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Optical Flow Based Detection and Tracking of
Moving Objects for Autonomous Vehicles

MReza Alipour Sormoli1, Mehrdad Dianati1, Senior Member, IEEE, Sajjad Mozaffari1, and Roger Woodman1

Abstract—Accurate velocity estimation of surrounding moving
objects and their trajectories are critical elements of perception
systems in Automated/Autonomous Vehicles (AVs) with a direct
impact on their safety. These are non-trivial problems due to
the diverse types and sizes of such objects and their dynamic
and random behaviour. Recent point cloud based solutions often
use Iterative Closest Point (ICP) techniques, which are known to
have certain limitations. For example, their computational costs
are high due to their iterative nature, and their estimation error
often deteriorates as the relative velocities of the target objects
increase (>2 m/sec). Motivated by such shortcomings, this paper
first proposes a novel Detection and Tracking of Moving Objects
(DATMO) for AVs based on an optical flow technique, which
is proven to be computationally efficient and highly accurate
for such problems. This is achieved by representing the driving
scenario as a vector field and applying vector calculus theories to
ensure spatiotemporal continuity. We also report the results of a
comprehensive performance evaluation of the proposed DATMO
technique, carried out in this study using synthetic and real-
world data. The results of this study demonstrate the superiority
of the proposed technique, compared to the DATMO techniques
in the literature, in terms of estimation accuracy and processing
time in a wide range of relative velocities of moving objects.
Finally, we evaluate and discuss the sensitivity of the estimation
error of the proposed DATMO technique to various system and
environmental parameters, as well as the relative velocities of the
moving objects.

Index Terms—Autonomous vehicles, optical flow, LiDAR, point
cloud, DATMO, MODT, state estimation.

I. INTRODUCTION

ACCURATE, reliable and fast perception of the surround-
ing environment is one of the most important technical

challenges in the safe deployment of Autonomous/Automated
Vehicle (AV) technologies. This problem includes the detec-
tion of surrounding objects and estimation of their states, i.e.,
their position and velocity. A particularly important element
of this problem is associated with the Detection and Tracking
of Moving Objects (DATMO), a.k.a. Moving Object Detection
and Tracking (MODT) in some studies of the literature [1].

There is a wide range of DATMO techniques in the literature
tailored for AVs that use camera perception sensors [2]–
[4], LiDAR perception sensors [5]–[7] and Radar perception
sensors [8]. LiDAR perception sensors are particularly popular
for AVs as they inherently provide a wide field of view (FOV)
and robust point clouds that can be used for highly accurate

1 Mehrdad Dianati holds part-time professorial posts at the School of
Electronics, Electrical Engineering and Computer Science (EEECS), Queen’s
University of Belfast and WMG at the University of Warwick. Other authors
are with WMG, University of Warwick, e-mail: {mreza.alipour, m.dianati,
sajjad.mozaffari, r.woodman}@warwick.ac.uk, m.dianati@qub.ac.uk
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range estimations. Therefore, in this study, we focus on
developing a DATMO technique primarily tailored for LiDAR
perception sensors. However, we believe such a technique can
be easily adapted to any type of perception sensor, such as
depth cameras, that provides a point cloud output.

When it comes to designing a DATMO technique, min-
imising its processing cost/time and estimation error are two
significant challenges. If an AV uses a LiDAR perception
sensor, the velocity of the surrounding moving objects can
be calculated by corresponding two consecutive point cloud
scans. In traditional approaches, an object detection function
is used as the first processing stage to identify objects in
two consecutive LiDAR scans. Then, a tracking algorithm is
applied to compute the velocity for the objects of interest [9].
Although these techniques are computationally efficient, their
accuracy depends on the accuracy of the underlying object
detection algorithms. While enhancing various elements of the
techniques, for example, by utilising the geometric models
of the moving objects in the detection process, can improve
the performance of this category of DATMO techniques,
such techniques do not perform well in many scenarios [21].
For example, if a vehicle travels at the speed of 90 km/hr
on a highway, the lateral velocity estimation error of such
techniques can exceed 2 m/sec. This is not regarded as an
acceptable input to the planning modules that determine cut-
in/cut-out intentions of vulnerable road users [22].

The problem can be exacerbated because the geometric
models of the moving objects can significantly vary for various
road users. This can have a direct impact on the estimation
errors of the aforementioned DATMO techniques. To address
these problems, a different category of DATMO techniques
has emerged in the literature [23]–[26]. These techniques
often use point cloud registration algorithms such as Itera-
tive Closest Points (ICP) [22] and track all moving points
in the point cloud [23]; hence, they are more accurate in
velocity estimation. However, these DATMO techniques are
computationally expensive because of their iterative nature
[28]. Furthermore, the performance of the underlying point
cloud registration methods can deteriorate when the deviation
between two consecutive point cloud scans increases. For
instance, if the relative speed of the Ego Vehicle (EV) and a
target object of interest is high (e.g., 12 km/hr), the dislocation
of the consecutive LiDAR scans is usually large, which can
result in a large error in ICP-based point cloud registration
algorithms [21]. This can result in poor performance of the
latter category of the DATMO techniques.

Motivated by the above challenges, in this paper, a novel
DATMO technique is proposed for AVs that use LiDAR
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TABLE I
A BRIEF REVIEW OF THE LIDAR-BASED DATMO METHODS IN THE LITERATURE.

