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Stochastic Model Predictive Control with a Safety
Guarantee for Automated Driving

Tim Brüdigam, Michael Olbrich, Dirk Wollherr, Marion Leibold

Abstract—Automated vehicles require efficient and safe plan-
ning to maneuver in uncertain environments. Largely this uncer-
tainty is caused by other traffic participants, e.g., surrounding
vehicles. Future motion of surrounding vehicles is often difficult
to predict. Whereas robust control approaches achieve safe, yet
conservative motion planning for automated vehicles, Stochastic
Model Predictive Control (SMPC) provides efficient planning in
the presence of uncertainty. Probabilistic constraints are applied
to ensure that the maximal risk remains below a predefined level.
However, safety cannot be ensured as probabilistic constraints
may be violated, which is not acceptable for automated vehicles.
Here, we propose an efficient trajectory planning framework with
safety guarantees for automated vehicles. SMPC is applied to ob-
tain efficient vehicle trajectories for a finite horizon. Based on the
first optimized SMPC input, a guaranteed safe backup trajectory
is planned using reachable sets. This backup is used to overwrite
the SMPC input if necessary for safety. Recursive feasibility of
the safe SMPC algorithm is proved. Highway simulations show
the effectiveness of the proposed method regarding performance
and safety.

Index Terms—model predictive control, stochastic model pre-
dictive control, failsafe trajectory planning, automated vehicles

I. INTRODUCTION

Within the past decades, research has made significant
progress in the area of self-driving cars. A majority of road
accidents is still caused by human errors, therefore, increasing
the level of vehicle autonomy has great potential to reduce the
overall number of accidents.

The safety of automated vehicles depends on the ability
of the vehicle control algorithm to handle uncertainty of
other traffic participants and the environment. While there are
various control methods to plan vehicle trajectories, Model
Predictive Control (MPC) has proved to be a suitable approach
by iteratively solving an optimal control problem on a finite
prediction horizon. Uncertainties in the prediction model are
addressed by Robust Model Predictive Control (RMPC) [1].

RMPC approaches were designed for trajectory planning in
automated vehicles [2], [3], however, robustly accounting for
uncertainty yields conservative vehicle behavior. Conservatism
resulting from robustly handling uncertainty in MPC is re-
duced by Stochastic Model Predictive Control (SMPC) [4], [5],
where robust constraints are reformulated into probabilistic
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constraints. This probabilistic reformulation enables optimistic
trajectory planning in a majority of scenarios, but it also allows
a small probability of constraint violation, i.e, a probability of
collision for vehicles [6], [7].

In comparison to SMPC, trajectory planning based on
reachability analysis provides formal safety guarantees [8],
[9]. Here, worst-case predictions are obtained for other sur-
rounding vehicles in order to plan fail-safe vehicle trajectories,
referred to as fail-safe trajectory planning (FTP).

In this work, we tackle the challenge of planning efficient
and safe trajectories for automated vehicles. We present a
novel MPC trajectory planner, which combines the advantages
of SMPC and fail-safe trajectory planning for environments
with uncertainty. A trajectory is planned with SMPC, provid-
ing optimistic and efficient planning. In a regular setting, the
first optimized SMPC input is then applied to the vehicle and a
new SMPC optimal control problem is solved at the next time
step with a shifted horizon. In addition to SMPC, for every
time step a fail-safe trajectory is planned, based on the first
optimized SMPC input. The optimistic SMPC input is only
applied to the vehicle if it is still possible to find a fail-safe
backup trajectory after having applied the first SMPC input.
This ensures that the efficient SMPC trajectory is executed
as long as a backup exists, therefore guaranteeing safety. The
proposed method is referred to as Stochastic Model Predictive
Control + fail-safe trajectory planning (SMPC+FTP).

The contributions of this work are as follows.
• Novel SMPC+FTP method providing efficient and safe

trajectory planning including lane change decisions.
• Proof of recursive feasibility of the SMPC+FTP method.
• Simulation study with complex highway traffic situations.

The proposed SMPC+FTP ensures safety for the vehicle while
exploiting the benefits of efficient SMPC trajectory planning.
The design of the SMPC+FTP method guarantees recursive
feasibility, i.e., if a solution exists at a time step, it is
guaranteed that a solution also exists at the next time step. A
simulation study of two complex scenarios demonstrates the
benefits of optimistic trajectory planning in a regular highway
scenario, while the ability of SMPC+FTP to guarantee safety
is shown in an emergency scenario.

An extended version of this work is available [10], providing
more detailed derivations and analyses.

A. Related Work

Trajectory planning for automated vehicles is a widely
studied research area. There are various methods in non-
MPC related fields, such as using partially observable Markov
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decision processes (POMDP) [11] or reinforcement learning
[12]. Learning based methods are also popular for autonomous
racing [13]–[16]. When considering automated road vehicles,
MPC is for example used for maneuver and trajectory planning
in [17], [18].

The main focus of this work is trajectory planning with
SMPC and FTP. Fail-safe trajectory planning is defined as
planning collision-free vehicle trajectories, accounting for any
legal future motion of surrounding vehicles [19]. For bounded
uncertainties in real-world applications, FTP is applied based
on worst-case uncertainty realizations. Combined with reach-
ability analysis, formal safety guarantees are given [9]. The
computation of these reachable sets is connected to control
invariant sets in RMPC as stated in [20]. An approach to
include reachability analysis into MPC is given in [21].

In [22] a method is proposed to compute the set of all
future locations possibly occupied by traffic participants. The
remaining safe space is admissible to plan emergency trajec-
tories. This FTP is presented in [8]. First, given the most
likely motion of surrounding vehicles, an optimal trajectory
is determined. Then, an emergency trajectory is connected to
the last point of the optimal trajectory. The fail-safe trajectory
is generated in such a way that the controlled vehicle comes
to a standstill. In [19] an FTP method is introduced that
generates fail-safe trajectories in real-time. The method is
tested in various simulations based on the CommonRoad
benchmark framework [23]. A motion planning framework is
introduced in [24], which combines reachability analysis with
optimization-based trajectory planning.

SMPC has been intensively studied in the context of auto-
mated vehicles. These works focus on the trade-off between
risk and conservatism, defined by probabilistic constraints, so
called chance constraints [25]. A major challenge in SMPC
is reformulating the probabilistic chance constraint into a
tractable constraint, which can be handled by a solver.

An SMPC particle approach is shown in [26] with a simple
vehicle braking scenario, where particles approximate the un-
certainty. An SMPC trajectory planner for automated vehicles
in the presence of fixed obstacles is presented in [27]. In [6]
vehicle trajectories are planned with SMPC based on the most
likely prediction for surrounding vehicles, assuming Gaussian
uncertainty. Varying risk parameters are studied, illustrating
the trade-off between risk and conservatism. In [28] an SMPC
lane change controller is presented, where the lane change risk
is considered using predicted time-to-collision.

A different SMPC approach is utilized in [7], [29], focusing
on Scenario Stochastic Model Predictive Control (SCMPC).
In SCMPC samples of the uncertainty are drawn, which must
then satisfy the constraints to find a tractable chance constraint
expression. Arbitrary probability distributions are handled by
SCMPC, while standard SMPC usually requires Gaussian
distributions to analytically reformulate the chance constraint.
While [29] focuses on simple lane change scenarios, the work
is extended in [7] and experimental results are presented.

A combination of SMPC and SCMPC is given in [30],
exploiting the individual advantages of SMPC and SCMPC. A
further approach to SMPC is presented in [31], where a grid-
based SMPC method is applied to plan vehicle trajectories,

based on occupancy grids [32], [33].
In summary, SMPC approaches provide efficient vehicle

trajectories for the majority of uncertainty realizations in reg-
ular situations. However, for unlikely uncertainty realizations,
safety issues occur.

In this work, the benefit of efficiently planning trajectories
with SMPC is combined with the safety guarantee of FTP.
The FTP in this work is inspired by the ideas of [8], [19],
[22]. In the following, SMPC and FTP are introduced. Then,
the proposed SMPC+FTP method is derived in detail.

II. PRELIMINARIES

In the following, we briefly introduce the general MPC
optimal control problems (OCPs) for SMPC and FTP.

