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Abstract—Facility location problems aim to identify the best locations
to set up new services. Majority of the existing works typically assume
that the users are static. However, there exists a wide array of services
such as fuel stations, ATMs, food joints, etc., that are widely accessed
by mobile users besides the static ones. Such trajectory-aware services
should, therefore, factor in the trajectories of its users rather than simply
their static locations. In this work, we introduce the problem of optimal
placement of facility locations for such trajectory-aware services that
minimize the user inconvenience. The inconvenience of a user is the
extra distance traveled by her from her regular path to avail a service. We
call this the TIPS problem (Trajectory-aware Inconvenience-minimizing
Placement of Services) and consider two variants of it. The goal of
the first variant, MAX-TIPS, is to minimize the maximum inconvenience
faced by any user, while that of the second, AVG-TIPS, is to minimize
the average inconvenience over all the users. We show that both these
problems are NP-hard, and propose multiple efficient heuristics to solve
them. Empirical evaluation on real urban-scale road networks validate
the efficiency and effectiveness of the proposed heuristics.

Index Terms—Trajectory-aware service, User inconvenience, TIPS.

1 INTRODUCTION

Facility location problems identify the best locations to set up
new facilities (or services) for its users [1], [2]. This has been
also studied as optimal location problems [3], [4], [5], [6], [7].
Majority of the existing works, however, assume that the users
of the service are static [8], [9], [10]. However, services such
as fuel stations, automobile service stations, ATMs, food joints,
convenience stores, etc., are widely accessed by mobile users,
besides the static users [11]. For example, it is common for many
users to make their daily purchases while returning from their
workplaces. This practice is increasingly becoming common be-
cause of rapid expansion of cities due to growing urban population
and consequent longer work commute trips. The placement of such
services should therefore take into account the mobility patterns
or the trajectories of its users, rather than simply their static
home and office locations. The necessity for such mobility-aware
location selection has also been highlighted in recent studies
[11], [12], [13]. Moreover, our experimental findings in Sec. 6.4
suggest that there is 10-40 % cost-savings if we factor in the user-
trajectories instead of their static locations.

A user trajectory is a sequence of spatial points that lie on
the path of a user while travelling. It is important to note that
trajectories strictly generalize the static user scenario as static
users can always be modeled as trajectories with a single location.
In general, however, trajectories capture user location patterns
more effectively and realistically.

In this work, we extend two key optimal location problems,
namely the MinMax Location Query [6], [7], [10], [14] and the
Min-Dist Location Query [8], [9], [12], [15] (also referred to as the
MinSum Location Query [16]). Given a set of customers (or users)
C, a set of existing facilities F , and a set of candidate locations
that can host a new facility S , the goal of the MinMax Location
Query (respectively, Min-Dist Location Query) is to identify a
facility location in S that minimizes the maximum (respectively,
average) distance of any user to its nearest facility.

Majority of the existing works assume that the users are static
and ignore their mobile behavior. Further, most of these works also
restrict themselves to reporting a single facility location, which is
polynomially solvable. Motivated by these two limitations, in this
work, we introduce two novel optimal location problems, MAX-
TIPS and AVG-TIPS, that factor the user trajectories and report
any desired number of facility locations.

Formally, given a set of trajectories T , a set of existing
facilities F , a set of candidate sites S , an integer k, and a user-
fraction γ ∈ [0, 1], the MAX-TIPS problem seeks to report a set
Q ⊆ S of k locations that minimizes the maximum inconvenience
over any γ fraction of the trajectories T , while the AVG-TIPS
problem aims to identify the k locations that minimize the average
inconvenience faced by any user. The inconvenience of a user on
a trajectory is defined as the extra distance traveled by her with
respect to her normal trajectory to avail the service. The proposed
problems are NP-hard.

While for critical services such as ambulance or fire stations,
it is desirable to minimize the maximum inconvenience, for other
services such as ATMs, fuel stations or convenience stores, it is
desirable to minimize the average inconvenience. Both these TIPS
problems have applications in various resource planning scenarios
[15], [16], [17]. Some of the direct applications are:
Placement of drop-boxes for crowd-sourced taxi shipment service:
Chen et al. [18] presented a novel scheme for city-wide shipment
of items using the regular passenger-carrying taxis in a crowd-
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sourced manner. The taxis participating in this service are required
to collect and drop the shipments at a nearby drop-box whenever
they are idle, i.e., not carrying any passenger. The drop-boxes must
be located in a manner such that the maximum inconvenience
faced by majority of the taxis is minimal.
Locating multiple ATMs of a given bank: Suppose a bank plans
to set up k ATMs in a given city. Since mobile users often access
nearby ATMs, they must be placed such that the average user-
inconvenience is minimized.
Placement of food trucks of a given chain: Extending the example
given in [17], consider a restaurant chain that wants to place its
k food trucks on the road network, so as to serve the mobile
customers (who have shared their trips) such that the average
inconvenience faced by any user is minimal.

We illustrate the TIPS problems through an example shown
in Fig. 1. There are 6 trajectories T1, . . . , T6 (shown with blue
dashed lines with arrows indicating the directions of the respective
trip), one existing facility at s0 (marked in green) and 4 candidate
sites s1, . . . , s4 (shown in red) to host a new facility. The road
segments are marked in black with corresponding distances (as-
sumed to be the same on both ways). The nodes v1 and v2 (shown
in black) are general points on the road network that do not host
a facility. If the user on trajectory T1 (that passes through v1
and s1) wishes to access the facility at s0, she needs to detour
from v1, visit s0, and join her regular path at s1. As a result, her
inconvenience (i.e., the extra distance traveled) is 1 + 2 − 2 = 1
unit. Now if another facility comes up at s1, her inconvenience
reduces to 0, as there is no detour. For trajectories T2, T3, the
inconvenience w.r.t. s0 is 7 + 2 + 2 + 7 = 18 units (as they need
to take a round trip via s2, s1, s0, s1, s2, in that order). Similarly,
for trajectories T4, T5 and T6, it is 30, 32 and 20 respectively.
Note that the inconvenience is measured w.r.t. the nearest facility
from any point on the trajectory.

Assume that the service-provider wants to set up 2 new facili-
ties besides the existing one at s0, with the objective to minimize
the maximum inconvenience faced by any user. If the new facilities
are hosted at {s1, s2}, the inconvenience of trajectories T1, T2, T3
are 0 units each. For trajectories T4 and T5 the nearest facility
is s2 and, therefore, their inconveniences are 12 units each.
Similarly, for trajectory T6, the nearest facility is s1 and, thus, its
inconvenience is 16 units. Therefore, the maximum inconvenience
among all the trajectories due to the selection {s0, s1, s2} is
16 units. The maximum inconvenience for all such selections
of 2 new sites (along with s0) are listed in Fig. 1 under the
column γ = 1. (We will shortly explain the meaning of γ.) The
selection {s0, s3, s4} offers the optimal maximum inconvenience
of 12 units. Importantly, although most number of trajectories pass
through s2, it is not part of the optimal solution.

Next, suppose the objective is to minimize the average (or
equivalently, the total) inconvenience over all the user trajectories.
The last column in the table in Fig. 1 lists the total inconvenience
for all possible selections. The selection {s0, s2, s3} offers the
optimal total inconvenience of 21 units. Thus, the optimal average
inconvenience is 21/6 = 3.5 units. (The optimal maximum
inconvenience was 12 units.)

The maximum inconvenience problem suffers from the issue
of outlier trajectories where a trajectory is very different from
all the other ones and, therefore, accommodating for it becomes
harder. Thus, instead of considering all the trajectories, the service
provider may choose a fraction of the trajectories, over which the
maximum inconvenience will be minimized. We call this fraction

Fig. 1: Illustration of the need for minimizing user-inconvenience
for trajectory-aware services.

the user-fraction, γ.
Referring to Fig. 1, when γ = 0.8, the goal is to minimize

the maximum inconvenience over at least 0.8 × 6 = 4.8 or 5
trajectories. The values of the maximum inconvenience for all the
selections for γ = 0.8 are listed in the table. Note that the optimal
selection for γ = 0.8 is {s0, s2, s3} which is different from the
optimal selection for γ = 1. Note that the optimal inconvenience
for γ = 0.8 falls to 2 units as compared to 12 units for γ = 1.

A naive approach to solve either of the TIPS problems involves
enumerating all k-sized subsets of S , computing the maximum or
the average inconvenience (depending on the objective) for each
subset, and returning the subset with the minimal objective value.
This requires an exponential time and space complexity, which is
infeasible for almost all datasets. Thus, the major challenges in
solving TIPS are as follows:
1) Quality: Since both the problems are NP-hard (proved later),

optimal algorithms are impractical. Thus, we need efficient
heuristics that offer high quality solutions.

