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Abstract—The deployment of Autonomous Vehicles (AVs) poses 
considerable challenges and unique opportunities for the design 
and management of future urban road infrastructure. In light 
of this disruptive transformation, the Right-Of-Way (ROW) 
composition of road space has the potential to be renewed. 
Design approaches and intelligent control models have been 
proposed to address this problem, but we lack an operational 
framework that can dynamically generate ROW plans for AVs 
and pedestrians in response to real-time demand. Based on 
microscopic traffic simulation, this study explores Reinforcement 
Learning (RL) methods for evolving ROW compositions. We 
implement a centralised paradigm and a distributive learning 
paradigm to separately perform the dynamic control on several 
road network configurations. Experimental results indicate that 
the algorithms have the potential to improve traffic flow effi- 
ciency and allocate more space for pedestrians. Furthermore, 
the distributive learning algorithm outperforms its centralised 
counterpart regarding computational cost (49.55%), benchmark 
rewards (25.35%), best cumulative rewards (24.58%), optimal 
actions (13.49%) and rate of convergence. This novel road 
management technique could potentially contribute to the flow- 
adaptive and active mobility-friendly streets in the AVs era. 

Index Terms—Autonomous Vehicles, Pedestrians, Smart City, 
Intelligent Transport System, Reinforcement Learning, Infras- 
tructure management 

 

I. INTRODUCTION 

Utonomous vehicles (AVs) are predicted to be the next 
prevailing mode of urban mobility [1]. According to the 

SAE International standards [2], AVs classified under the high 
automation (Level 4) and full automation (Level 5) categories 
would take over most or all (respectively) driving-related 
duties, with the vehicle systems performing the functions of 
environment perception, localisation, mapping, path planning 
and driving control [3], [4]. 

As the related technologies continue maturing, AVs are 
expected to significantly improve the safety and efficiency 
of urban transport flows, eliminating potential human errors 
in driving. For example, recent studies imply that AVs with 
Level 4 Automation have the potential to prevent 28% of the 
fatal pedestrian-car crashes, while Level 5 Automation would 
prevent up to 73% of such severe accidents [5]. It is predicted 
that Level 4 AVs can be realised by 2030, and their market 
share may reach 50% before 2045 [6], [7]. 
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As a result of their deployment, platoon-based driving 
would be possible, which reduces AV headways and reaction 
times drastically [4], thereby decreasing the number of lanes 
required for road traffic. The results of recent studies on this 
topic [8], [9] suggest that AVs can drive on a four-lane road 
with the same efficiency as human-driven vehicles on a six- 
lane road. 

Recent studies have indicated that city centres could experi- 
ence a rise in AV-based trips of approximately 25% during rush 
hours, with a corresponding increase in travel costs of 5.5% 
[10]. Consequently, the mean volume-to-capacity ratio (V/C) 
is estimated to rise by 7.99% and 8.44% for respective peaks 
[1]. Compared to outskirts, travel costs at city centres would 
drop by 12.1% [10]. Additionally, the total travel time is likely 
to decrease by 20%∼25% during off-peak hours [11], which 
will have a substantial positive impact on V/C conditions. 

Flexible Right-of-Way (ROW) strategies would be prefer- 
able to static ROW configurations that restrict users to specific 
parts of the road space [12], [13], allowing the layout to 
be adapted to varying traffic demand patterns at different 
locations and times of a day. It might be possible to de- 
motorise some lanes during off-peak hours or in peripheral 
regions to encourage active mobility and local street activities 
[14], [15]. During rush hours on major thoroughfares in city 
centres, on the other hand, it is vital to remain the capacity of 
delivering basic Levels Of Service (LOS) for vehicular traffic, 
and ensure that all road users have convenient access. 

Prior works on AV-aware adaptive streets pursued the adop- 
tion of design perspectives [8], [14], [16] or novel mod- 
elling techniques [17]–[19]. Despite the advances these studies 
achieved so far, the key limitations are the lack of operational 
and demand-responsive ROW management schemes across 
the entire spectrum of road users. As such, we consider the 
absence of such a dynamic approach to ROW compositions as 
a research gap. It is expected that ROW compositions could 
evolve to respond to changing demand patterns of road users 
and their potential interactions. 

The research problem is defined as a multi-agent based 
stochastic control problem involving a time-discrete finite- 
horizon transport system. To solve it, we develop a micro- 
scopic traffic simulation-integrated Reinforcement Learning 
(RL) model. The model aims to achieve a balance between 
traffic flow efficiency and expanding space for non-vehicular 
road users by continuously evolving the control policy that 
determines sequential ROW compositions at regular intervals 
(e.g. 30 minutes). 
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For the purposes of this study, we will be using a Deep 
Deterministic Policy Gradient (DDPG) algorithm [20]. The 
key requirement of this modelling framework is a model-free 
RL approach due to the fact that the system dynamics are 
unknown. Additionally, an off-policy learning mechanism is 
employed to ensure sample efficiency and flexibility when 
exploring the action space [21]. In this article, we propose 
a Multi-Agent DDPG (MADDPG) algorithm as an innovative 
learning approach compared with its centralised counterpart, 
DDPG. They are different in terms of learning paradigms, 
reward distributions, Actor-Critic (AC) network architecture, 
and ways of replaying interaction experiences. 

The principal contributions are outlined as follows: 

1) In our framework, a model-free off-policy RL algorithm 
is combined with microscopic traffic simulations to con- 
tinuously evolve the ROW compositions of road space. 

2) As the proposed method is adaptable, it can be applied 
to a variety of traffic scenarios, including fully AVs, pure 
human traffic, and mixed traffic at diverse levels. 

3) Two learning paradigms are embedded in this frame- 
work, and their learning performances are compared 
based on computational cost, benchmark reward, ex- 
plored optima, and convergence speed. 

4) This study analyses the impact of noise disturbance 
on learning performances in order to identify effective 
strategies that balance exploration and exploitation in the 
high-dimensional space of action. 

As far as we know, this study is the first attempt to use a RL 
method to solve ROW control problems. The paper offers a 

A. Design Approaches to AV Streets 
The UK Highway Code grants different categories of road 

users the right to use a publicly owned but highly regulated 
road space, in accordance with hierarchical orders of priority 
[12]. This right is referred to as the Right-Of-Way (ROW) and 
has been physically codified into the form of Complete Streets 
(CS) in many countries [13], [27]. As a general rule, the CS 
scheme divides the street surface into the carriageway and 
the street-side section [28]. There are several functional zones 
within a street-side section, including a facility belt, a front 
area, and the sidewalk, with an aggregate width exceeding 
1.5m [28], [29]. The standard driving lanes are designed to 
be 3.0m to 3.5m in width [28]. 

Almost all present proposals for AV streets adopt the 
concept of CS in the context of future AV transport [15]. 
One of their underlying motivations for reshaping streets 
to accommodate AVs is to re-prioritise the ROW of active 
mobility [8]. A holistic ROW plan is usually included in their 
proposals, which comprise AV traffic dedicated lanes, transit 
lanes, sidewalks, cycle-ways, and flex zones [14], [28]. It 
reduces traffic and parking spaces with increased street-side 
areas to meet the demands of non-motorised users [15]. 

As one example, the National Association of City Trans- 
portation Officials (NACTO) recommends several ROW lay- 
outs depending on the types of roads [14]. Their design goals 
are polarised, including wider sidewalks, protected cycle-ways 
and greenery [8], [28]. Their plans of the carriageway still 
follow the structure of designing CS [30], as per Eq. 1. 1 

AADT × KF × DF 
benchmark as well as a novel operational approach to planning l = ⌈ 

fPH × MSFi × fHV × fp ⌉ (1) 
and managing AV traffic-adaptive streets. 