L: LEARNING-BASED, ICP: INTERACTIVE CLOSEST POINT METHOD, G: GRID-BASED REPRESENTATION

Category References Advantages Disadvantages

Detection-Based
Tracking

Model-Based [1]l [9]

• independent detection and
tracking

• fusing different senors in de-
tection level

• tracking performance relies
on detection/classification

• difficult to detect and track
objects with unknown ge-
ometries

Model-Free [10] [11] [12]gl [13]l
[14]g

• tracking object with different
geometries

• more false-negatives (FNs)
in detection and tracking

Direct Tracking Model-Based [15] [16] [17]g [18]

• sensor’s physical model is
considered → more accurate
DATMO

• geometry of the objects is
tracked → accurate state es-
timation

• tracking performance
decreases for objects with
different shapes

Model-Free
(Point-Based)

[7]g [19]g [20]
[21]icp [22]icp
[23]icp [24]icp
[25]l [26] [27]gicp+l

• tracking all scanned points
• DATMO performance

doesn’t rely on geometric
shape

• high computational cost
• higher the relative velocity

for moving objects → lower
tracking performance

perception sensors. The proposed technique is inspired by
optical flow algorithm [29]. In our approach, the 3D LiDAR
scans are initially converted to 2.5D motion grids (Fig. 3)
inspired by [19]; then, the 2D velocity of each cell in the grid
is estimated by comparing two consecutive LiDAR scans. In
the next step, a series of grid mask filters such as temporal
and rigid-body continuity filters are applied to eliminate false
positive detection. The LiDAR points are classified based
on their velocity vectors, and each class is associated with
a moving object. Finally, a Kalman Filter is used to track
the velocity and position of the detected moving objects,
considering their dynamic model. The main contributions of
this paper are summarized as follows:

• Adopting optical flow technique to process the 3D point
cloud data instead of complex ICP algorithms. This
is used to generate a grid-based velocity vector field
representing a dynamic driving environment.

• Introducing a two-layer filter applied to the velocity
vector field eliminating the false positives and erroneous
vectors. These filters are designed based on the spatial
continuity of the vector field (rigid-body assumption) and
temporal propagation to improve the estimation perfor-
mance results.

• Introducing novel error model for velocity estimation as
a function of a configuration set for target vehicles (TVs)
w.r.t the ego vehicle (EV). This offers further insights
to be incorporated into the downstream modules such
as motion planning/prediction in the autonomous vehicle
framework.

The performance of the proposed technique compared to
the ICP-based methods, such as the one in [21], [27], model-
free [14] and model-based indirect tracking methods [18], is
evaluated in two steps. First, the compared DATMO techniques
are evaluated on a synthetic dataset generated in MATLAB
scenario designer, where various driving contexts are consid-

ered. In the next step, the KITTI tracking dataset from real
driving scenarios [30] is used. Each one of the synthetic and
KITTI datasets serves a different purpose in our study. The
synthetic dataset enables generating a wide range of driving
scenarios and various target vehicles (shape, velocity, dimen-
sion, etc.), which is not practically feasible in real-world data
collection campaigns. The flexibility of this type of dataset
becomes even more important when it comes to analysing
error sensitivity to different factors that are easy to change or
sweep in synthetically generated scenarios. On the other hand,
testing the proposed DATMO techniques with data collected
by contemporary sensors in real-world conditions helped us
validate its performance in the real world. Comparing the
estimation error distribution shows that the proposed DATMO
outperform the state-of-the-art in both speed and yaw angle
estimation. Moreover, the computational cost (without parallel
calculations) shows improvements of about 10%, whereas
parallelising the proposed method is easily available and could
improve this metric even more significantly. The proposed
error sensitivity analysis also revealed a meaningful correlation
between the configuration of the TV and estimation error
from which the researcher could benefit to develop motion
planning/prediction algorithms.

The rest of the paper is organized as follows. An overview
of the existing related work in the literature is described in Sec-
tion II. The system model and problem formulation are given
in Section III. The proposed DATMO method is explained
in Section IV. The performance evaluation methodology and
results are discussed in Sections V to VI. Finally, the key
findings and conclusions of the study are given in Section.VII.

II. RELATED WORKS

In order to review available point cloud based DATMO/-
MODT approaches in the literature, in this paper, they are
categorized into two main classes: 1) detection-based methods
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Fig. 1. High-level schematic system diagram of optical flow based DATMO for AVs. ω, vx, and vy all are n×m matrices. The same colour code (blocks
and signals) is used to expand and explain in different sections

also known as traditional methods [31]; 2) direct tracking
methods which is further divided into model-based and point-
based approaches.

A. Detection-Based Tracking

The detection-based or indirect algorithms track the ab-
stracted objects, patterns, bounding boxes, or clusters [10],
[11] by applying different filters such as variants of the Kalman
filter or particle filter. Therefore, the tracking performance
for these methods relies on both classification algorithms (or
pattern recognition) and filter structure [9]. There is a great
number of research aimed to improve the object tracking
task by developing enhanced classification/clustering steps
(before tracking) using learning-based [12], [13] or geometric
model estimation [1] algorithms, but all are still classified
under the first category of DATMO methods. There are other
studies in this category, such as [14], focused on reducing
the computational complexity by applying the classification
and subsequent tracking only on the moving point. In a
detection-based approach the detection and tracking steps are
independent and various sensor data could be used in the
detection algorithm without changing the tracking part.

B. Direct Tracking

In the direct tracking methods, the sensor model and/or
object’s geometric model is used to estimate corresponding
points in space without prior detection. This method could be
further divided into model-based and model-free (point-based)
approaches.

In model-bases direct tracking DATMO algorithms, prior
knowledge about the geometric shape and dynamic model
of the moving vehicles are used to track the states and the
geometric shape of the objects [15], [16] without detecting the
objects first [9], [18]. Tracking the geometry helps to predict
the dynamic properties with higher precision and discard
tracked objects with strange shapes or geometry changes.

However, the tracking accuracy declines for moving objects
with different shapes and geometry like cyclists or pedestrians.