2) Scalability: Any basic approach to solve the above problems
would typically need to compute and store pairwise distances
between the sets of candidate sites and trajectories. However,
for any city-scale datasets, this time and storage requirement
is prohibitively large (of the order of 100s of GB). Thus, it is
necessary to design solutions that are practical and scalable.
In this paper, we propose efficient heuristics for both MAX-

TIPS and AVG-TIPS that overcome the above challenges. To
summarize, our major contributions are:
1) To the best of our knowledge, this is the first work, that factors

in user-mobility to identify the best k facility locations that
minimize the maximum and the average user-inconvenience,
in presence or absence of existing facilities. In particular, we
introduce two facility location problems over user trajectories,
namely, MAX-TIPS and AVG-TIPS (Sec. 3).

2) We show that both these problems are NP-hard (Th. 1), and
propose one exact algorithm and two polynomial-time efficient
heuristics to solve each of them (Sec. 4 and Sec. 5). The exact
algorithms are based on integer linear programming (Sec.4.1
and 5.1). For MAX-TIPS, while the first heuristic is an index-
free greedy algorithm (Sec. 4.2), the second one (Sec. 4.3) uses
an index structure based on multi-resolution clustering of the
road network. For AVG-TIPS, the first heuristic is a hybrid
of two standard clustering algorithms that are based on local
search techniques (Sec. 5.2), while the second one (Sec. 5.3)
uses a simple greedy approach.

3) Empirical evaluation on urban scale datasets show that our
heuristics are effective in terms of quality, and efficient in terms
of space and running time (Sec. 6).
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2 RELATED WORK

The related work is divided into the following main classes.
Location Selection (LS) Queries: Location Selection (LS)
queries identify best locations to set up new facilities. They are
broadly of two types: Optimal Location (OL) queries [3] and
Facility Location (FL) Queries [2]. An OL query typically has
three inputs, a set of existing facilities, a set of users, and a set
of candidate sites, and the aim is to find a candidate site to host
a new facility that optimizes an objective function based on the
distances among the facilities and the users. On the other hand, an
FL query considers a set of users, and a set of candidate sites, and
seeks to identify k (k ≥ 1) facility locations that optimize certain
objective function which is usually based on the distances among
the users and the facilities. While OL queries are polynomially
solvable, FL queries are NP-hard. In Table 1, we summarize the
key related works in the area of location selection based on the
following attributes.
(1) Type of Users: Majority of the early works assumed that
the users are fixed to a single location such as home, and did
not consider their mobile behavior. However, many recent studies
including ours factor in user-mobility.
(2) Type of Output: While many works report a single location
to set up a new facility, others report top-k facility locations
that collectively optimize the desired objective. While the former
is polynomially solvable, the latter is NP-hard. Both the TIPS
problems return k locations, and are NP-hard as well.
(3) Type of Objective: Based on the objective function, the related
works can be classified into two categories: distance minimizing
and influence maximizing. In distance minimizing queries, the goal
is to minimize the maximum or the average distance of any user to
its nearest facility. While the former is referred to as the MinMax
Location Query [6], [7], [10], [14], the latter is known as the
Min-Dist Location Query or MinSum Location Query [8], [9],
[12], [15], [16]. MAX-TIPS problem is a generalization of the
MinMax Location query, while AVG-TIPS is a generalization of
the Min-Dist Location query. These generalizations are in terms of
reporting k locations instead of a single location, and considering
mobile users on a road network instead of static ones. The aim of
influence maximizing queries is to find a candidate site that has
maximal influence over its users. The influence of a site s is the
number of users for which s is the nearest facility. These problems
are usually modeled as Reverse Nearest Neighbor queries. The
key difference between these works and ours is that they assume
that the new facility is competing with the existing ones; in our
model, both the new and the existing facilities (if any) belong to
a given service provider and, hence, complement each other. This
is especially true for public services such as ATMs, post offices,
hospitals, gas stations, parking spots, etc.
(4) Type of Underlying Space: Many earlier models assume
that the underlying space is Euclidean. Since user movements
are typically restricted by a road network, and network distances
can significantly vary from corresponding Euclidean distances,
recent works base their studies on road networks. Our TIPS
formulation is also based on the road network. The massive
distance computations, and absence of geometric properties make
the latter problems more challenging.

Referring to Table 1, we note that this is the first work that
factors in user-mobility to mine the top-k facility locations that
minimizes the inconvenience (defined in terms of the distances
between the users and facilities) caused to the users traveling on

a road network. Next, we discuss the important LS works that are
closely related to our proposed TIPS query.
• Key related works factoring in user-mobility: In [13], the
authors studied the PRIME-LS problem that aims to find an
optimal location which can influence the most number of moving
objects. Two algorithms were proposed based on two pruning
techniques and optimization strategies to filter out unpromising
candidate sites. However, since the goal is to maximize the
influence rather than to minimize the distance, the attributes of
this problem are quite different to ours (as explained earlier). Thus,
these algorithms are inapplicable to solve the TIPS problems. The
studies in [11], [22] consider the FL problem over user trajectories
moving on a road network. They assume that a user is attracted to
a facility if its trajectory lies within a specified distance threshold.
While both these works aim to maximize the user coverage, [22]
reports a single optimal road segment, and [11] reports the k best
facility locations.

MinMax Location Query and Min-Dist Location Query have
been studied in [4], [6], [7], [8], [9], [10], [12], [14], [15], [16],
[17], [20]. All other works except [12], [17] assume the users
to be static. However, in contrast to our work, both these works
find a single optimal location for the min-dist location problem
over user trajectories. Moreover, since [17] study the problem
over Euclidean space, their techniques are not applicable to our
model which is based on a road network. The study of [12] is
however based on a road network. Based on reference location
transformation, they propose two groups of algorithms. While the
first group uses spatial locality based index structures, the other
group does not use any index structure but computes from scratch.
In our empirical study, we consider this algorithm as a baseline.

Majority of the works in the FL literature also assume that the
users are static [1], [2]. Works that consider human mobility in-
clude [23], [24], [25], [26], [27], [28], [29]. These works, however,
assume a flow model to characterize mobility instead of using real
trajectories. The proposed models are mostly theoretical and are
not scalable for real city-scale road networks. In particular, all
these approaches require extensive distance computations which
leads to large memory overhead and are, hence, infeasible [11]. A
fairly comprehensive literature survey is available in [30].

Hodgson [23] posed the first FL problem that minimizes
the average user inconvenience as a generalization of k-medians
problem. In [26], it was shown that the problem does not admit
constant factor approximation unless P = NP . However, no
approximation algorithm was proposed. In contrast, we propose
two heuristics for this problem.
Clustering Problems: The following clustering problems are
related to the current work.
(1) k-Center Problem: Given a set S of n points, the k-center
problem is to determine a set Q ⊆ S of size k, referred to
as centers, such that the maximum distance of any point in S
to its nearest center is minimized. This problem was introduced
and proved to be NP-hard in [31]. They also proposed a greedy
heuristic that offers a factor of 2 approximation. Our proposed
MAX-TIPS problem is a generalization of the k-center problem
as trajectories generalize static users. We have extended the greedy
algorithm in [31] to design a heuristic (with bounded quality
guarantees) to solve MAX-TIPS (Sec. 4).
(2) k-Medoids Problem: Given a set S of n points, the k-medoids
problem is to determine a set Q ⊆ S of size k, referred to as
medoids, such that the sum of distances of each point in S to its
nearest medoid is minimized [32]. This is also referred to as the
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Property [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [19] [20] [21] [22]
Users Stat Stat Stat Stat Stat Stat Stat Stat Mob Mob Mob Stat Stat Stat Mob Stat Stat Stat Mob

Output Sngl Sngl Sngl Sngl Sngl+Top-k Sngl Sngl Top-k Top-k Sngl Sngl Sngl+Top-k Sngl Sngl Sngl Sngl Sngl Top-k Sngl
Objective function Infl Dist Infl Dist Dist Dist Dist Dist Infl Dist Infl Dist Dist Infl Dist Infl Dist Dist Infl
Underlying space Eucl Eucl Road Road Road Eucl Eucl Road Road Road Eucl Road Eucl Road Eucl Eucl Road+Eucl Eucl Road

TABLE 1: Summary of Related Work. (Stat: static, Mob: mobile; Sngl: single, Top-k: top-k; Dist: distance, Infl: influence; Eucl:
Euclidean space, Road: road network.)

k-median problem. The first constant factor algorithm for the k-
median problem in general metric space, with an approximation
ratio of 6 2

3 was proposed in [33]. Later, [34] improved this factor
to 6. Subsequently, [35] designed a 4-approximation algorithm
that runs in O(n3) time. Korupolu et al. [36] proposed a local
search based approximation scheme by allowing a constant factor
blow-up in k. Arya et al. [37] improved the approximation bound
for the metric k-medians problem to 3 + 2/p where p is the
number of medians swapped simultaneously. Three popular local
search based techniques for the k-medoids problem are PAM [32],
CLARA [32] and CLARANS [38]. These schemes are detailed
in Sec. 5.2. Most of these works, however, fail to scale on
large datasets. Moreover, all these algorithms require the distance
matrix between each pair of points. This quadratic space and
time requirement renders them infeasible for real datasets. Our
proposed AVG-TIPS problem generalizes the k-medoids problem
as explained in Sec. 3. The HCC heuristic to solve AVG-TIPS
(Sec. 5.2) builds on the ideas of CLARA and CLARANS. More
importantly, to address the challenge of high space overhead, we
design sampling techniques to reduce the sizes of the sets.

