
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

CF-YOLO: Cross Fusion YOLO for Object
Detection in Adverse Weather with a High-quality

Real Snow Dataset
Qiqi Ding, Peng Li, Xuefeng Yan, Ding Shi, Luming Liang, Weiming Wang, Member, IEEE, Haoran Xie, Senior

Member, IEEE, Jonathan Li, Senior Member, IEEE, and Mingqiang Wei, Senior Member, IEEE

Abstract—Snow is one of the toughest adverse weather con-
ditions for object detection (OD). Currently, not only there is a
lack of snowy OD datasets to train cutting-edge detectors, but
also these detectors have difficulties learning latent information
beneficial for detection in snow. To alleviate the two above
problems, we first establish a real-world snowy OD dataset,
named RSOD. Besides, we develop an unsupervised training
strategy with a distinctive activation function, called Peak Act,
to quantitatively evaluate the effect of snow on each object. Peak
Act helps grading the images in RSOD into four-difficulty levels.
To our knowledge, RSOD is the first quantitatively evaluated
and graded snowy OD dataset. Then, we propose a novel Cross
Fusion (CF) block to construct a lightweight OD network based
on YOLOv5s (call CF-YOLO). CF is a plug-and-play feature
aggregation module, which integrates the advantages of Feature
Pyramid Network and Path Aggregation Network in a simpler
yet more flexible form. Both RSOD and CF lead our CF-YOLO
to possess an optimization ability for OD in real-world snow.
That is, CF-YOLO can handle unfavorable detection problems
of vagueness, distortion and covering of snow. Experiments show
that our CF-YOLO achieves better detection results on RSOD,
compared to SOTAs. The code and dataset are available at
https://github.com/qqding77/CF-YOLO-and-RSOD.

Index Terms—CF-YOLO, RSOD dataset, Snowy object detec-
tion, Peak act, Cross fusion

I. INTRODUCTION

CNN-based detectors heavily depend on the integrity of
objects in an image [1]–[3]. Unfortunately, objects are

often partially or even fully covered by snow in winter. Images
captured under such adverse weather will spontaneously lose
the significant information of describing objects, thus easily
leading to the collapse of most object detection (OD) methods
which originally behave well in normal weather [4]–[6].

There exist two major challenges in detecting objects cov-
ered by snow: (1) Capturing snow/snow-free image pairs in
real-world scenarios is extremely difficult or nearly impos-
sible. Therefore, existing detectors will train themselves on
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benchmark datasets either captured under normal weather con-
ditions [7]–[10] or by synthetic snow (e.g., SnowCityScapes
[11]). Such trained models have the well-known domain shift
problem, thus generalizing poorly in real-world snowy sce-
narios. (2) Existing detectors have difficulties learning latent
information beneficial for detection in snow, since snow can
destroy the low-level vision information (texture, outline, etc.)
of the objects in the images.

In this paper, we observe that the performance of current
vision techniques is still mainly benchmarked under normal
weather conditions. Even the top-performing object detec-
tors undergo severe performance degradation under adverse
weather conditions. Therefore, we raise a practically mean-
ingful detection question under adverse weather: Does the
synergy of establishing a real-snow OD dataset and developing
a feature aggregation module to learn latent information,
actually enhance the capability of cutting-edge OD networks
in the snowy condition?

To answer this question, (1) we collect a high-quality
outdoor dataset (RSOD) towards real-snow object detection.
RSOD contains 2100 real-world snowy images annotated in
the format of COCO and YOLO (with labeled pedestrians,
cars, traffic lights, etc.). (2) We endeavor to quantitatively
evaluate the effect of snow on each object by introducing
an indicator called snow coverage rate (SCR). In order to
calculate SCR, we develop an unsupervised training strategy to
train a CNN model with a distinctive activation function called
Peak Act. SCR is exploited to grade the images in RSOD
into four-difficulty levels (i.e., easy, normal, difficult, and
particularly difficult). Since objects covered under different
degrees of snow distinctly affect the performance of detectors,
we need such gradation to understand how snow degrades
the accuracy of object detection. (3) We propose a plug-
and-play Cross Fusion (CF) block. Instead of relying on
the traditional top-down and bottom-up operations [12], the
CF block simultaneously aggregates features from different
stages of the backbone. By directly fusing these features, the
destroyed low-level information of the objects in the high-
level features can be recovered. Besides, the CF block supports
different in-out stages, making it a more flexible and adaptive
plug-and-play module. (4) We propose a lightweight object
detection network named CF-YOLO by replacing the neck of
YOLOv5s with CF. Experiment results on RSOD and COCO
clearly show that our CF-YOLO not only has an excellent
optimization ability for OD in the real-world snowy scene but
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also possesses an effective generalization ability.
Our main contributions are summarized as follows:
• We present a real-world snowy OD dataset (RSOD). The

