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Exploiting Low-level Representations for Ultra-Fast
Road Segmentation

Huan Zhou, Feng Xue, Yucong Li, Shi Gong, Yiqun Li, Yu Zhou

Abstract—Achieving real-time and accuracy on embedded
platforms has always been the pursuit of road segmentation
methods. To this end, they have proposed many lightweight
networks. However, they ignore the fact that roads are “stuff”
(background or environmental elements) rather than “things”
(specific identifiable objects), which inspires us to explore the
feasibility of representing roads with low-level instead of high-
level features. Surprisingly, we find that the primary stage of
mainstream network models is sufficient to represent most pixels
of the road for segmentation. Motivated by this, we propose
a Low-level Feature Dominated Road Segmentation network
(LFD-RoadSeg). Specifically, LFD-RoadSeg employs a bilateral
structure. The spatial detail branch is firstly designed to extract
low-level feature representation for the road by the first stage
of ResNet-18. To suppress texture-less regions mistaken as the
road in the low-level feature, the context semantic branch is
then designed to extract the context feature in a fast manner. To
this end, in the second branch, we asymmetrically downsample
the input image and design an aggregation module to achieve
comparable receptive fields to the third stage of ResNet-18 but
with less time consumption. Finally, to segment the road from
the low-level feature, a selective fusion module is proposed to
calculate pixel-wise attention between the low-level representation
and context feature, and suppress the non-road low-level response
by this attention. On KITTI-Road, LFD-RoadSeg achieves a
maximum F1-measure (MaxF) of 95.21% and an average pre-
cision of 93.71%, while reaching 238 FPS on a single TITAN
Xp and 54 FPS on a Jetson TX2, all with a compact model
size of just 936k parameters. The source code is available at
https://github.com/zhouhuan-hust/LFD-RoadSeg.

Index Terms—Road segmentation, real-time, low-level repre-
sentation, selective fusion

I. INTRODUCTION

V ISUAL road segmentation has become the fundamental
scene understanding approach for autonomous driving

and robots [1]–[10]. Although it was originally introduced
more than 15 years ago, the improvement of embedded plat-
forms and deep networks has enabled the deployment of road
segmentation on autonomous driving systems only in recent
years. Due to scarce computing resources, embedded platforms
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Fig. 1. Accuracy (MaxF) vs. efficiency (FPS) for various monocular road
segmentation algorithms on KITTI-Road benchmark.

require models to be low-latency and lightweight, which is the
goal that the recent lightweight road segmentation networks
have been pursuing. The efficiency of these methods is shown
in Fig. 1. Oliveira et al. [11] proposed a lightweight FCN-
like network that achieves 12 FPS on an NVIDIA TITAN X
GPU. Oeljeklaus et al. [12] appended two decoders of object
detection and road segmentation after the inception-v2 network
to realize a fast multi-task CNN, achieving a speed of 187.9
milliseconds (ms) per image on an NVIDIA Jetson TX2. Bai
et al. [13] designed a lightweight segmentation network with
a bilateral structure, namely, RoadNet-RT, achieving a speed
of 9 ms per image on a GTX 1080 GPU. Gong et al. [14]
proposed a fast encoder-decoder network that further increases
the speed to 135 FPS on a TITAN Xp GPU while achieving
MaxF over 95%. Overall, it is not too much to be faster for
the road segmentation models on embedded systems.

Although these approaches vary in network topology and
training process, they overlook a crucial characteristic of the
road: roads are ‘stuff’, namely background or environmental
elements in an image, rather than ‘things’, which refer to
specific identifiable objects. Therefore, the classification of
road pixels depends much less on semantic information than
that of objects with semantic categories. To make a deep
exploration, we implement four networks that respectively
utilize the 1st , 2nd , 3rd and 4th stages’ feature maps of ResNet-
18 to segment the road, and their performances are shown in
Table I. Apparently, the model using the 1st stage feature is
obviously inferior in precision, while it obtains a recall rate as
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TABLE I
COMPARISON OF THE MODELS USING DIFFERENT STAGES OF RESNET-18
FOR ROAD SEGMENTATION. THE HIGHLIGHTED ROW COMPARES THE 1st

AND 3rd STAGES, AND THE BOLDED VALUES SHOW THE BEST RESULTS.
THE INPUT IMAGE RESOLUTION IS 375×1240.

Feat used MaxF AP PRE REC Params Time(ms)
1st Stage 90.86 86.30 88.29 93.58 157,634 1.80
1st vs. 3rd -5.35 -7.81 -8.27 -3.28 -94.33% -45.29%
2nd Stage 95.53 93.10 95.25 95.81 683,330 2.61
3rd Stage 96.21 94.11 96.56 95.86 2,783,298 3.29
4th Stage 95.08 93.74 94.87 95.29 11,177,538 4.58

high as 93.58% and saves 94.33% parameters compared to the
model using the 3rd stage. This phenomenon demonstrates that
the model using the 1st stage feature finds most pixels of the
road, but it suffers from false detection of several areas similar
to the road surface, which is consistent with the example
result in Fig. 2 (a). Subsequently, we delve deeper into the
characteristics of these mis-detected pixels. To this end, we
group all pixels in the prediction into three sets, i.e., the true
positives (TP), the false positives (FP), and other pixels (OP).
Then, the RGB gradient variance for each set is computed
as an indicator of the texture intensity. Fig. 2 (c) shows the
gradient variance of TP, FP, and OP. Intuitively, TP and FP
typically have lower texture intensity than OP, and FP has
an even lower texture intensity than TP, meaning that FP is
generally situated in areas with weak texture. With all the
above in mind, through extracting the context for correlating
each weak texture area in a fast manner, the false detection
can be eliminated effectively, while the advantages of minimal
parameter and time cost can also be retained.