3 THE TIPS PROBLEM

Consider a road network G = {V,E} over a geographical area
where V = {v1, . . . , vN} denotes the set of road intersections,
and E denotes the road segments between two adjacent road
intersections. To model the direction of the underlying traffic that
passes over a road segment, we assume that the edges are directed.
Assume a set of candidate sites S = {s1, · · · , sn} where a certain
service or facility can be set up. The set S can be in addition to
the existing facility locations F . Without loss of generality, we
can augment the vertices V to include all the sites. Thus, S ⊆ V .
Further, we also assume that the set of existing facilities F ⊆ V .

The set of trajectories is denoted by T = {T1, · · · , Tm}
where each trajectory Tj = {vj1 , · · · , vjl}, vji ∈ V , is a
sequence of locations that the user passes through. Usually any
service or facility is used by a mix of static users and mobile
users. As the above definition of trajectory allows both single
and multiple locations of a single user, it captures both static and
mobile users simultaneously. The trajectories are usually recorded
as GPS traces and may contain arbitrary spatial points on the road
network. For our purpose, each trajectory is map-matched [39] to
form a sequence of road intersections through which it passes.

We also assume that each trajectory belongs to a separate user.
The framework can be easily generalized to multiple trajectories
belonging to a single user. The union of road intersections that
the user passes through in any of her trajectories will be treated
as the nodes in her trajectory. In effect, this will minimize her
inconvenience from any of her trajectories.

Suppose d(vi, vj) denotes the shortest road network distance
along a directed path from node vi to vj , and dr(vi, vj) denotes
the shortest distance of a round-trip starting at node vi, visiting
vj , and returning to vi, i.e., dr(vi, vj) = d(vi, vj)+ d(vj , vi). In
general, d(vi, vj) 6= d(vj , vi), but dr(vi, vj) = dr(vj , vi).

The extra distance traveled by any user on trajectory Tj to
avail a service at site si ∈ V , denoted by dr(Tj , si), is defined
as follows: dr(Tj , si) = min∀vk,vl∈Tj

{d(vk, si) + d(si, vl) −
d(vk, vl)}, i.e., it deviates from its trajectory at vk, reach site si
and then return to vl ∈ Tj such that the deviation is minimum.

The round-trip distance between two trajectories Ti and Tj
is defined as the minimum pairwise distance among its sites:
dr(Ti, Tj) = min∀vi∈Ti, ∀vj∈Tj

{dr(vi, vj)}. Henceforth, dis-
tance implies round-trip distance unless mentioned otherwise.

It is inconvenient for a user to avail a service if the nearest
service location is far off from her trajectory. We define this
inconvenience as follows. Given a set of service locationsQ ⊆ S ,
the inconvenience of a user on trajectory Tj , denoted by Ij , is
the extra distance travelled to avail a service at the nearest service
location in Q. Formally, Ij = min{dr(Tj , si)|si ∈ Q}.

Using the above setting, we introduce two novel problems,
namely MAX-TIPS and AVG-TIPS, described as follows.

The MAX-TIPS problem aims to report a set of k service
locations that minimizes the maximum inconvenience over a given
user-fraction of the set of trajectories.
Problem 1 (MAX-TIPS). Given a set of trajectories T , a set of
existing facilities F , a set of candidate sites S that can host the
services, a positive integer k, and a user-fraction γ (0 < γ ≤ 1),
the MAX-TIPS problem seeks to report a set Q ⊆ S, |Q| = k,
that minimizes the maximum inconvenience over any set T ′ ⊆ T
such that |T ′| ≥ γ × |T |, i.e., it minimizes MI(Q) =
maxTj∈T ′{Ij}, where Ij = minsi∈Q∪F{dr(Tj , si)}.

Intuitively, as the user-fraction increases, the optimal value
of MI(Q) increases because of the need to serve more number
of users with the same number of k facilities. When γ = 1,
the goal is to serve all the trajectories such that the maximum
inconvenience faced by any trajectory is minimized.

The AVG-TIPS problem seeks to identify k service locations
that minimizes the expected or average inconvenience across
all the trajectories. Since the number of trajectories is fixed,
minimizing the average inconvenience is equivalent to minimizing
the total inconvenience over all the trajectories.
Problem 2 (AVG-TIPS). Given a set of trajectories T , a set of
existing facilities F , a set of candidate sites S that can host the
services, and a positive integer k, the AVG-TIPS problem seeks
to report a set Q ⊆ S, |Q| = k, that minimizes the total
inconvenience over T , i.e., it minimizes TI(Q) =

∑
Tj∈T Ij ,

where Ij = minsi∈Q∪F{dr(Tj , si)}.
We next show that both the TIPS problems are NP-hard.

Theorem 1 (NP-hardness of TIPS). MAX-TIPS and AVG-TIPS
are NP-hard problems.

Proof. Since the k-center problem is NP-hard [31] and it reduces
to the MAX-TIPS problem with each trajectory being a single
user location, the set of existing facilities F = ∅ and γ = 1,
MAX-TIPS is also NP-hard.

Since the k-medoids problem is NP-hard [32] and it reduces to
the AVG-TIPS problem with each trajectory being a single user-
location and F = ∅, AVG-TIPS is also NP-hard.
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4 ALGORITHMS FOR MAX-TIPS
In this section, we present an optimal algorithm and two heuristics
to solve the MAX-TIPS problem.

4.1 Optimal Algorithm
We present an optimal solution to the MAX-TIPS problem in
the form of an integer linear program (ILP). For the ease of
representation of the ILP, we assume that the set of candidate
sites S = {si|1 ≤ i ≤ n} is augmented with the set of existing
facilities F .

minimize Z such that (1)
∀1 ≤ i ≤ n, Z ≥ zi (2)

∀1 ≤ i ≤ n, ∀1 ≤ j ≤ m, zi ≥ dr(Tj , si)× yij (3)
n∑

i=1

xi ≤ k + |F|, (4)

∀1 ≤ j ≤ m,
n∑

i=1

yij ≤ 1 (5)

m∑
j=1

n∑
i=1

yij ≥ γ × |T | (6)

∀1 ≤ i ≤ n, ∀1 ≤ j ≤ m, yij ≤ xi (7)
∀1 ≤ i ≤ n, xi ∈ {0, 1} (8)
∀si ∈ F , xi = 1 (9)

∀1 ≤ i ≤ n, ∀1 ≤ j ≤ m, yij ∈ {0, 1} (10)

The Boolean variable xi = 1 if and only if the site si is
selected, or it is an existing facility. The Boolean variable yij = 1
if and only if the site si is a serving facility (either existing
or new), and the trajectory Tj is served by si. The variable zi
captures the maximum inconvenience offered to any trajectory
served by the site si (Ineq. (3)). The constraint in Ineq (2), along
with the objective function in Eq. (1) ensure that the maximum
inconvenience is minimized over the set of selected sites. The
constraint in Ineq. (4) ensures that at most k new sites are selected
in the answer set. Since Z monotonically decreases with

∑n
i=1 xi,

Z will attain its optimal value only when
∑n
i=1 xi = k + |F|.

The constraint in Ineq. (5) guarantees that each trajectory is
served by at most one service location. The constraint in Ineq. (6)
ensures that at least γ.|T | trajectories are served. The constraint
in Ineq. (7) guarantees that if xi = 0, then ∀j, yij = 0, i.e.,
no trajectory is served by the site si as it is not a serving facility
location.

The optimal algorithm is impractical except for very small
datasets (demonstrated in Sec. 6.2). Therefore, we next present a
couple of polynomial-time heuristics to solve MAX-TIPS.

4.2 MIF Algorithm

MAX-TIPS problem being a generalization of the k-center prob-
lem (Sec. 2), the most natural approach to solve MAX-TIPS is to
extend the greedy heuristic for the k-center problem [31]. We refer
to this adaptation as MIF (Most-Inconvenient-First). It iteratively
selects a site and the corresponding most inconvenient trajectory
in each of the k iterations. The details are as follows.

Initially, we set Q = F , i.e., the existing set of facilities.
The algorithm maintains a map, called the Nearest Facility map,
denoted by NF . This map keeps the trajectories in T in a sorted
order based on their distance to the nearest facility in Q. Let
RT be an empty set of representative trajectories. The algorithm

runs in iterations. At the beginning of each iteration, a trajectory
Ti ∈ NF is chosen whose rank is bγ×|T |c in the sorted ordering.
The reason behind this choice is that Ti faces the maximum
inconvenience among the first bγ × |T |c trajectories in NF in
the sorted ordering. Ti is then added to the set RT . In case of no
existing facilities, NF is initially empty. In such a scenario, any
random trajectory is added to RT in the first iteration. Next, we
choose a candidate site si ∈ S \ Q that is nearest to Ti, and add
it to the set Q. If there are multiple such candidate sites, then the
tie is broken arbitrarily. The above process is repeated until k new
facility locations are selected.