The second subclass of the direct tracking approach (point-
based tracking) is a geometric model free in which every
point is tracked in consecutive LiDAR scans. However, these
scanned point clouds could be used directly or represented
in the form of 2D/3D grid space before being used in a
grid-based tracking algorithms [19]. The key advantage of
the point-based DATMO stems from the fact that there is no
assumption about the geometric shape of the object, and the
objects are classified/detected based on tracking corresponding
scanned points on them. But tracking all points makes the
computation process expensive and limits the method in terms
of the maximum number of moving objects in a scene [20]. To
overcome this challenge, before tracking scanned points they
are divided into static and moving categories by generating a
static obstacle map (SOM) [21] or filter objects of interested
with the help of deep learning methods [27]..

Point cloud registration (PCR) algorithms are widely used
in model-free DATMO methods. After clustering point clouds
in consecutive scans, corresponding clusters are detected and
PCR algorithms such as interactive closest point (ICP) [32]
are applied to each set (two clusters from the same object
in different time steps) to calculate precise relative motion
[21]–[26]. Although, low standard deviation of error has been
reported for tracking velocity (0.4 m/sec) and orientation
(1.81 deg) for the moving objects [21], these methods suffer
from a number of considerable drawbacks. First of all, the
computational time is not deterministic and depends on the
number of moving objects. Secondly, The performance of the
ICP algorithm highly depends on the initial conditions and
the performance deteriorates when the relative velocity of the
moving objects (with respect to EV) increases. Finally, because
the PCR algorithms are based on the iterative optimization
process, parallelizing these algorithms is not simple and
straightforward. Various methods reviewed in this section are
summarized along with advantages/disadvantages in Table.I.
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III. SYSTEM MODEL AND PROBLEM DEFINITION

We consider a system consisting of an EV equipped with
LiDAR sensors and multiple target vehicles (TVs) such as cars,
vans (or other large vehicles with different shapes), and bikers
on a segment of a road as shown in Fig. 2. The estimation of
speed and direction of motion for all TVs is desired.

As illustrated in Fig. 1, the input of the DATMO pipeline is
a 3D point cloud (P l) generated by raycast LiDAR, and the de-
sired output is a set of 2D velocity vectors ({v̂t

1, v̂
t
2, . . . , v̂

t
o})

each belongs to a unique track (trace of velocity vectors in
a certain period of time). It should be noted that “o” is the
number of moving objects at a time “t” (stationary objects
are not included). Unlike [21], in this study, we don’t assume
a small relative velocity for the moving targets. Moreover,
the update rate of the LiDAR sensor is presumed 10 Hz, so,
in order to avoid losing data, the proposed algorithm should
be able to calculate the desired output (within a radius of
120 m) in less than 100 ms (regardless of the number of
moving objects). However, we assumed that the ego vehicle
and the surrounding objects move in the horizontal plane
(xy in Fig.3). Therefore the velocity in the vertical direction
(z) is ignored and not reported in the estimated output. The
estimated velocities are in the local coordinate system attached
to the EV.

IV. PROPOSED METHOD

The proposed DATMO is illustrated using a block diagram
of processes as shown in Fig. 1. The algorithm between
input and output signals is divided into four main processes
summarized as follows:

(A) 3D LiDAR sensor data are converted to 2.5D grayscale
grid map.

(B) A velocity vector field generated using the optical flow
algorithm.

(C) The false positive estimation are eliminated by a filtering
mask calculated based on the continuum property of the
velocity vector field for rigid-body motion

(D) Finally fusing all measured information and dynamic
model in an Extended Kalman Filter (EKF)

The core process is the optical flow calculation and the
rest are either for preparing input data for this step or post-
processing the generated vector flow for filtering and tracking
the true positives. In the following subsections, each process
in the pipeline is described further in detail.

Fig. 2. Ego vehicle (EV) and target vehicles (TVs), including cars, vans, and
bikers moving with different velocities

Fig. 3. 3D point cloud conversion to 2.5 bird’s eye view grid. Darker grids
corresponds to higher value of Gij , and Gij = 0 in white cells.

A. Point Cloud to Bird’s Eye View Conversion Process

The optical-flow algorithm is the main component of the
proposed method, and this process requires 2D grayscale
images to calculate the velocity vector field. However, the
input data from LiDAR is 3D scattered point cloud. Similar
to [19] a conversion block is utilized for mapping the point
cloud input to a bird’s eye view grid which is also known as
2.5D grid map (Fig. 3). The input signal which is fed into
the conversion process is a point cloud containing L points
each has three coordinates without intensity data, e.g. the lth

point is represented by P l = {plx, ply, plz}. The output of the
conversion process (input of the vector flow generator) is a
grayscale 2D image which is called 2.5D grid map in this
paper. In other words, the output is a n×m matrix in which
cells are normalized between 0 and 255. Each cell is referred
to by an ij pair where i (j) is an integer between 1 and
N (M ). Moreover, the centre of each cell in the grid has
also a coordinate (Gx

ij , G
y
ij). Based on the grid’s resolution,

all cells have the same dimensions of w and h in x and
y directions, respectively. A value is assigned to each cell
of this grid space based on the height of the corresponding
points in the point cloud data i.e. the points with the same x
and y values (see Eq. 2). This value is calculated based on a
linear combination of the mean and standard deviation of the
height of the corresponding points projected on the horizontal
plane. This concept has been illustrated in Fig. 3 and the value
assigned to cell ij is obtained as follows:

Gij =
1

hmax
[a · µ (P g

z ) + b · σ (P g
z )] (1)

where, a and b are constant weight, and hmax is normalizing
constant. µ(·) and σ(·) are mean and standard deviation
functions, respectively. Superscription g is a set of integers
1, 2, .., L that satisfies the following condition:{ (

Gx
ij − w/2

)
≤ pgx <

(
Gx

ij + w/2
)(

Gy
ij − h/2

)
≤ pgy <

(
Gy

ij + h/2
) (2)

Based on this definition, Gij = 0 means that there is no
point in the point cloud corresponding to the cell ij above
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ground. Lower values (relative to a threshold) show that the
points are from ground [19]. On the other hand, higher values
are assigned for the points on vertical planes (bigger height
standard deviation) or horizontal plane with high z components
(bigger average height).