Based on the insights from the experiment above, we
propose a low-level feature dominated road segmentation
network (LFD-RoadSeg) that follows the bilateral structure.
For the spatial detail branch, we employ the primary stage
of lightweight backbone networks to extract the low-level
road representation, ensuring high resolution and low latency.
To eliminate non-road response in the low-level features, we
design a context semantic branch in a fast manner to capture
context as a supplement. For this context semantic branch, we
first propose asymmetric downsampling to enable contextual
features to have a large horizontal receptive that has been
proven to be crucial for street scenes. Then, we design a
lightweight aggregation module to capture the context with
comparable receptive fields to the ResNet-18s 3rd stage that
is proven effective in road segmentation (Table I). Finally, we
design a selective fusion module to segment road regions from
low-level road representations. This module leverages context-
based spatial attention to suppress non-road responses in
low-level features. The KITTI-Road, Cityscapes and CamVid
datasets are employed to evaluate our method. In the experi-
ments, LFD-RoadSeg achieves excellent effectiveness and the
fastest speed so far, which can be observed in Fig. 1.

In summary, the contributions of this paper are as follows:

• We reveal the “stuff” characteristic of roads overlooked
by the previous road segmentation methods, and find that
the primary stage of mainstream networks is adequate to
extract road features. This motivates us to represent the
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Fig. 2. (a) shows an example image, where yellow indicates FP, and green
for TP. (b) shows the gradient of this image. (c) shows the minimal, maximal,
and mean gradient variance of TP, FP and OP in the validation set of the
KITTI-Road dataset.

road by low-level features.
• We propose LFD-RoadSeg. It novelly leverages low-

level road representation as the basis for segmentation
and employs the proposed asymmetric downsampling and
aggregation modules to accelerate context extraction.

• LFD-RoadSeg boosts speed to 238 FPS (twice the previ-
ous fastest method) on a single TITAN Xp and 54 FPS on
a Jetson TX2 with only 936k parameters, but still gains
a decent MaxF of 95.21% on KITTI-Road. Thus, our
method advances the practicability of road segmentation.

II. RELATED WORK

In this section, we briefly review the monocular road seg-
mentation and the bilateral network for semantic segmentation,
which are closely related to our approach.

A. Monocular Road Segmentation

In the early years of researching monocular road segmen-
tation, the community [15]–[22] mainly focused on design-
ing low-level features, such as color, edge, texture, etc., to
represent and classify the road at pixel level or patch level.
Later, several works tried to introduce global information to
improve the reliability of road representation. Vitor et al. [23]
designed the global probabilistic model to aggregate multiple
descriptors to represent the road. Mario et al. [24] employed
conditional random fields (CRF) to model dependencies across
the whole image. Although these approaches usually achieve
a road region with crisp boundary, they perform poorly in
complex scenes that contain illumination change or tree shade,
due to the poor generalization of the handcrafted feature. In
addition, these works are not GPU-accelerated generally and
thus far from real-world applications.
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Fig. 3. The network architecture of LFD-RoadSeg. (a) is the input image Ih ∈ RH×W×3 of spatial detail branch. (b) is the input image Il ∈ R
H
2 ×W

4 ×3 of
context semantic branch. (c) is the visualization of the road prediction result, where the area covered by red is the road. The red star in the input image refers
to the query point. The feature cosine similarity heat maps represent the correlation of the features between the query point and all others.

In recent years, monocular road segmentation has been
greatly boosted by the development of neural networks. Sev-
eral early approaches [25], [26] attempted to classify pixels
or patches of the road by using neural networks as the
classifier. The later methods [11], [14], [27], [28] followed the
pipeline of deep semantic segmentation [29]–[31]. Teichmann
et al. [28] designed a unified architecture to conduct road
segmentation, object detection, and scene classification simul-
taneously. Sun et al. [27] focused on the attention mechanism
to recover detailed information around the road boundary.
Compared to the handcrafted methods, these methods achieve
superior generalization, which makes them perform accurately
in many road scenes. However, they still have a non-negligible
computational burden on a mobile platform.

B. Methodologies for Embedded Systems

With the increasing application of road segmentation in the
autonomous driving system, road segmentation for embedded
systems has received increasing attention. Oeljeklaus et al.
[12] proposed a fast multitask CNN for perceiving objects and
the road, which achieves a speed of 5.32 FPS (375× 1240)
on the Jetson TX2 [32] embedded platform. Bai et al. [13]
designed a road segmentation network RoadNet-RT optimized
for FPGA, which achieves a speed of 111 FPS (280×960) on
a GTX 1080 GPU. With the same setting of the experiment,
Gong et al. [14] proposed a fast encoder-decoder network
to speed up road segmentation to 31 FPS (187 × 620) on
the Jetson TX2 embedded platform, while achieving a MaxF
above 95%, much higher than the works mentioned above.
However, they neglect that roads are “stuff”, meaning that
road segmentation relies more on low-level features. This
inspires us to propose LFD-RoadSeg which achieves faster
speed, lighter weight and better trade-off than the previous
methods.

C. Bilateral Network for Semantic Segmentation

The bilateral networks [33] extract the spatial details and
categorical semantics separately. And it is popular in the com-
munity of semantic segmentation due to its faster speed than
other structures. Dong et al. [34] designed a lightweight base-
line network with atrous convolution and a distinctive atrous
spatial pyramid pooling for semantic extraction. BiSeNetv2
[35] proposed a bilateral guided aggregation layer to enhance
the mutual connections of the two branches. CABiNet [36]
designed a context branch with lightweight versions of global
aggregation and local distribution blocks. Different from the
above methods, which use two independent branches, Fast-
SCNN [37], EACNet [38] and DDRNet [39] all utilized a
shared trunk and two parallel branches with different resolu-
tions. ContextNet [40] reduced the input image’s resolution
for the semantic branch to a quarter of the original image to
accelerate the inference process.