Let us evaluate this algorithm on the example in Fig. 1 with
k = 2 and γ = 1. Initially, Q is set to {s0}. Since T5 is the
farthest trajectory from s0, it is added to RT . Next, s3 is chosen
and added to Q, because it is the nearest site to T5. Subsequently,
in the next iteration, T6 is added toRT . As a result, s4 is added to
the answer set. Finally, the algorithm concludes with the selection
Q = {s0, s3, s4}, which is also the optimal answer.

Now, consider the same example with k = 2 and γ = 0.8.
Once again, Q is initialized with s0. In iteration 1, T4 and s3 are
chosen, and in the next iteration, T3 and s2 are chosen. The final
selection is thus, Q = {s0, s2, s3}, which is again the optimal
solution.

We observe that for any set of sitesQ, and two sets of trajecto-
ries, T ′, T such that T ′ ⊆ T , the maximum inconvenience faced
by any trajectory in T ′ due to the set Q is at most the maximum
inconvenience faced by any trajectory in T due to the set Q.
Therefore, any approximation bound that holds for the MAX-TIPS
problem with user-fraction γ = 1 will also hold for γ < 1. Hence,
we next discuss the approximation results only for γ = 1. Further,
for ease of analysis, we assume that all the nodes in the road
network are candidate sites, i.e., S = V .

Theorem 2. Let d and d∗ be the maximum inconvenience offered
by the answer sets returned by the MIF algorithm, and the optimal
algorithm for MAX-TIPS, respectively. Then, d ≤ 2d∗ for k = 1,
and d ≤ 2d∗ + L for k ≥ 2 where L is the length of the longest
trajectory.

The proof is given in Appendix A.1.

Theorem 3. The time and space complexities of MIF algorithm
are O(k.l.n log n + k.m.l2 + k.m logm) and O(l(n + m))
respectively, where n = |V | is the total number of nodes in the
road network, l is the maximum number of nodes in any trajectory,
m is the total number of trajectories in T , and k is the total
number of iterations.

The proof is stated in Appendix A.2.
Although MIF offers bounded quality guarantees, it is quite

slow. This is because it does not use any pre-computed distances.
The next scheme, however, leverages on pre-computed distances,
and offers significantly faster response times.

4.3 Algorithm using NetClus
We observe that MIF takes significant computation time for cal-
culating node-to-node distances, and node-to-trajectory distances.
This is because we cannot afford to pre-compute and store all
pairs node-to-trajectory distances, which is overwhelmingly large.
However, an indexing scheme can be used that pre-computes and
stores only a small set of node-to trajectory distances.

In this section, we propose a heuristic that uses the NetClus
indexing framework [11] that was originally designed to solve the
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following TOPS problem [11]:
Given a set of trajectories T , a set of candidate sites S that can
host the services, the TOPS problem with query parameters (k, τ)
seeks to report the best k sites, Q ⊆ S, |Q| = k, that cover
maximum number of trajectories. It is assumed that a site si covers
a trajectory Tj , if and only if dr(Tj , si) ≤ τ , where τ is referred
to as the coverage threshold.

NetClus performs multi-resolution clustering of the nodes in
the road network, V . NetClus maintains t instances of index
structures I0, . . . , It−1 of varying cluster radii. A particular index
instance is useful for a particular range of query coverage thresh-
olds. From one instance to the next, the radius is increased by a
factor of (1+ ε) for some ε > 0. Assume that the normal range of
query coverage threshold τ is [τmin, τmax). Then the total number
of index instances is t = blog(1+ε)(τmax/τmin)c + 1. For each
index instance, NetClus maps the trajectories to the sequence of
clusters that they pass through.

Intuitively, as the coverage threshold τ increases, the number
of trajectories covered by any set of candidate sites Q also
increases. This was validated empirically in [11].

Exploiting the general monotonic behavior of the trajectory
coverage with respect to the coverage threshold τ , we propose the
following heuristic to answer the MAX-TIPS problem. Our goal
is to identify the smallest value of τ such that there exists a set
Q ⊆ S of size k that covers at least γ×|T | number of trajectories
in T . To guess this desired value of τ , we perform a binary search
over the range of τ , i.e., [τmin, τmax].

The algorithm proceeds in iterations. In each iteration, it com-
putes the value of the coverage threshold, τ =

τc
min+τ

c
max

2 where
τ cmin and τ cmax denote the current ranges. Initially, τ cmin = τmin
and τ cmax = τmax. Next, the TOPS query with parameters (k, τ)
is computed. While doing so, the existing facilities F must be
taken into consideration [11]. The trajectories that lie within the
coverage threshold τ of any existing facility, are deemed to be
covered. If the trajectory coverage value, i.e., the number of
trajectories covered by the set Q ∪ F , is lower than γ × |T |,
then τ cmin is set to τ , else τ cmax is set to τ . Consequently, in the
next iteration, TOPS query is computed with the revised value of
τ . Since this process can continue forever, it is stopped when
the difference between τ cmax and τ cmin falls below a desired
precision. Suppose the final iteration executed the TOPS query
with parameters (k, τ ′) and returned the setQ. Then the answer to
the MAX-TIPS problem is also Q with maximum inconvenience
as τ ′. We call this algorithm simply NetClus.

As the monotonicity of the trajectory coverage w.r.t. the cover-
age threshold τ is not guaranteed theoretically, the quality of this
heuristic cannot be bounded. Empirically, however, it performs the
best in terms of both running time and quality (Sec. 6).

Theorem 4. The time and space complexities of NetClus al-
gorithm are O(log2(τmax/τmin).tTOPS) and O(t.(n + m.l))
respectively, where O(tTOPS) is the time required to an-
swer a TOPS query by NetClus and τmin and τmax are the
ranges of τ values indexed by NetClus. Further, t = 1 +
blog1+ε(τmax/τmin)c is the number of index instances, ε > 0
is the index resolution parameter, m = |T |, n = |V | and l is the
maximum number of nodes in any trajectory.

The proof is given in Appendix A.3.
While the NetClus approach is index-based, MIF is non-index

based. In case of NetClus, the distance of the trajectories and sites
to their respective cluster centres is pre-computed, thereby making

it efficient. For MIF, all the necessary distance computations are
performed online and, hence, it is slower.

5 ALGORITHMS FOR AVG-TIPS
This section presents an optimal algorithm and two heuristics for
the AVG-TIPS problem.

5.1 Optimal Algorithm
The following integer linear program solves the AVG-TIPS prob-
lem. As in Sec. 4.1, we assume that the set of candidate sites
S = {si|1 ≤ i ≤ n} is augmented with the set of existing
facilities F .

minimize Z =

m∑
j=1

n∑
i=1

[dr(Tj , si)× yij ] such that (11)

n∑
i=1

xi ≤ k + |F| (12)

∀1 ≤ j ≤ m,
n∑

i=1

yij = 1 (13)

∀1 ≤ i ≤ n, ∀1 ≤ j ≤ m, yij ≤ xi (14)
∀1 ≤ i ≤ n, xi ∈ {0, 1} (15)
∀si ∈ F , xi = 1 (16)

∀1 ≤ i ≤ n, ∀1 ≤ j ≤ m yij ∈ {0, 1} (17)

The objective function in Eq. (11) ensures that the total
(equivalently, mean) inconvenience is minimized over the set of
selected sites. The constraint in Ineq. (13) guarantees that each
trajectory is served by exactly one service location. The semantics
of rest of the constraints are same as those stated in Sec. 4.1.

This optimal algorithm is impractical except for extremely
small datasets (shown in Sec. 6.3). Therefore, we next present
the following heuristics for the AVG-TIPS problem.

5.2 HCC Algorithm
Recall that the AVG-TIPS problem generalizes the k-medoids
problem (Sec. 2). Our first heuristic, HCC, therefore, builds on
the three popular approaches for the k-medoids problem, PAM
[32], CLARA [32], and CLARANS [38]. We first describe these
approaches, and then discuss the proposed HCC algorithm.
PAM: The basic idea of PAM is as follows. Given a set of n
objects, it starts by choosing k random objects, called as medoids.
Each non-medoid object is assigned to its nearest medoid. The cost
of a particular clustering is the sum of the distances of each non-
medoid object to its nearest medoid. The PAM algorithm proceeds
in iterations. In each iteration, it swaps one of the existing medoids
with a non-medoid object such that the cost of the resulting
clustering decreases. To realize the swap with minimal cost, it
computes the cost of each possible swap which are as many as
k(n − k). This step is computationally very expensive. PAM
terminates when it reaches a local minima, i.e., there is no possible
swap resulting in a solution with a lower cost.
CLARA: For large datasets, the PAM algorithm is infeasible
owing to its high running time. To address this limitation, the
CLARA algorithm [32] that relies on sampling was proposed. The
idea is to create random samples of size much smaller than n, and
execute the PAM algorithm on each of these samples, and return
the clustering that offers the minimal cost over all the samples.
CLARANS: To improve the quality of clustering of CLARA,
another algorithm called CLARANS was proposed [38]. The basic
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idea of CLARANS is to avoid scanning all possible swaps in each
iteration of PAM. Essentially, a small fraction of the total k(n−k)
possible swaps are scanned and the swap that offers the minimal
clustering cost is executed. To increase the robustness, this scheme
is repeated a few number of times, and finally the clustering with
the minimal cost is reported.