new dataset is labeled in both the COCO and YOLO
formats. To our knowledge, this is the first dataset that
focuses on improving the OD accuracy in real-world
snowy scenarios.

• We introduce an indicator called snow coverage rate
(SCR) and develop an unsupervised training strategy to
train a CNN model with a distinctive activation function
(Peak Act) to quantitatively evaluate the effect of snow
on each object. We grade the images in RSOD into four-
difficulty levels based on the evaluation. Such grading is
helpful to better understand how the snow degrades the
OD performance.

• We propose a new plug-and-play Cross Fusion (CF) block
to aggregate features from different stages in a time with
the flexibility of allowing different in-out stages. Users
can adjust the numbers of stages, layers of CF and the
size of parameters in different networks to explore the
CF’s performance.

• Many outdoor vision systems (e.g., autonomous driving,
surveillance) are required to operate smoothly in snowy
weather. We propose a lightweight yet effective CF-
YOLO to facilitate outdoor applications in the frequent
scenarios of snow.

The rest of this work is organized as follows. Section II in-
troduces the related works from four aspects: object detection
in normal weather, object detection in adverse weather, image
desnowing and benchmark datasets of snowy weather, and
feature fusion. Section III describes our constructed real-world
snowy object detection dataset (RSOD). Section IV introduces
the proposed CF-YOLO to promote the detection accuracy
in snowy weather. Section V shows the sufficient experiment
results to demonstrate the effectiveness of CF-YOLO. Section
VI concludes this work.

II. RELATED WORK

In this section, we first discuss the techniques of different
object detectors in normal weather. Then we introduce the
existing solutions for object detection in adverse conditions.
After that, we discuss the existing works and datasets on
snowy weather. Finally, we make a brief comparison of
different feature fusion modules.

A. Object Detection in Normal Weather

Object detection predicts both the labels and bounding
boxes of objects. Existing methods are either two-stage or
one-stage based, which usually contain a backbone for feature
extraction, a neck for feature fusion and a head for prediction.
Two-stage detectors first generate regions of interest (RoIs)
from the image, and then classify these RoIs by training deep
networks; representative methods include R-CNN [13] and
its variants, such as fast R-CNN [14], faster R-CNN [4], R-
FCN [15], and Libra R-CNN [16]. Different from the highly
accurate but very time-consuming two-stage detectors, one-
stage detectors utilize a single CNN to directly predict object

labels and bounding boxes; representative methods include
YOLO [17]–[19], SSD [20], RetinaNet [21] and EfficientDet
[22]. One-stage detectors are relatively faster with much higher
FPS than two-stage detectors. DETR [23] is the first model to
introduce the transformer into object detection task and regards
OD as a query prediction problem.

B. Object Detection in Adverse Weather

A detector trained on clean images usually fails to yield de-
sirable results under adverse weather conditions (e.g., snowy,
rainy, hazy and low-light), due to the domain shift in input
images [24]. Currently, there are mainly three solutions to
alleviate image degradation. The first solution is to dilute
the effect of weather-specific information by a pre-processing
step, such as image desnowing/derainig/dehazing [11], [25]
or low-light image enhancement [26]. As known, both the
weather-specific information and image details (an important
cue for object detection) are both of high frequency and small
in scale. Although complicated image restoration models are
designed and trained on synthetic data with strong pixel-
level supervision, they still lose image details easily. The
second solution is to jointly learn image restoration and object
detection by two-branch networks [2], where the two branches
share the feature extraction layers. However, it is hard to
balance the two tasks during training. The third solution is
to exploit unsupervised domain adaptation [1] to align the
features of clean images (sources) and images captured under
adverse weather (targets). However, the latent information
that is beneficial for detection is often ignored during image
restoration.

