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Abstract

Semantic scene segmentation has primarily been ad-
dressed by forming representations of single images both
with supervised and unsupervised methods. The problem of
semantic segmentation in dynamic scenes has begun to re-
cently receive attention with video object segmentation ap-
proaches. What is not known is how much extra information
the temporal dynamics of the visual scene carries that is
complimentary to the information available in the individ-
ual frames of the video. There is evidence that the human
visual system can effectively perceive the scene from tem-
poral dynamics information of the scene’s changing visual
characteristics without relying on the visual characteristics
of individual snapshots themselves. Our work takes steps
to explore whether machine perception can exhibit similar
properties by combining appearance-based representations
and temporal dynamics representations in a joint-learning
problem that reveals the contribution of each toward suc-
cessful dynamic scene segmentation. Additionally, we pro-
vide the MIT Driving Scene Segmentation dataset, which
is a large-scale full driving scene segmentation dataset,
densely annotated for every pixel and every one of 5,000
video frames. This dataset is intended to help further the
exploration of the value of temporal dynamics information
for semantic segmentation in video.

1. Introduction
Forming appearance-based representations of still im-

ages with convolutional neural networks (ConvNets) has
been successfully used in object classification, detection,
and segmentation tasks [13, 39, 10]. These representations
can be formed via supervised, semi-supervised, or unsuper-
vised methods [33]. The primary source of information in
these approaches is the visual characteristics of a single im-
age. In contrast, there is evidence that the human visual sys-
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tem largely relies, in real-world perception tasks, on tempo-
ral dynamics information [31], not merely as pre-processing
support for object segmentation but as the primary source of
information used for dynamic scene understanding.

Put another way, understanding a static scene in a single
image may be a fundamentally different task than under-
standing a dynamic scene in video. From this distinction,
a number of efforts focused on video object segmentation
have recently emerged [4, 38, 5]. What is not well under-
stood is the degree to which temporal dynamics of the visual
scene in video can contribute to the video scene segmenta-
tion task, and consequently the dynamic scene understand-
ing task.

Our work helps explore the value of temporal dy-
namics in driving scene segmentation by formulating the
appearance-based and temporal-based as a joint learning
problem that reveals the importance of each component for
the effective segmentation of various parts of the driving
scene. In addition, we provide the MIT Driving Scene Seg-
mentation dataset, which is a large-scale full driving scene
segmentation dataset, densely annotated for every pixel and
every one of 5,000 video frames. The purpose of this dataset
is to allow for exploration of the value of temporal dynamics
information for full scene segmentation in dynamic, real-
world operating environments.

2. Related Work

Semantic segmentation is the most fine-grained form of
two-dimensional image region classification (in contrast to
image classification and object detection), and is currently
considered to be the frontier of open challenges in computer
vision that seek to interpret visual information. We consider
the work on semantic segmentation in still images and in
video separately.

2.1. Semantic Segmentation in Still Images

The task of semantic segmentation involves assigning
each pixel in the image a label. For object segmentation,
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a distinct between foreground and background objects is
drawn. For full scene segmentation, both foreground and
background objects must be classified at the level of a
pixel [15, 28, 12, 53, 6]. Over the past five years, sev-
eral key adjustments to ConvNet-based architectures have
been made to improve segmentation accuracy. First, dilated
convolution (also known as atrous convolution) have been
added to address the reduction of resolution due to pool-
ing or convolution striding while still being able to learn
increasingly abstract feature representations [8, 49, 9, 10].
Second, several methods have been proposed to deal with
the existence of objects at multiples scales, including (1)
image pyramids that deal with the problem at the image
level [17, 14, 36, 24, 11, 9], (2) encoder-decoder struc-
ture which deals with the problem at the multi-scale fea-
ture level [1, 40, 37, 34], (3) cascading extra modules that
deals with the problem by capturing long-range context
[21, 8, 52, 24, 43, 26, 49], and (4) spatial pyramid pool-
ing that deals with the problem by using filters and pooling
operations of various rates and sizes [9, 51].