MPC iteratively solves an OCP with a finite prediction
horizon N subject to input and state constraints. After solving
the MPC OCP, only the first input u0 of the optimized input
sequence U = (u0, . . . ,uN−1)

> is applied. At the next time
step, the updated MPC OCP is solved again. We distinguish
between regular time steps h and prediction steps k within the
MPC OCP. If clear from context, we omit the time step h, at
which the MPC OCP is computed. In the following, we only
explicitly denote the prediction time step k.

A. SMPC with Chance Constraints

While standard MPC considers hard constraints, this is prob-
lematic if uncertainties are present. Hard constraints subject
to uncertainty can be considered by chance constraints. This
yields the SMPC OCP

V ∗= min
U

N−1∑
k=0

l(ξk,uk) + Vf(ξN ) (1a)

s.t. ξk+1 = f (ξk,uk) (1b)
uk ∈ Uk, ξk+1 ∈ Ξk+1 ∀k ∈ {0, . . . , N − 1} (1c)
Pr
(
ξk ∈ Ξ′k,safe(w)

)
≥ β ∀k ∈ {1, . . . , N} (1d)

with prediction step k, states ξk, system dynamics f , and the
normally distributed, zero mean uncertainty w ∼ N (0,Σw)
with covariance matrix Σw. The cost function consists of
the stage cost l(ξk,uk) and the terminal cost Vf (ξN ). States
and inputs are bounded by the state and input constraint sets
Ξk and Uk, respectively, and the safety constraint Ξ′k,safe(w)
depends on the uncertainty w. The probabilistic chance con-
straint is given by (1d). The safety constraint ξk ∈ Ξ′k,safe(w)
is required to hold according to the risk parameter β. For
β < 1 a non-zero constraint violation probability is therefore
allowed.

B. Fail-safe Trajectory Planning

We also consider an MPC OCP for FTP, i.e., a fail-safe
MPC OCP. In contrast to SMPC, FTP considers the worst-
case realizations of the uncertainty, resulting in safe, yet
conservative optimized inputs. While the general OCP remains
similar to (1), the chance constraint (1d) is replaced by

ξk ∈ Ξk,safe(w) ∀k ∈ {1, . . . , N − 1} (2a)
ξN ∈ ΞN,safe(w). (2b)
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The FTP safe set Ξk,safe(w) is constructed based on reacha-
bility analysis to ensure formal safety guarantees. In addition
to constraint (2a), a terminal constraint (2b) is required, which
ensures that the terminal prediction state ξN allows to remain
in a safe state beyond the prediction horizon. Based on this
safe terminal set ΞN,safe(w) it is guaranteed that there exist
system inputs uk+ with k+ > N resulting in safe states ξk+ .

III. VEHICLE MODELS

MPC requires a system model for the controlled vehicle,
known as the ego vehicle (EV), and surrounding vehicles,
referred to as target vehicles (TVs), in order to predict future
states within the OCP.

A. Ego Vehicle Model

We use a kinematic bicycle model to predict the EV states
on a finite horizon, as suggested in [34]. The continuous-time
system is given by

ṡ= v cos(φ+ α), (3a)
ḋ= v sin(φ+ α), (3b)

φ̇=
v

lr
sinα, (3c)

v̇= a, (3d)

α= arctan

(
lr

lr + lf
tan δ

)
, (3e)

where lr and lf are the distances from the vehicle center of
gravity to the rear and front axles, respectively. The state
vector is ξ = [s, d, φ, v]> and the input vector is u = [a, δ]>.
The vehicle velocity is given by v, acceleration and steering
angle are denoted by a and δ, respectively. We consider the
longitudinal position s of the vehicle along the road, the lateral
vehicle deviation d from the centerline of the right lane, and
the orientation φ of the vehicle with respect to the road. The
nonlinear vehicle model (3) is summarized as ξ̇ = f c (ξ,u).

Each MPC OCP is initialized with a linearization of the
nonlinear prediction model (3) around the current vehicle
state ξ∗ = ξ0 and the input u∗ = [0, 0]>. Selecting a
non-zero reference input u∗ often results in large differences
∆u = uk − u∗ for prediction steps far ahead, increasing the
inaccuracy of the linearization. The linearized continuous-time
vehicle model is then given by

ξ̇∗ + ∆ξ̇ = f c (ξ∗,0) +Al (ξ − ξ∗) +Blu (4)

with the Jacobian matrices

Al =

[
∂f c

∂ξ

]∣∣∣∣
(ξ∗,u∗)

, Bl =

[
∂f c

∂u

]∣∣∣∣
(ξ∗,u∗)

. (5)

A discrete-time model is required for MPC, therefore the
linearized prediction model (4) is discretized with sampling
time T . This yields the discrete states ξk = [sk, dk, φk, vk]>

and inputs uk = [ak, δk]> for prediction step k, as well as the
linearized, discretized system

ξk+1= ξ0 + Tf c (ξ0,0) +Ad (ξk − ξ0) +Bduk (6a)
= f d (ξ0, ξk,uk) (6b)

where Ad and Bd are matrices of the linearized system
obtained fromAl,Bl with zero-order hold. The nonlinear term
f c (ξ∗,u∗) in (4) is approximated by a forward Euler method
since ξ0 is known. The linearized, discretized matrices Ad and
Bd are given in the extended version [10]. In the following, for
k = 0 in (6), i.e., ξk = ξ0, the argument ξ0 is only mentioned
once, i.e., f d (ξ0, ξ0,u0) is abbreviated as f d (ξ0,u0).

The following sections derive an SMPC method and con-
straints to avoid collisions with surrounding vehicles. How-
ever, even if no other vehicles are present, certain constraints
are required. Acceleration and steering angle are bounded by

umin ≤ uk≤ umax (7a)
∆umin ≤∆uk≤ ∆umax (7b)

with ∆uk+1 = uk+1 − uk and umax = [amax, δmax]>,
umin = [amin, δmin]>. Further, road and velocity constraints
are considered, resulting in

dk ∈ Dlane (8a)
0 ≤ vk ≤ vmax (8b)

where Dlane represents road boundaries and vmax is the maxi-
mal velocity. Negative velocities are not allowed, i.e., vk ≥ 0.

In the following, we refer to input constraints by the set of
admissible inputs U and state constraints are denoted by the
set of admissible states Ξ.

B. Target Vehicle Model

In order to avoid collisions, the EV is also required to
predict the future states of surrounding TVs. The prediction
model for the TVs used by the EV is a linear, discrete-time
point-mass model given by

ξTV
k+1= AξTV

k +BuTV
k (9a)

uTV
k = ũTV

k +wTV
k (9b)

where ξTV
k = [xTV

k , vTV
x,k, y

TV
k , vTV

y,k]> is the TV state with longi-
tudinal position and velocity xTV

k , vTV
x,k and lateral position and

velocity yTV
k , vTV

y,k. The linear TV model allows to propagate
the uncertainty, which is necessary for the MPC approach in
the following sections. The TV model used in this work is
only one possible option. Other linear TV prediction models
can be utilized.

The system and input matrices are

A =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , B =


0.5T 2 0
T 0
0 0.5T 2

0 T

 (10)

with sampling time T . The TV input consists of a feedback
controller ũTV

k and a perturbation on the input, which is as-
sumed to be an independent, identically distributed disturbance
vector wTV

k . This setup assumes that the TV is following a
given reference while deviations are allowed. The TV feedback
controller is given by

ũTV
k = K

(
ξTV
k − ξTV

ref,k

)
(11)

with the TV reference ξTV
ref,k. The feedback matrix K is ob-

tained by a linear-quadratic regulator strategy. If the TV input
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computed by (11) exceeds the limits uTV
max = [amax, ay,max]>

and uTV
min = [amin, ay,min]>, summarized as UTV, the TV inputs

are bounded to satisfy UTV.
We assume that wTV

k is subject to a Gaussian distribution
with zero mean and covariance matrix ΣTV

w , which is denoted
by wTV

k ∼ N
(
0,ΣTV

w

)
. We also consider sensor noise in the

measurement of the TV state, i.e.,

ξ̂TV
0 = ξTV

0 +wsens
0 (12)

where ξ̂TV
0 is the measured initial state of the TV by the

EV. The sensor noise wsens
0 = [wsens

0,x , w
sens
0,vx

, wsens
0,y , w

sens
0,vy

]>

is assumed to be a truncated Gaussian noise with wsens
0 ∼

N (0,Σsens) and wsens
0 ∈ W sens, where W sens is a compact,

convex and bounded set.