The remainder of this paper is organised as follows: Section 
II provides the background of the research. Section III formu- 
lates the ROW control problem and presents the structure of 
our RL model. Experiment set-up and results are explained in 
Sections IV and V. Finally, Section VI concludes this study 
and recommends future research directions. 

 

II. BACKGROUND 
 

A summary of previous studies on the design approaches 
and modelling techniques for managing the future AV traffic- 
adaptive road space is provided in Table. I. The remainder 
of this chapter summarises key features of studies that we 
surveyed, and specifies a set of methodological requirements 
that we used when designing our modelling framework. 

 
TABLE I 

DESIGN AND MANAGEMENT APPROACHES OF SURVEYED LITERATURE 
 

 Road Elements  
lane assignment 

Design Approache 
[8], [14], [16] 

s Control Models  
[22], [23] 

lane reversal control [8], [14], [16] [19], [24] 
sidewalk and crossing [14]–[16] [18] 
cycleway [14]–[16] - 
shared space [8] - 
curb space [14], [15] [17] 

 traffic signal - [25], [26]  

Three primary problems arise from using design-based 
approaches. A major drawback is that they heavily rely on 
empirical data derived from future scenarios where AVs will 
be widely deployed, which is not available at the moment. 
Second, the lack of explicit models makes it difficult to 
calibrate and replicate their designs. Finally, CS layouts that 
use fixed schemes instead of demand-responsive operational 
schemes could pose problems because AV traffic patterns 
would change constantly. 

 
B. Intelligent Control Methods for AV Streets 

To optimise the utilisation of road space for future AV 
traffic, several methods have been proposed, including dy- 
namic lane control [18], [19], [22], lane allocation [23], 
curbside management [17], and Traffic Signal Control (TSC) 
[25], [26]. In addition, present studies [31]–[33] combined 
optimisation techniques with microscopic traffic simulation 
models to solve optimisation or control problems related to 
specific road infrastructure. 

As an example, a multi-agent Q-learning model, developed 
by Gunarathna et al (2020) [19] proposed a model to control 

1AADT: annual average daily traffic (veh/h). KF : a certain proportion 
of AADT occurring in the peak hour (K-factor). DF a certain proportion of 
the peak direction (D-factor). fPH: the peak hour factor. MSF: certain level 
of maximum service flow rate. fHV: the heavy vehicle adjustment factor. fp: 
the familiarity adjustment factor of drivers, respectively. 
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the directions of lanes of a highway section. In the optimised 
scenario, travel time was reduced by 20% compared with 
business as usual. In another study [17], the distribution of 
curbside parking lanes in an urban block were optimised, with 
traffic delays of AV fleet reduced by 28%. 

Similarly, Ye et al (2022) [18] optimised the width of 
the carriageway to maximise the traffic flow efficiency of an 
intersection. In 18.2% of all simulated time-steps, a lane-width 
space can be re-assigned to the street-side section. 

These modelling techniques offer the major advantage of 
treating road infrastructure as a resource that can be con- 
trolled in real-time, incorporating with intelligent AV traffic 
management. This allows us to mitigate the drawbacks of 
fixed ROW layouts using advanced optimisation techniques. 
However, the crucial flaw is that their modelling objectives are 
usually motorised traffic-oriented, which primarily focus on 
travel costs [19], [24] and traffic delay [17], ignoring diverse 
demands from active mobility [28]. In summary, current 
measurements fall far short of achieving operational ROW 
management while satisfying the needs of both motorised and 
non-motorised users. In addition, very few studies [18] have 
tested their proposed schemes under complex typologies of 
road networks. 

Similar to the portfolio management (asset allocation) prob- 
lem [34], the ROW control problem is a stochastic control 
problem with nonlinear state transitions and unknown reward 
mechanisms. The control sequences can be expressed by 
Markov Decision Processes (MDPs), which comprise succes- 
sive decisions to make at discrete time steps and additive 
cost overtime [35]. Meanwhile, the problem presented here 
is a continuous control problem, which determines respective 
proportion of road space assigned to each sidewalk in the 
continuous domain (B ⊆ R(0,1)). According to the principle of 
optimality [36], solving this problem is equivalent to solving 
all tail sub-problems which consider the expected rewards of 
future steps. 

 
C. Convex Optimisation Control Policies and Reinforcement 
Learning Methods 

Convex optimisation control policies (COCPs) are widely 
applied to solving control problems of explicit system dy- 
namics, namely state transition probabilities and structured 
reward functions [35]. Through solving a sequence of convex 
optimisation problems, they find optimal policies to determine 
sequential decisions [37]. COCPs include Linear Quadratic 
Regulator (LQR), Quadratic Programs (QP), Model Predictive 
Control (MPC) and Exact Dynamic Programming (EDP) [35], 
[37]. They are different from static optimisation methods in 
that they estimate the potential costs of future steps when eval- 
uating a present decision, whereas static convex optimisation 
methods only consider that of a single step [37]. 

Large-scale real-world stochastic control problems present 
challenges to conventional COCPs. First, the system dynamics 
are usually nonlinear and unknown [38]. As a result, LQRs, 
QPs, and MPCs require extensive assumptions, which intro- 
duce additional bias to their models [39], [40]. Second, the 
scalability of COCPs represents a critical concern once the 

action and state spaces become large and continuous [41]. 
Further, COCP methods are model-dependent and problem- 
specific. Thus, generalising them to another problem with a 
distinctive context can be difficult [42]. 

Assisted with neural networks and advanced simulation 
techniques, Reinforcement Learning (RL) methods can solve a 
wide variety of real-world stochastic control problems which 
were intractable in the past [20], [21], [41]. Instead of relying 
on prior knowledge of system dynamics, RLs (e.g. model- 
free RLs) improve control policies by letting intelligent agents 
trial-and-error interact with the system [43]. They approximate 
optimal policies non-exhaustively in order to avoid the curse 
of dimensionality [40]. Additionally, RLs (e.g. off-policy RLs) 
have higher degrees of freedom in the control policy, and they 
may arrive at to good policies despite sample shortage [44]. 

Similar to COCPs, model-based RLs requires certain levels 
of understanding of system dynamics [40], whereas model-free 
RLs learn from direct interactions or past interaction samples 
[41]. A variety of model-free RLs have been invented, in- 
cluding Q-learning, SARSA, Deep Q-Network (DQN), Actor- 
Critic (AC), Trust Region Policy Optimisation (TRPO), Policy 
Gradient (PG), Proximal Policy Optimisation (PPO), Deep 
Deterministic Policy Gradient (DDPG) algorithms [20], [43]. 
Besides considering the complexity of system dynamics, se- 
lecting the appropriate RL algorithm is influenced by the fol- 
lowing factors: (1) simplicity of control policy, (2) continuity 
of control space, (3) simulation cost, and (4) sample efficiency 
[41], [43], [44]. 

Regarding the control policy of the ROW control problem, 
it simply determines respective proportion of road space as- 
signed to sidewalks. Therefore, directly optimising the control 
policy rather than conducting value iteration seems more 
intuitive and feasible. Policy gradient algorithms, such as PG, 
AC and DDPG, are capable of solving this type of continuous 
control task. In contrast, value learning algorithms like Q- 
learning, SARSA, and DQN, which only operate in discrete 
control space, are not feasible [45]. Furthermore, policy gra- 
dient methods can uniform the action space of a multi-agent 
system through nondimensionalisation [18], whereas value 
learning methods cannot. 

Last but not least, the sample efficiency of an algorithm 
represents a crucial factor worth considering when simulating 
a large-scale transport system, and where sampling data is 
extremely expensive [44]. On-policy algorithms, like PG, 
TRPO and SARSA, which embed uniform policies for sam- 
pling actions and optimising policies, massively rely on data 
generated from direct interactions. Off-policy algorithms, such 
as Q-learning, DQN, and DDPG, separate policy training from 
updating target policies [46]. By doing so, action exploration 
can be conducted without requiring time-consuming interac- 
tions, which greatly alleviates the sample shortage problem, 
as well as guaranteeing the stability of convergence [44]. 