Overall, progress in semantic segmentation of still im-
ages has continued [10], and it is possible that eventually
any approach to semantic segmentation in video will even-
tually completely disregard temporal dynamics of the scene,
as it has for the state-of-the-art tracking by detection ap-
proaches. However, this possible eventuality is far from
guaranteed, and is currently one of the open problems of
computer vision: how valuable is temporal dynamics infor-
mation for scene understanding in video? Our work seeks
to take steps toward answering this question.

2.2. Semantic Segmentation in Video

Most of the work in semantic segmentation has been on
the problem of video object segmentation where a distinc-
tion is drawn between foreground and background objects,
and the task is focused on temporal propagation of fore-
ground object segmentation. A wide variety of approaches
have been proposed for this task. The first set of approaches
groups pixels spatiotemporally based on motion features
computed along individual point trajectories [3, 30, 20, 18].
These approaches rely on successful feature matching in
the temporal domain, and fail when such matching is in-
termittently erroneous. The second set of approaches for-
mulates segmentation as a foreground-background classifi-
cation task, detecting regions that correspond to foreground
objects and matching the resulting appearance models with
other information such as salience maps, shape estimates,
and pairwise constraints [32, 22, 46]. The third set of
approaches incorporate the classification approach with a
memory module for propagating region estimates in time
[44, 48]. The latter set of approaches begin to incorporate
temporal dynamics information into the learning problem,
and due to their success, motivate the method, observation,

and dataset proposed in our work. The primary benchmark
dataset used for semantic segmentation in video to date is
DAVIS [38, 5]. Our dataset differs in three ways: (1) it
provides full scene segmentation not just foreground object
segmentation, (2) it includes only driving scenes from the
perspective of the ego-vehicle, and (3) it is densely anno-
tated in time for long period at 30 fps.

3. Method
Deep neural networks being pre-trained on large-scale

datasets show a better capability of generalization after fine-
tuning even without using any temporal information [4, 27].
In addition, [7] also shows that there is a considerable bene-
fit in pre-training on large video dataset other than only still
images. However, in the context of video scene parsing, it
is too costly to obtain a densely annotated video dataset at
large-scale. In order to address the advantage of both pre-
trained networks on still images and pre-trained networks
on videos, our method focus on combining the appearance
network (pre-trained on still images) and the memory net-
work (pre-trained on videos) in a meaningful way, while
under the assumption that the appearance network itself al-
ready well-performs.

3.1. Generalizing Semantic Visual Memory

Recent work successfully use convolutional recurrent
networks, e.g. Conv-LSTM [47] and Conv-GRU [44], to
address spatiotemporal sequence modeling problem. How-
ever, due to the requirement of large-scale data in training
deep neural networks, such models usually either have to
hold a insufficient small number of hidden states or suffer
the lack of ability of generalization. In this case, we build
a memory network using Conv-LSTM taking the deep se-
mantic feature map from a pre-trained appearance network
as input, and pre-train it again on a large-scale video seg-
mentation dataset. Specifically, we adopt the DeeplabV3
network [10] as the appearance network, and use a Conv-
LSTM with 256 hidden units as the memory network. By
freezing the weights of the appearance network when train-
ing the memory network, we avoid the risk of losing the
ability of generalization when feeding highly redundant
dense video frames.

3.2. Prediction Refinement with Confidence Gates

From the sense of human perception, it is intuitive that
some parts of the scene are easier to perceive statically, oth-
ers with motion instead. However, it is unclear how this
should be managed and distributed throughout the whole
image. We design the confidence gate of prediction update,
inspired by the way how LSTM updates its cell states.

For each frame, given the prioritary class prediction from
appearance network logitsappr, and the prediction from
memory network logitsmem, which is obtained from a 1x1



Figure 1: Examples from the proposed MIT Driving Scene Segmentation dataset. Annotations are overlayed on frames.

