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Kullback-Leibler Divergence-Based
Out-of-Distribution Detection with Flow-Based

Generative Models
Yufeng Zhang, Jialu Pan, Wanwei Liu, Zhenbang Chen, Kenli Li, Ji Wang, Zhiming Liu, Hongmei Wei

Abstract—Recent research has revealed that deep generative models including flow-based models and Variational Autoencoders may
assign higher likelihoods to out-of-distribution (OOD) data than in-distribution (ID) data. However, we cannot sample OOD data from the
model. This counterintuitive phenomenon has not been satisfactorily explained and brings obstacles to OOD detection with flow-based
models. In this paper, we prove theorems to investigate the Kullback-Leibler divergence in flow-based model and give two explanations for
the above phenomenon. Based on our theoretical analysis, we propose a new method KLODS to leverage KL divergence and local pixel
dependence of representations to perform anomaly detection. Experimental results on prevalent benchmarks demonstrate the
effectiveness and robustness of our method. For group anomaly detection, our method achieves 98.1% AUROC on average with a small
batch size of 5. On the contrary, the baseline typicality test-based method only achieves 64.6% AUROC on average due to its failure on
challenging problems. Our method also outperforms the state-of-the-art method by 9.1% AUROC. For point-wise anomaly detection, our
method achieves 90.7% AUROC on average and outperforms the baseline by 5.2% AUROC. Besides, our method has the least notable
failures and is the most robust one.

Index Terms—Out-of-distribution detection, deep learning, flow-based model, Kullback-Leibler divergence, Gaussian distribution.

F

1 INTRODUCTION

ANOMALY detection is the process of “finding patterns in
data that do not conform to expected behavior” [1], [2].

Under an unsupervised learning setting, the model is trained
on a set of unlabeled data {x1, · · · ,xn} which are drawn
independently from an unknown distribution p∗. Group
anomaly detection (GAD) [3] aims to determine whether a
given group of test inputs {x̃1, · · · , x̃m}(m > 1) is sampled
from p∗. Typical applications of GAD include discovering
high-energy particle physics, [4], anomalous galaxy clusters
in astronomy [5], [6] , unusual vorticity in fluid dynamics [7],
and stealthy attacks [3], [8]. Point-wise anomaly detection
(PAD) [1], [9] aims to determine whether an individual
input is sampled from p∗. PAD is applied in many areas
including detecting intrusion [1], fraud [10], malware [11],
and medical anomalies [1]. It is worth noting that GAD
cannot be implemented by PAD because the individual
members of the input group may not be anomalies [2], [3],
[12]. In literature, the term anomaly is also referred to as
outlier, peculiarity, out-of-distribution (OOD) data, etc. In the
following, we mainly use terms OOD data and anomaly as in
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most related works.
Counterintuitive Phenomenon. This paper focuses on

unsupervised OOD detection using explicit deep generative
models (DGM) including flow-based models and Variational
Autoencoders (VAE). Recent research shows that explicit
deep generative models including flow-based models [13],
[14], VAE [15], and auto-regressive models [16], [17] are not
capable of distinguishing OOD data from in-distribution (ID)
data (training data) according to the model likelihood (i.e.,
Type II errors) [18], [19], [20], [21], [22], [23]. For example,
as shown in Figures K.1(a) and K.1(b) in the supplementary
material, Glow [13] assigns higher likelihoods for SVHN
(MNIST) when trained on CIFAR-10 (FashionMNIST). Figure
K.2 in the supplementary material shows similar results in
recent proposed residual flows [24]. However, as pointed
out by Nalisnick et al. [22] we cannot sample OOD data
from the model. We can also observe a similar phenomenon
in class conditional Glow (GlowGMM), which contains a
Gaussian mixture model on the top layer with one Gaussian
distribution for each class [13], [25], [26]. For example,
GlowGMM does not achieve the same performance as
prevalent discriminative models such as ResNet [27] on
FashionMNIST. We observe that the centroids of different
components are close to each other (see Figure K.3 in
the supplementary material). One component may assign
higher likelihoods for other classes (see Table J.11 in the
supplementary material). However, we always sample images
of the correct class from the corresponding component.

Nalisnick et al. explain the above phenomenon by the
discrepancy of the typical set and high probability density
regions of the model distribution [22]. They propose using
typicality test to detect OOD data. However, their explana-
tion and method fail on problems where the likelihoods of
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ID and OOD data coincide (e.g., CIFAR-10 vs CIFAR-100,
CelebA vs CIFARs). In this paper, we manipulate the model
likelihoods such that ID and OOD data have coinciding likeli-
hoods (see Subsection 3.1). Such manipulation could make all
existing likelihood-based OOD detection methods [22], [28],
[29], [30] fail. Some researchers investigate the behaviors
of flow-based models in OOD detection. Kirichenko et al.
reveal that flow-based model learns local pixel correlations
and generic image-to-latent-space transformations [23]. Such
learned knowledge may also exist in OOD dataset. Zhang et
al. state that the estimation error of the flow-based model is
the reason for the failure of anomaly detection [31].

Research Questions. Currently, the above counterintu-
itive phenomenon has not been explained satisfactorily. In
this paper, we rethink the existing conclusions relating to
OOD detection using flow-based model. We focus on the
following two research questions:
• Q1: Explanation1. Why can we not sample OOD data

from flow-based model? We need a unified answer to
this question whenever OOD data have lower, higher,
or coinciding likelihoods.

• Q2: OOD detection. How to detect OOD data using
flow-based model and VAE without supervision?

We start our research from the sampling process. Flow-
based model constructs diffeomorphism z = f(x) from
visible (data) space to latent space. The model maps each
input data point x to a unique representation z in latent
space. We can sample noise ε from prior (usually standard
Gaussian distribution) and generate new data f−1(ε). So we
should ask why we cannot sample the representations of OOD
data from prior. In this paper, we explain why we cannot
sample OOD data. We abandon the model likelihood and
leverage Kullback-Leibler (KL) divergence and local pixel
dependence of representations for OOD detection.

Contributions. The contributions of this paper are:
1) We prove several theorems to investigate the KL di-

vergence in flow-based model. We answer why we
cannot sample OOD data from two perspectives. The
first answer reveals the large KL divergence between
the distribution of representations of OOD data and the
prior. The second answer states that the representations
of OOD data locate in specific directions.

2) We propose a unified OOD detection method in three
steps based on our analysis. Firstly, we propose lever-
aging the KL divergence between the distribution of
representations and prior for GAD. We also propose
using fitted Gaussian to estimate the (lower bound
of) KL divergence. Secondly, we decompose the KL
divergence and leverage the last-scale KL divergence
for OOD detection. Finally, we leverage the local pixel
dependence of representations to improve our method
further and support PAD.

3) We conduct experiments to demonstrate the effective-
ness and robustness of our method.

The remaining part of this paper is organized as follows.
Section 2 discusses the related work. Section 3 discusses
problem settings. Section 4 presents our theoretical analysis
to answer Q1. Section 5 elaborates on the details of our

1. We focus on the reason behind Q1 rather than aiming to sample
OOD data in this paper.

OOD detection method. Section 6 presents experimental
results. Finally, Section 7 concludes. More details of the
methods, experimental results, discussion, and related work
are presented in the supplementary material.

2 RELATED WORK

We discuss the most related work here. More discussion is
presented in Section I in the supplementary material.

GAD and PAD. In [3], Toth et al. give a survey on GAD
methods and plenty of real-world GAD applications. In [9],
Chalapathy et al. survey a wide range of deep learning-
based GAD and PAD methods. In [2], Pang et al. review
the deep learning-based anomaly detection methods. It is
worth noting that in GAD an individual data point in the
input group can be normal [2], [3], [12]. So GAD and PAD
have different contexts. According to the availability of
supervision information, OOD detection can be classified
into supervised, semi-supervised, and unsupervised settings.
In this paper, we focus on unsupervised OOD detection using
flow-based model, so we mainly compare with methods in
the same category.

OOD Detection Using Flow-Based Model. Generally, it
seems straightforward to use model likelihood p(x) (if any)
of a generative model to detect OOD data [3], [32]. However,
these methods fail when OOD data have higher or similar
likelihoods. Choi et al. propose using the Watanabe-Akaike
Information Criterion (WAIC) to detect OOD data [20]. WAIC
penalizes points that are sensitive to the particular choice
of posterior model parameters. However, Nalisnick et al.
[22] could not reproduce the results of WAIC. Choi et al.
also propose using typicality test in the latent space to
detect OOD data. Our results reported in Subsection 3.1
demonstrate that typicality test in the latent space can be
attacked. Sabeti et al. propose detecting anomalies based
on typicality [33], but their method is not suitable for deep
generative models. Nalisnick et al. propose using typicality
test on model distribution (Ty-test) for GAD [22]. Jiang et al.
propose GOD2KS which combines random projection and
two-sample KS test to perform GAD based on flow-based
model [34]. Ren et al. propose to use likelihood ratios for
OOD detection [35]. Serrà et al. propose using likelihood
compensated by input complexity for OOD detection [28].
In [29], Schirrmeister et al. find the likelihood contributed by
the last scale of Glow (Llast) is a better criterion than log p(x)
for PAD. We find Llast should not be explained as likelihood
consistently for OOD data. See Section I in the supplementary
material for more discussion. In [30], Morningstar et al. train
density estimator (DoSE) and one-class SVM on the statistics
of deep generative models to detect OOD data. Before this
writing, GOD2KS [34] and DoSE [30] are the SOTA GAD
and PAD methods applicable to flow-based models under
unsupervised setting, respectively. We will show that many
baseline methods could degenerate into being not better than
random guessing under data manipulation. These results
demonstrate the difficulty of OOD detection using flow-
based model.