Based on the factors outlined above, DDPG [20] provides 
substantial advantages to solve this ROW control problem 
compared to other well-known approaches. It is a model- 
free, policy gradient-based, off-policy RL method that evolves 
sequential decisions in the continuous action domain. Similar 
to the DQN, DDPG deploys an experience replay buffer 
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Fig. 1. The Right-Of-Way composition of a road edge inside a network 
 
 

and target AC networks to improve sample efficiency and 
flexibility in action exploration. The trust region enforcement 
mechanism introduced by DDPG allows for more stable 

 
TABLE II 

NOTATIONS OF THE OPTIMAL ROW CONTROL MODEL 

 
 

Notations Domains 
K set of edges (agents) K ⊂ N[0,+∞) 
T set of time steps T ⊂ N[0,+∞) 
Nk,h set of operational vehicles on k at h  Nk,h ⊂ N[0,+∞) 
Pk,h set of active pedestrians on k at h  Pk,h ⊂ N[0,+∞) 
Ht set of observation at t  Ht ⊂ N[0,+∞) 
O, D sets of origins and destinations 
Lk,t domain of lane numbers Lk,t ⊂ N[1,+∞) 
Bk,t domain of sidewalk proportion Bk,t ⊆ R(0,1) 
QNod,t vehicular trips from o to d at t 
QPod,t pedestrian trips from o to d at t 
o, d origin point and destination point o ∈ O 
k edge(agent) k ∈ K 
t simulation time step t ∈ T 
h observation step h ∈ Ht 
n vehicle n ∈ Nk,h 
p pedestrian p ∈ Pk,h 
vn,k,h velocity of vehicle n on k at h vn,k,h ∈ R[0,vm] 
vp,k,h velocity of pedestrian p on k at h vp,k,h ∈ R[0,pm] 

convergence than PGs, while preserving sufficient freedom 
in exploring the action space, just as TRPOs and PPOs do 

d 
n,k,h 
d 
p,k,h 

unit AV flow on k towards d at h fd 
unit pedestrian on k towards d at h fd 

∈ N{0,1} 
∈ N{0,1} 

[47]. This algorithm has been deployed to multiple sequential- 
decision problems such as Traffic Signal Control (TSC) [25], 
[26] and dynamic lane control problems [17], [48]. 

III. METHODOLOGY 
A. Problem Definition 

A multi-agent system is proposed to represent a road 
network that consists of multiple edges. Each edge k ∈ K 
may be different from others in length, width (wk), facility 
belt proportion (ψ ), sidewalk proportion (β ), carriageway 

 

wk width of the edge k wk ∈ R(0,+∞) 
ψk facility belt proportion of k ψk ∈ R(0,1) 
lk,t number of lanes on edge k at t lk,t ∈ Lk,t 

 βk,t sidewalk proportion of k at t βk,t ∈ Bk,t  
 
 

their learning experiences, update policy functions, and obtain 
rewards independently, as per Eq. 3. 

 
T ′ 

max rk,t =  E � γt−t gk,t� (2) 
 

 

Fig.1 demonstrates the ROW composition of an edge of a 
network. The width of the street-side can be expressed as 
(ψk+βk)wk, while that of the carriageway equals (1-ψk-βk)wk. 

A discrete-time transport system evolves ROW composi- 

 
max 

βk,t∈Bk,t,lk,t∈Lk,t 

 
rk,t = 

t

I:

=t′ 

 
′ 

γt−t gk,t (3) 

tions of all edges at each step t ∈ T, where T denotes a set gk,t = gveh + gped + gact (4) 

comprising a day’s worth of time steps. Decision variables 
include the sidewalk proportion βk,t ∈ Bk,t and the number 

    

k,t 

gveh = 1 

k,t k,t 
Ht Nk,t 

vn,k,h 1β 
 

 
, l 

 
(5) 

respective legal domains at t. While, wk and ψk are considered as constants. gped = 1 I: I:Pk,t  v 
p,k,h 1β , l 

i
  (6) 

An edge only acknowledges its local traffic states, namely 
k,t 

 
 

|Ht| · |Pk,t| 
 
h=0 p=0 

pm 1 k,t k,t 

the number of AVs |Nk,h| and pedestrians |Pk,h| at each gact = βk,t + ψk (7) 
observation h ∈ Ht, where Ht enumerates all observations 
at a step. Table. II tabulates the parameters for modelling this Eq. 4 explains that the immediate reward g 

 
k,t sums up 

transport system. In this paper, we present two distinct learning paradigms 
quadratic gains estimated from traffic flow efficiencies of AVs 
gveh ∈ R[0,1], pedestrian movements gped ∈ R[0,1], and the 

for instructing ROW decisions. In the first place, a centralised 
k,t 

street-side proportion, denoted as gact 
k,t 
∈ R(0,1). All three 

learning paradigm is devised which considers all edges to co- 
evolve through a shared deterministic policy function. Even 
though any local changes to respective ROW composition may 
affect the future global traffic states to varied extent, their 
contributions are indiscriminately rewarded. Eq. 2 expresses 
the expected total reward rk,t per edge under this centralised 
learning policy, which accumulates the immediate reward gk,t 
in a discounted norm. 

In contrast, the distributive learning policy requires an 
edge to manage its local evolving patterns, i.e., they collect 

quadratic terms are weighted by 1. Eq. 5 estimates the ratio 
of an AV’s driving speed vn,k,h to the maximum velocity vm. 
Similarly, Eq. 6 calculates that ratio between walking speed 
vp,k,h and the maximum speed pm of a pedestrian. Finally, Eq. 
7 indicates that the street-side proportion is equal to the sum 
of the sidewalk proportion βk,t and facility belt proportion ψk. 

 
B. Reinforcement Learning Model 

We outline the key elements of the Multi-Agent Markov 
Decision Process (MAMDP) of our RL model as follows: 

proportion (1-β -ψ ) and the number of driving lanes (l ). t=t′ 

of driving lanes lk,t ∈ and L k,t are their h=0 n=0 

f 
f 

vm k,t 
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t 

k,t+1 

k,h 

n,k,h p,k,h 

  I: 

k,h 

= q 
I: I: 

f + (1 − q) 
I: I: 

f 

k,t+1 

K set of multi-agents (edges) k ∈ K. 
St global state of the system. St={sk,t} ⊂ R|K| and sk,t 

denotes partial states observed by local agents. 
At collective actions taken by multi-agents, At={ak,t} ⊂ 

R|K|, and ak,t equals the decision variable βk,t. 
Rt joint cumulative future rewards of all agents and 

Rt={ϕrk,t} ⊂ R|K|, where ϕ=1, 000 represents an am- 
plifier for the convenience of numerical analysis. 

follows the decaying-ϵ-greedy policy, which initially encour- 
ages exploration in the action space, and generally converges 
to the mean, i.e. zero in this study. 

As displayed in Eq. 9, The degree of randomness of explo- 
ration is limited in part by the deviation of the distribution (σ) 
and a decaying coefficient ϵ ∈ R(0,1) ∩ ϵ ≫ 0. It is estimated 
that 99.73% of generated noise values would fall between the 
range of R[−σ ,σ ] at the ith epoch. This approach strikes a 

i  i µ a deterministic policy that maps a given state to an action, 
which is parameterised by a neural network θµ. 