Conv layer after Conv-LSTM, the final prediction is calcu-
lated as

logits = σappr · logitsappr + σmem · logitsmem

where σappr and σmem are two spatial sigmoid gates, cal-
culated from two 1x1 Conv layers taking the concatenation
of appearance network feature and Conv-LSTM output as
input. The gates control how to distribute the weights, i.e.
confidence on the results provided by both parts of the sys-
tem. The appearance network except for the last layer is
frozen during training due to the risk of over-fitting, al-
though the system is end-to-end trainable.

3.3. Training Process

The goal for our training process is to combine state-of-
the-art methods developed on both still images and videos,
while at the same time preserve the natural advantage of
both. The target testing case is doing semantic segmenta-
tion on video frames, while the training can be done either
on still images only or with video frames. However, the
memory network requires sequences of video frames for
training, which should have at least one frame annotated.

In this case, we first adopt the DeeplabV3 pretrained on
still images as feature extractor, and train the memory net-
work on a video dataset. Then we fine-tune the memory
network on the target dataset with multiple frames but only

calculate the loss from the last frame, where the ground
truth segmentation exists. Finally, we fine-tune the whole
system with confidence gates on the output from both ap-
pearance network and memory network, while not changing
the weights in feature extractor layers.

To further explain our idea in the above design, we
consider the scenario that the appearance network is good
enough, but there will be some edge cases that can not be
dealt with using only one still image, such as occlusion, cut
on image margin, motion blur, etc. So the memory network
is to help with those cases, and the confidence gates are used
to control the merging of information.

4. Dataset

Since our target problem is video scene parsing in the
driving context, we group current datasets into three cate-
gories: 1) Pixel-wise annotation of still images, e.g. Map-
illary Vistas [29]; 2) Pixel-wise annotation of coarse video
frames, e.g. Cityscapes [12], BDD [50]; 3) Pixel-wise an-
notation of dense video frames, e.g. the MIT Driving Scene
Segmentation dataset in this work. Category 1 is the easiest
to obtain and get larger variability in different scenes. Cate-
gory 3 usually lack variability, but is the most suitable to do
temporal modeling.



Figure 2: Front-end of our annotation tool.

4.1. Dataset Selection

There are many large-scale datasets with semantic pixel-
wise annotations, e.g. Pascal VOC [16], MS COCO [25],
ADE20k [53], but more about natural scene/object. In
the driving context, there are several well-developed
datasets with dense semantic annotations, e.g. CamVid [2],
KITTI [19], Cityscapes [12], Mapillary Vistas [29], and re-
cently BDD [50]. Among the above datasets, Mapillary Vis-
tas contains 25k images with fine annotation, which is the
largest value, but the images are all still images, i.e. without
temporal connection between each other. Both Cityscapes
and BDD choose one frame from each short video clip to
cast fine annotation. It is a common approach to make the
dataset such way in order to mostly capture the variability
of scenes with the least amount of budget. However, this
phenomenon also leads current research to focus on single-

frame algorithms, ignoring the rich temporal information
contained between consecutive frames.

In this case, we collect and annotate a novel dataset,
which has over 10k frames with fine annotation, from a sin-
gle, untrimmed video of the front driving scene at 30 fps.
The similar idea can be seen in CamVid, which also fea-
tures annotated video frames, but only at a low frequency
(1 fps) and a small scale (less than 500 frames totally). Out
of driving scene domain, DAVIS [35] has densely annotated
pixel-wise semantic object annotations for trimmed video
clips, each at around 60 frames. Similarly, SegTrack [45]
and SegTrack v2 [23] also feature pixel-wise video object
annotation.