IV. STOCHASTIC MODEL PREDICTIVE CONTROL WITH
SAFETY GUARANTEE

SMPC and fail-safe trajectory planning both have their
individual advantages, i.e., efficient trajectories in an uncertain
environment and guaranteed safe motion planning, respec-
tively. In the following, we present a combined SMPC and FTP
framework, SMPC+FTP, which exploits advantages of both
methods to plan efficient and safe trajectories for autonomous
vehicles. This section introduces the setup of the SMPC+FTP
framework and gives a proof for recursive feasibility.

A. SMPC+FTP Method

Before presenting the SMPC+FTP method, we need to
define requirements for a safe ego vehicle state as well as a
safe input sequence Usafe = [usafe,0,usafe,1, ...,usafe,m]> with
m+ 1 individual inputs. Note that m is not directly related to
the MPC prediction horizon.

Definition 1 (Safe State). The state of an ego vehicle, fully
located in one lane, is considered to be safe if there is no
lateral vehicle motion, i.e., φ = 0, and if the ego vehicle
velocity is lower than the velocity of the target vehicle in front
on the same lane (or if the ego vehicle velocity is zero). The
set of safe states is indicated by Ξsafe.

Definition 2 (Safe Input Sequence). An input sequence Usafe
is considered safe if consecutively applying all elements of
Usafe results in a state trajectory that avoids collisions and
eventually leads to zero velocity.

The definition of safe states and safe input sequences results
in assumptions for TVs.

Assumption 1 (Traffic Rules). Target vehicles adhere to the
traffic rules.

Assumption 2 (Vehicle Deceleration). The maximum absolute
value of the ego vehicle deceleration is at least as large as the
maximum absolute value of the target vehicle deceleration.

Given a safe EV state, there exists a safe input sequence
Usafe, consisting of deceleration and zero steering, which
results in an EV zero velocity state in the current EV lane,
i.e., zero velocity in x-direction and y-direction. This is based
on Assumptions 1 and 2. TVs behaving against traffic rules

solve FTP

apply 𝒖𝒖SMPC,0 apply 𝒖𝒖safe,0 apply 𝒖𝒖FTP,0

feasible
⇒𝑼𝑼SMPC

feasible
⇒𝑼𝑼FTP′

feasible
⇒𝑼𝑼FTP

infeasibleinfeasible

infeasible

environment

shift 𝑼𝑼safe

solve FTP
with 𝒖𝒖SMPC,0

solve SMPC

update 𝑼𝑼safe

𝑼𝑼safe

⇒ 𝑼𝑼safe←

SMPC Mode FTP Mode

Backup Mode

Fig. 1. SMPC+FTP procedure for each time step. Blue shows the ideal mode
with an applied SMPC input, orange represents the safe alternative mode with
an applied FTP input, and red indicates an infeasible FTP problem, which
requires applying a safe backup input.

cannot be reliably accounted for by any prediction and the
deceleration assumption is necessary to avoid colliding with a
braking TV in front.

In the following, the current EV state at time step h and
prediction step k = 0 is denoted by ξ0. We omit explicitly
denoting the current time step h within an OCP.

At the initialization of each OCP, the current EV state
ξ0 and the current TV state ξTV

0 are known to the EV.
Additionally, a safe input sequence Usafe is available from
the SMPC+FTP problem solved at the previous time step.
Later, we will focus on obtaining a safe input sequence for
the SMPC+FTP iteration at the next time step, given the safe
input sequence of the current time step.

The SMPC+FTP method consists of two parts, SMPC
and FTP, i.e., at every time step an SMPC OCP and an
FTP OCP are solved. The general idea is that the first
input uSMPC,0 of the SMPC input sequence USMPC =
[uSMPC,0, ...,uSMPC,N−1]> must only be applied if, based on
the first SMPC input uSMPC,0, a fail-safe trajectory can be
found. Compared to regular SMPC methods, this approach
guarantees that applying the optimistic SMPC input uSMPC,0
does not lead to unsafe behavior. The algorithm outline is
shown in Figure 1.

1) SMPC: In the first part of SMPC+FTP, an SMPC
problem is solved on a finite horizon NSMPC, yielding the input
sequence USMPC = [uSMPC,0, ...,uSMPC,NSMPC−1]>. This SMPC
optimization takes into account the uncertain environment and
constraints due to other traffic participants, i.e., target vehicles.
Collision constraints are formulated as chance-constraints,
based on a probabilistic TV prediction. Therefore, the planned
SMPC trajectory provides an efficient and optimistic future
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trajectory for the EV, as it is not required to avoid collision
with TVs for worst-case scenarios.

2) FTP: The second part of SMPC+FTP is based on FTP
to ensure that the planned EV trajectory remains safe. First, a
worst-case TV prediction is performed. Then, a fail-safe MPC
problem on a finite horizon NFTP is solved, resulting in an
input sequence UFTP = [uFTP,0, ...,uFTP,NFTP−1]>. The fail-
safe trajectory is required to avoid collision with the worst-
case TV prediction and after applying the full fail-safe input
sequence UFTP, the terminal state ξNFTP must be a safe state
according to Definition 1. The exact FTP formulation depends
on the feasibility of the SMPC OCP.

a) Feasible SMPC (SMPC Mode): If the SMPC OCP
yields a solution, FTP is used to decide whether applying the
first SMPC input uSMPC,0 is safe. Therefore, an FTP OCP is
formulated starting with the EV state obtained by applying the
first SMPC input uSMPC,0, i.e., the initial FTP OCP state is

ξ′0 = f (ξ0,uSMPC,0) (13)

with f (ξ0,uSMPC,0) according to (6).
If feasible, the FTP OCP yields a fail-safe input sequence

U ′FTP, based on ξ′0. Therefore, the first element uSMPC,0 of the
SMPC input sequence is applied safely, as shown by the blue
path in Figure 1. The resulting new safe input sequence is
given by

Usafe= [U ′FTP,Ubrake] (14a)

Ubrake=

[[
amin

0

]
,

[
amin

0

]
, . . .

]
(14b)

where amin is the maximal deceleration and Ubrake is a braking
sequence to bring the EV to a standstill. The safe input
sequence Usafe ensures a safe state after the full fail-safe input
sequence U ′FTP was applied and then initiates braking to reach
zero velocity. Note that amin is only applied in Ubrake until a
standstill is reached, subsequently no deceleration is applied.

b) Infeasible SMPC (FTP Mode): If the SMPC OCP is
infeasible, the FTP OCP is solved with initial state ξ0 for the
FTP OCP. If an FTP solution UFTP is found, the first element
of UFTP, i.e., uFTP,0, is applied, as indicated by the orange path
in Figure 1. The updated safe input sequence follows from

Usafe = [UFTP,1:NFTP ,Ubrake] (15)

with Ubrake according to (14b) where

UFTP,1:NFTP = [uFTP,1, ...,uFTP,NFTP−1] (16)

consists of all input elements of UFTP except the first input
uFTP,0.

3) Infeasible FTP (Backup Mode): In case of an infeasible
FTP OCP, no new input is generated at the current time step
h. However, by definition the safe input sequence obtained at
the previous time step h− 1 remains safe for the current time
step h. Therefore, in case that no solution exists to the FTP
OCP, the first element of the still valid, safe input sequence
Usafe is applied, which is denoted by usafe,0. This procedure
is highlighted in red in Figure 1.

Continuously applying the elements of Usafe results in a safe
trajectory according to Definition 2. If the FTP OCP remains

infeasible for consecutive time steps, multiple subsequent
input elements of a single safe input sequence are potentially
applied until the FTP OCP becomes feasible again.

This procedure requires shifting Usafe after each
SMPC+FTP iteration where the FTP OCP was infeasible,
i.e., if the first input element usafe,0 of Usafe was applied. The
shifted updated input sequence is obtained by

U←safe = Usafe

[
0m
Im

]
= [usafe,1,usafe,2, ...,usafe,m] (17)

with Usafe ∈ R2×(m+1), identity matrix Im ∈ Rm×m, and
0m ∈ R1×m. The shifted safe input sequence U←safe consists
of all elements of Usafe except the already applied input usafe,0.