D. Motivation

LFD-RoadSeg is motivated by the fact that roads are “stuff”.
According to [41], “stuff” is the background and environ-
mental elements in the image, rather than “things” (such as
person and car) that rely on semantic features in classification.
Thus, the same “stuff” area has a similar texture, leading us
to believe that road pixels can be classified by using low-level
features. To this end, we compare the differences of various
stages in road segmentation. Consequently, we find that the
first stage of ResNet is adequate for representing road, as
evidenced by the high recall rate of 93.58% in Table I and
the green area in Fig. 2. However, the first stage of ResNet
suffers from the false positives, which is indicated by the
low precision and yellow area in Fig. 2. This inspires us to
design a lightweight context semantic branch to quickly extract
correlation between each area, which gives the indicators for
reducing the non-road response in the low-level feature.
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III. APPROACH

In this section, we first describe the specific network ar-
chitecture in Sec. III-A in detail, including the spatial detail
branch, the context semantic branch and the selective fusion
module. Then the loss function dedicated to hard negative
sample mining we used is introduced in Sec. III-B.

A. The Proposed Network Architecture

Inspired by the comparisons in Table I, we represent the
road by low-level features to achieve ultra-fast road seg-
mentation. As illustrated in Fig. 3, the overall structure of
our network includes two branches and a feature selective
fusion module. And regarding the two branches, one is a
high-resolution spatial detail branch, and the other is a low-
resolution context semantic branch.

1) Spatial Detail Branch: The spatial detail branch is to
capture most pixels of the road from the input RGB image
Ih ∈ RH×W×3 with only a small amount of convolutions.
Although our method can be applied to various backbone
networks, for representation simplification, we describe the
following network structure based on ResNet-18 by default.
To be specific, let Fh

i be the output feature maps of the ith

stage of a ResNet-18 network when taking Ih as input. And the
spatial detail branch employs the 1st stage of ResNet-18 as the
backbone and outputs the feature Fh

1 ∈ RH
4 ×W

4 ×64. According
to Table I, the extremely light structure of this branch encodes
most of the road pixels and preserves high resolution with low
computational cost.

2) Context Semantic Branch: The context semantic branch
aims to capture contextual information in a fast manner for
suppressing the texture-less non-road region in Fh

1 . Specifi-
cally, this branch employs two designs to achieve an extremely
fast speed of context extraction. Firstly, since the correlation
between horizontal areas is crucial for road segmentation
[14], the input RGB image Ih is downsampled by a factor
of 4 horizontally and by a factor of 2 vertically to obtain
a low-resolution RGB image Il ∈ RH

2 ×W
4 ×3. The resizing

operation achieves a larger horizontal receptive field and a
decent inference time. Secondly, since the 3rd stage of ResNet-
18 outperforms others in Table I, the context semantic branch
requires the same receptive field as the 3rd stage. To this end,
this branch utilizes the first two stages of ResNet-18 to obtain
the feature F l

2 ∈R
W
16×

W
32×128 from Il , and then appends a newly

designed aggregation module to achieve a similar receptive
field as the 3rd stage, but at a faster speed than the first three
stages of ResNet-18.

Next, we elaborate on the structure of the newly designed
aggregation module and discuss the advantages of the above
design in terms of computation and parameter amount.

Aggregation Module. The 3rd stage of the original ResNet-
18 has parameters up to 2.1M (see Table I, 2,783,298 -
683,330 = 2,099,968), and the aggregation module implements
similar feature extraction capabilities with a lighter structure.
It consists of two cross convolution blocks, and the structure
of each cross convolution block is shown in Fig. 4. In each
cross convolution block, assuming that FI denotes the input
feature, we use a 1× 5 row convolution and a 5× 1 column

a: depthwise
row-conv

b: depthwise
column-conv

c: 1×1-conv
&BN&ReLU

𝐹! 𝐹"

a b c

Fig. 4. Structure of the cross convolution block.
⊕

denotes the element-wise
sum operation.

TABLE II
MODEL COMPLEXITY AND INFERENCE TIME COMPARISON. THE INPUT

IMAGE RESOLUTION OF THE FIRST ROW IS 375×1240, AND THE
RESOLUTION OF THE SECOND ROW IS 187×310.

MACs[G] Params[M] Time(ms)
Three stages of ResNet-18 13.23 2.78 3.24
Context semantic branch 1.21(-91%) 0.72(-74%) 1.90(-41%)

(a) (b) (c)

Fig. 5. Visualization of the model effective receptive field. (a) is the effective
receptive field for the first three stages of ResNet-18. (b) is the effective
receptive field for the context semantic branch. (c) is the effective receptive
field for all four stages of ResNet-18.

convolution to simulate a large-kernel convolution for context
feature extraction on FI . Both the row and column convolution
are depth-separable and aggregate context information in each
channel respectively. Then, a 1×1 convolution is employed to
fuse all channels. Note that, to gain a larger horizontal recep-
tive field, the row convolution in the first cross convolution
block has a dilation of 2. Finally, we add the fused feature
and the input feature FI element-wisely to reserve the detail
contained in the input feature, and the output feature FO can
be formulated as:

FO = B1×1(C(R(FI)))+FI (1)

where R denotes the depthwise row convolution (row-conv for
short), C denotes the depthwise column convolution (column-
conv for short), and B1×1 denotes the 1×1 convolution block
which contains a 1×1 convolution (1×1-conv for short), a
batch normalization and a ReLU activation. By using two
cross convolution blocks connected in series, we extract the
context feature from the feature F l

2 , which is followed by
an upsampling operation to align the feature resolution to
Fh