In order to make our approach comparable with other re-
cent work, we choose Cityscapes as our main source of data
in experiments. Cityscapes is the largest dataset focused on
urban street views, which contains 5k finely-annotated and



20k coarsely-annotated images. The MIT Driving Scene
Segmentation dataset is mainly used for pre-training in this
work, which is described in detail in Sec. 4.2

4.2. MIT Driving Scene Segmentation Dataset

The two main purposes of the development of MIT Driv-
ing Scene Segmentation dataset are: 1) experiment and de-
velop the full-scene annotation system that is scalable with
a large pool of workers, e.g. on Amazon Mechanical Turk
(MTurk); 2) create an open-source densely-annotated video
driving scene dataset that can help with future research in
various fields, e.g. spatiotemporal scene perception, predic-
tive modeling, semi-automatic annotation process develop-
ment. In this case, we collect a long, untrimmed video
(6:35, 11869 frames) at 1080P (1920x1080), 30 fps, which
is a single daytime driving trip, and annotate it with fine,
per-frame, pixel-wise semantic labels. Examples from the
dataset are shown in Fig. 1. Some other kinds of driving-
related metadata such as IMU, GPS are also available.

Existing driving scene datasets rely on hiring a very
small group of professional annotators to do full frame
annotation, which usually takes around 1.5 hours per im-
age. [12, 29] This is reasonable because the pixel-wise an-
notation is a task of high-complexity that reach the limits
of human perception and motor function without specific
training. However, in order to have scalability and flexibil-
ity to annotate in potentially much larger scale, we develop
the annotation tool that is web-based and understandable.
We deploy our tool on MTurk, which contains a large pool
of professional and non-professional workers.

4.2.1 Annotation Tool

To support fine and quick annotations, we develop a web-
based annotation tool following the common polygon an-
notator [41] design with the implementation of techniques
such as zoom in/out and keyboard shortcuts. A screenshot
of our annotation tool is shown in Fig 2. To further promote
the accuracy and efficiency of annotation processes, we also
address several problems during the process and design spe-
cific improvements.

Task complexity. We found that annotators had
difficulty when asked to annotate an entire scene at once,
which involved keeping in mind many object classes and
keep working for a non-flexible long time. In response, we
divided the task of annotating an entire scene into multi-
ple subtasks, in which an annotator is responsible for an-
notating only 1 object class. We found that this largely re-
duces classification errors, improves the quality of our an-
notations, and reduces the time required to fully annotate
each scene.

Limits of human perception. We found many mis-
classification errors are due to the difficulty of recognizing

objects in still scenes, but that these errors appeared obvi-
ously incorrect in the video. In response, we designed the
tool such that an annotator could step through consecutive
frames quickly with keyboard shortcuts. The motion per-
ceived when stepping through frames, reduce classification
errors.

4.2.2 Annotation Process

The intuition behind our annotation process, is that small
simple tasks are preferable to large complex tasks. By
breaking down the semantic segmentation task into sub-
tasks so that each worker is responsible for annotating only
part of a scene, the annotations are: 1) easier to validate 2)
easier and more efficient to annotate and 3) higher quality.
To accomplish this, we divide the work of annotating the
video into tasks of 3 frames in which a worker is asked to
draw polygons around only 1 class of object, e.g. vehicles.
Our annotation process involves 4 stages: 1) task creation 2)
task distribution 3) annotation validation and 4) the assem-
bly of sub-scene annotations into full-scene annotations.

For stage 1, the creation of tasks, we label which frames
contain the classes we are interested in and group the frames
into sets of 3. This stage removes cases where a worker
is asked to annotate the presence of a class which is not
present in a frame. Since this stage only requires label-
ing frame numbers in which a member of a particular class
enters a visual scene and frame numbers in which the last
member of a particular class leaves, it is much faster and
cheaper than creating a semantic segmentation task for ev-
ery frame and let annotators find out the class does not exist.
This approach creates significant time-and-cost-savings es-
pecially for rare classes, such as motorcycles in our case.

For stage 2, the distribution of tasks, we submit our tasks
to MTurk and specify additional information which controls
how our tasks are distributed:

• Reward: This is the amount of money a worker re-
ceives for completing our task. We specify different
rewards for different classes based on the estimated du-
ration and effort in the annotation.