Then, the safe input sequence is updated at the end of the
SMPC+FTP iteration by selecting

Usafe = U←safe, (18)

which initializes the safe input sequence for the next
SMPC+FTP iteration.

4) Summary of SMPC+FTP: Within the SMPC+FTP
method, four cases are considered. These cases are summa-
rized in the following.

a) SMPC and FTP feasible (SMPC Mode): The first
SMPC input uSMPC,0 is applied and a new safe input sequence
Usafe is obtained according to (14).

b) SMPC infeasible and FTP feasible (FTP Mode): The
first FTP input uFTP,0 is applied and a new safe input sequence
Usafe is obtained according to (15).

c) SMPC feasible and FTP infeasible (Backup Mode):
No new input sequence is obtained. The first input element
of the safe input sequence usafe,0 is applied. The safe input
sequence Usafe remains valid for the next time step and is
updated according to (18).

d) SMPC infeasible and FTP infeasible (Backup Mode):
As in the previous case, no new input sequence is obtained.
The input usafe,0 is applied and Usafe is generated based on
(18) for the next time step.

Following this procedure, in regular cases the SMPC inputs
are applied, resulting in efficient performance, while FTP
guarantees safety for all possible cases, including rare events.

B. Recursive Feasibility

A disadvantage of various SMPC algorithms is that re-
cursive feasibility of the OCP cannot be guaranteed. In this
section, recursive feasibility of the SMPC+FTP method is
proved, i.e., if the optimization problem can be solved at step
h, it can also be solved at step h + 1 for all h ∈ N. In this
section, it is necessary to denote the time step h. The safe
input sequence updated at time step h is denoted by Usafe,h.

Definition 3 (Safe Feasible Trajectory). Let there exist a
safe set Ξsafe and let Ξf be a control invariant set. Let
χUh

h = [ξh, ..., ξh+N ] denote a trajectory starting at initial
state ξh at time step h with N trajectory steps obtained
by applying the input sequence Uh = [uh, ...,uh+N−1]

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3074645

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 6

with ξh+1 = f (ξh,uh). Then, the set Γh of safe feasible
trajectories, leading into the set Ξf, is defined as

Γh ={
χUh

h

∣∣∣ ξh+i ∈ Ξsafe, i ∈ {0, . . . , N}, ξh+N ∈ Ξf

}
. (19)

A safe feasible trajectory satisfies all constraints given by
Ξsafe and ends in the control invariant set Ξf.

Assumption 3 (System Models). The ego vehicle system
models (3) and (6) correspond to the dynamics of the real
system. The target vehicle model (9) represents an over-
approximation of the real target vehicle dynamics.

Here, over-approximation means that the possible states
reachable with the TV model include all possible states
obtained with the real TV dynamics.

Assumption 4 (Initial Safe Input Sequence). At the initial
time step h = 0 the initial ego vehicle state is safe and there
exists a known initial safe input sequence Usafe,init, such that
χ
Usafe,init
0 is a safe feasible trajectory, i.e., χUsafe,init

0 ∈ Γ0.

We now show recursive feasibility of the proposed method.

Theorem 1. Let Assumptions 3 and 4 hold. Then, for the
SMPC+FTP approach there exists a feasible trajectory χUh

h ∈
Γh that is guaranteed to be safe at all time steps h ∈ N.

Proof. The derivation of the proof is given in Appendix A.

Note that the worst-case behavior of the TVs depends on
the traffic rules. Therefore, safety and recursive feasibility of
the SMPC+FTP method can only be guaranteed if surround-
ing TVs adhere to the underlying traffic rules, as stated in
Assumption 1. However, no specific traffic rules are required
to prove Theorem 1.

V. TRAJECTORY PLANNING ALGORITHMS

The two MPC OCPs, SMPC and FTP, are solved indepen-
dently. In the following, the respective OCPs are derived.

A. Stochastic Model Predictive Control
SMPC solves an OCP with chance constraints, accounting

for TV uncertainty, depending on a risk factor β. First, a
safety area is defined around each predicted TV state, which
accounts for the EV and TV shape. Then, this safety area is
increased to account for TV uncertainty, given a predefined
risk parameter. Eventually, a linear constraint is generated for
each TV, depending on the positioning of the EV and the TV.

1) Deterministic Target Vehicle Prediction: For SMPC a
simple TV prediction is applied, representing the most likely
TV behavior with wTV

k = 0, i.e., uTV
k = ũTV

k . It is assumed
that the current TV maneuver continues for the prediction
horizon NSMPC. Therefore, TV model (9) is applied where the
TV reference ξTV

ref,k depends on the current TV maneuver. The
reference velocity vTV

x,ref,k is set to the current TV velocity vTV
x,0.

The TV reference lateral velocity is chosen to be vTV
y,ref,k = 0.

The reference lateral position yTV
ref,k is the current TV lane

center. A new reference lane is selected if part of the TV
shape lies in this adjacent lane and the lateral velocity moves
the TV towards this adjacent lane.

2) Target Vehicle Safety Area: Collisions with TVs are
avoided by ensuring the necessary distance between the EV
and TV. Here, a safety rectangle around the TV is defined
with length ar and width br, based on a straight highway road.

Vehicle shapes do not intersect if the vehicle centers are
distanced at least by the vehicle length lveh and width wveh.
For the safety rectangle width this yields

br = wveh + εsafe (20)

where εsafe is a possible additional safety margin.
Calculating the safety rectangle length ar requires a veloc-

ity dependent part ãr
(
ξ, ξTV

)
, compensating for a potential

velocity difference between the EV and the TV, resulting in

ar = lveh + εsafe + ãr
(
ξ, ξTV) . (21)

The velocity dependent part ãr needs to account for the
difference in traveled distance between the EV and TV if both
vehicles initiate maximal braking. It is obtained by

ãr
(
ξ, ξTV) = − 1

2amin
max

{
0,
(
v2 −

(
vTV
x

)2)}
(22)

where the max-operator ensures that the safety rectangle
length does not decrease for vTV

x > vEV.
For the SMPC OCP, the safety rectangle is calculated

for prediction time step k, based on the TV prediction ξTV
k

described in Section V-A1. However, only the initial EV state
ξ0 is considered in the velocity depended part ãr. This is
necessary in order to generate linear safety constraints. The
resulting safety rectangle parameters are

br,k= wveh + εsafe (23a)
ar,k= lveh + εsafe + ãr

(
ξ0, ξ

TV
k

)
. (23b)

3) Chance Constraint Reformulation: The TV safety rect-
angle given by (23) does not account for TV uncertainty. In the
following, the safety rectangle is enlarged, depending on the
TV uncertainty and a risk parameter β. The chance constraint,
similar to (1d), is given by

Pr
(
ξk ∈ Ξ′k,safe

(
wTV
k

))
≥ β (24)

where the safe set Ξ′k,safe

(
wTV
k

)
for the EV state depends on

the previously defined safety rectangle parameters of (23) and
the TV uncertainty wTV

k .
The chance constraint (24) cannot be solved directly. We

derive a deterministic approximation for this probabilistic
expression, inspired by other SMPC approaches [6], [30].

According to (9) the TV state follows

ξTV
k+1 = AξTV

k +BK
(
ξTV
k − ξTV

ref,k

)
+BwTV

k , (25)

while the predicted TV state is given by

ξ̂TV
k+1 = Aξ̂TV

k +BK
(
ξ̂TV
k − ξTV

ref,k

)
, (26)

yielding the prediction error

ek = ξ̂TV
k − ξTV

k . (27)

The TV prediction (26) is now split into a deterministic and
a stochastic part

ξ̂TV
k+1 = ξTV

k+1 + (A+BK) ek −BwTV
k = ξTV

k+1 + ek+1 (28)
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Fig. 2. Exemplary bivariate Gaussian probability distribution function of the
prediction error ẽ, including an isoline (dotted black line).

which results in the prediction error update

ek+1 = (A+BK) ek −BwTV
k . (29)

Given the sensor noise wsens
0 according to (12), the initial

error follows e0 ∼ N (0,Σe0) with Σe0 = Σsens. As we
consider Gaussian distributions, a recursive computation of the
prediction error covariance matrix Σek is possible, yielding

Σek+1 = BΣTV
w B

> + (A+BK) Σek (A+BK)
>
. (30)

Based on the prediction error covariance matrix Σek, the TV
safety rectangle is increased. Given a predefined SMPC risk
parameter β, the aim is to find a region around the predicted
TV state that contains the true TV state with probability β. As
the TV safety rectangle only considers positions, we define the
reduced error ẽk = [ex,k, ey,k]> with the reduced covariance
matrix

Σ̃ek = diag(σ2
x,k, σ

2
y,k) (31)

with variances σ2
x,k and σ2

y,k for the longitudinal and lateral
TV position, corresponding to the first and third diagonal
element of Σek. The reduced error covariance matrix Σ̃ek is now
used to enlarge the safety rectangle to account for uncertainty.