B. Motion Vector Flow Generation using Farneback Optical
Flow Algorithm

A dense optical flow algorithm is used to calculate the
velocity (linear and angular) for each cell of the grid map
generated in the previous step using two consecutive frames
of the converted 2.5D grayscale grid map (Fig.4). The output
signal of this process carries three n×m matrices including
linear and angular velocities of each cell in the grid. Two
matrices for linear velocities in x and y directions (vx and vy,
respectively), and one for angular yaw rate in the z-direction
(ω).

There are several optical flow algorithms available in the
literature for estimating the per-pixel motion between two
consecutive images [33]. In this study, we need dense vector
flow (not sparse) to calculate the velocity of all occupied cells
with high accuracy and low computational cost. Although any
dense optical flow algorithm could be used in the proposed
DATMO framework, the well-known Gunar-Farneback optical
flow generator [29] has been used here. This algorithm satisfies
the requirements (accuracy-cost trade-off) more efficiently
compared to other methods [34]. However, the Farneback
algorithm employs expanded polynomial transformation of
adjacent cell’s brightness to estimate the dense velocity distri-
bution for each grid cell [29], and this may cause estimating
non-zero velocities for unoccupied cells in the neighbourhood
of the occupied cells. This challenge is addressed in the next
part (filtering and masking process).

The optical flow algorithm calculate linear velocity distribu-
tion, however, the angular velocity is also required for accurate
state tracking of the vehicles (sec.IV-D). Based on vector field

Fig. 4. Optical flow based velocity vector field generation process. Grayscale
brightness refers to the occupied cells which contain LiDAR scanned points.
⊗ and ⊙ show the angular velocity vectors perpendicular to the motion plane
in −z and +z, respectively. NOTE: for reading the system diagrams used
in this paper the signals are expanded (rectangles with dashed line frame) to
illustrate data that is carried between processing blocks.

Fig. 5. Vector field propagation mask in time step k

theory [35] and rigid body assumption for each moving object
in the scene, the angular velocity of each cell (in z direction)
is obtained by the Eq. 3. (see [36] and Appendix).

ω = 0.5 (∇× v) (3)

Where v is the linear velocity vector field, and ∇ is the curl
operator.

Therefore, the output of the vector flow generation process
includes angular velocity in z direction, in addition to 2D
linear velocity in x and y directions.

C. Masking and Filtering the vector field

Due to the dense nature of the vector field obtained by the
Farneback optical flow algorithm, the generated vector field
contains false positive values for cells which are not occupied
or do not belong to moving objects (static). The masking
process is to filter out undesirable false positives and provides
the final estimated velocity vectors, so the output of this step
is a subset of its input. In this section, the mask is obtained
in two steps and prepare the final vector filed for the tracking
process.

1) Vector Field Propagation Mask: The second masking
layer for the vector field is based on temporal filtering which is
called propagation in this study. Propagation of the vector filed
in time step k is obtained by changing the (x, y) position of the
velocity vectors in the 2D plane according to the linear velocity
values in time step (k−1). The propagation is calculated using
Eq. 4.

ṽk
i′j′ = v̂k−1

ij ;{
i′ = i +

⌊
v̂k−1
x dt+ w/2

⌋
j′ = j +

⌊
v̂k−1
y dt+ h/2

⌋ (4)

where ṽ is propagated vector field, and dt is time increment.
The value inside ⌊·⌋ is rounded down to the nearest integer.

As shown in Fig. 5, the propagated vector field of time
step (k − 1) is compared with the vector field calculated in
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Fig. 6. Expanded schematic system diagram of optical flow based DATMO for AVs. NOTE: for reading the system diagrams used in this paper the signals
are expanded (rectangles with dashed line frame) to illustrate data that is carried between processing blocks. And, MMR stands for memory.

the same time step and the masking matrix (Mc) is obtained
using Eq. 5:

(Mp)kij =

{
1 if

∥∥ṽk
ij − v̂k

ij

∥∥ ≤ αp

0 otherwise
(5)

In this equation, αp is a constant threshold close to zero. The
final masking boolean matrix is calculated by multiplying two
masks calculated in two layers: Mask = Mc×Mp. Applying
this filtering mask to the vector field at each time step filters
out undesirable false positive vectors.

2) Rigid-Body Continuity Mask: In this study, it has been
assumed that the moving objects are rigid i.e different parts
of a single object have zero relative motion. Therefore, linear
(v) and angular (ω) velocity vector fields should satisfy the
continuity conditions of Eq. 6 [35]:

Fig. 7. Tracking process system diagram.

{
∆V = 0
∇ (∇×V) = 0

(6)

The first part of Eq. 6 is for continuity in the linear velocity
i.e the objects cannot tear apart nor implode, while the second
part refers to the fact that all points on a single object should
rotate with the same angular velocity. The results of both
operations are 2D matrices, so, the estimated values for the
cells that do not satisfy the condition (not exactly equal to
zero but below a certain threshold αcont) are set to zero. The
resulting mask from this procedure is referred to by (Mc) in
the rest of the text.

D. Tracking
The resulting vector field is used to detect moving objects

and estimate their velocity. The tracking process output is
the final estimated state of the objects (linear and angular
velocities) augmented with a unique ID. As illustrated in Fig.1,
x̄, x̂. and x̃ are masked, estimated, and propagated values of
x variable, respectively, while the superscription shows the
time step for the variables. An Extended Kalman Filter (EKF)
is designed to use vector field data as measurements and the
dynamic model of Eq.7 (constant linear/angular acceleration)
as the prediction model to estimate the state (Xn) of the
moving objects. Every estimated position and velocity is
assigned to either an existing or new track with a unique ID
via Global Nearest Neighbour (GNN) [21].