The workflow of our model is illustrated in Fig. 2. This 
schematic comprises a microscopic traffic simulation phase 
and an off-policy learning phase. First, at step t, the model 
configures the road network, the physical dynamics of users 
and a synthesised travel plans. Then it outputs traffic states 
(St) and rewards (Rt). Note that the travel plan could also be 
extracted from live image streams captured by traffic cameras. 
The model determines decision variables βk,t and lk,t as per its 
policy function, an additive noise and a greedy algorithm. In 

balance between exploration and exploitation within a finite 
learning horizon. 

 
ak,t+1 = µ(st|θµ) + N(σi) (8) 

σi+1 = ϵ · σi (9) 

ak,t+1 is then clipped against a trust region following Eq. 
10. The lower bound regulates the minimum width of a 
sidewalk (1.5m). Meanwhile, the upper bound considers at 
least one 3.5m-wide lane should be provided for emergency. 

the second phase, our model carries out an off-policy learning a = clip
  

a 
, 1.5 , wk − ψk − 3.5 

i 
(10) 

Eq. 11 formulates a greedy algorithm to approximate the 
optimal number of driving lanes (l∗ ). To determine the 
number of lanes, the estimated edge width is minimised in 
comparison to the actual edge width. Afterwards, the model 
determines the decision variables for performing the sidewalk 
proportion (βk,t+1), as per Eq. 12. 

 
∗ 
k,t+1 = min ⌈(1 − ak,t+1 − ψk)wk − 3.5lk,t+1⌉ (11) 

lk,t+1 

ak,t+1 = βk,t+1 = 1 − ψk − 
3.5lk,t+1 − 0.5 

wk 
(12) 

2) Observation and Transition of Traffic States: In this 
paper, we establish a discrete-time stochastic AI Gym envi- 
ronment [50] that agents will interact with using the open- 
source Simulation of Urban MObility (SUMO) software [51]. 
Through SUMO’s Traffic Control Interface (TraCI), edge- 
level traffic states are continuously retrieved and the ROW 
compositions of the road network are configured iteratively. 

The local traffic state sk,t is computed as the expectation of 
all observed states sk,h following Eqs. 13 and 14. q ∈ N{0,1} 
distinguishes the class of road users, namely q=0 represents 
pedestrian flow and q=1 denotes AV traffic flow. Eq. 15 
accumulates flows eq ∈ N[0,+∞) by respective travel modes, 
where fd ∈ N{0,1} and fd ∈ N{0,1} represent an 
operational and an active pedestrian within scope. 

 

 
sk,t 

Ht 

=  1  s 
|Ht| h=0 

 
 
k,h 

 
(13) 

Fig. 2. Framework of microscopic traffic simulation-based Reinforcement 
Learning model sk,h = {eq |q ∈ N  [0,1] } (14) 

D Nk,t D Pk,t 

1) Actions: Three steps are involved in determining the 
decision variables βk,t+1 and lk,t+1 for a new step. First, 

q 
k,h 

d 
n,k,h 

d=0 n=0 

d 
p,k,h 

d=0 p=0 
(15) 

road edges make control decisions ak,t+1 relying on the 
deterministic policy functions and a decaying noise N(·), as 
expressed in Eq. 8. As discussed in [49], this noise disturbance 

If possible, all scheduled trips listed in QNod,t and QPod,t 
should arrive at respective destination d before the last obser- 
vation step h = |Ht|. However, if a trip is still in operation, 

l 

e 

using sampled experience. 
k,t+1 wk wk 
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K 

|QNod,t+1| = |QNod,t+1| + 
I: 

f H | 

p,k,h=| t 

f 

I: I: 

′ 

or has yet to depart, it is re-assigned to the next step, as per 
Eqs. 16 and 17. Note that |QNod,t+1| and |QPod,t+1| express 
the cardinalities of respective scheduled travel plans. 

 
K 

the Huber’s loss function (δ=1.0). This loss function, as 
demonstrated in piecewise Eqs. 21 and 22, outperforms the 
Mean-Squared Error (MSE) loss function, in that it is less 
sensitive to outliers [53]. 

d 
n,k,h=| t 

k=0 

|QPod,t+1| = |QPod,t+1| + 
I: 

fd 
H | 

(16) 
 

(17) 

 
ym = 

rm, if sm = st ∩ t = T 
′ 

rm + γQ[sm+1, µ(sm+1|θµ 

 
 
 

′ 

)|θQ 

 
 
], otherwise 

 
 
 
(20) 

3) Rewards: The reward r 
k=0 

estimates the expectation of ξm = ym − Q(sm, am|θQ) (21) 
k,t 

future gains upon a sequence of ROW decisions, recalling Eqs. 2-7. The immediate reward is derived directly as feedback 
�
���
  

E m∼M 

 
2 , if |ξm| ≤ δ 

2 m 

from agents’ interactions with the system from simulation. 
While it has a quadratic form to accumulate all obtained gains, 

LQ,δ = 
�� 

 
δ  E 

m∼M 

1 
|ξm| − 2 δ 

 
, otherwise 

(22) 

it differs fundamentally from those explicit reward functions 
of model-based RLs or COCPs. 

By multiplying ϕ=1, 000 times, the reward ceiling becomes 
3,000. Let I comprise all designated training epochs i ∈ I. If all 
epochs begin training the model at time step zero uniformly, 
denoted as e=0, it would result in the same initial state and 
possibly similar subsequent transition patterns. Consequently, 
exploration in state space may be insufficient and training may 
be biased [52]. Therefore, following Eq. 18, for the first 20 

Based on previous Eqs. 8 and 9, actor online network 
determines the next action. Applying the learnt Q function, 
µ estimates its policy function by maximising the expected 
return. The actor loss, denoted by Jµ, is estimated following 
Eq. 23. Furthermore, we calculate the derivative of the expec- 
tation of gradients on both critic online network Q and the 
actor online network µ, as per Eq. 24. 

epochs, the model begins learning at e=0, and for the rest, 
it generates a random starting slot apart from last two slots. 
Accordingly, the edge reward (ri) of epoch i ∈ I is calculated 

Jµ = E 
m∼M 

∇θµ Jµ ≈  E 
m∼M 

[Q(sm, am|θµ)] (23) 

∇a 
[
Q(sm, am|θQ)∇θµ µ(sm|θµ)

] 
(24) 

as per Eq. 19. 

 
e = 0, if i ∈ N[0:19] 

rnd(1, |T| − 2), if i ∈ N[20:|I|−1] 

 
 

(18) 

Target AC networks are initialised and updated based on 
their respective online counterparts. The mechanism of up- 
dating uses a delayed copying strategy that approximates the 
target parameters at each step. Concretely speaking, following 
Eqs. 25 and 26, the new weights inherit a portion 1 − η of 

K T their current weights while adding a portion η from their online 
r =  1  r 
i (|T| − e) · |K| 

k=0 t=0 

 
k,t,i (19) counterparts, where 0 < η ≪ 1 denotes a copying coefficient. 

 
C. Architecture and Learning Mechanism of DDPG 

In this article, the Deep Deterministic Policy Gradient 

′ ′ 

θQ ← (1 − η)θQ 
′ ′ 

θµ ← (1 − η)θµ 

+ ηθQ (25) 

+ ηθµ (26) 
(DDPG) algorithm [20] is presented as a method for selecting 
the optimal ROW plans. We deploy a centralised AC neural 
network structure and a global experience replay buffer. The 

Algorithm.1 presents the workflow of this DDPG algorithm. 
It initially inputs a series of hyperparameters and travel sched- 
ules. At step t of epoch i, all agents select respective actions 

AC architecture consists of an actor online network (µ), an actor target network (µ ), a critic online network (Q) and ak,t,i and determine the numbers of driving lanes l k,t,i as per 

a critic target network (Q ), of which their neural weights 
are denoted by θ. Moreover, the buffer (D) indiscriminately 
stores transition tuples and randomises the sampling of data for 
off-policy learning. Let a mini-batch M contains the sampled 

Eqs. 8-12. The model re-configures the ROW compositions of 
all edges and interacts with the new road layout via SUMO 
TraCI for the return of a joint state St+1,i and discrete rewards 
rk,t,i, which is redistributed as per Eq. 2. Then, the model 

transition tuples denoted as Tm 
m ∈ M. 