The bivariate Gaussian distribution described by Σ̃ek with
mean µ = [µx, µy]> = 0 consists of independent random
variables for longitudinal and lateral position. This allows to
find a confidence region around the predicted TV state mean,
bounded by an ellipsoidal isoline enclosing the highest density
region, as illustrated in Figure 2. The aim is to find an isoline
that contains the prediction error with a probability according
to risk parameter β. The isoline ellipse equation is denoted by

(ẽk − µ)
>
(
Σ̃k

e
)−1

(ẽk − µ)= κ (32a)

(ex,k − µx)
2

σ2
x,k

+
(ey,k − µy)

2

σ2
y,k

= κ (32b)

with tolerance level κ. The tolerance level κ depends on
the risk parameter β and indicates the necessary constraint
tightening in order to ensure that the prediction error remains
below a probability β. The tolerance level κ is determined
based on the cumulative distribution function F (κ, n) of the
chi-square distribution χ2

n with n degrees of freedom. In this
case, n = 2 as the reduced error ẽk consists of two elements.
Given the risk parameter β and the quantile function F−1 of
the chi-square distribution χ2

2, it follows that

κ = F−1(β, 2), (33)

B D (and E) H

Fig. 3. Selected constraint generation cases for SMPC. Driving direction is
from left to right. The EV and TV are shown in blue and red, respectively.
The dashed red line represents the safety area around the TV.

which ensures that the probability of the true TV state lying
within the isoline is β · 100%. The ellipse semi-major and
semi-minor axes are then given by

ex,k,κ = σx,k
√
κ (34a)

ey,k,κ = σy,k
√
κ. (34b)

While an ellipse, according to (32), describes the desired
confidence region, the constraint generation method used in
this work requires a rectangular TV safety area. We therefore
over-approximate the ellipse by a rectangle. In order to include
this uncertainty consideration in the rectangle parameters ar,k
and br,k of (23), the rectangle parameters are increased based
on the ellipse semi-major axis ex,k,κ and semi-minor axis
ex,k,κ, resulting in

br,k= wveh + εsafe + ex,k,κ (35a)
ar,k= lveh + εsafe + ãr

(
ξ0, ξ

TV
k

)
+ ey,k,κ. (35b)

The updated safety rectangle parameters are now used to
generate the safety constraints for the SMPC OCP.

4) SMPC Constraint Generation: Given the safety rectan-
gles for each TV, linear constraints to avoid collisions can be
defined for each prediction step and for each TV. Each linear
constraint is of the form

0 ≥ qy
(
ξ0, ξ

TV
k

)
yk + qx

(
ξ0, ξ

TV
k

)
xk + qt

(
ξ0, ξ

TV
k

)
(36)

where qy and qx are the coefficients for the EV states yk and
xk, and qt is the intercept. The coefficients qy , qx, and qt of
the linear constraint depend on the current EV state ξ0 and
the predicted mean TV states ξTV

k . This results in multiple
constraint generation cases, extending the cases in [7].

The cases are distinguished based on the initial vehicle
configuration at the beginning of the OCP, i.e., k = 0. While
the predicted TV state ξTV

k is considered to build the constraint
(36) at prediction step k for a specific case, only the initial
EV state ξ0 is considered in order to allow generating linear
constraints, as mentioned in Section V-A2.

We briefly discuss a shortened overview of constraint cases
that are considered, summarized in Table I. Example cases
are illustrated in Figure 3. A complete overview of cases,
requirements, and constraint parameters qx, qy , qt from (36)
is found in the extended version [10].

In summary, no constraints are generated if the longitudinal
distance between the EV and TV is larger than rlar (case A).
If the EV is close enough to the TV (longitudinal distance
smaller than rclose), overtaking is possible by employing an
inclined constraint (cases D and E). If the TV is located behind
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TABLE I
CONSTRAINT GENERATION CASES

case EV setting (w.r.t. TV) SMPC FTP

A, A∗ large dist. (> rlar) no constraint no constraint

B, B∗ behind TV (> rclose) vert. constraint vert. constraint

C, C∗ ahead of TV (> rclose) vert. constraint virtual TVs
mixed constraints

D, D∗ same lane as TV
behind TV (≤ rclose) incl. constraint vert. constraint

E, E∗ right lane next to TV
behind TV (≤ rclose) incl. constraint vert. constraint

F, F∗ left of TV
close to TV (≤ rclose) hor. constraint hor. constraint

G, G∗ 2 lanes right of TV
behind TV (≤ rclose) hor. constraint hor. constraint

H, H∗ right of TV
ahead of TV (≤ rclose) hor. constraint hor. constraint

J, J∗ same lane as TV
ahead of TV (≤ rclose) no constraint virtual TVs

mixed constraints

the EV, no constraints are necessary as it is the responsibility
of the TV to avoid a collision (case J). For all other cases,
horizontal and vertical constraints are employed.

These constraint generation cases are now used to formulate
safety constraints in the SMPC OCP.

5) SMPC Optimal Control Problem: With the definition
of the safety constraints, the deterministic OCP replacing the
SMPC problem is given by

V ∗= min
U

NSMPC∑
k=1

‖∆ξk‖Q + ‖uk−1‖R + ‖∆uk−1‖S (37a)

s.t. ξk+1 = f d (ξ0, ξk,uk) (37b)
ξTV
k+1 = AξTV

k +BũTV
k (37c)

uk ∈ U , ξk+1 ∈ Ξ ∀k ∈ {0, . . . , NSMPC − 1} (37d)
0 ≥ qy

(
ξ0, ξ

TV
k

)
yk + qx

(
ξ0, ξ

TV
k

)
xk + qt

(
ξ0, ξ

TV
k

)
∀k ∈ {0, . . . , NSMPC} (37e)

with ∆ξk = ξk − ξk,ref, EV reference state ξk,ref, and the
linear function f d according to (6). For the input difference
∆u, we set u-1 to the applied input of the previous time step.
The cost function sum limits are shifted to include a terminal
cost for ξN . The weighting matrices are given by Q, S, and
R. We consider constant input constraints U according to (7)
and state constraints Ξ according to (8).

The resulting SMPC OCP (37) is a quadratic program with
linear constraints, accounting for uncertainty with the chance
constraint reformulation described in Section V-A3. This OCP
can be solved efficiently, where the major calculation steps to
obtain the linear constraints (37e) are performed before the
optimization starts.

B. Failsafe Trajectory Planning

While the SMPC algorithm only accounts for part of the TV
uncertainty in order to plan an optimistic trajectory, the backup
FTP algorithm needs to consider worst-case uncertainty real-
izations. This is achieved based on reachability analysis. First,

the worst-case TV occupancy prediction is determined. Then,
linear safety constraints are generated. Eventually, given a safe
invariant terminal set, the FTP OCP is solved.

1) Target Vehicle Occupancy Prediction: Similar to the
SMPC algorithm, a rectangular safety area surrounding each
TV is defined. However, for the FTP the maximal reachable
area needs to be determined. First, it is necessary to define
certain traffic rules to which the TV adheres, according to
Assumption 1:
• Road boundaries apply.
• Negative velocities are forbidden.
• Collisions with vehicles directly in front of the TV (in

the same lane) must be avoided.
• Only a single lane change is allowed (within the predic-

tion horizon).
• No lane change is allowed if the TV velocity is below a

predefined minimal lane change velocity vLC,min.
• No lane change is allowed if the distance to a vehicle on

the new lane becomes too small.
As linear dynamics are assumed for the TV motion, the min-

imal and maximal possible TV inputs are used to determine
the maximal reachable set, inspired by [8], [19], [22].

