulation to study a three-
vehicle scenario.

3R-emu and 3M-emu: three vehicles by emulation. In
this scenario, a third vehicle that already learned about the
danger is added, driving in the opposite direction lane. Results
are presented in Figures 11 and 12.

We can see that, in the regular scenario, the alert is generated
as soon as Vehicle 1 communicates with the first RSU (RSU-L).
This can be explained by the fact that, at this time, Vehicle 3

Fig. 9: [2R-emu] Pignistic probabilities in Vehicle 1

Fig. 10: [2M-emu] Pignistic probabilities in Vehicle 1.

is in the icy road area and is already communicating with the
RSUs, enforcing the confidence in the danger. Hence, Vehicle 1
receives a confidence in the danger that is larger than in the
two-vehicle scenario (Fig. 9).

At the time when Vehicle 1 starts to communicate with
Vehicle 3, we can see in Figure 11 a small drop of the value
for the {slippery} state and an increase of the value for the
{freezing} state. This is due to measurements that are coming
from Vehicle 3 as it is driving on parts of the road that are
colder than −3◦C. However, this change does not negatively
impact a possible alert generation and we can actually conclude
that it helps because of the additional decrease of the value for
the {safe} state.

Regarding the misplaced scenario (Fig. 12), we can see that
the freezing state (red curve) is detected later than in the two
vehicles scenario (2M-emu case in Fig. 10). Indeed at this time
(around t = 70 s) the third vehicle increases the confidence
into slippery road. Compared to the regular scenario, we can
see the influence of the misplaced sensor in the values of the
probabilities for the slippery state (higher in Fig. 11 than in
Fig. 12). However, the trend is globally the same, thus ensuring
a good decision: the alert is generated in time.

VI. Conclusion
In this paper, we have presented a generic method for

detecting events on the road. It relies on a robust distributed
data fusion algorithm that can be instantiated with any frame
of discernment. The architecture mixes stationary and mobile
sources of data. The algorithm combines several sensor mea-
surements and propagates a mass vector with confidences on
every subset of the frame of discernment. The main advantage



10

Fig. 11: [3R-emu] Pignistic probabilities in Vehicle 1.

Fig. 12: [3M-emu] Pignistic probabilities in Vehicle 1.

of this technique is its robustness to erroneous measurements
and to the dynamics of the vehicular network.

This generic method can be instantiated for a large set of
applications, by choosing adequate sensors, determining the
appropriate frame of discernment and the correct mapping
to build the direct confidence from the local measurements
(using sigmoid-like functions). To show its usefulness in real
applications and to evaluate its robustness, we instantiated an
icy road detection application based on three states: freezing,
slippery, safe.

We have designed a complete proof-of-concept featuring
wireless sensors and solar-powered RSUs using WiFi to
communicate between themselves and with vehicles. Extensive
experiments have been done in various scenarios featuring
a a varying number of vehicles, with and without erroneous
measurements. Results show that the distributed data fusion
application enables approaching vehicle to be advised earlier
than with a simple alert broadcast generated when an average
temperature falls under a threshold. Moreover, data fusion can
generate an alert for approaching vehicles even when one of
the sensors gives completely different measurements. We have
to specially emphasize the good behavior of this application
when it was used in scenarios with two and three vehicles and
the way it adapted to inaccurate sensor readings.

Future work will include adaptation of our application to
the detection of other hazards. Specifically, we are working
on traffic bottleneck and heavy rain alerts as part of our
involvement in the CoMoSeF project, as well as on compliance
to standardized DENM messages.

VII. Acknowledgments

This work was carried out and funded within the framework
of the Labex MS2T. It was supported by the French Government,
through the program ”Investments for the future” managed by
the National Agency for Research (Reference ANR-11-IDEX-
0004-02). It has been partially supported by the Celtic Plus
project CoMoSeF (Cooperative Mobility Services of the Future).