C. Snowy Datasets

Due to the lack of real-world paired snow/snow-free images,
existing datasets on snowy weather are generally obtained by
adding snow masks to clean images, like Snow100K in [27],
SnowKITTI2012 [11], and SnowCityScapes [11]. Existing
snow removal methods trained on these synthetic datasets
always have good performance but deteriorate significantly on
real-world snowy images. Meanwhile, they only remove snow
in the air, ignoring the fact that objects are often covered
by snow which affects the performance of object detection.
Moreover, the results of these methods will lose image details
(an important cue for high-level vision tasks), since image
details and snow are both of high frequency and small in
scale. Therefore, they inadequately improve the performance
of down-stream applications.

D. Feature Fusion

Existing feature fusion works contain FPN [12], PANet [28],
NAS-FPN [29], BiFPN [22], ASFF [30], etc. FPN integrates
features from different stages of the backbone through a
top-down path. Based on FPN, PANet exploits a bottom-up
path augmentation to enhance the entire feature hierarchy.
The BiFPN Layer [22] is developed for easy and fast multi-
scale feature fusion by bidirectional cross-scale connections.
OctConv [31] decomposes features into different spatial fre-
quencies to improve the efficiency of CNNs. gOctConv [32]
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is proposed which possesses the advantage of flexible feature
fusion for the arbitrary in-and-out branches. In this work, we
exploit gOctConv as the fundamental component of our cross
fusion block, which exhibits a good ability for feature fusion.

III. REAL-WORLD SNOWY OBJECT DETECTION DATASET

A. Dataset Introduction

The established real-world snow object detection dataset,
called RSOD, contains 2100 images captured in various real-
world snowy scenes. To make RSOD convenient to use for
public studies, the labels are fully compatible with MSCOCO
and we provide both COCO and YOLO formats. Fig. III shows
the label distributions in RSOD. Note that most of our captured
snowy images are about townscape and traffic scenes.
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Fig. 1. The label distributions in the proposed RSOD. Most of the annotated
objects are cars (2606 labeled), pedestrians (3159 labeled) and traffic lights
(443 labeled). The detectors perform differently under different snow coverage
rates. We divide snow images into four difficulty levels (i.e. easy, normal, hard,
and particula hard) according to the snow coverage rates.

Considering the fact that the performance of cutting-edge
detectors will deteriorate when objects are covered under
different degrees of snow, we grade the snowy images into four
difficulty levels, i.e., easy, normal, difficult, and particularly
difficult. Such gradation facilitates determining the effect of
snow on objects, which helps to study how snow degrades the
accuracy of object detection.

How to grade the snowy images objectively is the main
challenge to construct the dataset. In order to conduct a fair
gradation of the difficulty levels, we introduce an indicator
called SCR, which is used to calculate the snow coverage rate
(SCR) of different objects. By combining SCR and human
observation, we grade image numbers 1˜600 to the easy level,
601˜1600 to the normal level, 1601˜2000 to the difficult level
and 2001˜2100 to the particularly difficult level. Fig. 1 shows
the typical images of different levels.

B. Unsupervised Training for SCR Calculation

Quantitatively evaluating the effect of snow on the covered
objects is challenging even for humans, since there are no

benchmarks for the evaluation. We assume that the benchmark
of snow effect depends on the snow coverage rate (SCR) in
the object’s bounding box. Therefore, SCR can be formulated
as SCR = Asnow/Abbox, where Asnow, Abbox represent the
areas of snow and bounding box, respectively.

Calculating SCR directly is challenging because it costs a
lot to label out all snow in the dataset. To address this problem,
we develop an unsupervised training strategy to train a CNN
which responds to snow pixels and depresses non-snow pixels.
Inspired by sparse coding, our strategy contains three essential
factors.

First, to respond to snow pixels, we train a CNN model
with images that heavy snow covers most of the image area,
where the corresponding ground truth is a map with the same
size of the input image and with all pixels being equal to 1.
This step will guide the model to map each pixel to the value
of 1, and the convolution kernels in the model will encode
snow features through back propagation.