3 PROBLEM SETTINGS

This paper mainly focuses on flow-based generative model,
which constructs diffeomorphism z = f(x) from visible
space X to latent space Z [13], [14], [36], [37]. Our work also
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involves Variational Autoencoder (VAE) [15]. Please refer to
Section A in the supplementary material for background. In
this section, we first discuss how to manipulate the model
likelihoods. Then we note the target problems of this work.

3.1 Manipulating Likelihoods

In [22], Nalisnick et al. conjecture that the counterintuitive
phenomena in Q1 stem from the distinction of high probabil-
ity density regions and the typical set of the model distribu-
tion [20], [22]. For example, Figure K.4 in the supplementary
material shows the typical set of d-dimensional standard
Gaussian distribution, which is an annulus with a radius of√
d [38]. When sampling from the Gaussian distribution, it

is highly likely to get points in the typical set rather than
the highest density region (i.e. the center) or the lowest
density region far from the mean. Based on this explanation,
Nalisnick et al. propose using typicality test (Ty-test in short)
to detect OOD data [22]. However, their explanation and
method do not apply to problems where OOD data reside
in the typical set of model distribution (i.e., OOD data has
coinciding likelihoods with ID data). Researchers have also
proposed other likelihood-related OOD detection methods,
including input complexity compensated likelihood [28],
likelihood contributed by the last scale [29], and DoSE [30].
In the following, we show how to manipulate OOD data
to make the likelihood of ID and OOD dataset coincide.
Such manipulation could make all existing likelihood-based
methods fail.

M1: Manipulating p(z) by Rescaling z to Typical Set
of Prior. We train Glow with 768-dimensional standard Gaus-
sian prior on FashionMNIST. Figure K.1(c) in the supplemen-
tary material shows the histogram of log-likelihood of repre-
sentations under prior (i.e., log p(z))2. Note that log p(z) of
FashionMNIST is around −768× (0.5× ln2πe) ≈ −1089.74,
which is the log-probability of typical set of the prior [39].
Here it seems that we can detect OOD data by p(z) or
typicality test in the latent space [20]. However, as shown
in Figure K.4 in the supplementary material, we can decode
each OOD data point x as z = f(x) and rescale z to the
typical set by setting z′ =

√
d × z/|z| (d = 768). Then we

decode z′ to generate image x′ = f−1(z′). We find that x′

corresponds to the similar image with x. Figure K.5 in the
supplementary material shows some examples of x′. These
results demonstrate that flow-based model cannot expel
representations of OOD data from the typical set of the prior.
Note that, Glow model uses multi-scale architecture and has
three stages of representations with different scales. In our
experiments, rescaling the last scale yields similar results
as rescaling all scales simultaneously (see Figure K.5 in the
supplementary material). To the best of our knowledge, we
are the first to discover that the latents rescaled to the typical
set of prior still can be mapped back to legal images. In this
paper, we will see that, such manipulation can make multiple
exsiting OOD detection methods fail.

M2: Manipulatinging p(x) by Adjusting Contrast. Nal-
isnick et al. find that the likelihoods can be manipulated
by adjusting the variance of inputs [18]. As shown in
Figure K.1(d) in the supplementary material, SVHN with

2. In official Glow model, log p(z) is implemented as the log-
likelihood of the representation of the last scale of Glow under prior.

increased contrast by a factor of 2.0 has coinciding likelihood
distribution with CIFAR-10 on Glow trained on CIFAR-
10. So it is impossible to detect OOD data by p(x) or
typicality test on the model distribution (see Figure K.1(b)
in the supplementary material too). In our experiments,
we can manipulate the likelihoods of OOD dataset in this
way for almost all problems (see Figure K.6∼K.10 in the
supplementary material). We will see that (in Section 6)
multiple existing OOD detection methods could degenerate
into being not better than random guessing under data
manipulation. Similarly, in VAE, we can also manipulate
the likelihoods by adjusting the contrast of input images.

Summary. We can manipulate both p(x) and p(z) of
OOD data without knowing the model parameters. In this
paper, we abandon the model likelihood and propose an
OOD detection method that is robust to data manipulations.

3.2 Problems

We use ID vs OOD to represent an OOD detection problem
and use “ID (OOD) representations” to denote the repre-
sentations of ID (OOD) data. According to the statistics of
OOD dataset, we group OOD detection problems into two
categories:
• Category I: smaller/similar variance, higher/similar

likelihoods. OOD dataset has smaller or similar vari-
ance with ID dataset and tends to have higher or similar
likelihoods;

• Category II: larger variance, lower likelihoods. OOD
dataset has larger variance than ID data and tends to
have lower likelihoods.

As shown in Subsection 3.1, we can use data manipulation
M2 (adjusting contrast) to convert one problem from one
category to another.

4 EXPLAINING WHY CANNOT SAMPLE OOD DATA

In this section, we explain why we cannot sample OOD data
from two perspectives. Based on these analyses, we will
derive our OOD detection method in Section 5.

Figure 1 shows the overview of our analysis of the KL
divergence in flow-based model for a certain case (discussed
in Subsection 4.1.2). The top half of Figure E.1 in the
supplementary material also summarizes our discussion in
this section. Please refer to Figure 1 and Figure E.1 in the
supplementary material when reading this section.

4.1 Explanation 1: Divergence Perspective

Our analysis involves the following distributions: the distri-
butions of ID data (pX ) and OOD data (qX ), the distributions
of ID representations (pZ ) and OOD representations (qZ ),
the prior prZ , and the model induced distribution prX such
that Zr ∼ prZ and Xr = f−1(Zr) ∼ prX . Table C.1 in the
supplementary material summarizes the notations involved
in our analysis and how they influence each other. In this
subsection, we first discuss the general case. Then we conduct
further analysis for Category I problems (smaller/similar
variance, higher likelihoods).

4.1.1 General case
We can analyze the KL divergence in flow-based model in
the following steps.
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Fig. 1: The key steps of our analysis for Gaussian case
(Subsection 4.1.2). Arrows represent KL divergences.

(1) We treat ID and OOD datasets as samples from different
unknown distributions. Therefore, it is reasonable to
consider the following assumption.

Assumption 1 The KL divergence between the distributions
of ID and OOD datasets is large.

So we can assume both KL(pX ||qX) and KL(qX ||pX)
can be any large.

(2) According to the following Theorem 1, we know diffeo-
morphism preserves KL divergence.

Theorem 1 (See [40]) Given a diffeomorphism z = f(x),
let X1 ∼ pX , X2 ∼ qX , Z1 = f(X1) ∼ pZ and Z2 =
f(X2) ∼ qZ . Let Dh

φ be a (h, φ)-divergence measure,

Dh
φ(pX , qX) = Dh

φ(pZ , qZ)

Proof KL divergence is a member of the (h, φ)-divergence
family (See Section B in the supplementary material). The
proof of Theorem 1 relies on diffeomorphisms. See [40] for
proof.

Thus, we can know KL(pX ||qX) = KL(pZ ||qZ) is large.
(3) We can suppose the model is expressible enough and

trained by maximum likelihood estimation. This is equal
to minimizing forward KL divergence KL(pX ||prX)
[37]. By Theorem 1, we also have KL(pX ||prX) =
KL(pZ ||prZ). Thus, KL(pZ ||prZ) is small.

(4) KL divergence is not symmetric and does not satisfy the
triangle inequality (i.e., not a proper statistical distance)
3. Otherwise, we would know that the reverse KL diver-
gence KL(prZ ||pZ) is small and that KL(qZ ||prZ) is large
by triangle inequality. Researchers have investigated
other statistical divergences in different contexts [41],
[42], [43]. However, flow-based model is usually trained
by minimizing KL divergence. In order to explain the
phenomenon of flow-based model, we should conduct
further analysis on KL divergence. In this paper, we seek
stronger conclusions for a special case.
We perform generalized Shapiro-Wilk test for multivari-
ate normality [44] on representations. As shown in Table
C.3 in the supplementary material, ID representations
always have high p-values. This indicates that ID repre-
sentations always manifest strong normality. Therefore,

3. For example, we can construct two distributions p and q such that
KL(p||q) is any small but KL(q||p) is any large.

we can use a Gaussian distribution Np to approximate
pZ and have KL(pZ ||prZ) ≈ KL(Np||prZ). Now we
can apply the following Theorem 2 which reveals the
approximate symmetry of small KL divergence between
Gaussian distributions.