The set of all possible locations reachable for a TV at pre-
diction step k is denoted by the reachable set RTV

k , including
the TV and shape. While referring to RTV

k as the reachable
set of the TV, we additionally enlarge this set accounting for
the EV shape. This is necessary as the set RTV

k is later used
to avoid collisions by keeping the EV center outside of RTV

k .
Given the solution ζ

(
ξ̂TV
0 ,U

)
to the TV dynamics (9) starting

at the initial state ξ̂TV
0 applying an input sequenceU , we define

the reachable set

RTV
k =

{
ζ
(
ξ̂TV
0 ,U

) ∣∣∣
U(i) ∈ UTV ∀i ∈ {0, ..., k − 1}, ξ̂TV

0 ∈ ΞTV
0

}
. (38)

The initial state for the reachable set RTV
k is not the TV state

ξTV
0 , but depends on the sensor uncertainty as well as the TV

and EV shape. This initial set is given by

ΞTV
0 =

{
ξ̂TV
0

∣∣∣ ξTV
0 + min{wsens

0 } − [lveh, 0, wveh, 0]> ≤ ξ̂TV
0 ,

ξ̂TV
0 ≤ ξTV

0 + max{wsens
0 }+ [lveh, 0, wveh, 0]>

}
. (39)

As we assume a linear TV prediction model, the reachable set
RTV
k is calculated for prediction steps k > 0 by applying the

maximal and minimal inputs uTV ∈ UTV, while adhering to
traffic rules.

The reachable set is only calculated at discrete time steps. In
order to account for a continuous system, the final reachable
set RTV

k is obtained by building a rectangular convex hull,
covering two consecutive prediction steps, i.e.,

RTV
k = conv

{
RTV
k−1,RTV

k

}
(40)

where conv denotes the convex hull operation.
A special case is considered if the TV is located behind the

EV in the same lane. The TV must not collide with the EV in
the same lane, however, the TV is allowed to switch lanes in
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D*C* J*

Fig. 4. Selected constraint generation cases for FTP. Driving direction is
from left to right. The EV and TV are shown in blue and red, respectively.
The dashed red line represents the safety area around the TV.

order to pass the EV. Here, this is accounted for by treating
this special case in the following way. Three placeholder TV
reachable sets describe the possible TV behavior. The first
placeholder TV reachable set is based in the EV lane such that
collisions with the EV are avoided. The other two placeholder
TV reachable sets cover the admissible adjacent lanes left and
right of the EV, representing the reachable sets for a potential
TV lane change.

2) FTP Constraint Generation: Once the reachable sets
RTV
k for each TV are determined, linear constraints are gen-

erated. We again consider different cases regarding varying
EV and TV positions. The cases are similar to those of
Section V-A4 with a few variations as stated in Table I. FTP
cases are denoted with an asterisk. Exemplary FTP cases are
illustrated in Figure 4. Again, a complete overview of the FTP
cases is found in the extended version [10].

We briefly discuss the major differences to the SMPC
constraint generation cases. Overtaking is not initiated given
the vertical constraints in cases D∗ and E∗. If the TV is located
behind the EV, we consider possible TV lane changes by
introducing placeholder TVs (cases C∗ and J∗). Here, rFTP

close
is used instead of rclose

Overall, the constraints generated for FTP are more conser-
vative than for SMPC. This is due to the FTP aim of finding a
trajectory that ends in a safe state. This would be complicated
by incentivizing FTP to plan overtaking maneuvers. Details
on finding a safe terminal state for the FTP OCP are given in
the following.

3) Safe Invariant Terminal Set: In addition to the regular
safety constraints, a safe invariant terminal set is required
to ensure safe EV inputs after the finite MPC prediction
horizon. The FTP inputs are designed in such a way that they
remain safe over the prediction horizon. However, after NFTP
inputs are applied and no new FTP solution is obtained, an
emergency strategy has to be applied to come to a standstill.
This is achieved by braking, while maintaining a constant
steering angle δ = 0, according to (14) and (15). Therefore,
the terminal state of the FTP OCP needs to fulfill certain
requirements. First, the vehicle orientation must be aligned
with the road, i.e., φ = 0. This guarantees that braking and a
constant steering angle δ = 0 keep the EV within its current
lane. Second, the distance to a TV in front of the EV must be
large enough that no collision occurs if both vehicles initiate
maximal deceleration. This is accounted for by

xN≤ xTV
N −∆sNFTP,min (41a)

vN≤ vNFTP,max (41b)

EV

TV4

TV3

TV5

TV2

TV1

Fig. 5. Setup for both investigated scenarios (regular and emergency scenario).

with the minimal terminal safety distance ∆sNFTP,min and the
maximal terminal safety velocity

vNFTP,max = vTV
NFTP,min −

√
2∆sNFTP,minax,min (42)

where vTV
NFTP,min is the lowest predicted longitudinal TV ve-

locity. Both (41) and (42) combined ensure that the minimal
terminal safety distance ∆sNFTP,min is large enough such that,
given a maximal EV velocity vNFTP,max, maximal deceleration
of the EV guarantees collision avoidance for k > NFTP. This
less intuitive terminal constraint again has the advantage of
yielding linear constraints.

4) FTP Optimal Control Problem: An OCP with a similar
structure compared to (37) is applied for the FTP, yielding

V ∗= min
U

NFTP∑
k=1

‖∆ξk‖Q + ‖uk−1‖R + ‖∆uk−1‖S (43a)

s.t. ξk+1 = f d (ξ0, ξk,uk) (43b)
uk ∈ U , ξk+1 ∈ Ξ ∀k ∈ {0, . . . , NFTP − 1} (43c)

0 ≥ qy
(
ξ0,R

TV
k

)
yk + qx

(
ξ0,R

TV
k

)
xk

+ qt

(
ξ0,R

TV
k

)
∀k ∈ {0, . . . , NFTP} (43d)

xN ≤ xTV
N −∆sNFTP,min, vN ≤ vNFTP,max (43e)

with the linear function f d according to (6). The safety
constraint (37e) is now changed to constraint (43d), accounting
for the worst-case TV uncertainty realizations. Similar to
the SMPC OCP, (43) is a quadratic program with linear
constraints, which can be solved efficiently.

VI. RESULTS

We evaluate the proposed SMPC+FTP algorithm in different
settings. In the following, the simulation setup is introduced
first. Then, SMPC+FTP is analyzed and compared to an SMPC
approach and an FTP approach in two scenarios.

A. Simulation Setup

In this simulation section, we analyze the scenario illustrated
in Figure 5. The EV is located on the right lane on a three-
lane highway. We consider five TVs surrounding the EV on
the highway. The goal for the EV is to maneuver safely
and efficiently through traffic. The specific aims are to avoid
collisions while maintaining a velocity close to a chosen
reference velocity.

We consider two different scenarios:
1) Regular scenario: All TVs keep their initial velocities and

lanes.
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TABLE II
GENERAL SIMULATION PARAMETERS

scalars vectors matrices

wlane = 3.5 umax = [5, 0.2]> K=

[
0 -0.55 0 0
0 0 -0.63 -1.15

]
lveh = 5 umin = [-9, -0.2]> Σ̃TV

w = diag(0.44, 0.09)

wveh = 2 uTV
max = [5, 0.4]> Q = diag(0, 0.25, 0.2, 10)

lf = lr = 2 uTV
min = [-9, -0.4]> R = diag(0.33, 5)

vmax = 35 wsens
0
> = S = diag(0.33, 15)

[0.25, 0.03, 0.25, 0.03]

2) Emergency scenario: One of the TVs (TV5) performs an
emergency braking maneuver. This causes TV4 to avoid
TV5 by moving to the center lane. This is followed by
a soft braking maneuver of TV1 to account for possible
hazards. Eventually, TV4 moves to the left lane again to
pass TV2.

The first scenario represents a regular scenario with no un-
expected TV behavior. The second scenario covers a rare
case, where a series of unexpected TV actions results in a
challenging situation for the autonomous EV.

The simulations are carried out in Matlab using the fmincon
solver on a computer with an AMD Ryzen 7 1700X processor.
The algorithms are based on the NMPC toolbox [35]. In
the following, setup parameters are introduced that remain
constant throughout the different simulations. All quantities
are given in SI units. Units are omitted if clear by context.