Second, to depress non-snow pixels, we design an activation
function with a very narrow activation bandwidth, which
allows the response of the convolution kernels to some specific
features like snow, and depress other features. As shown in Fig.
2(d), we call the activation function Peak Act. Since snow
covers the largest area of the images we use to train, it is
natural that convolution kernels will respond to snow pixels
and depress non-snow pixels.

The function of Peak Act lies on the following three rules:
• Be a peak function where the peak is (1, 1). Because our

ground truth is a matrix with all elements being equal to
1, the training process will guide the outputs towards 1.
And the peak will constrain the effective area in a very
small bandwidth, as shown in Fig. 2(d).

• Zero maps to zero. If a zero mapping to a non-zero
value, there will be some lazy convolution kernels with
all weights being equal to 0, which smooth all the pixels
to a non-zero value. Therefore, features of later layers
can be easily equal to the ground truth, which leads to
the failure of the training.

• Be a concave function to make sure that feature values
will not get closer to 1 after passing through the activation
function. Features can only get closer to 1 through
optimization.

The proposed Peak Act is defined as:

f(x) =


0.2x x < 0

x2 0 ≤ x < 1

(x− 2)2 1 ≤ x < 2

−0.2(x− 2) x ≥ 2

(1)

Different from many other activation functions, Peak Act is
not a monotone increasing or a continuously differentiable
function. Our motivation is simple: by limiting the activation
bandwidth of the convolution kernel weights in a very narrow
space, we can obtain a sparse and finite weight matrix that
responds to snow flexibly.

Third, the last layer of the CNN is a Max− out function,
which will output the maximal feature value of every pixel in
the channel dimension, and form a one-channel feature map
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(a) Input (b) CH-31 and SCR (c) CH-11 and SCR

(d) Peak Act (e) CH-31 3D (f) CH-11 3D

Fig. 2. The visualized results of the CNN model. Different channels respond to different image features. The channel-31 (CH-31) responds to snow exclusively
and provides the snow coverage rate of the object. The channel-11 (CH-11) responds to the edge of the object.

1*1 Conv
3-->64

Peak Act

3*3 Conv
3-->64

Peak Act

5*5 Conv
3-->16

Peak Act
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144-->32

Peak Act
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144-->16

Peak Act

5*5 Conv
144-->16

Peak Act

C C

Max out

Training Head

Testing Head

Fig. 3. The structure of CNN in our unsupervised training strategy. During training, we use the output of the training head, a MaxOut layer, to compute
the loss. While testing (i.e., calculating SCR), we use the output of the testing head.

O to compute the loss with the ground-truth (GT ). Due to
the fact that the upper limit of Peak Act is 1, the output
of the network will be always less than or equal to 1. The
Max−out layer will encourage different channels to respond
to different features, leading to highly specific optimizations
of the kernels. We define the loss as:

Loss = α
1

W ∗H
∑
i

∑
j

(GTij −Oij) + β‖P‖1 (2)

where P denotes the network’s parameters, α = 1, and β =
0.0001 are the weights to balance the two terms. The first term
is to guide the optimization direction, and the second is an L1

regularization to get a sparse feature.

The CNN model is shown in Fig. 3. During training and
testing (i.e., calculating SCR), we exploit different heads. The
input image is decomposed into 32 channels by the model,
and we binarize and visualize the feature maps of different
channels. As shown in Fig. 2(b) and Fig. 2(c), the Feature
Map-31 responds to snow very specifically, while the Feature
Map-11 responds to edges. The feature maps which respond
to snow can be used to calculate SCR by counting the light
pixels in the binarized maps. We also visualize the 3D surfaces
of different channels, as shown in Fig. 2(e) and Fig. 2(f), it
clearly shows that the channel-31 responds to the snow area
and depresses the non-snow area distinctively.

The utilization of Peak Act and the proposed CNN model
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Fig. 4. The structure of Cross Fusion. X1, X2, X3, Y1, Y2, Y3 indicate the different stages of input and output branches. The features from each level are
fed into a gOctConv (without sharing weights), a Batch Normalization layer, and a PRelu activation function. The post-processing component of the CF block
is Cross Stage Partial (CSP) [33].

with an unsupervised training strategy are essential to calculate
the SCR and grade the snowy images. More study will be
addressed in Section V.