1 , namely H
4 × W

4 . And we obtain a high-resolution context
feature F l

a ∈ RW
4 ×W

4 ×128.
Discussion. In the section above, two designs are given to

make the context semantic branch have similar discriminative
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power as the first three stages of ResNet-18 but with fewer
parameters and computations. One is to reduce the input image
size, and the other is the aggregation module that replaces
ResNet-18’s 3rd stage. Compared to the original first three
stages of ResNet-18, the context semantic branch reduces the
MACs (multiply-accumulate operations) by 91%, parameters
by 74%, and inference time by 41%, as shown in Table II. Fur-
thermore, we visualize the effective receptive field of ResNet-
18 and the context semantic branch in Fig. 5. It can be seen that
the context semantic branch has a comparable receptive field
to ResNet-18’s 3rd stage in the vertical direction. Note that,
due to the asymmetric downsampling and the dilation row-
conv, our method has a larger receptive field in the horizontal
direction, which is good for extracting correlation between
different areas (e.g., drivable road, sidewalk, rail track, etc.)
that are in the horizontal direction of each other [14].

3) Selective Fusion: The high-resolution road representation
Fh

1 obtained by the spatial detail branch suffers from weakly
textured non-road regions that are easily misclassified. In this
section, we propose a selective fusion module to remove these
non-road regions by the context feature F l

a obtained from
the context semantic branch. Specifically, the structure of the
selective fusion module is shown in Fig. 3. Firstly, we use
a 1×1 convolution block to adjust the number of channels
of Fh

1 to be the same as that of F l
a , namely 128. Then we

concatenate the output feature of both branches, namely Fh
1

and F l
a , and calculate the pixel-wise attention between them

by a 1×1 convolution block, a 1×1 convolution and a sigmoid
function, which can be formulated as:

Fattention = S(P(B1×1(B1×1(Fh
1 ) C F l

a))) (2)

where Fattention ∈ RH
4 ×W

4 ×1 is the spatial attention weight. S
denotes sigmoid function, P denotes 1×1 convolution, and
C denotes concatenation. Finally, the spatial attention weight

Fattention is employed to select the road area from the low-level
representation Fh

1 , and the context feature also serves as the
complementary expression of the road:

Fh
f = Fattention ⊗B1×1(Fh

1 )⊕F l
a (3)

where ⊗ denotes the element-wise product operation, ⊕
denotes the element-wise sum operation, and the attention
weights Fattention are applied to all channels of the high-
resolution branch feature. Finally, the fused feature is fed
into a pixel-wise classifier, namely a block containing a 1×1
convolution, a batch normalization, a ReLU activation and a
1×1 convolution, to segment the road. As shown in Fig. 3,
after the selective fusion, the feature response of the sidewalk
on the right side of the road in Fh

1 is suppressed, and the road
features are enhanced.

Differences between RoadNet-RT and LFD-RoadSeg:
Although the overall structure of LFD-RoadSeg is roughly
similar to RoadNet-RT [13], there are still three differences
between them. Firstly, we determine the network depth and
receptive field of the two branches by experiments, rather
than solely relying on intuition. Secondly, we propose the
aggregation module to more effectively capture the contextual
information, instead of using ASPP and global attention.

Thirdly, during fusing the two branches’ features, we calculate
the spatial attention to express the relation between the low-
level feature and the context feature, and utilize it to suppress
texture-less non-road regions in low-level features. Therefore,
our fusion process is different from RoadNet-RT which per-
forms channel attention fusion on the two branches.

B. Loss Function

Since road segmentation is a binary classification problem,
binary cross-entropy loss is generally used as the loss function
of the classifier to supervise the final output. Let N denote the
number of pixels, i and j are the pixel index in the image,
y ∈ {0,1} denotes the ground truth and p is the predicted
confidence, the binary cross-entropy loss is formulated as:

Lbce =− 1
N ∑

i, j
yi, jlog(pi, j)+(1− yi, j)log(1− pi, j) (4)

As we know, the texture-less road and some texture-
less areas such as vegetation, sky and buildings are easier
to distinguish than highly textured areas. And the drivable
road boundaries, sidewalks, and abnormal road areas such
as overexposure and shadow are prone to be misclassified.
Therefore, in the training process, we utilize a strategy similar
to OHEM [42] to mine difficult-to-segment pixels. Given a
confidence threshold λb in a batch, we only perform gradient
backpropagation for pixels whose predicted confidence p is
less than the threshold λb. Let 1(·) denote the indicator
function, and the entire loss function of the network Lmain
is formulated as:

Lmain =
1
N ∑

i, j
1(pi, j < λb)L

i, j
bce (5)

IV. EXPERIMENTS

In this section, we first describe the datasets and evaluation
metrics in Sec. IV-A. Then the detail of the network training
is given in Sec. IV-B. Sec. IV-C reports the quantitative and
qualitative results of our method. Finally, the ablation study of
each component and the discussion on the input image size of
the context semantic branch are given in Sec. IV-D and Sec.
IV-E, respectively.