Theorem 2 (Approximate symmetry of small KL di-
vergence between Gaussian distributions) For any
n-dimensional Gaussian distributions N (µ1,Σ1) and
N (µ2,Σ2), if KL(N (µ1,Σ1)||N (µ2,Σ2)) ≤ ε (ε ≥ 0),

KL(N (µ2,Σ2)||N (µ1,Σ1)) ≤ ε+ 2ε1.5 +O(ε2) (1)

Proof The proof is too long. See our manuscript [45] for
details. Importantly, the supremum is independent of the
dimension n. So Theorem 2 is applicable to high-dimensional
problems (e.g., flow-based model).

By Theorem 2, we can know the reverse KL divergence
KL(prZ ||Np) ≈ KL(prZ ||pZ) must be small too. Thus,
we can consider the following assumption.

Assumption 2 The distribution of ID representations and
the prior are close enough.

(5) Now that the forward and reverse KL divergence
between pZ and prior prZ are both small, we can
consider a stronger assumption pZ ≈ prZ . Thus, we have
KL(qZ ||prZ) ≈ KL(qZ ||pZ). In step (1), we have known
KL(qX ||pX) = KL(qZ ||pZ) is large, so KL(qZ ||prZ) is
large too.

4.1.2 The Gaussian case
In the above Step (4), we use a strong assumption pZ ≈ prZ .
In fact, for Category I problems (smaller/similar variance,
higher/similar likelihoods), we do not need such assump-
tion. The results of normality test on OOD representations
demonstrate OOD representations in all Category I problems
except for SVHN vs Constant have p-values greater than
0.05 (see Table C.3 in supplementary material). It seems
that OOD datasets “sitting inside” the training data are also
“Gaussianized” along with the training data. As far as we
know, we are the first to observe this phenomenon.

Based on this observation, we can conduct more analysis
using the following Theorem 3, which reveals that KL
divergence between Gaussian distributions follows a relaxed
triangle inequality.

Theorem 3 (Relaxed triangle inequality) For any three
n-dimensional Gaussian distributions N (µi,Σi) (i ∈
{1, 2, 3}) such that KL(N (µ1,Σ1)||N (µ2,Σ2)) ≤ ε1 and
KL(N (µ2,Σ2)||N (µ3,Σ3)) ≤ ε2 for small ε1, ε2 ≥ 0,

KL((N (µ1,Σ1)||N (µ3,Σ3))

<3ε1 + 3ε2 + 2
√
ε1ε2 + o(ε1) + o(ε2) (2)

Proof The proof is complex and too long. See our work [45]
for details. The bound is small for small ε1, ε2 and is 0 when
ε1 = ε2 = 0. Similarly, the bound is independent of the dimension
n and applicable to high-dimensional problems.

As shown in Figure 1 and Figure E.1 in the supple-
mentary material, when qZ is Gaussian-like, we can use
a Gaussian distribution Nq to approximate qZ and have
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KL(qZ ||prZ) ≈ KL(Nq||prZ), KL(pZ ||qZ) ≈ KL(pZ ||Nq).
Now that KL(pZ ||qZ) is large and KL(pZ ||prZ) is small.
According to the relaxed triangle inequality in Theorem 3,
KL(prZ ||Nq) must not be small. Furthermore, we can apply
Theorem 2 on KL(prZ ||Nq) and know that KL(Nq||prZ) is
large. Finally, we know KL(qZ ||prZ) is large too.

4.1.3 Summary
Overall, we can explain why we cannot sample OOD data
from the divergence perspective.

Answer 1 to Q1: The KL divergence between the
distribution of OOD representations and prior is large
regardless of when the likelihoods of OOD data are
higher, lower, or coinciding with that of ID data. So it is
hard to sample OOD-like data from the model.

4.2 Explanation 2: Geometric Perspective
We can obtain another explanation from a geometric perspec-
tive based on the analysis in the last subsection. The first step
is to use the following Theorem 4 to decompose forward KL
divergence. Besides, we will use Theorem 4 to derive OOD
detection method in Section 5.

Theorem 4 Let X ∼ p∗X be an n-dimensional random vector,
Xi ∼ p∗Xi be the i-th dimensional element of X . Then

KL(p∗X ||N (0, In)) (3)

=KL(p∗X ||
n∏
i=1

p∗Xi(x))︸ ︷︷ ︸
Id[p∗

X
]

total correlation

+
n∑
i=1

KL(p∗Xi ||N (0, 1))︸ ︷︷ ︸
Dd[p∗

X
]=

∑n
i=1

Di
d

[p∗
Xi

]

dimensional-wise KL divergence

(4)

Proof We can decompose KL divergence as in [46]. See Section
D.1 in the supplementary material for proof.

Theorem 4 decomposes forward KL divergence into two
non-negative parts: Id is total correlation (generalized mutual
information) measuring the mutual dependence between di-
mensions [47]; Dd is dimension-wise KL divergence between
the marginal distribution of each dimension and prior. We
use [p∗X ] to denote one term is computed from p∗X .

Theorem 4 can help us further investigate the forward KL
divergence. For ID data, we have known that KL(pZ ||prZ)
is small. Applying Theorem 4 to KL(pZ ||prZ), we can know
the total correlation Id[pZ ] must be small. This indicates
that ID data tends to have independent representations. On
the contrary, for OOD data, a large KL(qZ ||prZ) allows a
large total correlation Id[qZ ]. Although it is hard to estimate
total correlation [47], we can use an alternative dependence
measure, i.e., the most commonly used correlation coefficient,
to investigate the linear dependency. We train Glow on
FashionMNIST and test on MNIST/notMNIST. Figure K.11 in
the supplementary material shows the histogram of the non-
diagonal elements in the correlation matrix of representations.
We can see that OOD representations are more correlated. In
fact, this happens for all the problems in our experiments.
See Figure K.12 to K.17 in the supplementary material for
more details.

From a geometric perspective, a high correlation between
dimensions indicates the representations of OOD dataset locate in

specific directions [48] (see Figure K.18 in the supplementary
material for a 3-d example). It is hard to obtain data on
specific directions in high dimensional space when sampling
from standard Gaussian distribution.

Sampling OOD Data. To verify the above conclusion
further, we have tried to restore the information of OOD
dataset from the covariance of OOD representations. Or-
dinarily, after training a flow-based model f , we sample
noise ε ∼ N (0, I) and feed back to the model, we can
generate new image f−1(ε) seeming like training data.
Now we feed the model with an OOD dataset and fit a
Gaussian distributions N (µ̃, Σ̃) from OOD representations,
where µ̃ and Σ̃ are the sample mean and covariance of
OOD representations, respectively. Then we sample noise
ε′ ∼ N (µ̃, Σ̃) and generate new image f−1(ε′). We find
that these generated images are meaningful OOD data. For
example, we train Glow on CIFAR-10 and perform the above
OOD sampling using notMNIST as OOD dataset (gray-scale
images are preprocessed for consistency, see Subsection 6.1).
As shown in Figure K.19 in the supplementary material,
we can generate images similar to notMNIST, although the
images are blurred. In this way, using a single Glow model
trained on one training dataset, we can generate images
like multiple OOD datasets, including MNIST, notMNIST,
SVHN, CelebA, etc, as long as we replace prior with the
fitted Gaussian from the representations of the corresponding
dataset (See Figure K.20∼ K.22 in the supplementary material
for details). These results demonstrate that OOD representations
reside in specific directions that can be partially characterized by
the mean and covariance of OOD representations. Such a similar
phenomenon is also reported in [49], where Gambardella et al.
only use the mean of OOD representations. Their manuscript
[49] is released contemporaneously with the first edition of
this paper.

Furthermore, we scale the norm of OOD representations
with different factors. The decoded images also vary from
ID data to OOD data gradually. See Figure K.23 in the
supplementary material for details. Overall, this leads to
the second answer to Q1.

Answer 2 to Q1: OOD representations locate in
specific directions with specific norms. The mean and co-
variance of OOD representations partially characterizes
such specific directions. In high dimensional space, it is
hard to sample data in specific directions from standard
Gaussian distribution (prior) regardless of whether these
data reside in the typical set or not.

Note. In the proposed question Q1 “why we cannot
sample OOD data from the model”, we mean we cannot
generate OOD data when sampling noise ε from prior. In
this section, we sample OOD data from flow-based model
with fitted Gaussian distribution from OOD representations.
This does not contradict the proposed question Q1 because
we need the mean and covariance of OOD representations
in advance. More research on sampling OOD data is beyond
the scope of this paper. We will explore this direction in the
future.
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5 ANOMALY DETECTION METHOD

In this section, we elaborate on our OOD detection method
in three steps in three subsections, respectively. In Subsection
5.1, we propose leveraging KL divergence for OOD detection.
In Subsection 5.2, we reduce the computation cost. Finally, in
Subsection 5.3, we present a unified OOD method supporting
PAD and GAD with small batch sizes. Please refer to Figure 2
and Figure E.1 in the supplementary material for an overview
when reading this section.