=⟨sm , am , rm , sm+1 ⟩, where stores a collection of transition tuples to a global buffer D 
and performs the centralised off-policy learning following Eqs. 
23-26. 

Through back propagation, gradient descent, and loss re- 
gression, the critic online network is updated [20]. Let ym 
denotes an approximator of the Q-value Q(sm, am|θQ). The 
piecewise Eq. 20 elaborates that if the sampled data represents 
the last time step, then ym equals the state value of the 
final step; Otherwise, it equals the sum of the accumulative 
discounted Q-value. Then, we calculate the critic loss (LQ) 
of approximated Q-value and the authentic Q-value using 

 
D. Architecture and Learning Mechanism of MADDPG 

Aside from DDPG, we also propose a Multi-Agent DDPG 
(MADDPG) algorithm to assess the performance of adopting 
the distributed learning strategy. For MADDPG, each edge can 
learn from its specific context rather than knowledge that is 
publicly shared. The objectives are independently optimised 

  
ξ 

′ 

f 

1 
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k  k  k k 

 
 

Algorithm 1 Pseudocode of DDPG Algorithm  
Input I, c, M, T, K, S0, η 

 
TABLE III 

NOTIONS AND HYPERPARAMETERS FOR DDPG AND MADDPG 
ALGORITHMS ′ 

Initialise θQ,θµ ,θQ 
′ 

← θQ, θµ ← θµ, D ← c, T ← |M| 
for i = 0 : (|I| − 1) do: 

Initialise e see Eq. 18 
 

% ON-POLICY ACTING AND SIMULATION 
for t = e : (|T| − 1) do: 

for k = 0 : (|K| − 1) do: 
At,i ← ak,t,i, see Eq. 8-12 

St+1,i, rk,t,i ← TraCI(At,i, lk,t,i) see Eq. 2 
for k = 0 : (|K| − 1) do: 

{sk,t+1,i} ← St+1,i 
D := ⟨ak,t,i, sk,t,i, rk,t,i, sk,t+1,i⟩ 

 
% OFF-LINE LEARNING 
random sample T ← D, |M| 
for m = 0 : (|M| − 1) do: 

′ 

ym ← θQ , Tm, see Eq. 20 

 

 Notations Specifications  
I set of training epochs 

Domains  
|I|=150 

M mini-batch for training |M|=64 
i index of training epochs i ∈ I 
m index of training samples m ∈ M 
t index of time slots t ∈ T 
e index of starting slots e ∈ N[1:|T|−2] 
c replay buffer capacity 100,000 
ϕ rewards amplifier 1,000 
η delayed copying coefficient 0.005 
γ discount factor 0.99 
ϵ noise decaying factor 0.99 

 σ noise standard deviation 0.20, 0.40, 0.60  
 
 
 

IV. SIMULATION SET-UP 
We used a Mac OS v12.01 computer to train the model. 

It is equipped with a processor of 2.6GHz 6-Core Intel Core 
′ ′ 

θQ, θµ, θQ , θµ ← ym, θQ, θµ, η, see Eq. 21-26 i7-9750H, 16GB of RAM and AMD Radeon Pro 5300M GPU. 
′ ′ 

Return θQ,θµ,θQ , θµ 
 

 
 

following Eq.3. The MADDPG architecture includes multiple 
AC networks and independent replay buffers Dk. Algorithm.2 
demonstrates its learning procedure. Further, as per previous 
studies [18], [20], the notions and values tuned for hyperpa- 
rameters are presented in Table. III. 

 
 

Algorithm 2 Pseudocode of MADDPG Algorithm  

Input I, c, M, T, K, S0, η 

 
A. Road Networks Configuration 

We designed a parametric generation function in SUMO to 
create customised road network samples. Among the samples 

are simple road components such as T-junctions, intersections, 
and roundabouts. Moreover, it can be integrated with Open- 
StreetMap (OSM) data to configure real-world road networks. 

This study utilised four road geometries and a real-world 
road network for testing. As illustrated in Fig. 3, testing 

cases include a street section, a T-junction, an intersection 
and a roundabout. The street section consists of two counter- 

directional edges (|K|=2) in a length of 100m. The initial lay- 
out has three lanes in each direction and each 3.5m wide. The 

total edge width is w=13m, and the facility belt ratio equals 
′ Initialise θQ,θµ ,θQ ′ ← θQ, θµ ← θµ, D ← c, T ← |M| ψ = 1.5m . Following such a basic setting, the remaining three 

k  k k k k k k k 13m 
for i = 0 : (|I| − 1) do: 

Initialise e see Eq. 18 
 

% ON-POLICY ACTING AND SIMULATION 
for t = e : (|T| − 1) do: 

for k = 0 : (|K| − 1) do: 
At,i ← ak,t,i, see Eqs. 8-12 

St+1,i, rk,t,i ← TraCI(At,i, lk,t,i) see Eq. 3 
for k = 0 : (|K| − 1) do: 

{sk,t+1,i} ← St+1,i 
Dk := ⟨ak,t,i, sk,t,i, rk,t,i, sk,t+1,i⟩ 

 
% OFF-LINE LEARNING 
for k = 0 : (|K| − 1) do: 

random sample Tk ← Dk, |M| 
for m = 0 : (|M| − 1) do: 

′ yk,m ← θQ , Tm, see Eq. 20 

cases are developed with respective dimensions of |K|=6, 8, 
and 12. The straight edges of the roundabout are 50m long. 

Next, we chose the Belgrave road network as a real-world 
case for study, which is demonstrated in Fig. 4. Located in 
London’s busiest and central districts (Latitude: 51.497020, 
Longitude: −0.151790), this complex network includes 326 
edges (|K|=326), 58 T-junctions, 23 intersections, one radial 
intersection, and three irregular roundabouts. Edges are topo- 
logically heterogeneous regarding lengths, ROW compositions 
and connections. On average, the total edge width is 8.50m, 
the length is 49.30m, and the street-side width is 2.28m. 

 
B. Dynamics of Road Users and Travel Demand 

We calibrated driving behaviours of AVs and pedestrian 
movement dynamics based on previous studies [18], [54]. 
Namely, AVs can travel at a top speed vm=30km/h, the 
time headway is 0.60s. The maximum walking speed pm 

′ ′ θQ, θµ, θQ , θµ 
k 

← yk,m, θQ, θµ, η, see Eqs. 21-26 of pedestrians is 1.3m/s. Each OD pair travel demand is 
k k k′ k′ k k 

Return θQ,θµ,θQ , θµ 
planned on a half-hour schedule, contributing to |T|=48 time 
steps. The flow rates of AVs and pedestrians demonstrate 
bimodal distribution [55], which equals 114veh/h and 21p/h 
on average per o-d pair. 
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Fig. 3. Basic road components for testing. (a) Street section case, (b) T- 
junction case, (c) Intersection case, (d) Roundabout case 

 

 
Fig. 4. The configuration and surroundings of the London Belgrave Network 

 
 

V. RESULTS AND DISCUSSION 
DDPG and MADDPG algorithms were applied separately 

to each case for training in 150 epochs (avg. 4080 time 
steps). For these five cases, DDPG takes 110, 248, 513, 
388, and 848mins to compute. For MADDPG, those are 71, 
108, 184, 195 and 503mins, respectively. In comparison with 
DDPG, MADDPG’s total running time is 49.64% shorter, 
demonstrating its greater algorithmic efficiency. 