Ẋn = f (Xn, U)
ẋn

ẏn
θ̇n
v̇n
ω̇n

 =


vn cos θn − v + lnω
vn sin θn − lnω
ωn − ω
ka
kα

 ; U =

[
v
ω

] (7)
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Fig. 8. Target vehicle’s (TV) configuration (position, orientation, and velocity)
relative to the ego vehicle (EV)

1) Measurements in EKF and Updating Tracks: In the
Kalman filter structure three measurements are used for each
moving object i.e two linear velocities and one angular veloc-
ity in z direction. As illustrated in Fig.7, these measurements
are calculated by clustering masked velocity vector fields
{v̄x, v̄y, ω̄} provided by optical flow and taking the mean
value of each cluster. In the proposed approach, Euclidean
distance is utilized for clustering vectors, and mean position
and velocity are fed into the EKF algorithm to estimate the
state vector for each moving object using motion dynamics of
Eq.7.

All clustered points should be either assigned to an existing
track or initialised on a new track. Similar to [21], in our
approach, the clusters are assigned to the predicted tracks
via GNN. Each cluster is assigned to at most one track
based on a 4D feature vector [xm, ym, λ1, λ2] containing the
mean position and shape of the cluster (independent of the
orientation) in the motion plane. Two components in the
features vector showing the shape of a cluster are eigenvalues
of the covariance matrix of the points in a cluster (λ1, λ2).
So, a cluster is assigned to a track if the Euclidean distance
between their feature vectors is less than a threshold γ.

The final step in managing the tracks is confirming and/or
deleting tracks. Every one of these two procedures is done by
a 2D integer vector. A track is confirmed when M1 number
of measurements/detection is assigned to it in the last N1

updates (M1 < N1). And similarly, a confirmed track is
deleted if in the last N2 (M2 < N2) consecutive updates, no
measurement is assigned to it M2 times. It should be noted
that the coordinate system used in this section is attached to
EV with a configuration shown in Fig.8.

The interaction between different processes is depicted in
the assembled system diagram of Fig.6. This system diagram
is a detailed version of Fig.1.

V. PERFORMANCE EVALUATION

An experimental test is designed to evaluate and verify the
performance of the designed DATMO algorithm. Two main
objectives are targeted in this section. Comparing the proposed
DATMO with state-of-the-art (SOTA) methods, and obtaining
an error model for estimation accuracy.

First and foremost we statistically compare the performance
of the DATMO method with SOTA geometric model-free
approach (GMFA) developed in [21] which has been proven
to be more efficient than the geometric model-based tracking
(MBT) method proposed in [37]. However, the proposed
method is further compared against SOTA model free [14] and
model-based [18] direct tracking methods as well. The GMFA
algorithm is regenerated and evaluated, while the quantitative
performance of the other methods are obtained from [14] and
[18]. Therefore, the later experiments are consistent with those
specified in these studies.

In addition, we further investigate how the state estimation
error changes as a function of the deriving environment i.e
configuration of EV and TV. Regarding these objectives, the
experimental evaluation is conducted in two different steps.
Initially, synthetic data is generated to evaluate the algorithm
in various custom situations, and in the next step, the algorithm
is tested on a real-world dataset of KITTI.

A. Datasets

1) Synthetic Data Generation and Simulation: In order to
evaluate the proposed method for estimating the state of the
target vehicles in diverse possible configurations, generating
a synthetic dataset is essential. In addition, the estimation
error is calculated more accurately in the simulation compared
with real-world datasets such as KITTI for which the ground
truth of objects’ velocity has not been provided directly. In
this study, the TV’s configuration space is defined by three
variables (Fig. 8): distance to EV (ln), relative orientation
(βn), and relative velocity (∆υn = υn − υ). The aim is
to design scenarios covering all possible configurations for
investigating the meaningful relations between the estimation
error and these three variables, in addition to assessing the
estimation accuracy. Therefore, the flexibility in changing dif-
ferent configurations provided by synthetic datasets is another
reason that justifies utilising this type of dataset.

The driving scenario designer toolbox in MATLAB is used
to generate synthetic scenarios and add a LiDAR sensor to
collect point cloud data. As illustrated in Fig. 9-(b), three
different types of TVs are simulated in synthetic scenarios in-
cluding sedan, van, and cyclist. Moreover, for considering EV
motion effect completely, a nonzero curvature is considered
to avoid zero yaw rate for EV. The LiDAR sensor parameters
are adjusted according to what is used in the KITTI dataset
collection sensor. The point cloud data from a simulated scene
has been plotted in Fig. 9-(c).

In order to cover all possible cases for the n-th target vehicle
configurations ({ln, βn,∆υn}), each scenario contains a target
vehicle (sedan, van, or cyclist) moving in the same multi-lane
road in which EV moves in one of the lanes (with a speed of
20 m/s). TVs move with 10 different speeds (10 to 40 with a
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Fig. 9. Synthetic primary scenario generated in Matlab scenario designer: trajectories design parameters for different TVs (a), a 3D meshed object in scene
(b), and bird’s eye view scanned point cloud excluding ground points in EV coordinate system (c)

Fig. 10. Proposed DATMO algorithm result for KITTI dataset: tracking IDs and velocity vectors plotted on the front camera image (left), and bird’s eye view
scanned point cloud excluding ground points (right)

step of 2 m/s) in a lane and drive in two modes: first, keep
the same lane, and second, overtake back and forth between
two lanes with trajectories defined by two parameters of s
and n = w/2 shown in Fig.9-(a). In the case of changing
lanes/overtaking, two values of 2 and 4 seconds are used for
s (assuming constant speed). And finally, the lateral offset of
the TV start lane from EV’s lane varies from -80m to 80m
(with a step of 1m), The cyclists’ trajectories include only
lane-keeping i.e without any lateral motion. There is only one
TV in each generated scenario to prevent occlusion, although,
in Fig.9 three TVs are depicted which is a combination of
three scenarios to be more informative.