5.1 Step 1: Leveraging KL divergence

Answer 1 in Subsection 4.1.3 reminds us to detect OOD
data by estimating KL(p||prZ), where p is the distribution of
representations of inputs. However, when only samples are
available, divergence estimation is provable hard, and the
estimation error decays slowly in high dimension space [50],
[51], [52]. This brings difficulty in applying existing diver-
gence estimation [52], [53], [54], [55], [56] to high dimensional
problems with small sample size. Luckily, as shown in Table
C.3 in the supplementary material, we observe that both ID
data and OOD data of Category I problems (smaller/similar
variance, higher/similar likelihood) follow a Gaussian-like
distribution. This provides us with a facility to estimate the
KL divergence for GAD.
5.1.1 Flow-based Model

ID Data. As discussed in Section 4, we can use a Gaussian
distribution Np to approximate pZ . Here we use sample
expectation µ̃ and covariance Σ̃ of representations to esti-
mate the parameters of Np 4. Experiments also show that
we can generate high-quality images by sampling from Np
rather than the prior (standard Gaussian distribution). Now
we can calculate the KL divergence between two Gaussian
distributions N (µ̃, Σ̃) and N (µ,Σ) analytically by

KL(N (µ̃, Σ̃)||N (µ,Σ)) (5)

=
1

2

{
log
|Σ|
|Σ̃|

+ Tr(Σ−1Σ̃) + (µ− µ̃)TΣ−1(µ− µ̃)− n
}

When the prior (N (µ,Σ)) is standard Gaussian distribution
N (0, I), Equation (5) equals to

1

2

{
− log |Σ̃|+ Tr(Σ̃) + µ̃>µ̃− n

}
(6)

where generalized variance |Σ̃| and total variation Tr(Σ̃)
both measure the dispersion of representations. KL(Np||prZ)
can be calculated in O(n3) where n is the dimension.

OOD Data in Category I Problems. As discussed in
Subsection 4, OOD representations of Category I problems
(smaller/similar variance, higher/similar likelihood) tend to
follow a Gaussian-like distribution. Similar to ID data, we
can use fitted Gaussian distribution Nq to approximate qZ
and estimate KL(qZ ||prZ).

OOD Data in Category II Problems. Our normality test
results (see Table C.3 in the supplementary material) show
that OOD representations in Category II problems (larger
variance, lower likelihood) do not follow a Gaussian-like
distribution. However, we find that Equation (6) performs
even better on Category II problems. The rationality of using

4. This is equal to using maximum likelihood estimation [57].

Equation (6) for Category II problems can be explained both
intuitively and theoretically.

Intuitively, the first two items of Equation (6) compensate
each other. For Category I problems (smaller/similar variance,
higher/similar likelihood), OOD representations are less
dispersed than ID representations and have a larger− log |Σ̃|.
For Category II problems, OOD representations tend to be
more dispersed and have a larger Tr(Σ̃). Besides, we find
OOD representations tend to have a larger µ̃>µ̃ than ID
representations. Thus, Equation (6) always produces a larger
result for OOD than ID data. Note that the term µ̃>µ̃ alone
cannot achieve high performance in GAD. It can also be
manipulated by moving the center of dataset (i.e., adding
a vector to the input dataset). We can treat Equation (6)
as a more comprehensive statistic than that used in t-test,
Maximum Mean Discrepancy, etc.

Theoretically, the following Theorem 5 can explain the
rationality of using Equation 6 in Category II problems.

Theorem 5 (see [43]) Let N1(µ1,Σ1) and N1(µ2,Σ2) be two
n-dimensional Gaussian distributions. Assume that Z ∼ PZ(z)
is an arbitrary n-dimensional continuous random variable with
mean vector µ1 and covariance matrix Σ1, then

KL(N1(µ1,Σ1)||N1(µ2,Σ2)) ≤ KL(PZ(z)||N1(µ2,Σ2))

According to Theorem 5, when we use fitted GaussianNq
from OOD representations, KL(Nq||prZ) is a lower bound of
KL(qZ ||prZ). If the lower bound is large, KL(qZ ||prZ) must
be large.

Summary. Equation (6) is a unified conservative criterion
for GAD due to the following reasons.

1) For ID data, Equation (6) approximates KL(pZ ||prZ) and
should be small;

2) For OOD data whose representations follow a Gaussian-
like distribution, Equation (6) approximates KL(qZ ||prZ)
and should be large;

3) For OOD data whose representations do not follow a
Gaussian-like distribution, Equation (6) computes the
lower bound of KL(qZ ||prZ). If the lower bound is large,
then KL(qZ ||prZ) must be large.

Note that Equation (6) also applies to Gaussian prior with
diagonal covariance diag(σ2) and mean µ. In such a case,
we only need to normalize the data by a linear operation
Z ′ = (Z −µ)/σ while keeping KL(pZ ||N (µ, diag(σ2))) =
KL(pZ′ ||N (0, I)) (by Theorem 1). This equals to using
Equation (5) directly. We also note that we are not pursuing
precise divergence estimation or parameter estimation that
are proven to be hard with very small batch sizes in high-
dimensional problems.
5.1.2 VAE
It is well-known that VAE and its variations learn indepen-
dent representations [58], [59], [60], [61], [62]. In VAE, the
probabilistic encoder qφ(z|x) is often chosen as Gaussian
form N (µ(x), diag(σ(x)2)), where z ∼ qφ(z|x) is used
as sampled representation, µ(x) is used as mean represen-
tation. The KL term in variational evidence lower bound
objective (ELBO, see Equation (16) in the supplementary
material) can be rewritten as Ep(x)[KL(qφ(z|x)||p(z))] =
I(x; z) + KL(q(z)||p(z)), where p(z) is the prior, q(z) the
aggregated posterior, and I(x; z) the mutual information
between x and z [63]. Here the termKL(q(z)||p(z)) pulls pZ
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to the Gaussian prior and encourages independent sampled
representations. We also investigate the representations in
VAE. The results show that:

1) ID representations in VAE do not always have p-value
greater than 0.05 in Shapiro-Wilk (normality) test;

2) the representations of all OOD datasets do not have
p-value greater than 0.05 in normality test;

3) the representations of OOD datasets are more correlated
(see Figure K.25∼K.27 in the supplementary material).

Furthermore, there is no theoretical guarantee that
KL(qZ ||prZ) is large enough because Theorem 1 does not
apply to non-diffeomorphisms. Nevertheless, we find that
Equation (6) also works for GAD with VAE.

5.2 Step 2: Leveraging Last-Scale KL Divergence
Although we can use Equation (6) as a preliminary criterion
for GAD, it is expensive to compute the sample covariance
of representations in O(n3) when the dimension n reaches
several thousand in flow-based model. We propose to use
the last scale of representations instead.

Glow model uses multi-scale architecture and has three
stages of representations [64]. At the end of the first two
stages, outputs are split into two parts hi and zi (i = 1, 2),
where hi is processed by the next stage. The output of
the final stage (i.e., z3) contains a quarter of the whole
dimensions. Among the three scales, the last scale is the
most special one. Interpolating between two representations
of the last scale can generate gradually varying images
between two real-world images. Schirrmeister et al. have
shown that Glow network scales manifest a hierarchy of
features [29]. Earlier scales learn low-level features that may
be generic in different datasets. The last scale learns high-
level features that are more specific to the training dataset.
The results in [29] also demonstrate that the likelihood
contributed by the last scale is a better metric than the whole
likelihood for OOD detection. Other work such as [65] also
demonstrates the effectiveness of the higher scale. Therefore,
the last scale of OOD representations should differ more
from ID representations than earlier stages. More precisely,
let qZ1

∼ qZ3
be the marginal distribution of the three scales

of OOD representations, respectively. We should observe
KL(qz3 ||N (0, I)) > KL(qZi ||N (0, I)) (i ∈ {1, 2}).

Theoretically, similar to Theorem 4, we can decompose
the whole KL divergence into local divergence inside each
scale and total correlation between different scales as follows.

KL(pZ(z)||N ) = KL(pZ(z)||pZ1,2
(z1z2)pZ3

(z)︸ ︷︷ ︸
total correlation between scales

+ KL(pZ1,2
(z1z2)||N )︸ ︷︷ ︸

KL divergence from first two scales

+ KL(pZ3
(z)||N )︸ ︷︷ ︸

last-scale KL divergence

(7)

where z = z1z2z3, z1z2 ∼ pZ1,2
, z3 ∼ pZ3

and N is
standard Gaussian distribution. Figure 2 shows the decom-
position. We call the last item of Equation (7) as last-scale KL
divergence. The rationality of using last-scale KL divergence
as the criterion for OOD detection is based on the following
inequality.

KL(qZ3
||N ) > KL(pZ3

||N ) (8)

where qZ3 and pZ3 are the marginal distributions of the
last scale of OOD and ID representations, respectively. Since

the last scale contains fewer dimensions, we can efficiently
calculate the last-scale KL divergence. For the non-Gaussian
case, we can still rely on Theorem 5 to compute the lower
bound.
5.3 Step 3: Leveraging Group-Wise KL divergence in
the Last Scale
Up to now, we are still facing two issues. First, when batch
size is small (e.g., <5), the performance of last-scale KL
divergence is unsatisfactory. Second, the last-scale KL diver-
gence does not support PAD. In this subsection, we address
these two issues. The key idea is splitting representation into
groups.