All MPC algorithms use a sampling time T = 0.2 s with
SMPC horizon NSMPC = 10 and the FTP horizon NFTP = 10.
The linearized, discrete-time EV prediction model and con-
straints follow (6)-(8), whereas the TV prediction model is
given by (9)-(11). Table II shows the other main simulation
parameters. The lane boundaries follow from the lane and
vehicle width. Additionally, the safety parameters are εsafe =
0.01, rlar = 200, rclose = 90, rFTP

close = max{10, |v0NFTPT |},
vLC, min = 10, and ∆sN,min = 22.5.

In all scenarios, the initial EV reference is set to
[dref, φref, vref] = [0, 0, 27]. While the reference orientation and
velocity remain constant throughout the simulation, the EV
reference for the lateral position is always set to the current
EV lane center.

Whereas the MPC OCPs use the linearized, discrete-time
prediction model (6), the inputs are applied to a simulation
using the continuous-time system (3).

Given this simulation setup, we now investigate the individ-
ual scenarios and analyze the proposed SMPC+FTP method.

B. Regular Highway Scenario

We first analyze a regular highway scenario. The initial
states of the vehicles are given in Table III. The five TVs
shown in Figure 5 all maintain their initial velocities and lanes,
therefore, ξTV

ref,k = ξTV
0 .

In the following, the SMPC+FTP solution is shown in detail
and comparisons are made to an SMPC and an FTP method.

TABLE III
INITIAL VEHICLE STATES

vehicle initial state vehicle initial state

EV [0, 0, 0, 27]> TV3 [-245, 20, 0, 0]>

TV1 [70, 20, 0, 0]> TV4 [-35, 32, 7, 0]>

TV2 [125, 20, 3.5, 0]> TV5 [40, 32, 7, 0]>

Fig. 6. SMPC+FTP states and inputs for the regular scenario. Vehicle motion
in the gray areas is illustrated in Figure 7.

1) SMPC+FTP: Applying the proposed SMPC+FTP ap-
proach to the regular highway scenario yields efficient EV
behavior in traffic. The SMPC risk parameter is chosen to
be β = 0.8. The inputs and important states are shown in
Figure 6, vehicle motion is displayed in Figure 7.

The EV approaches TV1 due to the velocity difference. The
EV then changes lanes to the center lane with a moderate
steering angle of δ < 0.04. Once TV2 is reached, the EV
again changes lanes and eventually passes TV2. The vehicle
orientation remains at a limited level, i.e., φ < 0.11. Through-

Fig. 7. Shots of the regular scenario with SMPC+FTP. Fading boxes show
past states. The EV is shown in blue.
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Fig. 8. SMPC constraints for the regular scenario at time step h = 22 and
prediction step k = 1. The EV shape and planned trajectory are shown in
blue. TVs as well as respective safety rectangles and constraints have the same
color. Initial states are marked by a circle, prediction states are represented
by crosses with a bold cross indicating the displayed prediction step.

Fig. 9. FTP constraints for the regular scenario at time step h = 22 and
prediction step k = 1. The EV is shown in blue. TVs as well as respective
reachable sets and constraints have the same color. Initial states are marked
by a circle. The initial FTP state starts after the first SMPC input is applied.
Prediction states are represented by crosses with a bold cross indicating the
displayed prediction step. For reference, the planned SMPC trajectory is given
by dark blue asterisks with a dark blue circle indicating the initial EV state.

out the scenario, the EV maintains the reference velocity, and
acceleration inputs are small. The average computation time
to solve the SMPC and FTP OCPs are 0.11 s and 0.15 s,
respectively. Lower computational effort is possible with other
solvers. If applied in a setting that requires online computation,
OCPs with computation times exceeding the requirements are
considered as infeasible. In this case, the previously calculated,
still valid safe input sequence would be used.

We will now take a closer look at the constraints for
SMPC and FTP. SMPC constraints for time step h = 22 are
illustrated in Figure 8. For TV1 in the same lane as the EV, an
inclined constraint is generated (case D). At each prediction
step, the constraint connects the initial EV shape with the
TV1 safety rectangle at the predicted position. The predicted
SMPC trajectory for the EV stays above the constraint line.
It is to note that only the respective predicted state must
satisfy the illustrated constraint. Predicted states farther in the
future satisfy respective constraints depending on a TV safety
rectangle for a predicted TV position farther ahead. For TV2
case E is active, also resulting in an inclined constraint. Both
TV4 and TV5 are two lanes left of the EV, yielding cases G
and H, resulting in horizontal constraints to the right side of
the TVs. TV3 is not shown in Figure 8 due to clarity.

The FTP constraints at step h = 22 are shown in Figure 9.
The constraints are more conservative compared to the SMPC
constraints. The reachable TV sets extend further to the back
than the front, as maximal deceleration is larger than maximal

TABLE IV
RISK PARAMETER ANALYSIS

risk parameter β 0.8 0.9 0.95 0.99 0.999

cost Jsim 11.21 11.35 11.58 11.34 11.31

acceleration. Additionally, the convex hull of reachable sets
over two consecutive steps is considered. Constraints for TV1
and TV2 are built according to cases D∗ and B∗, respectively.
Both constraints for TV4 and TV5 are generated given cases
H∗ and G∗. While the SMPC trajectory moves towards the
center lane to overtake TV1, the FTP trajectory finds a vehicle
motion that, for the final prediction step, remains in the current
lane with φ = 0 and enough distance to TV1, i.e., a safe
terminal state. As the FTP OCP yields a solution, the first
input uSMPC,0 of the planned SMPC trajectory is then applied.

2) Comparison to SMPC and FTP: Throughout the entire
simulation, both the SMPC and FTP OCPs remain feasible.
Therefore, the SMPC inputs are always applied. Only applying
an SMPC algorithm without FTP would therefore yield the
same result for this regular scenario.

Unlike SMPC, applying only FTP results in a different
solution. As the constraints are more conservative compared to
SMPC, the EV never changes lanes to overtake. As indicated
by the FTP prediction in Figure 9, the FTP constraints keep
the EV in its current lane.

We will use the following metric to compare the perfor-
mance of SMPC+FTP and FTP. Based on the cost function of
the OCP, the applied inputs and resulting states for the entire
simulation are analyzed according to

Jsim =

Nsim∑
k=1

‖∆ξk‖Q + ‖uk−1‖R + ‖∆uk−1‖S (44)

with the simulation steps Nsim.
The overall cost for SMPC+FTP is Jsim = 11.32, while the

overall FTP cost is Jsim = 4.03e4. The cost comparison shows
that the SMPC+FTP approach yields a more efficient behavior
than an FTP approach. In this case increased efficiency results
from keeping the velocity close to the reference velocity.

3) Risk Parameter Variation: In the previously discussed
simulation, the risk parameter was chosen to be β = 0.8. Here,
we briefly analyze the effect of varying risk parameters on the
EV performance. The risk parameters analyzed range from
β = 0.8 to β = 0.999. The overall simulation cost, according
to (44), for each risk parameter is given in Table IV. The
overall costs of the simulation results show that the SMPC
behavior and costs for this regular scenario are very similar.
However, it can be beneficial regarding the cost to choose a
larger risk parameter, as inputs are changed more smoothly.
In all five examples the EV behavior is almost similar.

4) Varying Simulation Settings: In the previous analysis,
only one vehicle configuration is considered. In order to show
that the SMPC+FTP method is suitable for various scenarios,
we ran 1000 simulations, each consisting of 125 simulation
steps, with randomly selected initial vehicle positions and
velocities for each simulation run. The EV is located on
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Fig. 10. Shots of the emergency scenario collision applying only SMPC.
Fading boxes show past states. The EV is shown in blue.

one of the three lanes, i.e., d0 ∈ {0, 3.5, 7}, with initial
longitudinal position s0 = 0 and velocity v = 27. The five
TVs are randomly placed on one of the three lanes with
an initial longitudinal position xTV

0 ∈ [−100, 200], constant
velocity vTV

x ∈ [20, 32], and constant vTV
y = 0. It is ensured

that all vehicles positioned on the same lane have an initial
longitudinal distance ∆x ≥ 50 and that TV velocities are
chosen such that TVs do not collide with each other.