References

[1] R. Luo and M. Kay, “Multisensor integration and fusion in intelligent
systems,” IEEE Trans. Syst., Man and Cybern., Syst. , vol. 19, no. 5,
pp. 901–931, Sep 1989.

[2] R. Luo, C.-C. Yih, and K.-L. Su, “Multisensor fusion and integration:
approaches, applications, and future research directions,” IEEE Sensors
J., vol. 2, no. 2, pp. 107–119, Apr 2002.

[3] B. Khaleghi, A. M. Khamis, F. Karray, and S. N. Razavi, “Multisensor
data fusion: A review of the state-of-the-art,” Information Fusion, vol. 14,
no. 1, pp. 28–44, 2013.

[4] D. Dubois and H. Prade, “Evidence, knowledge, and belief functions,”
Int. J. of Approx. Reason., vol. 6, no. 3, pp. 295 – 319, 1992.

[5] N.-E. El Faouzi, H. Leung, and A. P. Kurian, “Data fusion in intelligent
transportation systems: Progress and challenges - a survey,” Information
Fusion, vol. 12, no. 1, pp. 4–10, 2011.

[6] M. Fogue, F. J. Martinez, P. Garrido, M. Fiore, C. F. Chiasserini,
C. Casetti, J. C. Cano, C. M. T. Calafate, and P. Manzoni, “On the
use of a cooperative neighbor position verification scheme to secure
warning message dissemination in VANETs,” in Proc. of IEEE LCN
2013, Sydney, Australia, Oct. 2013, pp. 276–279.

[7] N. El Zoghby, V. Cherfaoui, B. Ducourthial, and T. Denoeux, “Distributed
data fusion for detecting sybil attacks in VANETs,” in Proc. of Belief
Functions, Compiègne, France, 2012, pp. 351–358.

[8] J. Radak, B. D. Ducourthial, and V. Cherfaoui, “Early detection of
dangerous events on the road,” in Proc. of VNC 2014, Paderborn,
Germany, Dec. 2014.

[9] J. Radak, B. D. Ducourthial, V. Cherfaoui, and S. Bonnet, “Design and
implementation of the vehicular network testbed using wireless sensors,”
in Proc. of WiSARN 2014, Benidorm, Spain, May 2014.

[10] B. Ducourthial, V. Cherfaoui, and T. Denoeux, “Self-stabilizing dis-
tributed data fusion,” in Stabilization, Safety, and Security of Distributed
Systems, LNCS vol. 7596, Toronto, Canada, 2012, pp. 148–162.

[11] P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE
Trans. on Automatic Control, vol. 38, no. 2, pp. 195–207, Feb 1993.

[12] D. Tapia, F. de la Prieta, J. Bajo, J. Corchado, and O. Garcia, “Wireless
sensor networks for data acquisition and information fusion: A case
study,” in Proc. of Information Fusion (FUSION), Edinburgh, Scotland,
July 2010, pp. 1–8.

[13] A. Daz-Ramrez, L. A. Tafoya, J. A. Atempa, and P. Meja-Alvarez,
“Wireless sensor networks and fusion information methods for forest fire
detection,” Procedia Technology, vol. 3, pp. 69 – 79, 2012.

[14] F. A. Teixeira, V. F. e Silva, J. L. Leoni, D. F. Macedo, and J. M.
Nogueira, “Vehicular networks using the {IEEE} 802.11p standard: An
experimental analysis,” Vehicular Communications, vol. 1, no. 2, pp. 91
– 96, 2014.

[15] J. Santa, F. Pereniguez, A. Moragon, and A. Skarmeta, “Vehicle-to-
infrastructure messaging proposal based on CAM/DENM specifications,”
in Proc. of IFIP Wireless Days, Valencia, Spain, Nov 2013, pp. 1–7.

[16] C. Fang, C. Chiou, C. Chen, and S. Chen, “Dangerous driving condition
analysis in driver assistance systems,” in Proc. of IEEE ITSC, St. Louis,
USA, Oct 2009, pp. 1–6.