The factorizability of standard Gaussian distribution
allows us to investigate representations in groups. Intuitively,
if z ∼ N (0, I), then each dimension group of z follows
N (0, I); Otherwise, it is unlikely that each part of z follows
N (0, I). Thus, we can split one single z into multiple sub-
vectors and investigate these subvectors separately. This also
generates multiple samples from one data point artificially.
Formally, we split random vector Z into k l-dimensional
(k = n/l) subvectors Z̄1, . . . , Z̄k. We note the marginal
distribution of Z̄i as pZ̄i (1 ≤ i ≤ k). Then we can use
the following Theorem 6 to further decompose the last-scale
KL divergence.

Theorem 6 Let X ∼ p∗X be an n-dimensional random vector.
Note X = X̄1 . . . X̄k where X̄i ∼ p∗X̄i be the i-th l-dimensional
(k = n/l) subvector of X , X̄ij ∼ p∗X̄ij is the j-th element of X̄i.
Then,

KL(p
∗
X(x)||N (0, In))

=KL(p
∗
X(x)||

k∏
i=1

p
∗
X̄i

(x))

︸ ︷︷ ︸
Ig [p∗X ]

+

k∑
i=1

KL(p
∗
X̄i

(x)||N (0, Il))︸ ︷︷ ︸
Dg [p∗X ] =

∑k
i=1 D

i
g [p∗

X̄i
]

Group-wise KL divergence

(9)

=KL(p
∗
X(x)||

k∏
i=1

p
∗
X̄i

(x))

︸ ︷︷ ︸
Ig [p∗X ]

+

k∑
i=1

KL(p
∗
X̄i

(x)||
l∏

j=1

p
∗
X̄ij

(x))

︸ ︷︷ ︸
Il[p
∗
X ] =

∑k
i=1 I

i
d[p∗

X̄i
]

+

n∑
i=1

KL(p
∗
Xi

(z)||N (0, 1))

︸ ︷︷ ︸
Dd[p∗X ]

(10)

Proof The proof of Theorem 6 is similar to Theorem 4. See
Subsection D.2 in the supplementary material for details. �

In Equation (9), Ig is the generalized mutual informa-
tion between dimension groups [47]. Dg is group-wise KL
divergence. Furthermore, in Equation (10) Dg is decomposed
as Il +Dd, where Il is the generalized mutual information
inside each group, Dd is dimension-wise KL divergence that
also occurs in Equation (3). Combining Equation (3) and
10, we have Id = Ig + Il and Dg = Il + Dd. Equation
(9) distributes more divergence into the second term than
Equation (3). In principle, there are multiple strategies to
split Z into k subvectors Z̄1, . . . , Z̄k. The splitting strategy
affects how the whole KL divergence is distributed into Ig
and Dg in Equation (9). When k = n, Equation (9) is equal
to Equation (3).

As shown in Figure 2, we can apply Theorem 6 on pZ3

and qZ3
and get

KL(pZ3 ||prZ) = Ig[pZ3 ] +Dg[pZ3 ] = Ig[pZ3 ] +
∑k

i=1
Di
g[pZ̄i ]
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KL(qZ3
||prZ) = Ig[qZ3

] +Dg[qZ3
] = Ig[qZ3

] +
∑k

i=1
Di
g[qZ̄i ]

where pZ̄i , qZ̄i are the marginal distributions of subvectors
of the last scale of ID and OOD representations, respectively.
Combining Equation (8), we can know

Ig[qZ3
] +Dg[qZ3

] > Ig[pZ3
] +Dg[pZ3

] (11)

Final Criterion. Based on the analysis up to now, we can
obtain a final criterion for both GAD and PAD. Figure 2
shows our analysis in this Section. For ID data, KL(pZ ||N )
is trained to be small (see Subsection 4.1.1). According to
Equation (7), the last-scale KL divergence KL(pZ3

||N ) =
Ig[pZ3

]+Dg[pZ3
] must be smaller. We can assume the mutual

information between groups Ig[pZ3
] is sufficiently small,

i.e., Ig[pZ3
] < ε. To make Equation (11) hold, it suffices

that the group-wise KL divergence part satisfies Dg[qZ3
] >

Dg[pZ3
] + ε. If we choose an appropriate splitting strategy

and distribute more divergence to group-wise KL divergence
part (Dg[qZ3

]) in Equation (9), it is highly likely that we can
make

Dg[qZ3 ] > Dg[pZ3 ] (12)

Then we can use group-wise KL divergence of the last scale
Dg as the criterion to detect OOD data.

The remaining problems are: (1) how to choose a strategy
to split Z into k subvectors so that more divergence is
distributed into Dg and (2) how to leverage group-wise
KL divergence for OOD detection.
5.3.1 Splitting Strategy: Leveraging Local Pixel Dependence
From Equation (9) and (10), we can know a good splitting
strategy should retain enough intragroup dependence in
Il[qZ3 ] to make group-wise KL divergence part satisfy
Dg[qZ3 ] > Dg[pZ3 ] + ε.

Take the Glow model for example, the last scale has a
shape of (H×W ×C) 5 where H,W,C are the height, width,
and the channels, respectively. We can split the last scale into
multiple groups. The most natural choices are as follows.

1) horizontal: treat dimensions in the same pixel position
in different channels as one group and split z as H ×W
C-dimensional vectors;

2) vertical: treat dimensions in one channel as one group
and split z as C (H ×W )-dimensional vectors.

Here horizontal strategy retains inter-channel dependence
into group-wise KL divergence part (i.e., Dg). Vertical strat-
egy retains pixel dependence into Dg .

Figure K.28 in the supplementary material shows the idea
behind this subsection. Precisely, we split a single representa-
tion z into k subvectors z1, . . . ,zk and treat zi as a sample
of random vector Z̄i ∼ pZ̄i . Then we can treat z1, . . . ,zk
as k samples of one random vector Z̄m which follows a
mixture of distributions pZ̄m = (1/k)Σki=1pZ̄i . If the r-th
element Z̄i,r and s-th element Z̄i,s are strongly correlated
for all 1 ≤ i ≤ k, we can say that Z̄m,r and Z̄m,s are also
strongly correlated. More generally, if Z̄1, . . . , Z̄k have a
similar dependence structure, Z̄m would also have a similar
dependence structure. Based on this intuition, we conduct
experiments and find that OOD representations manifest
local pixel dependence. For example, we test ImageNet32 on
Glow trained on SVHN. For each OOD dataset, we visualize

5. The shape of the last scale of the representation in Glow is 4×4×48.

��

��� =�(0, �)

(9) By Eq. (8), 
��(���||���) > ��(���||���)

(10) By Thm. 6, 
decomposition of last-
scale KL divergence

��
last-scale  

KL divergence
��(���||���)

last-scale  
KL divergence
��(���||���)

(7) By Eq. (7), 
decomposition 
of ��(��||���)

(8) By Eq. (7), 
decomposition of 
��(��||���)

��[��3]

��[��3]

(11) Final criterion:
��[��3] > ��[��3]

distribution of 
ID representations 

prior

distribution of
OOD representations 

Fig. 2: Decomposition of KL divergence for OOD detection.
Steps (1) ∼ (6) are shown in Figure 1.

the correlation between pixels. We find that in almost all
channels each pixel always has stronger correlation with its
neighbors. For example, Figure K.29 in the supplementary
material shows the correlation between each pixel with its
neighbors in a randomly selected channel. Therefore, we
can say that Z̄1, . . . , Z̄k tend to have a similar dependence
structure. This means that the vertical strategy tends to
retain more divergence to Dg . On the contrary, we cannot
observe a similar dependence structure between channels
when using the horizontal strategy. Thus, the vertical strategy
can leverage pixel dependence of representations and is more
suitable for OOD detection. Besides, we have also tried other
splitting strategies. Evaluation results show that the vertical
strategy is the best one.
5.3.2 How to leverage Group-wise KL Divergence in the
Last Scale
We want to leverage group-wise KL divergence Dg for
OOD detection. For ID data, we treat each representation
as k data points sampled from a mixture of distributions
pZ̄m = (1/k)

∑k
i=1 pZ̄i where pZ̄i(1 ≤ i ≤ k) is very close

to N (0, I). Thus, we can use a single Gaussian distribution
NZ̄s to approximate each pZ̄i . Therefore, Dg[pZ3

] can be
approximated as

Dg[pZ3
] =

k∑
i=0

KL(pZ̄i(z)||N (0, I)) ≈ k ×KL(NZ̄s ||N (0, I))

(13)
Now we can plug Equation (6) in Equation (13), except that
each representation z is treated as k samples of pZ̄m .

For OOD data, we cannot use a single Gaussian distribu-
tion to approximate qZ̄m = (1/k)

∑k
i=1 qZ̄i when qZ̄i are far

from each other or qZ is not Gaussian-like. Nevertheless, we
can still use fitted Gaussian and Equation (6) to compute the
lower bound according to Theorem 5.

Summary. Overall, we get the following answer to Q2.

Answer to Q2: We use group-wise KL divergence in
last scale (i.e., Dg in Equation 9) as a unified criterion for
both GAD and PAD with flow-based generative models.