IV. METHODOLOGY

Recently, cutting-edge detectors achieve remarkable
progress and strengthen many outdoor vision systems, e.g.,
autonomous driving, and surveillance. But these methods also
suffer from various adverse weather and fail to yield desirable
results. Since models trained under normal circumstances do
not assure an advantage over the contaminated scene. As
shown in Tab. I, the performance of various detectors trained
on MSCOCO degrades significantly on RSOD, due to the
domain shift problem.

Put the enormous degradation aside, we also find that some
large objects are more likely to be omitted by YOLOv5s in
snowy images. This may violate our common sense because
many studies have shown that detection models perform better
on large objects. Based on this observation, we make a small
adjustment to YOLOv5s. By setting the detection confidence
threshold to 0.01, we surprisingly find that YOLOv5s has
already detected those large objects in the snowy images
(similar phenomena also exist in many other snowy images),
but the confidence is too low to pass Non-Maximum Sup-
pression (NMS), leading to the mis-prediction, see Fig. 10(b)
for instance. The reason is that heavy snow can change the
outline, texture and surface of objects, missing and distorting
the low-level vision information.

Yolov5s uses the Feature Pyramid and Path Aggregation
Network (FPN+PANet) as the feature fusion module. Fea-
tures pass through a top-down and bottom-up route before
the YOLO prediction head. According to the structure of
YOLOv5s, objects of different sizes are predicted in different
stages, and large objects are predicted in the last stage, which
means large object features pass through the deepest network.
In snowy images, low-level vision information is missed and
distorted, and this meaningless information will propagate
along with the network. In a deep network, the receptive field
of deep layers is relatively large, therefore, deeper layers are
likely to take more meaningless features into account. This

may dilute meaningful features, interfere with the network to
extract meaningful features from objects covered by snow, and
decrease the confidence of the prediction.

A. Cross Fusion
To address this problem, we propose a new Cross Fusion

(CF) block that can directly integrate the features from dif-
ferent levels. The purpose of this module is to shorten the
propagation route instead of making the model more compli-
cated or deeper. This alleviates the dilution of meaningful
features when the network goes deeper. In detail, inspired
by [32], we utilize gOctConv as the fusing component of
the CF module. As shown in Fig. 4, the input feature maps
with different scales are simultaneously fed to the CF layer,
encouraging the last stage to reach low-level features directly.
The CF layer also allows different in-out branches, making CF
a flexible plug-and-play module to adapt to different models.
The post-processing component is the Cross Stage Partial
(CSP) module.

Compared with the top-down and bottom-up structure of
“FPN+PANet”, CF can provide a shorter route between low-
level and high-level features. One of the feature fusion pro-
cesses of CF can be expressed as:

O1 = fCSP (Conv11(X1)⊕ Conv12(Resize(X2))

⊕ Conv13(Resize(X3)))
(3)

fCSP denotes the CSP module and ⊕ means the element-
wise addition. O1 is the up-branch of CF outputs, and other
branches have the same expression. Feature fusion of CF
happens before the post-processing component, while feature
fusion of “FPN+PANet” can only happen sequentially along
with the top-down and bottom-up operations.

B. CF-YOLO
We replace the neck of YOLOv5s with CF and propose

CF-YOLO (see Fig. 5). Besides, the structure of CF-YOLO is
very flexible. It can be easily modified by changing the number
of CF (n), in-out stages (In and Out), and the kernel size of
gOctConv (K). In this work, our CF-YOLO stacks two layers
of CF (n=2). CF-YOLO (K=1), CF-YOLO (K=3) represents
that the kernel sizes of CF equals to 1 and 3 respectively.
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n

CFB CFB

YOLO head

YOLO head

YOLO head

CFB
In=3

Out=3

K=1 or 3

Post=CSP

Fig. 5. The architecture of the proposed CF-YOLO. Modifying the number of
CF (n), in-out stages (In and Out), and the kernel sizes (K) to obtain different
versions of CF-YOLO for different usages.

V. EXPERIMENTS AND DISCUSSION

A. Comparison of different activation functions

Since the input images to the network used to calculate SCR
are heavy snow images, the statistical distribution of training
data concentrates on the feature of snow, which encourages
the network to respond to snow. To verify the effectiveness of
our proposed Peak Act, we compare the general activation
functions, namely Sigmoid, ReLU [34] and Leaky ReLU
[35] with Peak Act. And we select the best feature map
visualization results for comparison.