[17] F. Dressler and C. Sommer, “On the impact of human driver behavior on
intelligent transportation systems,” in Proc. of IEEE VTC 2010-Spring,
Taipei, Taiwan, May 2010, pp. 1–5.



11

[18] L. Malta, C. Miyajima, and K. Takeda, “A study of driver behavior under
potential threats in vehicle traffic,” IEEE Trans. Intell. Transp. Syst.,
vol. 10, no. 2, pp. 201–210, June 2009.

[19] F. Orhan and P. Eren, “Road hazard detection and sharing with
multimodal sensor analysis on smartphones,” in Proc. of NGMAST,
Prague, Czech Republique, Sept 2013, pp. 56–61.

[20] B. Schweiger, C. Raubitschek, B. Bäker, and J. Schlichter, “ElisaTM -
car to infrastructure communication in the field,” Comput. Netw., vol. 55,
no. 14, pp. 3169–3178, Oct. 2011.

[21] J. F. Ferreira, J. Dias, “Probabilistic Approaches to Robotic Perception,”
Springer Tracts in Advanced Robotics, Springer 2014.

[22] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference,” Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988.

[23] P. Smets, “Data fusion in the transferable belief model,” in Proc. of
Information Fusion (2000), vol. 1, Paris, France, July 2000, pp. PS21–
PS33 vol.1.

[24] T. Denoeux, “Conjunctive and disjunctive combination of belief functions
induced by nondistinct bodies of evidence,” Artif. Intell., vol. 172, no.
2-3, pp. 234–264, 2008.

[25] P. Smets, “Decision making in the tbm: the necessity of the pignistic
transformation,” Int. J. of Approx. Reason., vol. 38, no. 2, pp. 133 – 147,
2005.

[26] A. Buisset, B. Ducourthial, F. El Ali, and S. Khalfallah, “Vehicular
networks emulation,” in Proc. of ICCCN 2010, Zürich, Switzerland, Aug.
2010.

Jovan RADAK received his graduate engineer degree
in 2005. from the University of Novi Sad, Serbia. He
worked as a Research Assistant at the Department
of Electronics, at the University of Novi Sad (Dec.
2005 - Aug. 2008) and as a PhD Researcher in Inria
Lille – Nord Europe research center (Sep. 2008 - Dec.
2011). He obtained his PhD in Computer Science
from the University of Lille I, France in Dec. 2011.
In Apr. 2013, he joined Heudiasyc Laboratory at the
Université de Technologie de Compiègne in France
as a Postdoc Researcher. His research interests are

wireless sensor networks, vehicular networks, distributed data fusion...

Bertrand DUCOURTHIAL received the Ph.D. de-
gree in Computer Science from Paris Sud University
in 1999. He joined the Université de Technologie de
Compiègne and the Heudiasyc lab. He became full
Professor in 2010. His research deals with dynamic
ad-hoc networks (e.g., VANET, UAVs): modeling, net-
working, distributed algorithms, security, robustness,
embedded software (Airplug Software Distribution)...
His work is funded by industrial, regional, national
and European projects.

Véronique CHERFAOUI received the M.S. degree
in computer science from Lille University, France,
in 1988 and the Ph.D. degree in control of systems
from the Université de Technologie de Compiègne
(UTC), France in 1992. She defended an Habilitation
á Diriger les Recherches (HDR) in 2009. She is now
an Associate Professor in the Computer Engineering
Department at the UTC. Her research interests in the
Heudiasyc-CNRS laboratory are multi-sensor data
fusion, distributed data fusion, data association and
real-time perception systems for intelligent vehicles.

Stéphanne BONNET received the M.Sc. degree in
computer science and the Ph.D. degree in control
engineering from the Université de Technologie de
Compiègne, France. He is now a research engineer
at this same institution and has contributed to several
research projects, covering a wide array of related
fields in embedded systems engineering, robotics
and communications. His current main interests are
autonomous vehicles, related vehicle-to-vehicle and
vehicle-to infrastructure communication systems and
their impact on future smart cities.