We refer to all synthetic scenarios described above as pri-
mary scenarios. To further compare the performance metrics
against model-free [14] and model-based [18] indirect tracking
methods, simulation scenarios designed in [14] are replicated

(secondary scenarios). In these scenarios the TV moves with
the speed of 6 m/sec along i) straight right-angled, ii) right
turn, and iii) circular paths (see [14] for details).

2) KITTI Dataset: The final evaluation is conducted using
the real-world KITTI tracking dataset for multi-object tracking
task. Besides the ground truth labels, only LiDAR data from
this dataset is used in the current study for the estimation
task, however, the colour images of each frame are also
used to plot velocity vectors in image coordinate (Fig.10-left)
using transformation matrix (velo-to-cam). Moreover, since
there is no ground truth label for the velocity of objects
in the driving environment, it is obtained by tracking the
centre of the 3D bounding boxes. In the KITTI dataset, the
bounding box coordinates are provided in the camera frame
whereas the estimated velocity values are obtained in the
LiDAR coordinate system. Therefore, the calculated velocities
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Fig. 11. Comparative results of the proposed and GMFA algorithms for the
synthetic and KITTI datasets

are transformed to the camera coordinate (Tvelo−to−cam) to
calculate estimation error.

Since we need to compare the estimation results with the
ground truth labels, the training sequences are used for velocity
and yaw angle error calculations, however, both training and
testing sequences are used to obtain detection performance.
Adopted from [21], the point cloud data closer than 25m in the
lateral direction (left and right), 80m and 15m in longitudinal
front and rear directions, respectively are considered, and the
rest of the data and labels out of this range are discarded in
the evaluation process.

B. Evaluation Metrics

Following the previous studies [21], [22], the velocity vector
estimation accuracy is evaluated by speed and angle (θ) errors
with respect to the ground truth (GT) values. The estimation
errors for oth target object at time t are calculated in Eq. 8.

δvo (t) =
∣∣∥∥vGT

o

∥∥− ∥v̂o∥
∣∣
t

δθo (t) =
∣∣∣θGT

o − θ̂o

∣∣∣
t

(8)

In order to compare DATMO performance throughout all
data points, the standard deviation (σ) of the error distribution
of all timesteps and target moving objects is used in Table.II.
Moreover, same as [21], the detection performance is also
evaluated by Precision and Recall defined in Eq. 9.

Pr = (TP )/(TP + FP )
Re = (TP )/(TP + FN)

(9)

The last metric to quantify the estimation performance is
the time each algorithm takes to process an instance of the
LiDAR scan to detect and estimate the state of the moving
objects.

C. Results

The evaluation results are divided into three sections. Firstly,
a stochastic comparative analysis is conducted with model-free
direct tracking methods in [21] (GMFA) and [27]. Secondly,
simulation results compare the proposed method with model-
free and model-based indirect tracking methods developed

in [14] and [18]. Lastly, the effects of the continuity filters
(Section. IV-C) are presented in an ablation study.

The grid size in the proposed algorithms is 0.17 × 0.17 m
and the Farneback optical flow algorithm used in the proposed
method is taken from OpenCV computer vision library with
the following setting: NumPyramidLevels = 3, PyramidScale =
0.5, NumIterations = 3, NeighborhoodSize = 3, and FilterSize
= 11.

1) Comparison with Direct Tracking Methods: The de-
tection and state estimation results for 21 sequences of the
KITTI training labelled dataset and more than 800 synthetic
driving scenarios (primary) are presented in this section. In
both sets of these datasets, the detection and state estimation
performance evaluated for cyclists, sedans, vans (or bigger
vehicles such as trucks or buses in the KITTI dataset) and
pedestrians are ignored in this study. As a sample, the tracking
results of moving object tracking in both KITTI and synthetic
datasets have been illustrated in Fig.11 left and right column,
respectively, for GMFA and the proposed approaches (dashed
red and solid green, respectively). Discontinuation of the
dashed red diagram in the left column plot shows that the
GMFA couldn’t track the object from approximately 71 sec
onward. The top row in this figure shows the speed estimations
whereas the bottom row depicts the yaw angle estimation
results for a moving object in one sequence. The estimated
values are reported as relative values i.e measured in the EV
coordinate system.

In order to compare the GMFA and the proposed ap-
proaches, the estimation error distribution of all sequences for
two datasets is obtained. This distribution contains estimation
error of all time steps throughout all sequences. Speed and
yaw angle estimation error distribution has been shown in
Fig.12 top and bottom row, respectively. In this figure, the
performance of both GMFA (red) and the proposed (green)

Fig. 12. Comparative error distribution of the proposed and GMFA [21]
algorithms for the primary synthetic and KITTI datasets
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TABLE II
EXPERIMENTAL EVALUATION RESULTS OF THE PROPOSED METHOD AND GMFA [21] FOR BOTH SYNTHETIC SIMULATION AND KITTI DATASET

Dataset ∥∆υ∥ Method Precision Recall σv σa Time
[m/s] (%) (%) [m/s] [deg] [ms]

Simulation
≤ 1

GMFA 94.3 93.6 0.28 1.12 147

Proposed 94.1 93.8 0.23 1.37 139

> 1
GMFA 88.9 87.3 2.28 3.81 155

Proposed 89.2 88.3 1.48 0.63 147

KITTI
≤ 1

GMFA 89.7 88.7 0.48 18.12 196

Proposed 88.8 89.1 0.33 10.97 171

> 1
GMFA 87.5 86.8 0.78 34.21 201

Proposed 88.6 88.2 0.56 16.71 183

TABLE III
COMPARING TO OTHER MODEL-FREE AND LEARNING-BASED MOTION

ESTIMATION METHODS

Ref Speed Error
[m/sec] time [ms] Training needed

Wang et al. [38] 1.69 80 Yes

Liu et al. [39] 4.37 - Yes

Li et al. [27] 0.42 240 Partially

Proposed 0.44 142 No

TABLE IV
COMPARING THE MEAN AND MAX ESTIMATION ERRORS AGAINST MODEL

FREE [14] AND MODEL-BASED [18] INDIRECT TRACKING METHODS.
RESULTS OBTAINED FROM THE SECONDARY SCENARIOS IN [14].