Inspired by the above approaches, we propose a new al-
gorithm, HCC (Hybrid-CLARA-CLARANS), for the AVG-TIPS
problem that combines the ideas of sampling (from CLARA) and
scanning a small number of swaps (from CLARANS). The basic
idea is to consider a few samples of sufficiently small size, and for
each sample, to scan a sufficiently small number of swaps. The
details are described next.

5.2.1 Details
First, we describe the basic algorithm, and later, discuss how to
make it scalable. Given a set T of m trajectories, and a set S of n
candidate sites, initially, we compute the distances between each
pair of trajectory and site. Then we execute the following steps.

Initialize Q to F , i.e., the set of existing facilities. Choose a
random set of k sites in S , referred to as medoids, and add it to
Q. The total inconvenience of the set Q is TI(Q) =

∑
Tj∈T Ij ,

where Ij = minsi∈Q dr(Tj , si). To efficiently compute the value
of TI(Q), we use the NF map (discussed in Sec. 4.2) which
tracks the trajectories based on the distance to their nearest facility
in Q.

Subsequently, the algorithm proceeds in iterations. In each
iteration, it scans a fraction of the total possible swaps between
a medoid and a non-medoid site in S \Q, as discussed above, and
executes the swap that results in the lowest total inconvenience
TI(Q). Out of the total number of possible swaps, k(n − k),
HCC scans only a fraction, referred to as the swap-fraction, and
denoted by sf . This process terminates when there is no possible
swap that leads to a solution with a lower total inconvenience, or
after a pre-specified number of maximum iterations η, whatever is
encountered earlier. While performing the swaps, we ensure that
we do not swap any existing facility in Q. The algorithm makes
t (t ≥ 1) trials of the above steps to account for the randomly
chosen initial set of medoids. Finally, it returns the set Q with the
lowest total inconvenience achieved over the t trials.

Let us see the working of this algorithm for the AVG-TIPS
problem on the example shown in Fig. 1 with k = 2. We will
consider a single trial with swap-fraction sf = 1. Initially,Q is set
to {s0}. Next, let us start with the following set of initial medoids
{s1, s2} that is added to Q. We note that TI(Q) = 42. Since
sf = 1, we examine all possible swaps resulting in the follow-
ing sets: {s0, s1, s3}, {s0, s1, s4}, {s0, s2, s3} and {s0, s2, s4}.
Since TI ({s0, s2, s3}) = 21 is minimal, it executes this swap.
Since there is no further possible swap that results in lower total
inconvenience, the algorithm terminates, reporting the set {s2, s3}
as the answer. Incidentally, this happens to be the optimal solution.

This heuristic requires the distance values between each pair of
trajectory Tj ∈ T and site si ∈ S . Computing and storing these
distances for large datasets may be infeasible when |S| or |T | is
large. Thus, under such circumstances, we propose to sample the
set of candidate sites and trajectories, using the following schemes.

5.2.2 Site Sampling
The sampling technique is based on a simple clustering idea that
clusters the set of nodes V in the road network and samples at
most a single candidate site from each cluster. The details are as

follows. A random node vp ∈ V (that is not yet clustered) is
chosen as the cluster-center of a cluster Clus(vp) that consists of
all nodes vq ∈ V that are not yet clustered and are within some
distance threshold R from vp. This process is repeated until every
node in V is clustered. Finally, a sample S ′ ⊆ S is created by
selecting at most a single site from each cluster that is closest to
the cluster-center, which we refer to as its cluster-representative. If
a cluster has no candidate site, then it has no cluster-representative
either. As the chosen sites belong to different clusters, they are
not expected to be close to each other. Thus, the sampled sites are
typically nicely distributed over the road network.

5.2.3 Trajectory Sampling
Consider any trajectory Tj ∈ T . For each node vp ∈ Tj , let v′p be
the cluster-center of the cluster that contains vp. Each trajectory Tj
is mapped to a set of cluster-centers T ′j = {v′p}. This transforms
the trajectories into a coarser representation as nodes that are close
to each other in the trajectory are likely to fall in the same cluster.
This transformed set of trajectories {T ′j} is denoted by T ′.

Following this, the set of trajectories T ′ is clustered based on
their Jaccard similarity measure, as proposed in [40]. The high
level overview of this method is as follows. Suppose, we are
required to create a trajectory sample of size s. Initially, each
trajectory T ′j ∈ T ′ is a cluster by itself with T ′j being the cluster-
representative. For any two trajectories, T ′p and T ′q , their Jaccard
similarity is given by J(T ′p, T

′
q) = |T ′p ∩ T ′q|/|T ′p ∪ T ′q|.

The clustering follows an iterative algorithm where in each
iteration it fuses a pair of clusters with cluster-representatives T ′p
and T ′q that have the maximum Jaccard similarity. After fusing,
either of the two trajectories, T ′p or T ′q is deemed as the cluster-
representative of the new cluster. The algorithm continues fusing
a pair of clusters in each iteration in this manner, until there are
exactly s clusters. The cluster-representatives of these s clusters
are mapped back to their original representation as sequence of
nodes, and reported as the desired trajectory sample.

Theorem 5. The time and space complexities of HCC are
O(t.η.sf.k2(n′−k).m′) and O(m′.(n′+ l)) respectively, where
n′ and m′ are the number of sites and trajectories produced after
sampling of the sites and the trajectories, respectively. Here, k is
the number of medoids, sf is the swap-fraction, t is the number
of trials, η is the maximum number of iterations per trial, and l is
the maximum number of nodes in any trajectory.

The proof is available in Appendix A.4.
Unfortunately, HCC does not have any approximation bound,

since the original algorithms, PAM, CLARA and CLARANS do
not have any quality guarantees either.

5.3 GREAT Algorithm

We next propose a greedy heuristic called GREAT (GREedy Avg-
Tips) that offers bounded quality guarantees.

It is an iterative algorithm that works on the principle of
maximizing the marginal gain in each successive iteration. It starts
with the setQ ← F . In each iteration θ = {1, . . . , k}, it selects a
site sθ ∈ S \ Q such that the total inconvenience of the resulting
set, TI(Q ∪ {sθ}), is minimized. The site sθ is added to the set
Q. The algorithm terminates after k iterations.

Similar to HCC, the GREAT algorithm also assumes that the
distances between each pair of trajectory Tj ∈ T and site si ∈ S
are pre-computed and available. We also use the NF map (as in
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the case of HCC) to track the distance between each trajectory
and its nearest facility. Whenever a new site is chosen to be added
into Q, we check whether it would be the nearest facility for each
trajectory Tj , and update it accordingly.

Let us see the working of this algorithm for the AVG-TIPS
problem on the example shown in Fig. 1 with k = 2. Before the
algorithm begins, we set Q ← {s0}. In the first iteration, s3 is
selected as the set {s0, s3} offers the least total inconvenience of
43 units. In the next iteration, s2 is selected, resulting in optimal
total inconvenience of 21 units.

5.3.1 Analysis of GREAT

We, next, state an important property of AVG-TIPS problem,
which in turn, helps us to bound the quality of GREAT.

A function f defined on any subset of a set S is sub-modular
if for any pair of subsets Q,R ⊆ S , f(Q) + f(R) ≥ f(Q ∪
R)+f(Q∩R) [41]. A function f is super-modular if its negative
(−f) is sub-modular. The following result shows that the function
TI(Q) is super-modular.

Theorem 6. For any set of candidate sites Q ⊆ S , the total
inconvenience TI(Q) is a non-increasing super-modular function.

Proof. Consider any pair of sets Q,R ⊆ S such that Q ⊆ R.
First, we show that TI(Q) is a non-increasing function. Since

Ij(Q) = minsi∈Q{dr(Tj , si)} is a minimum function over
the set Q, it follows that Ij(R) ≤ Ij(Q). Thus, TI(R) =∑m
j=1 Ij(R) ≤

∑m
j=1 Ij(Q) = TI(Q). Hence, TI(Q) is a non-

increasing function.
To show that TI(Q) is super-modular, it is sufficient to show

that for any site s ∈ S \ R, the following holds [41]:

TI(Q∪ {s})− TI(Q) ≤ TI(R∪ {s})− TI(R) (18)

Since TI(Q) =
∑m
j=1 Ij , it is, therefore, enough to prove that for

any trajectory Tj ∈ T ,

Ij(Q∪ {s})− Ij(Q) ≤ Ij(R∪ {s})− Ij(R) (19)

Suppose the site s∗ ∈ R ∪ {s} is the nearest facility to
trajectory Tj in the set R∪ {s}. There can be two cases:
(a) s∗ = s: Ij(Q∪{s}) = Ij({s}) = Ij(R∪{s}). Further, since
Ij(Q) ≥ Ij(R) (using the non-increasing property), Ineq. (19)
follows.
(b) s∗ 6= s, s∗ ∈ R: Here, Ij(R ∪ {s}) − Ij(R) = 0. Using
the non-increasing property of Ij(Q), Ij(Q∪{s})− Ij(Q) ≤ 0.
Thus, Ineq. (19) follows.