 
A. Results on Road Component Cases 

Fig. 5 presents the epoch-wise rewards under four road 
geometries, namely the street section, the T-junction, the 
intersection and the roundabout case. X-axes index training 
epochs and Y-axes on either side mark the ranges of rewards 
of DDPG (  ) and MADDPG (  ). 

In independent courses of training, DDPG and MAD- 
DPG improve rewards by 6.30% and 4.62%, respectively. 
MADDPG outperforms DDPG in benchmark rewards, optimal 

Fig. 5. Convergence patterns of DDPG (  ) and MADDPG (  ) under 
under cases of four road components. (a) Street section case, (b) T-junction 
case, (c) Intersection case, (d) Roundabout case. 

 
 

rewards, and sheer improvements by 42.56%, 24.98%, and 
33.62%, respectively. 

As the dimension increases, both the benchmark rewards 
and the learnt optima decrease. In the roundabout case, for 
example, the initial rewards are -6.52% (DDPG) and -3.16% 
(MADDPG) lower than those in the street section case, while 
the found optima decreased by -10.75% and -8.10%, respec- 
tively. 

In cases of the street section, T-junction, and intersection, 
MADDPG reaches the convergence zone earlier than DDPG, 
whereas DDPG is faster only in the case of the roundabout, 
but with 23.51% smaller in the optima. MADDPG and DDPG 
exhibit divergent convergence curvature, as the former shows 
a steady and constant convergence patterns, whereas the latter 
stagnates at a few local optima. 

 
B. Results on the Real-world Road Network 

Simulation results of the real-world case show an average 
AV and pedestrian throughput of 1,664veh/h and 1,289p/h, 
respectively. Driving and walking speeds have been improved 
to some extent. Namely, Table. IV compares the changes in 
observed speeds in the first and last 30 training epochs. 

 
TABLE IV 

VARIATIONS IN THE AVERAGE WALKING AND DRIVING SPEEDS 
 

 Speed Ep.0-30 Ep.120-149 Changes  
Driving (km/h) 20.401 20.772 +15.44% 
Walking (m/s) 0.848 0.865 +2.00%  
Driving (km/h) 18.065 18.076 +0.06% 
Walking (m/s) 0.761 0.762 +0.13%  

 

The rewards and action values are displayed in Fig. 6. 
Fig. 6(a) shows their reward patterns. The benchmark reward 
of MADDPG is greater than those of DDPG by 65.51%. 
Similarly, the optima found by MADDPG is higher than 
DDPG by 505.79. Besides, as |K| substantially increased to 
326, the optima explored by DDPG and MADDPG sharply 

 DDPG 

MADDPG   
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decrease by 61.75% and 48.12%, compared with the street 
section case. 

 

 
Fig. 6. Rewards and actions values for the Belgrave case. (a) Rewards 
obtained by DDPG (  ) and MADDPG (  ). (b) Actions taken by DDPG 
(  ) and MADDPG (  ). 

 
Fig. 6(b) demonstrates the evolving patterns of action values 

for DDPG and MADDPG. Both the initial and optimal values 
of MADDPG are superior to its counterpart. At the initial 
epoch, the action values are 0.596 and 0.678, respectively. 
With a favourable benchmark, MADDPG persistently opti- 
mises its ROW plans and steadily increases the proportion 
of street-side from 0.678 to 0.697. However, DDPG explores 
an optima of 0.603 and increases the street-side proportion by 
1.34%, which is underperformed compared with MADDPG. 

MADDPG demonstrates stronger signs of convergence 
guarantee, with a monotonic increasing trend in the action 
curve, whose optima converges around the 120th epoch. After- 
wards, the pattern shows a gradually narrowing amplitude. In 
contrast, the patterns of action values of DDPG seemly show 
steep learning curve at the initial phase, while signalling a 
slightly weaker convergence guarantee later on, with constant 
vibrations in a range of R[0.600,0.604]. 

In summary, tested against the real-world network case, 
the DDPG and MADDPG have separately optimised their 
control strategies and improved their respective reward to 
55.90% and 72.61% of the ceiling (3,000). Notably, MADDPG 
outperforms DDPG regarding benchmark rewards (25.35%), 
quality of optima (24.58%), optimal action values (13.49%), 
convergence speed and persistence of optimisation. These 
findings provide evidence that distributed learning is more 
effective in controlling heterogeneous agents than centralised 
learning. Such performance gaps widened when comparing 
outcomes of previous four cases with homogeneous agents. 

While DDPG performed poorly than MADDPG, it provided 
the essential architecture and a baseline for its multi-agent 
counterpart. In spite of its poor parallelism and scalability, 
DDPG is theoretically more sample efficient than MADDPG. 
It means that, even when a number of edges could not receive 
adequate observations (e.g. extremely low traffic flow per 

edge), DDPG may still be able to collect sufficient samples 
for centralised training. In such circumstances, the MADDPG 
controller would be invalid. Additionally, we are interested 
in finding out whether adopting a ’sparse reward’ strategy 
would improve its convergence performance and the quality 
of optima. 

 
C. Impact of Variations in Action Exploration 

Variation of noise deviation significantly affects learning 
performance. We have tested three scenarios with different 
noise standard deviation, as per Figs. 7(a)-(c), namely σ= 0.2, 
0.4 and 0.6, whereas the rest variables remain constant. 

Intuitively, all three patterns have shown convergence trends 
following the decaying-ϵ-greedy policy, with convergence rates 
of ±0.0005/ep, ±0.0012/ep and ±0.0018/ep towards zero. 
However, their initial distributions differ significantly, with 
σ=0.6 having the broadest exploration veering off the mean. 

 

 
Fig. 7. Distributions of noise and corresponding learning curves under 
different noise scenarios. Distributions of disturbance: (a) σ=0.2, (b) σ=0.4, 
(c) σ=0.6. Learning curves: (d) σ=0.2, (e) σ=0.4, (f) σ=0.6. 

 
Figs. 7(d)-(f) demonstrate the learning performances of 

corresponding noise conditions. The benchmark reward of 
σ=0.20 is higher than σ=0.40 and 0.60 by 2.33% and 5.15%, 
and with higher (1.83% and 1.96%) explored optima. 

With σ=0.20, the early rewards obtained before 5th epoch 
have already surpassed 2,200. It quickly converges to its 
optima at the 30th epoch. The improvement from 2,144.26 
to 2,200 takes σ=0.40 an additional 40 epochs. Likewise, for 
σ=0.60, its convergence speed is even slower. At the end of 
the learning process, it would take another 90 epochs to reach 
a stable convergence of 2,082.39 to 2,200. 

We conclude that a lower noise standard deviation may 
lead to favourable benchmark rewards, quicker convergence 
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rates, and better optima in this case. Even though greater 
noise disturbance allows broader initial exploration, it does not 
guarantee the convergence given the finite horizon instances. 

 
VI. CONCLUSION 

In this study, we designed an RL model to evolve ROW 
configurations to accommodate varying patterns of AV traffic 
flows and pedestrian movements. The configuration process 
was facilitated by a microscopic traffic simulator, which func- 
tions as an AI Gym environment. A balance was pursued 
between traffic flow efficiency and the space allocated to 
non-vehicular road users. We further employed two different 
solvers - DDPG and MADDPG - for the representation of the 
centralised and distributed learning strategies, respectively. 

Experimental results showed that DDPG and MADDPG 
optimised ROW compositions, which are active mobility- 
friendly, and improved traffic flow efficiency. MADDPG out- 
performed DDPG in computational time, obtained benchmark 
rewards, best cumulative rewards, optimal action values and 
convergence speed. In addition, the learning patterns of MAD- 
DPG demonstrated a stronger convergence guarantee than its 
counterpart. Moreover, the distributive learning strategy out- 
performed its centralised counterpart in heterogeneous multi- 
agent systems. 