5.4 Algorithm
Algorithm 1 shows the details of our OOD detection method.
The inputs are a set of data points X = {x1, · · · ,xm}(m ≥
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Algorithm 1 KL divergence-based Out-of-Distribution De-
tection with Split representations (KLODS )

1: Input: f(x): a well-trained flow-based model or the en-
coder of VAE using Gaussian prior N (µ, diag(σ)); X =
{x1, · · · ,xm}(m ≥ 1): a batch of inputs; (H,W,C): the
height, width, and channels of last scale of representa-
tions. t: threshold

2: Z̄ = ∅
3: for i = 1 to m do
4: zi = f(xi)
5: z̄i = (zi − µ)/σ
6: if zi consists of multiple stages then
7: z̄i = last scale of z̄i
8: end if
9: split z̄i as C (H × W )-dimensional subvectors

z̄i,1 . . . z̄i,C
10: Z̄ = Z̄ ∪ {z̄i,1, . . . , z̄i,C}
11: end for
12: calculate sample covariance Σ̃ and sample mean µ̃ of Z̄
13: score = (1/2)

{
− log |Σ̃|+ Tr(Σ̃) + µ̃>µ̃− n

}
14: if score > t then
15: return “X is OOD data”
16: else
17: return “X is ID data”
18: end if

1), where each xi is an individual input. Here we support
both GAD and PAD (in the case of m = 1). For each input
xi, we first compute the representation zi = f(xi) (line 4).
Here f represents flow-based model or the encoder part
of VAE. Then we normalize representations {z1, · · · , zm}
as z̄i = (zi − µ)/σ, where µ and diag(σ2)) are the mean
and covariance matrix of Gaussian prior, respectively (line
5). If zi has multiple stages, we choose only the last-scale
representation to leverage last-scale KL divergence (line 6,
Section 5.2). Then we split z̄i as C (H ×W )-dimensional
subvectors to leverage local pixel dependence as discussed
in Subsection 5.3.1. We collect the subvectors from each xi
and treat Z̄ as m× C data points sampled from a mixture
of distributions (line 10). Then we calculate the sample
covariance Σ̃ and sample mean µ̃ of Z̄ (line 12). Finally,
we use the following anomaly score

score = (1/2)
{
− log |Σ̃|+ Tr(Σ̃) + µ̃>µ̃− n

}
(14)

as the criterion (line 13). For ID data, score is the estimated
group-wise KL divergence in last scale (i.e., Dg[pZ3

]) except
for neglecting the constant k in Equation (13). For OOD data,
score is the lower bound of Dg[qZ3

]. The larger score is, the
more like OOD the input. If score is greater than a threshold
t, the input is determined as OOD data (line 15). Otherwise,
the input is determined as ID data (line 17).

We name our method as KLODS for KL divergence-based
Out-of-Distribution Detection with Split representations. We also
call our method without split representations as KLOD.

5.5 Summary
In Figure 1, we have illustrated our analysis steps in
explaining why we cannot sample OOD data. In Figure
2, we summarize how to leverage KL divergence for OOD
detection in Section 5. To help readers have a bird’s eye view

of our whole work, we summarize all critical steps in a big
flowchart in Figure E.1 in the supplementary material.

6 EXPERIMENTS

We conduct experiments to evaluate the effectiveness and
robustness of our OOD detection method.

6.1 Experimental Setting

Benchmarks. We evaluate our method with prevalent bench-
marks in deep anomaly detection research [18], [19], [22],
[66], [67], [68], including Constant, Uniform, MNIST [69],
FashionMNIST [70], notMNIST [71], KMNIST [72], Omniglot
[73], CIFAR-10/100 [74], SVHN [75], CelebA [76], TinyIma-
geNet [77], ImageNet32 [78], and LSUN [79]. We use different
dataset compositions falling into Category I (smaller/similar
variance, higher/similar likelihoods, e.g., CIFAR-10 vs SVHN)
and Category II (larger variance, lower likelihoods, e.g., SVHN
vs CIFAR-10) problems. All datasets are resized to 32×32×3
for consistency. We use S-C(k) (k ≥ 0) to denote dataset S
with adjusted contrast by a factor k. More details of the
benchmarks are described in Section F in the supplementary
material.

Baselines. We choose the following recently published
OOD detection methods as baselines.

GAD:
1) t-test: two-sample students’ t-test for a difference in

means in the empirical likelihoods.
2) Kolmogorov-Smirnov test (KS-test): two-sample KS-

test to the likelihood empirical distribution functions.
3) Maximum Mean Discrepancy (MMD) [80]: two-

sample MMD test.
4) Kernelized Stein Discrepancy (KSD) [81]: test for

Goodness of Fit to the generative model.
5) Annulus Method [20]: Typicality test in latent space.

Inputs whose latents are far from the annulus with
radius

√
n are classified as OOD data.

6) Ty-test [22]: typicality test in model distribution.
7) GOD2KS [34]: combining random projection and two-

sample KS test.
Among the above GAD methods, Annulus Method, Ty-test,
and GOD2KS are the best ones. We reimplement Annulus
Method and Ty-test to produce more results.

PAD:
1) S [28]: input complexity compensated likelihood.
2) Llast [29]: likelihood contributed by the last-scale repre-

sentation of Glow.
3) DoSE [30]: density estimators on the statistics of models

to detect OOD data.
4) ODIN [82]: Liang et al. introduce ODIN method for

OOD detection.
5) Joint confidence loss [83]: Lee et al. introduce joint

confidence loss for OOD detection.
6) Joint confidence loss+ODIN [83]: combination of Joint

confidence loss and ODIN (better than each method
alone).

For a more comprehensive evaluation, we reimplement the
first three PAD baselines applicable to flow-based model.
DoSE is the SOTA PAD method applicable to flow-based
model. The rest baselines apply to classification networks
rather than flow-based models. See Section H in the supple-
mentary material for more discussion about baselines.
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Models. We use the official Glow model [64] and the
model released by the authors of Ty-test (DeepMind [84]).
See Section G in the supplementary material for details.

Metrics. We use the same metrics as baseline methods
in their original publications. These metrics include false
positive rate (FPR), true positive rate (TPR), threshold-
independent metrics area under the receiver operating
characteristic curve (AUROC) and area under the precision-
recall curve (AUPR) [85], and threshold-dependent Equal
Error Rate (EER). We treat OOD data as positive data. For
GAD, each dataset is shuffled and then divided into groups
of size m. We run each method for 5 times and show “mean±
standard deviation” for each GAD problem.
6.2 Experimental Results
6.2.1 Group Anomaly Detection
Main Results on Unconditional Glow.

FashionMNIST vs Others. Table J.1 in the supplemen-
tary material shows the GAD results of Glow trained on
FashionMNIST. The ID column reflects false positive rate
(ideally should be 0). The MNIST and notMNIST columns
reflect true positive rate (ideally should be 1). The authors
of baselines apply bootstrap procedure on validation data
to establish thresholds. See Section J.1 in the supplementary
materials for the details on how we establish thresholds. We
can see that all methods cannot achieve satisfactory results
with small batch size m = 2. Our method achieves the
highest true positive rate with the lowest false positive rate
for larger batch sizes (i.e., 10, 25).

The first two subfigures of Figure 3 show the comparison
of KLODS, our reimplementation of Ty-test, and Annulus
Method on FashionMNIST vs Others. The corresponding
numerical results of Figure 3 are shown in Table J.2, J.3, and
J.4 in the supplementary material. In our reimplementation,
Annulus Method achieves much better results than that
reported in [22] (and Table J.1 in the supplementary mate-
rial). Nevertheless, our method outperforms all baselines
significantly.

SVHN/CIFAR-10/CelebA vs Others. Figure 3 also shows
the GAD results on Glow trained on SVHN, CIFAR-10, and
CelebA. Our method is the best one. We adjust the contrast of
OOD dataset to make the likelihood distributions of ID and
OOD data coincide. For these kinds of problems, the perfor-
mance of Annulus Method and Ty-test degenerate severely.
Our method is more robust against data manipulation.

CelebA vs CIFAR-10/100 are challenging for Ty-test as
reported by [22]. Our method can achieve 100% AUROC
with batch size 10. In our experiments, it is hard to make
the likelihood distributions of CelebA train and test split
fit very well on the official Glow model 6. This affects
the performance of Ty-test. Please see Section J.1 in the
supplementary material for more discussion.

CIFAR-10 vs CIFAR-100 is one of the most challenging
problems. Annulus Method and Ty-test achieve 47.2% and
72.4% AUROCs with batch sizem = 200, respectively. KLOD
and KLODS achieve around 70% AUROC when the batch
size m = 200. We think this is due to unsuccessful model
and the similarity between ID and OOD datasets. Please see
Section H in the supplementary material for more discussion
on CIFAR-10 vs CIFAR-100.

6. We stop training after 2,000 epochs.

Smaller Batch Sizes. KLODS outperforms Ty-test when
batch size is smaller (i.e., 2 ∼ 4). See Table J.5 in the
supplementary material for details.