The next result bounds the quality of GREAT.

Theorem 7. Let OPT ⊆ S, |OPT | = k denotes an optimal
solution to the AVG-TIPS problem. Let Q ⊆ S, |Q| = k be the
solution reported by the GREAT algorithm. Then,

TI(Q) = TI(OPT ) for k = 1

TI(Q) ≤ (1− 1/e)TI(OPT ) + TI(F)/e for k ≥ 2

where TI(F) refers to the initial total inconvenience offered by
the existing facilities F . We assume TI(F) to be a non-negative
constant.

The proof is stated in Appendix A.5.
The next result bounds the complexity of GREAT.

Theorem 8. The space and time complexities of GREAT are
O(m.(n + l)) and O(k.m.n) respectively, where m = |T |,
n = |S| and l is the maximum length of any trajectory.

Dataset Type # Trajectories # Sites

Beijing-Small (BS) Real 8,083 30
Beijing-Medium (BM) Real 8,083 47,125
Beijing-Large (BL) Real 123,179 269,686

Beijing-Medium-Sampled Real 1,278 1,883(BMS)
Beijing-Large-Sampled Real 9,701 15,775(BLS)

Bengaluru Synthetic 9,950 61,563
New York Synthetic 9,950 355,930
Atlanta Synthetic 9,950 389,680

TABLE 2: Summary of datasets.

The proof is available in Appendix A.6.
The key drawback of the above scheme is its space requirement

of O(m.n) which is prohibitively large for city-scale datasets. To
alleviate this problem, we work with sampled set of trajectories
and candidate sites, as described in Sec. 5.2.2 and Sec. 5.2.3.

6 EXPERIMENTAL EVALUATION

In this section, we perform extensive experiments to assess the
quality, scalability and practicality of the different heuristics.
Since both the TIPS problems, MAX-TIPS and AVG-TIPS, are
introduced in this work, there is no existing practical baseline
technique to compare against. Nevertheless, we do compare with
the nearest available baseline techniques for both static and mobile
users’ scenarios. Further, we compare with the optimal algorithms
for both MAX-TIPS and AVG-TIPS, on small datasets. The
experiments were conducted using Java (version 1.7.0) code on
an Intel(R) Core i7-4770 CPU @3.40GHz machine with 32GB
RAM running Ubuntu 14.04.2 LTS OS.

6.1 Datasets
We conducted experiments on both real and synthetic datasets,
whose details are shown in Table 2. For simplicity, we assume
that the set of candidate sites is same as the set of nodes in the
road network, unless otherwise stated.
Real datasets: We use GPS traces from Beijing consisting of user
trajectories generated by tracking taxis for a week [42], [43]. To
generate trajectories as sequences of road intersections, the raw
GPS-traces were map-matched [39] to the Beijing road network
extracted from OpenStreetMap (http://www.openstreetmap.org/).
This dataset, referred to as Beijing-Large (BL) here, is the largest
and most widely used publicly available trajectory datasets.

For AVG-TIPS, all the algorithms require distances between
each pair of site and trajectory. For a large dataset such as
BL, computing and storing such pairwise distances is infeasi-
ble. Therefore, for thorough evaluation, we use a medium sized
dataset, Beijing-Medium (BM).

To assess the quality of sampling techniques, representative
datasets, referred to as Beijing-Medium-Sampled (BMS) and
Beijing-Large-Sampled (BLS) respectively, are derived from the
BM and BL datasets. These datasets are generated using the
sampling schemes described in Sec. 5.2.2 and Sec. 5.2.3.

Since both the TIPS problems are NP-hard, the optimal algo-
rithm requires exponential time and, therefore, can be run only on
a small dataset. Hence, we evaluate all the algorithms against the
optimal on Beijing-Small (BS) dataset which consists of the same
set of trajectories as in BM, but has only 30 candidate sites, which
are sampled randomly. To increase the robustness of the results,

http://www.openstreetmap.org/
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Fig. 2: MAX-TIPS: Comparison with optimal at γ = 100%.
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Fig. 3: MAX-TIPS: Quality results.

such sampling was performed 5 times, and the experiments were
conducted 10 times for each sample.
Synthetic datasets: To study the impact of city geographies, we
generated three synthetic datasets that emulate trajectory patterns
followed in New York, Atlanta and Bengaluru. We use an online
traffic generator tool, MNTG (http://mntg.cs.umn.edu/tg/index.
php) to generate the traffic traces, and map-match them to generate
trajectories in the desired format.

6.2 MAX-TIPS Results
We evaluate the performance of three different algorithms to solve
MAX-TIPS, Opt, MIF, and NetClus, on the two basic parameters:
(i) desired number of service locations k, varied in the range
[1, 10], and (ii) user-fraction γ, varied in the range 10% to
100%. The default values of k and γ are 5 and 90% respectively.
The metrics evaluated are (i) maximum inconvenience, MI , and
(ii) running time. The dataset used is BL, unless otherwise stated.
Comparison with Optimal: The optimal algorithm used, is the
integer linear program (ILP), given in Sec. 4. Since the optimal
algorithm requires exponential running times, we run it only on
the BS dataset. Fig. 2 shows that MI values offered by MIF
and NetClus are very close to that of Opt although the running
times are much better. Opt requires several hours to complete
even for this small dataset and, therefore, is not practical at all.
Consequently, we do not experiment with Opt any further.
Quality Results: Fig. 3a shows the MI values of MIF and
NetClus on the BL dataset. NetClus offers the least MI value,
beating MIF by more than 20% on an average.

Fig. 3b shows that as user-fraction increases from 90% to
100%, there is a sharp rise in MI value for both MIF and NetClus.
This is because there are generally trajectories that are very hard
to satisfy and, since at γ = 100%, all of them need to be served,
MI values shoot up for both the algorithms.
Performance Results: The running time results portrayed in
Fig. 4 show that NetClus is 1-2 orders of magnitude faster than
MIF. The high running time of MIF is due to a large number
of calls to the shortest path algorithm (once for each site on
the chosen trajectory in each of the k iterations). Moreover, to
guard against a poorly selected random initial trajectory, MIF is
repeated thrice. On the other hand, NetClus is fast since it uses
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Fig. 4: MAX-TIPS: Running time performance.

 100

 1000

 10000

 100  150  200  250

R
un

ni
ng

 T
im

e 
(s

)

# candidate sites (in thousands)

MIF
NetClus

(a) Number of sites.

 10

 100

 1000

 10000

 20  40  60  80  100 120

R
un

ni
ng

 T
im

e 
(s

)

# trajectories (in thousands)

MIF
NetClus

(b) Number of trajectories.

Fig. 5: MAX-TIPS: Scalability results (k = 5 and γ = 90%).

pre-computed distances between trajectories and centers of the
clusters that they pass through.
Memory Footprint: The memory consumption of MIF and Net-
Clus on the BL dataset (at the default values of k and γ) are
about 8.6GB and 3.2GB respectively. The low memory footprint
of NetClus is due to clustering of the site space and consequent
compressed representation of trajectories.
Scalability: To ascertain the scalability of NetClus and MIF with
respect to the number of candidate sites and trajectories, we next
took different sized samples from the BL dataset. Fig. 5 shows
that NetClus scales better with the number of sites due to its
clustered representation. It is faster than MIF by at least an order
of magnitude for all the situations.
Synthetic Datasets: Fig. 6 shows the evaluation of MAX-TIPS
on three synthetic datasets emulating traffic in Atlanta, New York,
and Bengaluru. Bengaluru has the smallest sized road network.
Therefore, it has the best MI value and running time. Atlanta and
New York have much larger road network, and the trajectories are
distributed all over the network. Thus, they are harder to be served,
and consequently exhibit high MI values. Their running times are
high owing to large number of candidate sites to be processed.

6.3 AVG-TIPS Results
We evaluated the performance of three different algorithms for
AVG-TIPS, Opt, HCC, and GREAT on the desired number of
service locations k, varied in the range [1, 10], with default as 5.
The metrics evaluated are (i) average inconvenience, AI(Q) =
TI(Q)/|T |, and (ii) running time.
Choice of swap-fraction in HCC algorithm: Referring to
Sec. 5.2, recall that HCC scans only a fraction sf of the total
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Fig. 6: MAX-TIPS: Synthetic datasets (at k = 5 and γ = 90%).
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Fig. 7: AVG-TIPS: Comparison with optimal.

 1
 2
 3
 4
 5
 6
 7
 8
 9

 1  2  3  4  5  6  7  8  9  10

A
vg

. I
nc

on
v.