The SMPC+FTP method successfully handled all 1000
simulation runs and no collisions occurred.

C. Emergency Highway Scenario

After having shown the efficient SMPC+FTP planning for a
regular highway scenario, we now illustrate the safety property
of the proposed algorithm in an emergency scenario. The
initial vehicle states are the same as in the regular scenario.
However, in this emergency scenario the TVs change their
velocities and lateral positions. Starting at time step h = 20,
TV5 initiates an emergency braking maneuver with maximal
deceleration until reaching a complete halt. This causes TV4
to change lanes to the center lane in order to avoid TV5. TV1
reduces its velocity to vTV1

x = 10 m s−1. After having passed
TV5, TV4 moves to the left lane to then pass the slower TV2.
TV1 also increases its velocity to vTV1

x = 20 m s−1.
In the following, SMPC without FTP is analyzed first. Then,

the solution of the SMPC+FTP algorithm is presented.
1) SMPC: Applying only SMPC results in optimistic EV

trajectory planning, while not considering highly unlikely
events. Even though TV4 is slowly moving to the center lane,
the EV still moves to the center lane to overtake TV1, as a TV4
lane change is still unlikely. However, at step h = 25, TV4
continues to increase its lateral velocity towards the center
lane. At this point, there exists no feasible SMPC solution
anymore that satisfies the chance constraint. This causes the
EV to collide with TV4. The collision sequence is illustrated
in Figure 10. While SMPC performs well in regular scenarios
without unlikely uncertainty realizations, these rare situations
cause major safety issues.

2) SMPC+FTP: We now show how the proposed
SMPC+FTP method handles the emergency scenario. The EV
states and inputs are given in Figure 11.

Initially, the EV attempts to switch lanes and overtake TV1.
However, at step h = 27, the SMPC is unable to find a
solution. The FTP problem is still solved successfully and the
first planned FTP input is applied. For the next four steps, the
SMPC OCP remains infeasible, indicated by the pink lines in
Figure 11, and the FTP inputs are applied, which are obtained

Fig. 11. SMPC+FTP states and inputs for the emergency scenario. Pink
vertical lines represent infeasible SMPC and feasible FTP solutions (FTP
Mode), red vertical lines show infeasible FTP solutions (Backup Mode).
Vehicle motion in the gray areas is illustrated in Figure 12.

Fig. 12. Shots of the emergency scenario with SMPC+FTP. Fading boxes
show past states. The EV is shown in blue.

by successfully solving the FTP OCPs (FTP Mode). The EV
slows down and returns to the right lane, as illustrated in the
first shot of Figure 12. At step h = 37, the SMPC problem is
feasible and the EV plans to overtake TV1 again. However,
as TV4 is still too close, the FTP is unable to find a new
safe backup trajectory if the next planned SMPC input were
applied, i.e., the FTP OCP becomes infeasible. The safe input
sequence obtained at the previous time step h = 36 is applied
to the EV (Backup Mode), as indicated by the red line in
Figure 11. The EV remains in the right lane until TV4 is far
enough away to safely change to the center lane, as shown in
the second shot of Figure 12. Eventually, the EV passes TV2
by smoothly switching to the left lane with a small steering
angle change. The average computation time for solving the
SMPC and FTP OCPs are 0.15 s and 0.22 s, respectively. The
values are higher compared to the regular scenario, as the
computation time for infeasible OCPs is significantly larger.

It is also possible to only apply FTP in this emergency
scenario. While this leads to safe vehicle behavior throughout
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the simulation, the EV does not overtake TV1 and TV2.
Comparing the cost yields the following result. Applying FTP
to the emergency scenario yields a cost of Jsim = 4.28e4,
while the SMPC+FTP cost is Jsim = 3.34e4.

In summary, the simulation scenarios in this section have
shown the benefits of the proposed SMPC+FTP method.
SMPC optimistically plans trajectories, which are executed as
long as there always exists a safe backup trajectory, computed
by FTP. In regular scenarios, SMPC+FTP provides bene-
fits known from SMPC. In emergency scenarios, the safety
guarantee of FTP holds while the EV is still more efficient
compared to applying pure FTP.

VII. DISCUSSION

In some FTP approaches it is required that the vehicle comes
to a standstill at the end of the fail-safe trajectory. Here, we
only require a certain distance to vehicles ahead and zero
orientation offset with respect to the road for the terminal state.
This enables the use of a relatively short FTP horizon.

It is possible to get oscillating behavior between applied
SMPC inputs and the activation of FTP. This can be avoided
by designing the SMPC controller and its constraints less
aggressively, as done in the simulation study.

The applied vehicle inputs in the emergency scenario lead to
relatively high steering angles. This is not ideal for a smooth
vehicle motion. Even though this behavior is acceptable in rare
cases, the motion could be optimized by defining more cases
for the constraint generation.

The properties of the combined SMPC+FTP method are not
restricted to the suggested SMPC and FTP trajectory planners
described in Section V-A and Section V-B, respectively. Other
SMPC or FTP approaches can be applied.

In dense traffic or unclear traffic situations, humans often
do not wait until the desired maneuver is entirely realizable.
Instead, humans often slowly initiate maneuvers, causing other
vehicles to react. For example, cutting into a lane is often
preceded by slight motion towards the other lane so that other
vehicles leave extra space. Therefore, it is possible to execute
the lane change maneuver successfully, even though it was not
possible to safely plan the entire lane change maneuver ini-
tially. The SMPC+FTP framework enables automated vehicle
motion that comes close to this efficient human behavior.

VIII. CONCLUSION

In this work we presented a safe and efficient SMPC+FTP
method for self-driving vehicles. While SMPC is used to plan
optimistic, efficient vehicle trajectories, a fail-safe trajectory
planning (FTP) MPC problem ensures that only those SMPC
inputs are applied that keep the vehicle in a safe state.

The efficiency of the SMPC+FTP method depends on the
proposed constraint generation. Extending and refining the
case differentiation will have a positive effect on efficiency.
Considering urban automated driving, the SMPC+FTP ap-
proach remains valid, however, the case differentiation must be
adapted to fit the urban environment. Furthermore, it is also
possible to extend the application area to non-transportation
applications, such as human-robot collaboration, where uncer-
tainty is always present while safety must still be guaranteed.

APPENDIX A
PROOF OF THEOREM 1

Proof. Recursive feasibility is proved by induction by showing
that Γh 6= ∅ ⇒ Γh+1 6= ∅ for all h ∈ N.

At time step h = 0 it holds that χUsafe,init
0 ∈ Γ0, i.e., an

initially safe trajectory exists according to Assumption 4. If
the FTP OCP can be solved at step h = 0, a new safe input
set Usafe,0 is obtained according to (14) or (15). This new
safe input set Usafe,0 remains valid at step h = 1 and ensures
that a safe trajectory exists, i.e., χUsafe,0

1 ∈ Γ1. If the FTP
OCP is infeasible at step h = 0, the shifted previous safe
input set remains valid, i.e., Usafe,0 = U←safe,init according to
Section IV-A3. In this case, the shifted safe input set Usafe,0 =

U←safe,init guarantees that χUsafe,0
1 ∈ Γ1. Therefore, Γ0 6= ∅ ⇒

Γ1 6= ∅.
For h = 1 it holds that χUsafe,0

1 ∈ Γ1. A feasible FTP
OCP yields the new safe input sequences Usafe,1, such that
there exists a safe trajectory χUsafe,1

2 ∈ Γ2. If the FTP OCP is
infeasible, reusing the still valid previous safe input set Usafe,0,
i.e., setting Usafe,1 = U←safe,0, ensures that χUsafe,1

2 ∈ Γ2.
For time step h ≥ 2 it holds that χUsafe,h−1

h ∈ Γh. If the
FTP OCP is feasible, this yields the new safe input sequences
Usafe,h, such that there exists a safe trajectory χUsafe,h

h+1 ∈ Γh+1.
If the FTP OCP is infeasible, the previous safe input set
Usafe,h−1 is still valid and choosing Usafe,h = U←safe,h−1
ensures that χUsafe,h

h+1 ∈ Γh+1.
Therefore, χUsave,h

h+1 ∈ Γh+1 holds for all h ∈ N, i.e., the
proposed method is safe and recursively feasible.
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