As shown in Fig. 6, the output of the CNN models using
different activation functions performs distinctively. Sigmoid
(column 1) cannot identify the difference between snow and
non-snow areas. The best feature map almost equals to GT ,
which is a matrix with all elements equal to 1. For ReLU
(column 2) and Leaky ReLU (column 3), feature values of
different areas are not distinctive enough, thus we cannot
calculate the SCR. The model with Leaky ReLU in former
layers and Peak Act in the last layer (column 4) shows a
much better performance than networks that only use general
activation functions. But the details of the best feature map are
not as good as the network using Peak Act only. Only Peak
Act can ensure that the model separates out the snow features
from non-snow features. We have to raise this question: what
makes Peak Act unique?

As shown in Fig. 7, Peak Act has the following characters
compared with the general activation functions:

• Peak Act has no vanishing gradient problem. The function
has a non-zero and great derivative in the whole domain.
Making the CNN we proposed in the unsupervised train-
ing strategy easy to train.

• The range of Peak Act is [−∞, 1]. It is a finite function
towards the training direction. This helps to maintain the
value of weights great. In the CNN, the feature value
is always less than 1, leading the network to keep the
value of weights great in order to keep the output close
to 1. And greater weight value enlarges the differences
between respond areas and non-respond areas.

• The ground truth we generate in the unsupervised training
strategy is the peak of Peak Act. This limits the output of
convolutions in a very narrow bandwidth, which leads to
the sparsity of kernels. With Peak Act, different channels
have to concentrate on specific features.

Sigmoid is a finite function towards the training direction
like Peak Act. Since the lim

N→+∞
= 1, this will lead the

vanishing gradient problem. Moreover, it allows ‘lazy’ kernels
to have very great weight values, forcing the outputs of every
pixel close to 1. And there will be no differences between
snow areas and non-snow areas.

For Leaky ReLU, it has no limit or vanishing gradient
problem, but it is an infinite function towards the training
direction. When the feature value is very large, the weight
value will be small, which will narrow the gap between snow
and non-snow areas.

For ReLU, it has the disadvantages of both Sigmoid and
Leaky ReLU.

All of the above reasons make the proposed Peak Act
unique. By leveraging the Peak Act and the unsupervised
training strategy, we obtain the maps using only dozens of
snow images and a few minutes of training time, making
quantitatively evaluating snowy images possible. Our network
can figure out the snow areas in images that are not used
during training. As shown in Fig. 8, the network successfully
generates feature maps of snow and enables the calculation of
SCR. For image (a), the SCR1 = 0.75, here SCR1 indicates
the SCR of object 1. For image (b), the SCR1 = 0.51,
SCR2 = 0.58. For image (c), the SCR1 = 0.74. For image
(d), the SCR1 = 0.35, SCR2 = 0.56, SCR3 = 0.09,
SCR4 = 0.07. Image (a) and (c) get much higher SCR,
which coincides with human observation. It proves that our
unsupervised training strategy can quantitatively evaluate the
effect of snow.

B. Performance of Detectors on RSOD

Our CF-YOLO is implemented in PyTorch. All training
settings are as same as YOLOv5s (the batch size=32, the
SGD optimizer with the momentum of 0.937 and the weight
decay of 0.0005, and the learning rate=0.01). We compare our
CF-YOLO with different SOTA methods, including YOLOv5s
[19], SSD300 [20], EfficientDet D0 and D1 [22].

Furthermore, RSOD is divided into the training, validation
and test sets with 1701, 189 and 210 images respectively. To
balance the difficulty of each subset, the images are randomly
allocated to the subsets.

In order to verify the four-difficulty levels of RSOD, we test
on the four levels respectively and the whole dataset. For a
fair comparison, all detectors are trained with MSCOCO only.
As shown in Table I, CF-YOLO achieves steady and obvious
advantages over SOTAs in each difficulty level and the whole
dataset. Besides, as shown in Fig. 9, compared with YOLOv5s,
CF-YOLO has a higher confidence in detection results and
can reduce missed and false detections. The reason is that the
proposed CF block enables the direct interaction of the features
at different levels, so that the meaningful information diluted
in the high-level features can be recovered. Furthermore,
as shown in Table I, detectors suffer severe degradation on
different difficulty levels. This proves that our grading method
can accurately grade snow images into different levels.