There is potential to improve this study regarding the 
demands of multiple road space stakeholders. Second, we 
plan to improve the RL method regarding sample efficiency 
and exploration policy. In addition, new RL algorithms would 
be tested for better solutions regarding the overestimation 
of Q-values and the hyperparameters sensitivity problem. To 
better motivate the reward mechanism, the current reward 
architecture might be re-designed. For instance, the quadratic 
terms of the immediate reward could be weighted differently 
depending on the time of day or location. 

We would apply more realistic road configurations and 
travel demand patterns for testing. Meanwhile, this RL method 
is promising to be integrated with intelligent road infrastruc- 
ture for an end-to-end allocation of ROWs. 

 
REFERENCES 

[1] W. Zhang, S. Guhathakurta, and E. B. Khalil, “The impact of private 
autonomous vehicles on vehicle ownership and unoccupied vmt genera- 
tion,” Transportation Research Part C: Emerging Technologies, vol. 90, 
pp. 156–165, 2018. 

[2] S. International, “Sae levels of driving automation refined for clarity 
and international audience,” 2021, [Accessed 19-Jan-2022]. [Online]. 
Available: https://www.sae.org/blog/sae-j3016-update 

[3] D. Omeiza, H. Webb, M. Jirotka, and L. Kunze, “Explanations in 
autonomous driving: A survey,” IEEE Transactions on Intelligent Trans- 
portation Systems, 2021. 

[4] J. Van Brummelen, M. O’Brien, D. Gruyer, and H. Najjaran, “Au- 
tonomous vehicle perception: The technology of today and tomorrow,” 
Transportation research part C: emerging technologies, vol. 89, pp. 384– 
406, 2018. 

[5] R. Utriainen, “The potential impacts of automated vehicles on pedestrian 
safety in a four-season country,” Journal of Intelligent Transportation 
Systems, vol. 25, no. 2, pp. 188–196, 2020. 

[6] ERTRAC, “Automated driving roadmap,” 2017, [Accessed 19- 
Apr-2022]. [Online]. Available: https://www.ertrac.org/uploads/images/ 
ERTRAC Automated Driving 2017.pdf 

[7] T. Litman, Autonomous vehicle implementation predictions. Victoria 
Transport Policy Institute Victoria, Canada, 2017. 

 
[8] R.  Snyder,  “Street  design  implications  of au- 

tonomous vehicles,” 2018, [Accessed 11-May-2022]. [On- 
line]. Available: https://www.cnu.org/publicsquare/2018/03/12/ 
street-design-implications-autonomous-vehicles 

[9] S. E. Shladover, D. Su, and X.-Y. Lu, “Impacts of cooperative adaptive 
cruise control on freeway traffic flow,” Transportation Research Record, 
vol. 2324, no. 1, pp. 63–70, 2012. 

[10] J. Moavenzadeh and N. S. Lang, “Reshaping urban mobility with au- 
tonomous vehicles: Lessons from the city of boston,” in World Economic 
Forum, 2018. 

[11] A. R. Alozi and K. Hamad, “Quantifying impacts of connected and 
autonomous vehicles on traffic operation using micro-simulation in 
dubai, uae.” in VEHITS, 2019, pp. 528–535. 

[12] Department of Transport, Government of UK, “The highway code, 
hierarchy of road users,” 2022, [Accessed 30-Apr-2022]. [Online]. 
Available: https://www.gov.uk/guidance/the-highway-code/introduction 

[13] D. L. Prytherch, “Legal geographies—codifying the right-of-way: Statu- 
tory geographies of urban mobility and the street,” Urban Geography, 
vol. 33, no. 2, pp. 295–314, 2012. 

[14] NACTO, “Blueprint for autonomous urbanism,” 2017, [Accessed 
31-Aug-2021]. [Online]. Available: https://nacto.org/publication/bau2 

[15] A. Howell, N. Larco, R. Lewis, and B. Steckler, “New mobility in the 
right-of-way,” Urbanism Next - University of Oregon, Tech. Rep. 73, 3 
2019. 

[16] W. Riggs, B. Appleyard, and M. Johnson, “A design framework for 
livable streets in the era of autonomous vehicles,” Urban, Planning and 
Transport Research, vol. 8, no. 1, pp. 125–137, 2020. 

[17] Q. Ye, S. M. Stebbins, Y. Feng, E. Candela, M. Stettler, and P. An- 
geloudis, “Intelligent management of on-street parking provision for the 
autonomous vehicles era,” in 2020 IEEE 23rd International Conference 
on Intelligent Transportation Systems (ITSC). IEEE, 2020, pp. 1–7. 

[18] Q. Ye, Y. Feng, E. Candela, J. Escribano Macias, M. Stettler, and 
P. Angeloudis, “Spatial-temporal flows-adaptive street layout control 
using reinforcement learning,” Sustainability, vol. 14, no. 1, p. 107, 
2022. 

[19] U. Gunarathna, H. Xie, E. Tanin, S. Karunasekara, and R. Borovica- 
Gajic, “Real-time lane configuration with coordinated reinforcement 
learning,” in Joint European Conference on Machine Learning and 
Knowledge Discovery in Databases. Springer, 2020, pp. 291–307. 

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, 
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement 
learning,” arXiv preprint arXiv:1509.02971, 2015. 

[21] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, 
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing 
Magazine, vol. 34, no. 6, pp. 26–38, 2017. 

[22] M. Amirgholy, M. Shahabi, and H. O. Gao, “Traffic automation and 
lane management for communicant, autonomous, and human-driven 
vehicles,” Transportation research part C: emerging technologies, vol. 
111, pp. 477–495, 2020. 

[23] M. W. Levin and A. Khani, “Dynamic transit lanes for connected and 
autonomous vehicles,” Public Transport, vol. 10, no. 3, pp. 399–426, 
2018. 

[24] B. Yan, P. Wu, and L. Xu, “Optimal design of reserved lanes for auto- 
mated truck considering user equilibrium,” in 2021 IEEE International 
Conference on Networking, Sensing and Control (ICNSC), vol. 1. IEEE, 
2021, pp. 1–6. 

[25] N. Casas, “Deep deterministic policy gradient for urban traffic light 
control,” arXiv preprint arXiv:1703.09035, 2017. 

[26] W. Genders, “Deep reinforcement learning adaptive traffic signal con- 
trol,” Ph.D. dissertation, McMaster University, Hamilton, ON, Canada, 
2018. 

[27] K. Gregg and P. Hess, “Complete streets at the municipal level: A review 
of american municipal complete street policy,” International journal of 
sustainable transportation, vol. 13, no. 6, pp. 407–418, 2019. 

[28] E. Dumbaugh and M. King, “Engineering livable streets: A thematic 
review of advancements in urban street design,” Journal of Planning 
Literature, vol. 33, no. 4, pp. 451–465, 2018. 

[29] N. A. of City Transportation Officials, Global street design guide. Island 
Press, 2016. 

[30] Federal Highway Administration, U.S., “Traffic data computation 
method, pocket guide,” 2018, [Accessed 11-May-2022]. [Online]. 
Available: https://www.fhwa.dot.gov/policyinformation/pubs/pl18027 
traffic data pocket guide.pdf 

   

[31] E. Gravelle and S. Mart´ınez, “Distributed dynamic lane reversal and 
rerouting for traffic delay reduction,” International Journal of Control, 
vol. 91, no. 10, pp. 2355–2365, 2018. 