• Qualifications: This allows us to limit the pool of
workers who may work on our tasks based on 1) the
workers approval rate, or rate of successful annotation,
calculated from all a workers work on the MTurk plat-
form. 2) the total number of tasks the worker has com-
pleted. 3) the qualification task we designed for every
new worker taking our task for the first time, which is
a test task that can be evaluated with the known ground
truth.

For stage 3, annotation validation, we use both auto-
mated and manual processes for assessing the quality of
worker annotations. In addition to the first qualification
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*DeeplabV3 [10] 97.5 81.0 90.3 38.4 53.8 50.8 61.4 71.3 91.0 58.9 93.0 76.3 53.2 93.2 69.2 75.7 63.7 55.2 72.6 70.9
Ours (Cityscapes only) 97.6 81.3 90.5 41.0 55.0 50.6 61.6 71.0 91.0 61.5 92.9 76.1 51.8 93.2 68.9 75.6 62.4 54.4 72.4 71.0

Ours (full) 97.6 81.3 90.6 44.5 55.4 51.0 61.8 71.3 91.0 62.0 92.9 76.2 52.8 93.4 70.2 77.1 64.9 55.6 72.4 71.7

Table 1: Quantitative results on Cityscapes dataset. The proposed model achieve better results on stuff classes, e.g. sidewalk,
wall, fence, terrain. The improvement is mostly contributed by the memory network, since we fix the weights of all the
feature extractor layers in the appearance network. (*We use the officially released DeeplabV3 model checkpoint with
MobileNetV2 [42] backbone pre-trained on MS-COCO [25]. The same below.)

task, workers are assigned additional test tasks occasionally,
which are indistinguishable from non-ground truth tasks,
to check whether they are still following our instructions.
If the workers annotation deviates significantly from the
ground truth, they are disqualified from working on our
tasks in the future. The process of comparing workers an-
notations with the ground truth is automated, by calculat-
ing the Jaccard distance. The threshold score is class de-
pendent since it is easier to score high on less-complex ob-
jects like the road than pedestrians. For our manual valida-
tion process, we visually validate that a workers annotations
are of sufficient quality, using a tool which steps through
annotated frames as a video player which allows approv-
ing/rejecting work and blocking workers via key presses.

For stage 4, the merging of sub-annotations, we com-
bine the class-level annotations for a given frame into a full-
scene annotation. For this task, we automatically compose
the final full-scene annotation one class at a time. Our al-
gorithm first draws the background classes, such as road
and sidewalk, and then stationary foreground objects, such
as poles and buildings, and finally dynamic foreground ob-
jects such as pedestrians and vehicles. In order for this to
work, we carefully designed the instructions for each class
so that they could fit together harmoniously. The order in
which we draw the classes dictates the instructions. When
annotating the ith class of n total classes, a worker must an-
notate the boundaries between objects of class i and classes
j where j >= i. In other words, if we draw the road an-
notations before vehicle annotations, workers do not need
to draw the boundary between road and vehicle when an-
notating road, since this work will be handled by workers
annotating vehicles.

5. Experimental Results

We do experiments on Cityscapes and the proposed MIT
Driving Scene Segmentation dataset, following the train-
ing process described in Sec. 3.3. The quantitative and
qualitative results are both reported on the validation set of

Cityscapes.

5.1. Quantitative Results

The quantitative results are calculated using the eval-
uation scripts provided by [12], shown in Table 1. For
Cityscapes only model, we train the memory network from
scratch using only sequences of frames and calculate the
loss on the last frame with ground truth. Note that our
model is designed to be causal, not using future informa-
tion, which is capable to run in real time.