 (
K

m
.)

k

HCC on BM
GREAT on BM

HCC on BMS
GREAT on BMS

(a) Varying k on BM, BMS

 1
 2
 3
 4
 5
 6
 7
 8
 9

 1  2  3  4  5  6  7  8  9  10

A
v
g

. 
In

c
o

n
v
. 

(K
m

.)

k

HCC on BLS
GREAT on BLS

(b) Varying k on BLS

Fig. 8: AVG-TIPS: Quality results.

number of swaps, referred to as the swap-fraction. Table 3 shows
the performance of HCC for different values of sf (shown as
percentage of total number of swaps). The second column lists
the relative error in AI value w.r.t. sf = 100%, and the third
column indicates the corresponding speed up in running time. For
our experimentation, we choose sf = 5% as this offers a nice
balance with an error of less than 3% and a speed up of more than
4 times.
Comparison with Optimal: Since AVG-TIPS is NP-Hard, the
ILP-based optimal algorithm given in Sec. 5, can be run only
on small datasets. Therefore, as in the case of MAX-TIPS, we
evaluate it on the Beijing-Small dataset. Fig. 7 shows that both
HCC and GREAT offer almost the same quality as Opt. However,
Opt takes hours of query time even on such a small dataset.
Consequently, we drop Opt from further consideration.
Quality Results: As explained earlier, HCC and GREAT cannot
be executed on the BL dataset due to high memory overhead.
Hence, to ascertain the effect of site sampling and trajectory
sampling on the quality, we use Beijing-Medium (BM), and
its sampled counterpart, the Beijing-Medium-Sampled (BMS)
datasets. Fig. 8a shows that AI values achieved by both HCC
and GREAT on the sampled dataset BMS is almost as good as the
full BM dataset. The average relative error in AI values due to
sampling is only about 10% for HCC and 4% for GREAT. Fig. 8b
reports the quality on the BLS dataset. HCC offers roughly 10%
better quality than GREAT on an average. Since the error due to
sampling is fairly low, it is expected that the AI values on the BL
dataset are likely to be similar to those in the BLS dataset.
Performance Results: Fig. 9a shows that sampling offers a speed
up of about 2 orders of magnitude on the running times for both
HCC and GREAT on BM. Fig. 9b shows that GREAT is about

sf (in %) with respect to sf = 100%
Error Speed-up factor

1 10.92 7.22
2 4.49 4.97
5 2.86 4.27

10 2.27 3.40
25 1.16 2.37
50 0.00 1.53

TABLE 3: Performance of HCC with varying swap-fraction.
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Fig. 9: AVG-TIPS: Running time performance.
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Fig. 10: AVG-TIPS: Scalability results (at k = 5).

2 orders of magnitude faster than HCC when evaluated on BLS.
HCC is slower due to its repeated swaps. In addition, it is run
thrice to avoid a poor random initial choice.
Memory Footprint: The memory consumption of HCC and
GREAT on BM at k = 5 are roughly 18GB and 11.5GB
respectively; and, that on BMS are about 3.8 GB and 0.5GB
respectively. The sampling techniques are, thus, highly effective
in lowering the memory footprints of both the algorithms.
Scalability: We next examine the scalability of HCC and GREAT
with respect to the number of candidate sites and trajectories. We
use the same setting as in Sec. 6.2 for MAX-TIPS, although the
BM dataset is used instead of BL. Fig. 10 shows that both are
scalable with GREAT being faster by about 2 orders of magnitude.
Synthetic Datasets: The next result shows the effect on synthetic
datasets. Using the same setup as discussed in Sec. 6.2, Fig. 11
shows that GREAT is about 1-2 orders of magnitude faster than
HCC, while sacrificing no more than 10% in accuracy over all the
three synthetic datasets. The AI values for New York and Atlanta
are significantly higher than those of Bengaluru due to their large
road network, and even distribution of trajectories. The running
times follow the same trend as in the case of MAX-TIPS.

6.4 Comparison with Baseline

In this section, we compare the performance of our algorithms
with the baseline techniques for static and mobile users. For MAX-
TIPS, the baseline techniques used for static and mobile users
are AppMinMax [10] and EN (Extended Network method) [12]
respectively; and for AVG-TIPS, the baseline techniques for static
and mobile users are CLARANS [38] and EN [12] respectively.
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Fig. 11: AVG-TIPS: Synthetic datasets (at k = 5).
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Fig. 12: Comparison with Baseline.

Further, we also show the impact of considering trajectories as
opposed to one or more static user locations such as homes and
offices. Fig. 12 shows the quality comparisons for MAX-TIPS
and AVG-TIPS. For MAX-TIPS, we use the BL dataset, while for
AVG-TIPS, the BM dataset was used.

To model static users, we use either of the two end-points of
a trajectory as the representative static location of its user. We
run AppMinMax over these static user locations. This algorithm
reports k facility locations that minimize the maximum distance
of any user to its nearest facility. To study the effect of factoring
in two static locations of each user, we consider only the two
end-points of each trajectory and ignore the intermediate points.
The corresponding MIF and NetClus versions are referred to as
MIF(st) and NetClus(st) respectively.

For mobile users, there is no existing work that aims to
minimize the maximum user-inconvenience. The nearest baseline
technique is the EN method that reports a single facility location
that minimizes the average distance of any user to its nearest
facility. To generate k facility locations, we repeat the algorithm k
times, assuming k−1 existing facilities. This algorithm along with
MIF and NetClus are evaluated over full trajectories, i.e., without
skipping any intermediate point in any of the trajectories.

Fig. 12a shows that considering full trajectories is always
much better than considering a single or two static locations per
user. While NetClus performs the best, EN performs the worst.
This is because EN does not address the objective of MAX-TIPS,
but minimizes the average inconvenience.

Next, we evaluate AVG-TIPS over the BM dataset. Here,
the CLARANS algorithm (discussed in Sec. 5.2) serves as the
baseline technique for static users’ scenario. To assess the effect
of considering only two static locations per user, we run versions
of HCC and GREAT as HCC(st) and GREAT(st) respectively. The
EN method works as the baseline techniques for mobile users.

As in the case of MAX-TIPS, Fig. 12b once again validates
our claim that using trajectories is always more beneficial than
considering one or two static locations per user. While CLARANS
running over single static location per user performs the worst,
HCC, running on full trajectories performs the best. The perfor-
mance of EN is also good, but marginally lesser than that of HCC.

6.5 Existing Facilities
Fig. 13 shows the effect of existing facilities on MAX-TIPS
and AVG-TIPS. We choose 2 existing facilities randomly. The
corresponding maximum and average inconveniences are 18.51
Km and 8.53 Km respectively. Using the proposed algorithms,
we locate k′ new facilities for k′ = 1, · · · , 5. The k values
(2 + k′) shown in the figure denotes the total number of facilities
including the existing ones. For MAX-TIPS, MIF(ex) and Net-
Clus(ex) represent the MI values as recorded by MIF and NetClus
respectively, while factoring in the existing facilities. Similarly, for
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Fig. 13: Effect of Existing Facilities.

AVG-TIPS, HCC(ex) and GREAT(ex) represent the AI values as
recorded by HCC and GREAT respectively, while considering the
existing facilities. TheMI (respectively,AI) values shown by MIF
and NetClus (respectively, HCC and GREAT) correspond to the
scenario when these algorithms are used to locate new facilities in
the absence of any existing facilities. Since the existing facilities
are chosen randomly, the initial MI and AI values (as mentioned
above) are quite high. As a result, the MI values of NetClus(ex)
and MIF(ex) continue to be much higher than those of NetClus
and MIF respectively, for all values of k. Following the same
argument, the AI values of HCC(ex) and GREAT(ex) are much
higher than those of HCC and GREAT respectively.

6.6 Summary of Experiments

We summarize our experimental findings as follows. NetClus
offers the best performance for MAX-TIPS on multiple real and
synthetic datasets, both in terms of efficiency and quality. It
outperforms MIF by more than 20% in quality and is faster by
an order of magnitude. For AVG-TIPS, firstly, we observe that it
is better to apply the sampling techniques when the dataset is very
large, such as Beijing-Large. The error in quality due to sampling
is reasonably low for both HCC and GREAT. While GREAT is
about 2 orders of magnitude faster than HCC, its quality is about
10% lower than HCC. Thus, if the goal is to achieve low average
inconvenience regardless of high but practical running times, one
may choose HCC. On the other hand, if a fast query time is desired
with reasonably high accuracy in quality, GREAT may be chosen.

7 CONCLUSIONS

In this paper, we introduced two facility location problems over
user-trajectories, namely, MAX-TIPS and AVG-TIPS, that aim
to minimize the maximum and the average user-inconvenience,
respectively. We showed that both these problems are NP-hard
and proposed one optimal algorithm and two efficient heuristics
for each of them. The heuristics can work both in the presence
or absence of existing facilities. Empirical evaluation over large-
scale real and synthetic datasets show that the proposed solutions
are effective in terms of quality and efficient in terms of space and
running time.