Subsequently, to compare the performance of different
methods after training on the RSOD dataset, we train the
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(a) Best feature map using
Sigmoid

(b) Best feature map using
ReLU

(c) Best feature map using
Leaky ReLU

(d) Best feature map using
Leaky ReLU and Peak Act
in last layer

(e) Best feature map using
Peak Act

(f) 3D surface of best chan-
nel using Sigmoid

(g) 3D surface of best chan-
nel using ReLU

(h) 3D surface of best chan-
nel using Leaky ReLU

(i) 3D surface of best chan-
nel using Leaky ReLU and
Peak Act in last layer

(j) 3D surface of best chan-
nel using Peak Act

Fig. 6. The visualized results of the CNN model with different activation functions. The model with Peak Act generates the clearest feature map to calculate
the SCR.

(a) Peak Act (b) Sigmoid (c) ReLU (d) Leaky ReLU

(e) Peak Act gradient (f) Sigmoid gradient (g) ReLU gradient (h) Leaky ReLU gradient

Fig. 7. Different activation functions and their gradients.

detectors on RSOD with the MSCOCO pre-trained weights.
We train the networks with only 20 epochs, which is enough
since RSOD is much smaller than MSCOCO. As shown in
Tab. II, CF-YOLO still outperforms SOTAs a lot on the
validation and test sets, which confirms the advantage of CF-
YOLO in snow weather.

To further study how CF works, we conduct PCA for the
outputs of both our CF block and the aggregation module
in YOLOv5s (see Fig. 10 (c) and (d)): the red points
indicate the object pixels and the blue points represent
the background pixels. We calculate the average distance to
the center of its corresponding cluster. It is easy to find that the
object pixels of CF-YOLO are better clustered in the feature
space, which demonstrates the efficiency of our method on the
snowy scenes.

C. Performance of Detectors on MSCOCO

To further investigate the generalization ability of CF-
YOLO, we train two versions (K = 1 or 3) of CF-YOLO
from scratch for 300 epochs on MSCOCO. Tab. III shows
the comparison between CF-YOLO and SOTAs on MSCOCO.
We can see that CF-YOLO with the kernel size of K = 1
or K = 3 achieves close results to YOLOv5s. It means our
CF-YOLO performs well in snowy weather while still being
competitive in normal weather.

D. Computational Complexity

CF-YOLO (K=3) has much more parameters than
YOLOv5s and CF-YOLO (K=1) (see Tab. III), since gOctConv
handles feature maps from and to all stages simultaneously,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. The visualized results of the proposed model with the unsupervised training strategy. SCR is marked in the generated maps.

TABLE I
COMPARISON WITH EXISTING METHODS FOR OBJECT DETECTION ON OUR PROPOSED DATASET. DETECTORS (PRE-TRAINED ON MSCOCO) SHOW VERY

DIFFERENT PERFORMANCES ON RSOD. OUR DATASET WITH THE FOUR-DIFFICULTY LEVELS PROVIDES A QUANTITATIVE WAY TO STUDY THE
DEGRADATION OF DETECTORS IN REAL-WORLD SNOW. YOLO-BASED DETECTORS AVERAGELY WORK BETTER.

Method Easy (600) Normal (1000) Difficult (400) Particularly Difficult (100) All Levels (2100)
AP AP50 AP AP50 AP AP50 AP AP50 AP AP50

YOLOv5s 41.1 61.3 36.1 55.5 26.4 41.3 25.2 39.2 34.3 52.0
EfficientDet D0 (CVPR’20) 20.1 28.6 22.9 34.4 17.1 27.1 29.1 41.0 18.5 27.2
EfficientDet D1 (CVPR’20) 22.4 30.1 26.6 37.6 18.7 29.5 26.6 45.5 21.1 29.9

SSD300 (ECCV’16) 26.1 44.2 27.1 46.8 16.8 29.8 20.5 37.4 23.1 40.2
CF-YOLO (K=1) 45.6 67.5 34.9 55.0 27.7 44.4 30.7 47.1 34.5 53.4
CF-YOLO (K=3) 63.8 72.3 35.5 56.0 26.3 41.5 31.9 44.2 32.7 50.2