secondary
scenar-

ios
Method

Speed [m/sec] Direction [deg]

mean max mean max

i

Wang et al. [14] 0.25 0.43 0.52 1.49

Zhang et al. [18] 0.38 0.59 1.23 1.93

Proposed 0.09 0.31 0.18 0.51

ii

Wang et al. [14] 0.40 0.70 0.80 2.53

Zhang et al. [18] 0.52 1.00 1.53 4.02

Proposed 0.21 0.47 0.83 1.70

iii

Wang et al. [14] 0.29 0.40 1.65 2.50

Zhang et al. [18] 0.43 0.84 2.25 5.09

Proposed 0.19 0.44 0.41 1.82

methods is illustrated for KITTI and synthetic datasets sepa-
rately in the left and right columns, respectively. Furthermore,
for each distribution, a normal distribution function has been
fitted with the standard deviation value printed in the top left
for both methods using the same colour codes. Similar to [21]
the standard deviation values are used to compare the accuracy
of DATMO methods.

Finally, the detection and estimation results of two methods
and two datasets are summarized in Table.II. Precision and
recall metrics are for evaluating moving object detection while
the standard deviation and time columns report the result of the
state estimation accuracy and computational cost, respectively.
The results are further reported for two different ranges of

relative velocity (∥∆υ∥ ≤ 1 and ∥∆υ∥ > 1 m/s), because the
GMFA method of [21] is developed for detecting and tracking
of moving objects with “low relative speed”. Therefore, in
order to check if the GMFA method is replicated properly,
the estimation errors for low relative speeds (∥∆υ∥ ≤ 1 m/s)
should be less than what was reported in [21]. It should be
noted that since there is no exact velocity ground truth label for
the KITTI tracking dataset, the calculated error for this dataset
even for low speeds is not comparable directly with values
reported in [21], and we use the replicated GMFA algorithm
instead to only compare the final estimation error with the
proposed approach performance. Moreover, the processing
time reported in this table is the average time the computing
unit (Intel Core(TM) i7-7600 CPU @ 2.80GHz) needs for each
cycle excluding the first step of each sequence which needs
extra initialization time. The breakdown of computational
complexity for different processes within the framework is
given in Table. VI. Since we believe that the core process
of optical flow in the proposed method could be parallelized
using off-the-shelf tools, this process was implemented on both
CPU and GPU (GeForce RTX 2080 Ti) for the simulation sce-
narios. The results indicate an 80% improvement in processing
time for GPU compared to CPU.

The estimation error and computational complexity com-
parison with other model-free and learning-based motion esti-
mation methods is summarised in Table. III. The performance
metrics of other methods and evaluation conditions are adopted
from [27]. The results are based on the KITTI tracking dataset,
sequences 0000, 0005, and 0010. The objects within a radius
of 50 m are considered. The results, represented in Table. III,
include other learning-based motion estimation methods as
additional references. The comparison suggests that although
our method’s performance in terms of speed accuracy is
comparable to that of [27], there is a significant improvement
in computational complexity. This is attributed to the iterative
nature of the ICP method used in [27]. Moreover, all other
methods in this table are data-driven and will need retraining
the different situation or sensor configurations; otherwise, the
performance may decline. While our method is deterministic
and does not need training.

2) Comparison with Indirect Tracking Methods: Table IV
presents secondary simulation results for comparison with in-
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direct tracking methods. Like the simulation scenarios used in
this comparison, the performance metrics and values for other
methods in this table are sourced from [14]. As anticipated, the
proposed method outperforms both indirect tracking methods,
as they compute velocity based on macroscopic classified
point clouds. In contrast, our framework employs the optical
flow algorithm to calculate the velocity field at a microscopic
level (grid-based) before the classification and EKF tracking
processes take place.

3) Ablation Study: The impact of the two-layer filters
applied to the velocity vector field and ablation experiment
is investigated in this section. The continuity and propagation
filters (see Section. IV-C) are disabled individually to quantify
their effect through the changes in the performance metrics.
Only the KITTI dataset is used for this experiment and the
results are summarized in Table. V
Based on the findings presented in Table. V, the performance
metrics show improvement with the inclusion of both filters,
with notably significant enhancement attributed to the propa-
gation filter.

D. Estimation Error Sensitivity to TV’s Configuration

After validating the proposed DATMO approach and com-
paring it with the state-of-the-art method, the sensitivity of the
speed estimation error to the changes in the TV’s configuration
for the proposed method is explored in this section. This
would help other researchers who use this tracking method
(motion planning and control) to consider an error model. Two
elements of the TV configuration (βn, ln) are used as variables
in this section. In other words, we want to investigate how
the estimation error changes by changing the distance (ln)
and orientation (βn) of the TV. The synthetic data is used to

Fig. 13. Error model as a function of orientation and distance of the TV with
respect to EV for ∆υ = 10 m/s. The heatmap colour corresponds to the
absolute error value in eυ axis

TABLE V
ABLATION STUDY FOR THE TWO-LAYER FILTER APPLIED ON VELOCITY

VECTOR FIELD

# Propagation
Filter

Continuity
Filter σa [m/sec] σa [deg]

1 ✗ ✗ 2.11 0.93

2 ✓ ✗ 1.45 0.70

3 ✓ ✓ 1.38 0.64

TABLE VI
PROCESSING TIME FOR DIFFERENT COMPONENTS OF THE PROPOSED

METHOD

Process:
Data
Pars-
ing

3D to 2D
Conver-

sion

Optical
Flow

(GPU/CPU)

GNN
Tracker

Total
(GPU/CPU)

Time [ms]: 8.1 4.4 4.6/119 10.8 27.9/142.3

sweep these variables and the proposed algorithm is applied
to measure the estimation error for each case. The result of
this sensitivity analysis is presented in a 3D plot and three 2D
plots (three views of the same 3D plot) in Fig.13. In this figure,
the heatmap colour correlated to the absolute speed estimation
error (eυ) is used to visualize the error value, particularly in
the top-view plot (red and blue colours corresponding to high
and low absolute error, respectively).