A. Dataset and Evaluation

1) Dataset: Three datasets are employed to evaluate the
effectiveness of our method. KITTI-Road [54] is a real-
world road segmentation dataset containing 289 training im-
ages and 290 testing images. It has three categories of road
scenes, Urban Unmarked (UU), Urban Marked (UM) and
Urban Multiple Marked (UMM). URBAN is a combination
of the three above. The resolution of KITTI-Road training
images ranges from 370 × 1224 to 375 × 1242. For the
convenience of training, we unify them as 375 × 1240 by
padding operation. The evaluation is done by the official online
evaluation server. Following [14], in the ablation experiments,
we use 5-fold cross-validation on the training images, and
the experimental results are expressed as (mean ± standard
deviation). Cityscapes [55] is a real-world dataset of urban
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TABLE III
COMPARISON WITH PRIOR REPRESENTATIVE ROAD SEGMENTATION WORKS ON KITTI-ROAD DATASET

(“-” MEANS IT IS NOT MENTIONED IN THE OFFICIAL DATABASE AND THE ORIGINAL PAPER)

Method Sensor Input shape MaxF(%)↑ AP(%)↑ PRE(%)↑ REC(%)↑ FPR(%)↓ FNR(%)↓ Time(ms)↓ Device

RBANet [27] Cam. 360×720 96.30 89.72 95.14 97.50 2.75 2.50 160 TITAN Xp
FastRoadSeg [14] Cam. 375×1240 95.56 93.89 95.53 95.59 2.47 4.41 7.4 TITAN Xp

SSLGAN [43] Cam. 375×1242 95.53 90.35 95.84 95.24 2.28 4.76 700 TITAN X
RBNet [44] Cam. 300×900 94.97 91.49 94.94 95.01 2.79 4.99 180 Tesla K20c

StixelNet II [45] Cam. 370×800 94.88 87.75 92.97 96.87 4.04 3.13 1200 Quadro M6000
MultiNet [28] Cam. 384×1248 94.88 93.71 94.84 94.91 2.85 5.09 170 GTX 1080

Hadamard-FCN [46] Cam. 375×1242 94.85 91.48 94.81 94.89 2.86 5.11 20 TITAN X
HA-DeepLabv3+ [47] Cam. - 94.83 93.24 94.77 94.89 2.88 5.11 60 -

RoadNet3 [48] Cam. 160×600 94.44 93.45 94.69 94.18 2.91 5.82 300 GTX 950M
DEEP-DIG [49] Cam. - 93.98 93.65 94.26 93.69 3.14 6.31 140 TITAN X

Up-Conv-Poly [50] Cam. 500×500 93.83 90.47 94.00 93.67 3.29 6.33 80 TITAN X
OFA-Net [51] Cam. - 93.74 85.37 90.36 97.38 5.72 2.62 40 -

s-FCN-loc [52] Cam. 500×500 93.26 - 94.16 92.39 3.16 7.61 400 Tesla K80
RoadNet-RT [13] Cam. 280×960 92.55 93.21 92.94 92.16 3.86 7.84 9 GTX 1080

ALO-AVG-MM [53] Cam. 192×624 92.03 85.64 90.65 93.45 5.31 6.55 30 GTX 1080
LFD-RoadSeg Cam. 375×1240 95.21 93.71 95.35 95.08 2.56 4.92 4.2 TITAN Xp

TABLE IV
MODEL COMPLEXITY COMPARISON

Method MACs [G] Parameters [M]
FastRoadSeg [14] 18.323 11.334

LFD-RoadSeg 8.392 0.936

street scenarios, including 2975 images for training and 500
images for validation. All images are at 1024 × 2048 reso-
lution. CamVid [56] is also a real-world dataset for driving
scenarios, which contains 367 training images, 101 validation
images, and 233 test images with a resolution of 720 × 960.
Cityscapes and CamVid are classical semantic segmentation
datasets with multiple category annotations. When applying
them to the road segmentation task, we set the label of the
road to 1 and the other categories to 0.

2) Evaluation Metrics: For the KITTI-Road dataset, we
evaluate the performance using six official metrics, namely
maximum F1-measure (MaxF), average precision (AP), preci-
sion (PRE), recall (REC), false positive rate (FPR) and false
negative rate (FNR). Among them, MaxF is the main accuracy
evaluation metric because it comprehensively considers preci-
sion and recall. It is worth noting that the metrics are computed
in the Birds Eye View (BEV) for the KITTI-Road dataset as a
common practice. We also evaluate the parameters, MACs, and
inference time of our network. With 375×1240 as the input
resolution, we compute the average time of 1000 forwards on a
single GPU as our inference time. For Cityscapes and CamVid
datasets, MaxF, PRE, REC, and mIoU (mean intersection over
union) are employed to evaluate the performance in the image
space.

B. Training Details

LFD-RoadSeg is implemented in PyTorch on Intel(R)
Xeon(R) CPUs and is deployed on a single NVIDIA TITAN
Xp GPU. The feature extractors of the two branches, namely
part of the ResNet-18 [57], are loaded with the model parame-
ters which are pre-trained on ImageNet [58] as initial weights.
Other parameters of the LFD-RoadSeg are randomly initial-
ized. Stochastic gradient descent (SGD) with a momentum of
0.9 and weight decay of 10−4 is used to optimize our network.

The initial learning rate is set to 0.01 and the cosine annealing
learning rate decay strategy is adopted in the training process.
The final learning rate is set to 10−5. In order to prevent the
model from overfitting, we apply some data augmentations
on the training images such as random cropping, random
horizontal flipping, random brightness adjusting with the range
of [0.9, 1.1], and random scaling with the range of [0.5, 2.0].
The OHEM loss threshold λb is set to 0.7 in the experiment.
For KITTI-Road, we employ a two-step training scheme. First,
we randomly crop out 320× 500 patches from the original
images as the inputs Ih and second, the training is resumed by
using the full images as Ih. The batch size for the first training
step is set to 16 and for the second training step is set to 6.
We train LFD-RoadSeg for 150 epochs in these two steps.
For Cityscapes, 800×800 patches are randomly cropped out
for training. The batch size is 4 and the maximum number of
epochs is 250. For CamVid, the input image size is 720×960.
The batch size is 4 and the maximum number of epochs is 150.