In future, we will explore other trajectory-based facility loca-
tion problems.
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APPENDIX A
PROOFS OF THEOREMS

A.1 Proof of Theorem 2 (Quality of MIF)
Proof. Let Q = {s1, . . . , sk} be the set of k sites returned
by MIF, with a maximum inconvenience of d. Let RT =
{T1, . . . , Tk} be the k representative trajectories chosen by MIF.
Assuming S = V , it follows that each node in Ti is a candidate
site. Since si is the nearest candidate site to Ti, it must be that
si ∈ Ti.

Now, let us consider the case k = 1. Let d be the maximum in-
convenience due to the selection of the site s1 ∈ T1. Now suppose
s∗1 is the site reported by an optimal algorithm with optimal maxi-
mum inconvenience value d∗. Hence, ∀Tq ∈ T , dr(Tq, s∗1) ≤ d∗.
Therefore, there exists a site s′1 ∈ T1, such that dr(Tq, s′1) ≤ 2d∗

for any trajectory Tq ∈ T , because there exists a path from s′1 via
s∗1 to trajectory Tq of distance at most 2d∗. Thus, the maximum
inconvenience d due to the site s1 is d ≤ 2d∗.

Now, consider the case k ≥ 2. Consider an optimal solu-
tion Q∗ = {s∗1, . . . , s∗k} with maximum inconvenience d∗. Let
Clus(s∗i ) denote the set of trajectories served by s∗i . Using the
pigeon-hole principle, we conclude that at least two representative
trajectories Tp, Tq ∈ RT , p < q, must belong to one of the
k clusters, say Clus(s∗i ). Since the maximum inconvenience of
the solution Q is d, therefore, dr(Tq, sp) ≥ d. Moreover, since
Tp, Tq ∈ Clus(s∗i ), we get dr(Tp, s∗i ) ≤ d∗, dr(Tq, s

∗
i ) ≤ d∗.

From this, we infer that there must be a site s′p ∈ Tp such that
dr(s

′
p, s
∗
i ) ≤ d∗ and, therefore, dr(Tq, s′p) ≤ 2d∗. Since the

length of any trajectory is at most L, dr(sp, s′p) ≤ L. From this,
we conclude that d ≤ dr(Tq, sp) ≤ dr(Tq, s

′
p) + dr(s

′
p, sp) ≤

2d∗ + L.

A.2 Proof of Theorem 3 (Complexity of MIF)
Proof. We assume that the number of road segments (edges) is
O(n) as the road networks are roughly planar. Thus, from any
node vi ∈ V , the distances to all other nodes in the network can
be computed in O(n log n) time, using Dijkstra’s shortest path
algorithm [44].

We analyze the computation cost of any iteration as follows.
Recall thatNF map stores the trajectories in a sorted order based
on their distance to the nearest facility in Q. Since |NF| = m,
hence to identify the trajectory Ti at rank γ × |T |, requires O(1)
time, using array implementation of NF .

Then, for each node v ∈ Ti (that Ti passes through), the
distances are computed to all other nodes in V . If the maximum
number of nodes in any trajectory is l, i.e., |Ti| ≤ l, then
the above distance computation step takes O(l.n log n) time.
Thus, identifying the nearest candidate site to Ti, say si, requires
O(l.n log n) time.

Following this, si is added to Q. Then the distances are
computed between si and all other trajectories in T . To do this,
we first compute distances between si and all nodes in V , which
requires O(n log n) time. Assume these distances are indexed
on site-ids. The distance between si and any trajectory can be
computed in O(l2) time, as there are at most O(l2) distance
look-ups. Therefore, the distance between si and all trajectories
in T can be computed in O(ml2) time. If the distance of any
trajectory Tj ∈ T to its nearest facility in Q is more than
that with si, then this value is updated in the NF map. This

updation step takes O(m) time over all the trajectories. Sorting
theNF map takesO(m logm) time. Summing up all these costs,
over each of the total k iterations, the total time complexity is
O(k.l.n log n+ k.m.l2 + k.m logm).

Next, we analyze the space complexity. The road network
and candidate sites can be stored in O(n) space. Storing the
trajectories in T require O(l.m) space. Maintaining the NF
map requires O(m) space. During each iteration of the algorithm,
the node-to-node distances are computed for each node of the
previously chosen representative trajectory. Storing these distance
values require at most O(ln) space. As these distance values are
no longer used in subsequent iterations, they are discarded at the
end of each iteration. Thus, the maintenance overhead of the node-
to-node distances over the k iterations is O(l.n). Storing the sets
RT and Q require O(k) = O(n) space. Hence, the total space
complexity is O(l(n+m)).

A.3 Proof of Theorem 4 (Complexity of NetClus)
Proof. Assuming the time required to answer a
TOPS query by NetClus to be O(tTOPS), since
O(log2(τmax/τmin)) TOPS queries are executed, the total
time is O(log2(τmax/τmin).tTOPS). The time complexity,
O(tTOPS), of NetClus is analyzed in [11], and is beyond the
scope of this paper.

Now, let us analyze the space complexity of NetClus. As dis-
cussed above, if the index resolution parameter is ε > 0, then the
total number of index instances is t = 1+blog1+ε(τmax/τmin)c.
For each index instance, the nodes in V are divided into clusters
which requires O(n) space. In addition, for each cluster, we store
the set of trajectories that pass through it. This cost is O(m.l)
where m = |T | and l is the largest number of nodes in any
trajectory. For each node in V , we store its distance to the cluster-
center of the cluster it belongs to. This storage cost is O(n) across
all the nodes. Further, for each trajectory, we store its distance
to the cluster-center of the clusters it passes through. Since a
trajectory cannot pass through more than l clusters, this storage
cost over all the trajectories is no more than O(m.l). Therefore,
the total space complexity is O(t.(n+m.l)).

A.4 Proof of Theorem 5 (Complexity of HCC)
Proof. Let n′,m′ denote the number of sites and trajectories,
that are produced after sampling of the sites and the trajectories,
respectively. Thus, n′ ≤ n and m′ ≤ m. We assume that k ≤ n′.

The algorithm is executed for t trials, and in each trial, the
maximum possible number of iterations is η. In a given iteration,
the number of swaps that are scanned is sf.k(n′− k). To evaluate
each swap, we need to compute the total inconvenience of all
the m′ trajectories with respect to the current set of k medoids.
This requires O(k.m′) time (assuming that the distance between
each pair of site and trajectory is pre-computed). Hence, the total
running time is O(t.η.sf.k2(n′ − k).m′) time.

Next, let us analyze the space complexity. Storing the sampled
sites and trajectories require O(n′) and O(m′l) space where l
is the maximum number of nodes in any trajectory. Storing the
pairwise distance between each pair of site and trajectory in the
sampled space requires O(m′.n′) space. To store the NF maps,
we need O(m′) space. In order to store the current set of medoids,
we need O(k) = O(n′) space. Summing up all the costs, we find
that the total space complexity is O(m′.(n′ + l)).
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A.5 Proof of Theorem 7 (Quality of GREAT)
Proof. It is easy to see that GREAT returns the optimal solution
for k = 1 as it performs an exhaustive search over all the candidate
sites in S .

Now, suppose k ≥ 2. For any given set of candidate sitesQ ⊆
S , consider a function f(Q) = TI(F) − TI(Q). Since TI(Q)
is a non-increasing super-modular function (Th. 6), it follows that
f(Q) is a non-decreasing sub-modular function. Further, if the
existing set of facilitiesF 6= ∅, then the initial total inconvenience
for Q = ∅, can be written as TI(∅) = TI(F). Thus, f(∅) =
TI(F)− TI(∅) = 0. It is known that the greedy heuristic offers
an approximation bound of 1 − 1/e for any non-decreasing sub-
modular function f with f(∅) = 0 [41]. Since OPT is a set
that minimizes TI , from the definition of f , it follows that OPT
must maximize f as TI(F) is a constant. Let Q be the set of sites
reported by GREAT. Since GREAT essentially mimics the greedy
heuristic for non-decreasing sub-modular functions [41], the same
approximation bound is applicable for f . Therefore, f(Q) ≥ (1−
1/e)f(OPT ). From the definition of f , we can write TI(Q) ≤

(1−1/e)(TI(OPT )−TI(F))+TI(F) ≤ (1−1/e)TI(OPT )+
TI(F)/e.

A.6 Proof of Theorem 8 (Complexity of GREAT)
Proof. The space required to store the trajectories and the nodes
on the road network are O(ml) and O(n) respectively. Further,
storing the distance values for each pair of site si ∈ S and
trajectory Tj ∈ T requires O(m.n) space. Further, storing the
NF() maps require O(m) space. Since |Q| = k = O(n), the
overall space complexity is O(m.(n+ l)).

We next analyze the time complexity. In each iteration of the
GREAT algorithm, we compute the total inconvenience TI(Q ∪
{si}) for each site si ∈ S \ Q. For each site si, this computation
requiresO(m) time over all the trajectories. Once a site is added to
Q, the NF maps are updated in O(m) time. Thus, each iteration
requires O(m.n) time. The overall time complexity of GREAT,
running over k iterations is, therefore, O(k.m.n).
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