Comparison with GOD2KS. Table J.6 in the supplemen-
tary material compares our method and GOD2KS [34] on
Glow. We use the same problems reported in [34]. Our
method outperforms GOD2KS.

Robustness. The results presented above have demon-
strated the robustness of our method against data manipu-
lation method M2 (adjusting contrast). Experimental results
show that KLODS achieves the same performance under
M1 (rescaling representations), except that a slightly larger
batch size (+5) is needed for CIFAR-10-related problems. As
shown in Figure 3, Table J.2, J.3, and J.4 in the supplementary
material, Annulus Method and Ty-test is affected by data
manipulation M2 (adjusting contrast). Besides, Annulus
Method achieves exactly 0 AUROCs for all problems under data
manipulation M1 (rescaling representations). This is because all
OOD representations are rescaled to the annulus of typical set
of prior and hence definitely closer to the typical set annulus
than ID representations (see Section 3.1). The results are
omitted for brevity. Currently, the performance of GOD2KS
under data manipulations is still not clear.

Summary. For GAD, our method achieves 98.1%
AUROC, 98.2% AUPR, and 4.6% EER on average with
batch size 5 and outperforms Ty-test by 33.5%, 29.2%,
29.3% on average in AUROC, AUPR, and EER, respec-
tively. Our method also outperforms GOD2KS by 9.1%,
12.1% on average in AUROC and AUPR with batch
size 5, respectively. Our method is robust against data
manipulations, while the baseline methods Ty-test and
Annulus Method can be attacked in almost all cases.

More Results.
Mixture of OOD Datasets. We also use the mixture of

two datasets among SVHN, CelebA, and CIFAR-10 as one
OOD dataset. We can treat samples from multiple distribu-
tions as from a mixture of distributions. We randomly choose
5,000 samples from each dataset and get 10,000 samples as
one OOD dataset. Table J.7 in the supplementary material
shows the results of KLODS. Our method outperforms Ty-
test by 38.9% AUROC on average with batch size 5.

Ablation Study. We compare the following four methods
to evaluate how the techniques proposed in Section 5 affect
the performance.

1) Ty-test: the baseline.
2) KLOD-all: GAD with all scales of representation, with-

out splitting dimensions.
3) KLOD: GAD using the last-scale representation, without

splitting dimensions.
4) KLODS: GAD using the last-scale representation with

splitting dimensions.
Table J.8 in the supplementary material shows the results.

Neglecting CIFAR10 vs ImageNet32-C(0.3), the order of the
methods by performance is KLODS > KLOD > KLOD-all
> Ty-test. The only exception is CIFAR10 vs ImageNet32-
C(0.3), where KLOD outperforms KLODS. The low contrast
leads to weak local pixel dependence and affects our splitting
strategy. Overall, we can see that both using the last scale
and splitting dimensions into groups can improve the
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Fig. 3: GAD results (AUROC) on Glow with batch sizes 5 and 10. The X-axis are labeled with OOD datasets including Con:
Constant, MNI: MNIST, not: notMNIST, U: Uniform, CB: CelebA, C10/100: CIFAR-10/100, Im: ImageNet, SV: SVHN, LS:
LSUN. The corresponding numerical results are shown in Table J.2, J.3, and J.4 in the supplementary material.

performance of GAD. Note that splitting dimensions also
makes PAD feasible. Besides, when the batch size is smaller
(e.g., 5), KLODS outperforms KLOD more obviously. More
results are not shown for brevity.

One-vs-Rest. We conduct one-vs-rest evaluation on
MNIST. For each class from 0 to 9, we use images in that class
as ID data and the rest classes as OOD data. We train one
Glow model under each setting for 120 epochs. As shown in
Table J.9 in the supplementary material, our method achieves
85.4% AUROC and 85.8% AUPR on average with batch size
5, outperforming the baseline by 8% and 5%, respectively.

GAD on GlowGMM. We train GlowGMM on Fash-
ionMNIST. We treat each class as ID data and the rest as
OOD data. KLODS can achieve 100% AUROC on average
when batch size is 25. On the contrary, Ty-test is worse than
random guessing in most cases. See Figure J.1 and Table
J.10 in the supplementary material for results. Experimental
results also demonstrate that each component may assign
higher likelihoods to other classes (See Table J.11 in the
supplementary material).

Generating OOD Images Using GlowGMM. In
GlowGMM, we can generate high-quality OOD images. See
Section J in the supplementary material for more discussion.

GAD on VAE. We train convolutional VAE with 8-/16-
/32-dimensional latent space on FashionMNIST, SVHN, and
CIFAR-10, respectively. The latent space is not large enough,
so we did not split representations and only used KLOD
in experiments. The results are shown in Figure J.3 and
Table J.12 in the supplementary material. KLOD achieves
99.9% AUROC on average when m = 25 for most problems.
CIFAR-10 vs CIFAR-100 is also the most challenging problem
on VAE. KLOD needs a batch size of 150 to achieve 98%+
AUROC (See Table J.13 in the supplementary material).
Nevertheless, KLOD still outperforms Ty-test. Again, Ty-
test can be attacked by data manipulations M2 (adjusting
contrast). Finally, as pointed out by [86], for vanilla VAE the

reconstruction probability is not a reliable criterion for OOD
detection (See Table J.14 in the supplementary material).

6.2.2 Point-wise Anomaly Detection

The PAD results of KLODS, S , Llast, and DoSE are shown in
Table 1.

SVHN vs Others. The problems above the dash line in
Table 1 fall in Category II (larger variance, lower likelihoods).
KLODS can achieve 98.8%+ AUROC and outperforms the
baselines. In [28], although the authors state that their
method S can detect OOD data with more complexity than
ID data (roughly Category II), they did not evaluate their
method thoroughly on Category II problems. We find S does
not perform well on these problems.

The problems for SVHN vs others below the dash
line in Table 1 fall in Category I (smaller/similar variance,
higher likelihoods). For these problems, Llast and DoSE
degenerate into being not better than random guessing.
KLODS is comparable with S and outperforms Llast and
DoSE significantly. The reason is all the distributions of
log p(x), log p(z), and log p(x) contributed by the last scale
overlap with those of ID data. Figure K.7 and K.8 in the
supplementary material shows the histograms of these three
statistics. These issues make DoSE fail because DoSE relies
on the effectiveness of its based statistics.

CelebA vs Others. The performance of S degenerates
severely on these problems. Our method is slightly affected
because the likelihoods of the train and test split of CelebA
do not fit very well (see Figure K.10 in the supplementary
material).

CIFAR-10 vs Others. As discussed in the last subsection,
Glow model fails to generate high-quality CIFAR-10-like
images. Our method is affected on CIFAR-10 vs others. As
discussed before, we argue that it is hard to require an
“unsuccessful” model can detect OOD data.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 1: PAD results (AUROC in percentage) on Glow.
Notable failures (below 60%) are underlined.

ID OOD S Llast DoSE KLODS
SV

H
N

Uniform 100.0 100.0 100.0 100.0
ImageNet32 78.7 99.8 99.9 99.9
CelebA 83.1 100.0 100.0 100.0
CIFAR-10 43.8 97.7 96.2 98.9
CIFAR-100 44.9 97.3 96.5 98.8
LSUN 91.8 100.0 91.6 100.0
Uniform-C(0.008) 97.9 0.0 96.8 98.6
CelebA-C(0.08) 81.4 41.6 48.0 82.2
CIFAR-10-C(0.12) 75.3 47.7 50.5 72.5
CIFAR-100-C(0.12) 75.2 48.6 54.5 75.3
ImageNet32-C(0.07) 99.6 42.2 55.7 84.0
LSUN-C(0.06) 81.3 3.0 69.5 91.6
notMNIST 100.0 98.7 99.9 99.6
Constant 100.0 0.4 99.9 99.8

C
el

eb
A

Constant 98.0 99.8 99.9 100.0
Uniform 91.0 100 100.0 100.0
Uniform-C(0.012) 97.2 98.1 90.9 99.5
ImageNet 16.5 99.7 99.8 100.0
ImageNet-C(0.2) 88.5 97.9 91 93.3
CIFAR-10 55.0 90.4 94.9 69.0
CIFAR-100 53.2 90.6 95.6 72.3
SVHN 83.9 99.3 99.7 94.7
SVHN-C(1.8) 90.5 99.9 85.2 98.9
LSUN 65.4 99.6 84.9 99.2

C
IF

A
R

-1
0

Constant 100 1.4 99.8 98.9
Uniform 100 100 100 100
Uniform-C(0.2) 98.8 1.9 64.7 99.7
CelebA 86.3 96.6 99.5 85.2
CelebA-C(0.3) 95.0 7.8 46.5 64.9
SVHN 95.0 92.9 95.5 82.6
SVHN-C(2.0) 94.0 98.9 93.7 95
TinyImageNet 71.6 90.7 76.7 83.9
CIFAR-100 73.6 60.0 57.1 54.1
LSUN 91.1 82.8 98.0 98.9
LSUN-C(0.3) 96.4 94.8 61.2 83.3
average 82.7 73.7 85.5 90.7
#notable failures 5 5 6 1

Finally, our method has only one notable failure (i.e.,
below 60% AUROC). S , Llast, and DoSE have 5, 5, and 6
notable failures in total, respectively.
Other comparisons.