C. Final Results and Comparison with Prior Works

KITTI-Road dataset. Table III reports the segmentation
results and the corresponding time cost comparison between
LFD-RoadSeg and the prior representative road segmentation
works on the KITTI-Road leaderboard. Note that, we cannot
compare all methods on the same platform as most of them
did not release the code. Therefore, we use the “Device” and
“Time” information provided by the official KITTI benchmark
database and each paper to comprehensively evaluate the
computational efficiency of each method. From Table III, we
can see that LFD-RoadSeg is the fastest and outperforms
many monocular-based methods [28], [44]–[48] in MaxF and
achieves a high AP of 93.71%. In addition, RBANet [27] and
SSLGAN [43] fail to meet real-time requirements. Compared
with the current second-fastest method FastRoadSeg [14],
LFD-RoadSeg only reduces MaxF by 0.35% (95.56%-95.21%
= 0.35%), but the speed is increased by 43.2% (1-4.2/7.4
= 43.2%). Furthermore, Table IV shows the complexity of
FastRoadSeg [14] and LFD-RoadSeg. LFD-RoadSeg has more
than 12 times fewer parameters than FastRoadSeg and reduces
the MACs (multiply-accumulate operations) by 54.2% (1-
8.392/18.323 = 54.2%). Compared with RoadNet-RT [13],
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TABLE V
PERFORMANCE EVALUATION FROM KITTI ONLINE TEST SERVER

Benchmark MaxF AP PRE REC FPR FNR

UM ROAD 94.58% 93.42% 95.20% 93.98% 2.16% 6.02%
UMM ROAD 96.59% 95.40% 96.29% 96.90% 4.11% 3.10%

UU ROAD 93.49% 92.19% 93.46% 93.52% 2.13% 6.48%
URBAN ROAD 95.21% 93.71% 95.35% 95.08% 2.56% 4..92%

(a)

(b)

(c)

(d) (e) (f) (g) (h) (i)

Fig. 6. Qualitative comparison with other real-time monocular road segmen-
tation methods. (a)-(c) are in the camera’s perspective view and (d)-(i) are in
the birds eye view. (a) (d) (g): ALO-AVG-MM [53], (b) (e) (h): RoadNet-RT
[13], (c) (f) (i): LFD-RoadSeg. Red marks false negatives, blue marks false
positives, and green marks true positives.

which is also a bilateral network, LFD-RoadSeg increases the
MaxF from 92.55% to 95.21%, which is due to the more
reasonable network depth and more efficient fusion process.
The detailed performance provided by the KITTI online test
server is shown in Table V. Fig. 6 illustrates the qualitative
comparison with other real-time monocular methods, ALO-
AVG-MM [53] and RoadNet-RT [13]. We show the camera’s
perspective view and birds eye view respectively. Compared
to other methods, LFD-RoadSeg reduces both the number of
false positive and false negative pixels.

Cityscapes dataset. Table VI presents the performance of
several methods on the Cityscapes dataset with metrics such
as MaxF, PRE, REC, and mIoU. In terms of the MaxF metric,
despite LFD-RoadSeg fails to surpass the best method, i.e.,
RBANet [27], it outperforms conventional benchmark methods
like FCN [27], and it is only 0.47% lower than FastRoadSeg
[14] on MaxF. Not that, the accuracy gap between our method
and the best method lies in precision (3.59% lower), while
our recall is not much different from that of the best method
(only 0.33% lower). The reason is that the Cityscapes dataset
contains a large number of specific categories of objects, that
is, “things” defined in panoptic segmentation. Using low-level
features to express these objects during training would slightly
degrade the discriminative ability of the model.

CamVid dataset. Table VII provides the quantitative com-
parisons on the CamVid dataset. Notably, our method achieves
an impressive MaxF score of 97.02%, the same as Fas-

TABLE VI
ROAD SEGMENTATION RESULTS ON CITYSCAPES DATASET

(“-” MEANS IT IS NOT MENTIONED IN THE ORIGINAL PAPER, † DENOTES
THE REPRODUCED RESULTS BY [14].)

Methods MaxF(%)↑ PRE(%)↑ REC(%)↑ mIoU(%)↑
Zohourian et al. [59] 92.44 89.08 96.76 -

FCN [30] 94.68 93.69 95.70 -
†FCN [30] 94.75 93.65 95.77 93.96

s-FCN-loc [52] 95.36 94.63 96.11 -
SegNet [60] 95.81 94.55 97.11 -

†SegNet [60] 95.92 94.73 96.78 94.33
†U-Net [61] 96.26 94.89 97.19 95.21

FastRoadSeg [14] 96.48 95.84 97.12 95.74
†FASSD-Net [62] 97.47 97.51 98.07 96.34

RBANet [27] 98.00 97.87 98.13 -
LFD-RoadSeg 96.01 94.28 97.80 96.68

TABLE VII
ROAD SEGMENTATION RESULTS ON CAMVID DATASET

(“-” MEANS IT IS NOT MENTIONED IN THE ORIGINAL PAPER, † DENOTES
THE REPRODUCED RESULTS BY [14].)

Methods MaxF(%)↑ PRE(%)↑ REC(%)↑ mIoU(%)↑
RoadNet-RT [13] 92.98 94.70 91.91 -

SegNet [60] 93.95 93.07 94.86 -
†SegNet [60] 94.89 94.27 95.91 94.13

Yadav et al. [63] 94.14 93.31 94.99 -
†U-Net [61] 96.45 95.73 96.11 95.65

RBANet [27] 96.72 97.14 96.30 -
FastRoadSeg [14] 97.02 96.79 97.24 96.11
†FASSD-Net [62] 97.38 97.69 98.81 97.64

LFD-RoadSeg 97.02 96.80 97.25 95.70

tRoadSeg [14] and even outperforming FastRoadSeg [14] in
precision and recall. Compared to RBANet [27], our method
achieves 0.3% higher MaxF than RBANet [27] which is
a non-lightweight method. Compared to RoadNet-RT [13]
that also utilizes a bilateral architecture, our method obtains
significantly higher accuracy in MaxF (4.04% higher), PRE
(5.20% higher), and REC (1.04% higher) metrics. In contrast,
RoadNet-RT [13] requires 9 ms for inference at a resolution
of 280× 960 on a GTX 1080 GPU, whereas LFD-RoadSeg
achieves inference in just 4.2 ms at 375×1240 resolution on
a TITAN Xp GPU, showcasing superior speed performance.