(1) Predictions of CF-YOLO

(2) Predictions of YOLOv5s

(3) Outputs of YOLOv5s with confidence threshold=0.001

(1) Predictions of CF-YOLO

(2) Predictions of YOLOv5s

Fig. 9. The predicted results of CF-YOLO and YOLOv5s trained on MSCOCO only. Compared with YOLOv5s, our method: (1) has higher confidence in
detection results (columns 1 and 2); (2) can reduce missed detections (columns 3 and 4); (3) can reduce false detections (columns 5 and 6).

resulting in such the excessively large parameter size. gOct-
Conv takes up most of the parameters in the CF block.
The parameter size of one single CF block rises from 2.3M
to 8.7M with the increase of the kernel size from 1 to 3.
Despite the disproportional parameter rising, CF-YOLO (K=3)
and CF-YOLO (K=1) consume similar hardware resources to
YOLOv5s as we can see their FLOPS are similar. The change
of kernel size improves mAP by 0.6% and 0.4% on MSCOCO
validation set and test set, respectively. The FPS of CF-YOLO
is lower than other methods. This is mainly caused by the
feature fusion process, for CF cannot concurrently conduct

the different stages. Still, the speed of CF-YOLO is sufficient
for possible application scenarios.

VI. CONCLUSION

Adverse weather often creates the visibility problem for
the sensors that power automated systems. While cutting-
edge object detectors have obtained promising results on the
datasets captured in normal weather, it is still non-trivial
to detect objects from the low-quality images captured in
adverse weather (e.g., snowy weather). They often ignore the
latent information beneficial for detection. By developing an
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TABLE II
EXPERIMENTAL RESULTS OF DIFFERENT METHODS BEFORE AND AFTER TRAINING ON RSOD. TRAINING ON RSOD BRINGS SIGNIFICANT

IMPROVEMENTS TO THE MODELS’ PERFORMANCE. SOTAS ARE ALSO MORE ROBUST IN SNOWY SCENES BY TRAINING ON RSOD.

Method AP (val) AP50 (val) AP (test) AP50 (test)
Before training / Training on RSOD (20 epochs)

YOLOv5s 34.2 / 41.1 49.8 / 62.5 32.7 / 37.9 55.4 / 64.6
EfficientDet D0 23.0 / 28.9 33.3 / 47.4 26.3 / 33.3 40.0 / 53.1
EfficientDet D1 25.1 / 37.8 34.5 / 56.8 27.9 / 40.2 41.6 / 62.4

SSD300 23.9 / 34.7 42.4 / 59.8 25.6 / 33.1 46.8 / 59.5
CF-YOLO (K=1) 35.5 / 41.2 51.8 / 64.6 35.6 / 42.4 57.6 / 70.6
CF-YOLO (K=3) 38.9 / 47.5 56.5 / 71.1 34.0 / 41.9 58.4 / 70.6

TABLE III
COMPARISON OF CF-YOLO WITH SOTAS ON MSCOCO. WE CONDUCT THE SPEED TEST ON A SINGLE TESLA V100 GPU WITH A BATCH SIZE OF 1,

TAKING THE AVERAGE SPEED OF 5000 IMAGES OF COCO VAL2017.

Method Params GFLOPS AP (val) AP50 (val) AP (test) AP50 (test) FPS
YOLOv5s 7.3M 17.3 36.3 55.3 36.6 55.3 65

EfficientDet D0 3.9M 2.5 34.3 - 33.8 55.2 63
EfficientDet D1 6.6M 6.1 40.2 - 39.6 58.6 50

CF-YOLO (K=1) 9.2M 17.4 35.5 55.6 35.8 55.7 49
CF-YOLO (K=3) 22M 17.4 36.1 55.8 36.2 55.9 44

Fig. 10. PCA study of CF-YOLO and YOLOv5s, the red and blue points
indicate the pixels of object and background, respectively.

unsupervised training strategy, we establish a high-quality real-
world snow dataset for object detection (RSOD). Considering
the degradation of CNN-based detectors on RSOD, we propose
cross fusion YOLO (CF-YOLO): a lightweight yet effective
objection detector. The results show that our CF-YOLO not
only achieves excellent performance on RSOD, but also is
a competitive and lightweight general detector, which will
facilitate the outdoor vision systems.
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