The two major findings from the quantitative results are:
1) With the memory network pre-trained on the proposed
MIT Driving Scene Segmentation dataset, the overall per-
formance gets improved. The improvement is mostly con-
tributed by the memory network, since we fix the weights
of all the feature extractor layers in the appearance network.
In other words, even with a fixed appearance network that is
already well-trained on still images, we can still find clues
to improve it from the temporal domain. 2) By adding
the memory network, the model performs better on stuff
classes, e.g. sidewalk, wall, fence, terrain, which indicates
that these classes are preferred by the memory network. We
have further exploration on this point described in the next
section with qualitative examples.

5.2. Qualitative Results

The purpose of getting qualitative results is to further re-
veal and help understand the advantage of having a memory
network to model spatiotemporal information.

5.2.1 Border Denoising for Stuff Classes

We visualize some of the cases where there are visible im-
provement of our results over the baseline DeeplabV3, as
shown in Fig. 3. The baseline model fails to predict some
stuff classes on the border area of the image, possibly due to
camera effect, motion blur, or lack of context. Our proposed
method is able to reduce this kind of mistakes by taking
consideration of spatiotemporal context with the memory



Figure 3: Visualization of segmentation results. From top to bottom: input image, DeeplabV3 results, our results, ground
truth. Highlighted areas show the improvement on border area with stuff classes (from left to right: wall, terrain, sidewalk).

network. This finding aligns with the quantitative results
where we find most of the improvement of our method lies
in the stuff classes. It is important to take this consistency
problem seriously in the driving domain, since the driving
decisions are always made within a very short time, and the
image quality is hard to always maintain due to the variabil-
ity of dynamic driving scene.

5.2.2 Confidence Gates as Distributed Attention on
Spatial v.s. Spatiotemporal Information

One of the general problems in video modeling is to ex-
tract useful spatiotemporal information in order to help with
recognition. Although it is intuitive that videos always con-
tain more information than still images, they also introduce
redundancy and noise. Thus, it is likely that the memory
network using spatiotemporal information in some cases
performs not as good as the appearance network using spa-
tial information only. To address this problem, our method
uses confidence gates to control the ensemble of final out-
put. As shown in Fig 4, the network has more confidence on

the appearance network for foreground objects, e.g. person,
car, pole. On the other hand, for background stuff objects
such as road, sidewalk, terrain, the memory network gets
more confidence. Since the values of gates are learned dur-
ing training, they show the capability of two networks pre-
dicting certain objects, which also indicates the underlying
difference of spatial and spatiotemporal features.

This finding from another perspective explains the im-
provement of our method gained on certain stuff classes.
The gates serve a role of an attention mechanism that not
only lets the network focus on predicting certain classes us-
ing more preferred feature, either spatial or spatiotempo-
ral, but also helps interpret how the deep learning model
deals with video data. One possible explanation is that some
stuff classes are more context-dependent than appearance-
dependent, and the spatiotemporal features encodes more
context information. We believe there are much more inter-
esting ideas in spatiotemporal modeling, and expect future
research to in this area to be fruitful for both understanding
the problem of perception and for improving the accuracy
and robustness of real-world perception systems.



Figure 4: Visualization of confidence gates values. From top to bottom: input image, confidence gate on appearance network
σappr, confidence gate on memory network σmem. The values are visualized as 0 to black and 1 to white, showing that the
network tends to have more confidence on the appearance network for foreground objects, e.g. person, car, pole, but more on
memory network for background stuff objects, e.g. road, sidewalk, terrain.

6. Conclusion

We show that temporal dynamics information in video
of driving scenes contains valuable information for the task
of semantic segmentation. In particular, we find that back-
ground classes are more commonly context-dependent and

thus benefit from memory models more than from appear-
ance models. And conversely, foreground objects are more
accurately segmented from appearance information, and do
not benefit as much from modeling the object’s trajectory
in time. The MIT Driving Scene Segmentation dataset re-



leased with this work is used to show the value of temporal
dynamics information in this paper and allows the computer
vision community to explore modeling both short-term and
long-term context as part of the driving scene segmentation
task.
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