ACCEPTED VERSION - IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11 
 

 
[32] Z. H. Khattak, B. L. Smith, M. D. Fontaine, J. Ma, and A. J. Khattak, 

“Active lane management and control using connected and automated 
vehicles in a mixed traffic environment,” Transportation Research Part 
C: Emerging Technologies, vol. 139, p. 103648, 2022. 

[33] Z. Zhang and S. Tang, “Enhancing urban road network by combining 
route planning and dynamic lane reversal,” in 2021 Thirteenth Inter- 
national Conference on Mobile Computing and Ubiquitous Network 
(ICMU). IEEE, 2021, pp. 1–6. 

[34] A. Filos, “Reinforcement learning for portfolio management,” arXiv 
preprint arXiv:1909.09571, 2019. 

[35] D. Ernst, M. Glavic, F. Capitanescu, and L. Wehenkel, “Reinforcement 
learning versus model predictive control: a comparison on a power 
system problem,” IEEE Transactions on Systems, Man, and Cybernetics, 
Part B (Cybernetics), vol. 39, no. 2, pp. 517–529, 2008. 

[36] R. Bellman, “The theory of dynamic programming,” Bulletin of the 
American Mathematical Society, vol. 60, no. 6, pp. 503–515, 1954. 

[37] A. Agrawal, S. Barratt, S. Boyd, and B. Stellato, “Learning convex 
optimization control policies,” in Learning for Dynamics and Control. 
PMLR, 2020, pp. 361–373. 

[38] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-based rein- 
forcement learning: A survey,” arXiv preprint arXiv:2006.16712, 2020. 

[39] P. Beuchat, A. Georghiou, and J. Lygeros, “Alleviating tuning sensitivity 
in approximate dynamic programming,” in 2016 European Control 
Conference (ECC). IEEE, 2016, pp. 1616–1622. 

[40] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, 
and S. Levine, “Combining model-based and model-free updates for 
trajectory-centric reinforcement learning,” in International conference 
on machine learning. PMLR, 2017, pp. 703–711. 

[41] D. Bertsekas, Reinforcement learning and optimal control. Athena 
Scientific, 2019. 

[42] J. Bao, G. Zhang, Y. Peng, Z. Shao, and A. Song, “Learn multi-step 
object sorting tasks through deep reinforcement learning,” Robotica, pp. 
1–17, 2022. 

[43] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. 
MIT press, 2018. 

[44] Y. Yu, “Towards sample efficient reinforcement learning.” in IJCAI, 
2018, pp. 5739–5743. 

[45] R. Lincoln, S. Galloway, B. Stephen, and G. Burt, “Comparing policy 
gradient and value function based reinforcement learning methods in 
simulated electrical power trade,” IEEE Transactions on Power Systems, 
vol. 27, no. 1, pp. 373–380, 2011. 

[46] N. Hammami and K. K. Nguyen, “On-policy vs. off-policy deep rein- 
forcement learning for resource allocation in open radio access network,” 
in 2022 IEEE Wireless Communications and Networking Conference 
(WCNC). IEEE, 2022, pp. 1461–1466. 

[47] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, 
and A. Madry, “Implementation matters in deep rl: A case study on 
ppo and trpo,” in International conference on learning representations, 
2019. 

[48] X. Xiong, J. Wang, F. Zhang, and K. Li, “Combining deep reinforce- 
ment learning and safety based control for autonomous driving,” arXiv 
preprint arXiv:1612.00147, 2016. 

[49] A. Ostovar, O. Ringdahl, and T. Hellstro¨m, “Adaptive image thresholding 
of yellow peppers for a harvesting robot,” Robotics, vol. 7, no. 1, p. 11, 
2018. 

[50] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, 
J. Tang, and W. Zaremba, “Openai gym,” 2016. [Online]. Available: 
https://arxiv.org/abs/1606.01540 

[51] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flo¨ttero¨d, 
R. Hilbrich, L. Lu¨cken, J. Rummel, P. Wagner, and E. Wießner, 
“Microscopic traffic simulation using sumo,” in The 21st IEEE 
International Conference on Intelligent Transportation Systems. IEEE, 
2018. [Online]. Available: https://elib.dlr.de/124092/ 

[52] M. Coggan, “Exploration and exploitation in reinforcement learning,” 
Research supervised by Prof. Doina Precup, CRA-W DMP Project at 
McGill University, 2004. 

[53] E. Kharitonov, “Empirical study of matrix factorization methods for col- 
laborative filtering,” in International Conference on Pattern Recognition 
and Machine Intelligence. Springer, 2011, pp. 358–363. 

[54] A. Raffin, M. Taragna, and M. Giorelli, “Adaptive longitudinal control 
of an autonomous vehicle with an approximate knowledge of its pa- 
rameters,” in 2017 11th International Workshop on Robot Motion and 
Control (RoMoCo). IEEE, 2017, pp. 1–6. 

[55] S. Susilawati, M. A. Taylor, and S. V. Somenahalli, “Distributions of 
travel time variability on urban roads,” Journal of Advanced Transporta- 
tion, vol. 47, no. 8, pp. 720–736, 2013. 

 
VII. BIOGRAPHY SECTION 

 
Qiming Ye is a PhD student at the Transport Sys- 
tems and Logistics Laboratory (TSL) in the De- 
partment of Civil and Environmental Engineering 
at Imperial College London. He received the BEng 
and MEng Degrees in urban planning from Tongji 
University, with an additional Master’s Degree in 
urban planning and policy design from Politecnico 
di Milano. His research focuses on smart city eval- 
uation systems and management techniques, i.e. the 
optimisation and control models for urban space in 
the era of autonomous vehicles transport. 

 
Yuxiang Feng is a Research Associate at the Trans- 
port Systems and Logistics Laboratory (TSL) in the 
Department of Civil and Environmental Engineering 
at Imperial College London. He received a BEng in 
Mechanical Engineering from Tongji University and 
an MSc in Mechatronics and PhD in Automotive 
Engineering from the University of Bath. His main 
research interests include environment perception, 
sensor fusion and artificial intelligence for robotics 
and autonomous vehicles. 

 
 

Jose Javier Escribano Macias is a Research Asso- 
ciate at the Transport Systems and Logistics Labo- 
ratory (TSL), Centre for Transport Studies (CTS) at 
Imperial College London. He joined CTS in October 
2015 as part of the EPSRC Centre for Doctoral 
Training (CDT) in Sustainable Civil Engineering and 
was awarded his PhD in March 2021. His research 
focuses on collaborative vehicle control, optimisa- 
tion of last-mile logistics, urban air mobility, and 
machine learning and game theoretical models. 

 
 

Marc Stettler is a Reader in Transport and the 
Environment in the Department of Civil and Envi- 
ronmental Engineering at Imperial College London. 
He leads the Transport & Environment Laboratory 
within the Centre for Transport Studies (CTS) and 
also the Network of Excellence in Aerosols and 
Health. He completed his PhD on the impacts of 
aviation emissions at the University of Cambridge 
in 2013. His research focuses on evaluating and 
reducing the effect of transport activity on climate 
change and air pollution, with particular attention to 

understanding sources of greenhouse gases (GHGs) and pollutant emissions, 
especially nanoparticles. 

 
Panagiotis Angeloudis is Reader and Head of the 
Transport Systems and Logistics Laboratory (TSL), 
based in the Centre for Transport Studies (CTS) 
at Imperial College London. Before establishing 
TSL, Panagiotis held a JSPS Research Fellowship 
at Kyoto University. He previously obtained a PhD 
in Transportation at Imperial College London and 
spent periods as a research analyst at DP World 
and the United Nations in Geneva. His research 
focuses on the intersection of autonomous systems, 
multi-agent modelling and network optimisation and 

their applications to freight distribution and passenger transportation. His 
research group specialises in developing high-performance, scalable models 
that capture the interactions between users, providers, infrastructure and 
operating regimes. 