VI. DISCUSSION

The obtained results are presented in the section.V-C are
further discussed in detail in this section. The comparative
data reported in TableII and Fig.12 show the superior per-
formance of the proposed method compared with the GMFA
approach. But before comparing the two approaches, we need
to validate the regenerated algorithm for GMFA. Since this
algorithm is originally developed for low relative speed and
has been validated with an autonomous vehicle platform,
the performance of the regenerated algorithm for low-speed
synthetic dataset should surpass the values reported in [21] (the
standard deviation of the speed and yaw angle error are 0.40
m/s and 1.81 deg, respectively). According to Table.II (first
row), the GMFA result for low-speed simulation outperforms
these outcomes. Therefore, the regenerated GMFA algorithm
is reliable to be tested as the baseline with other datasets such
as KITTI or high relative speed synthetic datasets.

In detecting the moving objects, precision and recall values
show almost similar performance for both comparing methods
(increased only 1% in the proposed approach). However,
the state estimation accuracy shows more than 34% and
50% improvement in the standard deviation of the estimated
speed and yaw angle error distribution, respectively. The fitted
normal distribution along with the standard deviations for both
synthetic and KITTI datasets has been shown in Fig.12.

Moreover, the measured processing times show an average
of ∼ 8% improvement for the proposed method compared with
the GMFA. The computation time for the synthetic data shows
less improvement compared to the KITTI dataset (5% vs
10.5%). Since each sequence of the synthetic scenario contains
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only one moving object, and the GMFA is based on point cloud
registration for which the processing time depends on the
number of detected moving point clusters, the computational
effort is more consistent and less than that of KITTI scenarios
in which the number of moving objects are more than one
in most sequences. All computations in this study were done
on CPU without parallel processing, whereas the proposed
method which is based on an optical flow algorithm, has
the potential to be implemented on GPU to accelerate the
computations. This is another advantage of this approach over
point cloud registration-based methods such as GMFA that
use optimization and this makes it more difficult to parallelize
the computations. Recently, Contemporary GPUs dedicate
hardware to particularly accelerate optical flow algorithms up
to 10 times faster [40]. Therefore, using parallel computation
will accelerate the processing even more for the proposed
approach.

Overall, the comparison results indicate that the proposed
method’s performance in state estimation and computational
cost is comparable with the state-of-the-art method (GMFA),
and as the last part of analysing the results error sensitivity
of the proposed method is considered. The estimation error
sensitivity to the configuration of the TV, illustrated in Fig.13,
shows that the error magnitude is more sensitive to the
orientation of the TV when the target vehicle is located at
farther distances (ln > 45 m). The way that the error value
changes with respect to the orientation of the TV (βn) is also
interesting. The error increases at three specific orientations:
βn = 0, 90, 180 deg. regarding Fig.8, the first (βn = 0 deg)
and last (βn = 180 deg) orientations correspond to the
configuration in which TV facing or backing on to the EV,
whereas the second orientation (βn = 90 deg) is for the
case in which TV’s side is toward the EV i.e LiDAR sensor
location. One of the possible reasons for this correlation could
be the fact that in these configurations the scanned point cloud
is no longer scattered in 3D space and mostly on a 2D plane.
For instance, in βn = 90 deg most of the scanned points are
from the side of the vehicle. However, to elaborate more on the
error model and consider all involved factors more research is
required in future studies.

VII. CONCLUSION

In this study, a novel DATMO technique was proposed using
a Farneback optical flow algorithm. This study revealed the
promising potential of this approach in terms of accuracy and
processing costs. Similar to traditional GMFA techniques, the
optical-flow-based technique approach proposed and studied
in this paper demonstrated good resilience against variations
of the object sizes in driving scenes. Analysis of the error sen-
sitivity to the configuration of the target vehicle in this study
revealed meaningful correlations which could be used in future
for error modelling. Our results showed that the error values
increase when the TV moving in radial (βn = 0, 180 deg)
and tangential (βn = 90 deg) directions in distances farther
than 50 m. It shall be noted that Small size objects such
as pedestrians were not covered in our study. Further studies
could explore estimating the state of pedestrians by reducing

Fig. 14. Velocity of points on moving rigid body (vehicle)

the grid size and implementing the algorithm using parallel
computing to calculate optical flow.
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APPENDIX

DERIVING ANGULAR VELOCITY FROM VELOCITY VECTOR
FIELD

Assuming rigid body motion, the angular velocity could be
obtained from the velocity vector field. If

{
î, ĵ, k̂

}
are unit

vectors in {x, y, z}, respectively, and considering notation
used in Fig. 14, the angular velocity for planar motion is
derived as follows:

v = vc + ω × r
= vc + ω × (R−Rc)
= (vc − ω ×Rc) + ω ×R

Rewriting this equation by substituting R = x̂i+ŷj, and Vc =
vc − ω ×Rc = Vcx̂i+ Vcy ĵ:

v = Vc +
(
−ωŷi+ ωx̂j

)
= (Vcx − ωy) î+ (Vcy + ωx) ĵ

And by applying the curl operator to both sides, the angular
velocity is obtained based on the curl of the vector field v. It
should be noted that the rigid body assumption makes the curl
independent of the position and linear velocity of the centre
c.

∇× v = [∂/(∂x) (Vcy + ωx)− ∂/(∂y) (Vcx − ωy)] k̂

= 2ωk̂
⇒ ω = 0.5 (∇× v)
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