Overall, the performance of our method is close to that of
the State-of-the-art method on the KITTI-Road and CamVid
datasets. This is due to the fact that in urban street scenes,
low-level features are sufficient to represent most road areas.

D. Ablation Study of Each Component

We further examine the effectiveness of each component
in the proposed LFD-RoadSeg. From Table VIII, we can
see that the performance of LFD-RoadSeg is better than
using the spatial detail branch only and the context semantic
branch only. The reason is that the low-level features are not
effective in distinguishing different long-range areas due to
their limited local receptive field, while the context feature
lacks spatial detail due to the low resolution. As shown in
Table VIII, when using the context semantic branch only, the
aggregation module helps to improve the MaxF from 94.69%
to 94.88%. When using both branches, the aggregation module
helps to improve the MaxF from 95.76% to 96.28%. The two
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TABLE VIII
EFFECTIVENESS OF EACH COMPONENT ON KITTI-ROAD CROSS-VALIDATION. (SDB: SPATIAL DETAIL BRANCH; CSB: CONTEXT SEMANTIC BRANCH.

SDB CSB Aggregation Module c ⊗ ⊕ Selective Fusion Classifier MaxF(%)↑ PRE(%)↑ REC(%)↑ Parameters

! ! 91.13±0.18 88.90±0.46 93.49±0.40 183106
! ! 94.69±0.28 94.51±0.52 94.88±0.43 700098
! ! ! 94.88±0.17 94.80±0.56 94.96±0.43 736706

! ! ! ! 95.76±0.25 95.78±0.45 95.75±0.42 899459
! ! ! ! ! 95.96±0.21 96.03±0.35 95.89±0.21 919170
! ! ! ! ! 95.77±0.16 96.14±0.30 95.40±0.26 902786
! ! ! ! ! 95.92±0.10 96.21±0.30 95.62±0.30 902786
! ! ! ! ! 96.28±0.14 96.56±0.11 96.00±0.21 936067

TABLE IX
PERFORMANCE COMPARISON OF THE CONTEXT SEMANTIC BRANCH WITH

DIFFERENT INPUT IMAGE SIZES ON KITTI-ROAD CROSS-VALIDATION

Height Width MaxF(%)↑ MACs [G] Time (ms)
1/2 1/2 96.32±0.20 9.598 4.6
1/2 1/4 96.28±0.14 8.392 4.2
1/4 1/2 95.86±0.18 8.400 4.2
1/4 1/4 96.01±0.23 7.792 4.1

TABLE X
PERFORMANCE COMPARISON OF THE CONTEXT SEMANTIC BRANCH WITH
DIFFERENT INPUT IMAGE SIZES ON CITYSCAPES AND CAMVID DATASETS

Datasets Height Width MaxF(%)↑ PRE(%)↑ REC(%)↑

Cityscapes

1/2 1/2 95.83 94.23 97.50
1/2 1/4 96.01 94.28 97.80
1/4 1/2 95.58 94.12 97.08
1/4 1/4 95.87 94.53 97.26

CamVid

1/2 1/2 96.20 95.75 96.65
1/2 1/4 97.02 96.80 97.25
1/4 1/2 95.80 94.82 96.80
1/4 1/4 96.41 96.03 96.79

comparisons indicate that the aggregation module is suitable
for capturing the context information with a large receptive
field. Furthermore, we verify the effectiveness of selection
fusion, and compare it with three fusion processes, namely,
direct concatenation, direct element-wise product and direct
element-wise addition. As we can see from the last four rows
of Table VIII, the selection fusion achieves the best MaxF,
PRE, and REC with only a few additional parameters. Finally,
when we train the network with all components, the proposed
LFD-RoadSeg achieves the best performance on the KITTI-
Road dataset.

E. Discussion on Input Resolution

The input image Il for the context semantic branch is
obtained by asymmetrically downsampling the original image
Ih, which has two goals. The first goal is to reduce the
computational burden as much as possible and speed up the
training and testing processes. The second goal is to gain a
larger horizontal receptive field so that LFD-RoadSeg captures
longer-range dependencies in the horizontal direction. The
results using different aspect ratios are shown in Table IX.
Compared to our asymmetric input size setting, when both
height and width are reduced to half of the original size, the
MaxF only increases from 96.28% to 96.32% but at the cost of

(a) (b)

Fig. 7. The visualization of the road prediction result, where the area covered
by red is the road. (a): The input image size of the context semantic branch is
1/4 the height of the original image and 1/2 the width of the original image.
(b): The input image size of the context semantic branch is 1/2 the height of
the original image and 1/4 the width of the original image.

0.4 ms longer inference time. And when both height and width
are shrunk by a quarter, the model increases the MaxF from
96.01% to 96.28% and only sacrifices 0.1 ms in inference
time. The two comparisons illustrate that our experimental
setting has a better trade-off than others. Furthermore, when
inverting the downsampling rate of height and width, that is,
the network has a larger vertical receptive field, the MaxF
drops dramatically and is even worse than the model using a
smaller resolution.

We then discuss the asymmetric downsampling on the
Cityscapes and CamVid datasets in Table X. Our experimen-
tal setting (the bolded row in Table X) yields the highest
MaxF scores, while the opposite setting results in the lowest
MaxF scores. The MaxF gaps between the two reach 0.43%
on Cityscapes and 1.22% on CamVid. It verifies that the
significance of horizontal receptive fields to deep networks
is not limited to the KITTI-Road dataset, but is ubiquitous
in various street scenes. Fig. 7 further displays the visual
comparisons between our setting and the opposite setting. The
first to third rows are from the KITTI-Road, Cityscapes, and
CamVid datasets. Observably, the model with the opposite
setting obtains many false positives on the texture-less area
outside the road as it has a narrow receptive field, which
is highlighted by the red rectangular boxes. However, our
model with the proposed asymmetric downsampling setting
eliminates most false positives.
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TABLE XI
PERFORMANCE COMPARISON OF DIFFERENT BACKBONES ON

KITTI-ROAD DATASET

Methods MaxF(%)↑ AP(%)↑ Params Time (ms)

ResNet-18 95.08 93.74 11,177,538 4.58
Ours (ResNet-18) 96.39 94.19 936,067 4.24

MobileNetV2 95.55 93.90 1,884,162 9.05
Ours (MobileNetV2) 96.06 94.16 161,395 7.49

MobileViT-XXS 95.15 93.85 947,554 22.75
Ours (MobileViT-XXS) 95.98 94.11 253,779 8.20

F. Results and Comparison for Different Backbones

Table XI provides a performance comparison of lightweight
backbones with various structures on the KITTI-Road dataset,
including ResNet-18 [57], MobileNetV2 [64] and MobileViT-
XXS [65]. We measure them based on MaxF, AP, parameters
and inference time.

Specifically, for ours (ResNet-18), the spatial detail branch
utilizes the first stage of ResNet-18 as its backbone, while
the context semantic branch employs the first two stages
of ResNet-18 as its backbone. For ours (MobileNetV2) and
ours (MobileViT-XXS), due to the lack of official stages
for MobileNetV2 and MobileViT, we use layers that extract
features at 1/4 the original resolution as the spatial detail
branch, and layers that extract features at 1/8 the original
resolution as the context semantic branch.

From Table XI, observably, ours (ResNet-18) achieves
the highest MaxF, reaching 96.39%, and the highest AP,
reaching 94.19%. Compared with the original backbone net-
work (i.e., ResNet-18, MobileNetV2, and MobileViT-XXS),
all variants equipped with the proposed structure achieve
higher accuracy (MaxF improvement of 1.31%, 0.51%, 0.83%,
respectively), lower parameters (reduced by 99.99%, 91.43%,
73.22% respectively) and less inference time (reduced by
7.42%, 17.24%, 63.95% respectively). This experiment proves
that the proposed structure is not only suitable for classic
residual networks, but also advanced transformer networks.
Even on the transformer model, our structure contributes to a
significant speed improvement.

G. Deployment and Speed Comparison

Following the works of [14] [66] [67], we deployed the
proposed model on the Jetson TX2 [32]. The Jetson TX2 is
equipped with a quad-core ARM A57 processor, a dual-core
Denver2 processor, a 256-core NVIDIA Pascal architecture
GPU, and 8GB of 128-bit LPDDR4 memory. This configu-
ration makes it suitable for use in robots, drones, and other
intelligent edge devices. During the inference process, the
input image is resized to 187×620, aligning with FastRoadSeg
[14]. Table XII provides details on the speed and power
consumption in both maximum processing efficiency (Max-
N) and maximum energy efficiency (Max-Q) modes on the
Jetson TX2 and offers a comparison with FastRoadSeg [14]
on the same platform. Note that all methods do not use any
acceleration techniques. Observably, LFD-RoadSeg is 74%
faster than FastRoadSeg with 2W lower power consumption.
When using less than 7W of power, its speed is still 35% faster
than that of FastRoadSeg [14].

TABLE XII
DEPLOYMENT ON JETSON TX2 [32]

Method Runtime Frame Rate Power Consumption
FastRoadSeg [14] 32.2 ms 31 FPS 14.8 W(3.1 W idle)

LFD-RoadSeg (Max-N) 18.5 ms 54 FPS 12.8 W(3.1 W idle)
LFD-RoadSeg (Max-Q) 14.4 ms 42 FPS 6.9 W(2.3 W idle)

V. CONCLUSION

In this study, considering that roads are part of the environ-
mental background rather than specific objects, we propose
a Low-level Feature Dominated Road Segmentation network
(LFD-RoadSeg) to achieve accurate and efficient road segmen-
tation. It follows a bilateral structure. The spatial detail branch
extracts low-level road representation. The context semantic
branch quickly captures the context having large horizontal
receptive fields with the help of asymmetric downsampling
and lightweight aggregation modules. In addition, the selective
fusion module leverages the context to suppress the non-road
response in the low-level feature. Comprehensive experiments
on three datasets indicate that our method achieves similar
accuracy as mainstream methods but at a speed of 238 FPS
on a single TITAN Xp, 54 FPS on a Jetson TX2 and costs the
parameter amount of only 936k.

VI. LIMITATIONS AND FUTURE WORK

While our research has made significant strides in real-time
road segmentation, there are several limitations to acknowl-
edge. Our model performs well under typical road conditions.
However, it may face challenges in extreme weather condi-
tions, such as heavy rain, snow, or fog. Future work should
focus on enhancing the model’s robustness under adverse
conditions. In addition, due to using low-level features, our
model cannot be generalized to the scenes totally different
from the training set, such as training models on street scenes
and testing models on off-road scenes. In the future, it will be
possible to enhance the model’s robustness and generalization
by utilizing techniques such as training on multiple datasets,
data augmentation, and transfer learning, thereby improving
its practicability.
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