We compare KLODS with Joint confidence loss, ODIN,
and Joint confidence loss+ODIN. These three baseline meth-
ods do not apply to flow-based model. The results are shown
in Table J.15 in the supplementary material, where we use
the same datasets reported in [83]. Our method is the best
one. See Section H in the supplementary material for more
discussion on our method and results.

Summary. For PAD, our method achieves 90.7%
AUROC on average and outperforms the SOTA baseline
DoSE by 5.2% in AUROC. Our method also has the least
notable failures.

7 CONCLUSION

In this paper, we prove theorems to investigate KL diver-
gences in flow-based models. We observe the normality
of ID and OOD representations in flow-based model for
a wide range of problems. Based on our analysis, we
explain why we cannot sample OOD data from flow-based
model from two perspectives. We propose leveraging KL
divergence for OOD detection. We further decompose the KL
divergence to leverage the last-scale KL divergence of Glow
model. Furthermore, we split representations into groups
to leverage group-wise KL divergence as the final OOD

detection criterion. Experimental results have demonstrated
the effectiveness and robustness of our method.
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APPENDIX A
BACKGROUND

Flow-based generative model constructs diffeomorphism f
from visible space X to latent space Z [13], [14], [36], [37].
The model uses a series of diffeomorphisms implemented by
multilayered neural networks

x
f1←→ h1

f2←→ h2 . . .
fn←→ z

like flow. The whole bijective transformation f(x) = fn ◦
fn−1 · · · f1(x) can be seen as encoder, and the inverse
function f−1(z) is used as decoder. According to the change
of variable rule, the probability density function of the model
can be formulated as

log pX(x) = log pZ(f(x)) + log

∣∣∣∣det
∂z

∂xT

∣∣∣∣
= log pZ(f(x)) +

∑n

i=1
log

∣∣∣∣∣det
∂hi
∂hTi−1

∣∣∣∣∣
(15)

where x = h0, z = hn,
∂hi
dhTi−1

is the Jacobian of fi, det is the
determinant.

Here prior pZ(z) is chosen as tractable density function.
For example, the most popular prior is standard Gaussian
distribution N (0, I), which makes log pZ(z) = −(1/2) ×∑
i z

2
i + C (C is a constant). After training, one can sample

noise ε from prior and generate new samples f−1(ε).
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In this paper, we replace prior N (0, I) with fitted Gaus-
sian distributionsN (µ̃, Σ̃) from OOD representations, where
µ̃ and Σ̃ are the sample mean and covariance, respectively.
Then we sample noise ε′ ∼ N (µ̃, Σ̃) and generate OOD
samples f−1(ε′).

Variational Autoencoder (VAE) is directed graphical
model approximating the data distribution p(x) with
encoder-decoder architecture [15]. The probabilistic encoder
qφ(z|x) approximates the unknown intractable posterior
p(z|x). The probabilistic decoder pθ(x|z) approximates
p(x|z). In VAE, the variational lower bound of the marginal
likelihood of data points (ELBO)

L(θ, φ) =
1

N

N∑
i=1

Ez∼qφ [log pθ(x
i|z)]−KL(qφ(z|xi)||p(z))

(16)
can be optimized using stochastic gradient descent. After
training, one can sample z from prior p(z) and use the
decoder pθ(x|z) to generate new samples.

APPENDIX B
DEFINITIONS

Definition 1 (φ-divergence) The φ-divergence between two
densities p(x) and q(x) is defined by

Dφ(p, q) =

∫
φ(p(x)/q(x))q(x)dx, (17)

where φ is a convex function on [0,∞) such that φ(1) = 0. When
q(x) = 0, 0φ(0/0) = 0 and 0φ(p/0) = limt→∞ φ(t)/t [87].

φ-divergence family is used widely in machine learning
fields. As shown in Table B.1, many commonly used
measures, including the KL divergence, Jensen-Shannon
divergence, and squared Hellinger distance, belong to the
φ-divergence family. Many φ-divergences are not proper
distance metrics and do not satisfy the triangle inequality.

TABLE B.1: Examples of φ-divergence family

φ(x) Divergence
x log x− x+ 1 Kullback-Leibler
− log x+ x− 1 Minimum Discrimination Information
(x− 1) log x J-Divergence

1
2
|1− x| Total Variation Distance

(1−
√
x)2 Squared Hellinger distance

x log 2x
x+1

+ log 2
x+1

Jensen-Shannon divergence

APPENDIX C
TABLES

Table C.1 summarizes the notations of distributions and KL
divergences involved in our analysis.

Table C.2 shows some approximate values of the supre-
mum of KL divergence in Theorem 2.

TABLE C.1: Distributions and KL divergences in our analysis.

Notations Explanations
z = f(x) the flow-based model function

pX the distribution of ID data
qX the distribution of OOD data
pZ the distribution of ID representations
qZ the distribution of OOD representations
prZ the prior of the flow-based model

prX
the model induced distribution such
that Zr ∼ prZ and Xr = f−1(Zr) ∼ prX

KL(pX ||qX)
the KL divergence between pX and qX ,
assumed to be any large (by Assumption 1).

KL(pZ ||qZ) the KL divergence between pZ and qZ ,
equals to KL(pX ||qX) (by Theorem 1).

KL(pZ ||prZ)
the KL divergence between pZ and prior,
trained to be small (by Assumption 2).

KL(prZ ||qZ)

the KL divergence between prior and qZ ,
influenced by KL(pZ ||qZ) and KL(pZ ||prZ).
By relaxed triangle inequality (Theorem 3),
a small KL(pZ ||qZ) and a large KL(pZ ||prZ)
imply KL(prZ ||qZ) is large.

KL(qZ ||prZ)
the KL divergence between prior and qZ ,
influenced by KL(prZ ||qZ). By the approximate
symmetry property (Theorem 2), a large
KL(prZ ||qZ) must lead to a large KL(qZ ||prZ).

TABLE C.2: Some approximate values of the supremum of
KL divergence

ε 0.001 0.005 0.01 0.05 0.1 0.5
sup 0.001 0.006 0.011 0.069 0.016 1.732

APPENDIX D
PROOFS

D.1 Proof of Theorem 4

Proof

KL(p∗X(x)||N (0, In))

=Ep∗
X

(x)

[
log
( p∗X(x)

N (0, In)

)]
=Ep∗

X
(x)

[
log
( p∗X(x)∏n

i=1 p
∗
Xi

(x)

∏n
i=1 p

∗
Xi

(x)

N (0, In)

)]
=Ep∗

X
(x)

[
log
( p∗X(x)∏n

i=1 p
∗
Xi

(x)

)]
+ Ep∗

X
(x)

[
log
( ∏n

i=1 p
∗
Xi

(x)∏n
i=1N (0, 1)

)]
=Ep∗

X
(x)

[
log
( p∗X(x)∏n

i=1 p
∗
Xi

(x)

)]
+ Ep∗

X
(x)

[ n∑
i=1

log
( p∗Xi(x)

N (0, 1)

)]
=Ep∗

X
(x)

[
log
( p∗X(x)∏n

i=1 p
∗
Xi

(x)

)]
+

n∑
i=1

Ep∗
Xi

(x)

[
log
( p∗Xi(x)

N (0, 1)

)]
=KL(p∗X(x)||

n∏
i=1

p∗Xi(x)) +

n∑
i=1

KL(p∗Xi(x)||N (0, 1))

�
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TABLE C.3: Results of Generalized Shapiro-Wilk test for
multivariate normality on the representations of datasets
under Glow. See Section 6.1 for the explanation of dataset
names. For each dataset, we randomly select 2000 inputs for
normality test. The larger W and p are, the more Gaussian-
like the distribution is. When p ≥ 0.05, there is no evidence
to reject the normality hypothesis. In our experiments, ID
representations under all models manifest strong normality.
For Category I problems, all OOD representations except
for SVHN vs Constant manifest normality. Some OOD
representation (e.g., Unform, ImageNet32) even has a higher
p-value than ID data (CelebA).

ID Input(ID/OOD) Category W p-value

Fa
sh

io
n. Fashion. - 0.9996 0.9479

Constant I 0.9992 0.5872
Constant-C(0.1) I 0.9995 0.9212
MNIST I 0.9985 0.0733
MNIST-C(10.0) I 0.9991 0.4114
notMNIST I 0.9989 0.2337
notMNIST-C(0.005) I 0.9993 0.6411

SV
H

N

SVHN - 0.9993 0.6227
Constant I 0.9911 9.6e-10
Constant-C(0.1) I 0.9992 0.5442
Uniform II 0.9992 0.5273
Uniform-C(0.008) II 0.9993 0.6203
CelebA II 0.9336 ¡ 2.2e-16
CelebA-C(0.08) I 0.9993 0.6503
CIFAR-10 II 0.99429 5.7e-07
CIFAR-10-C(0.12) I 0.9995 0.8838
CIFAR-100 II 0.9528 ¡ 2.2e-16
CIFAR-100-C(0.12) I 0.9985 0.0760
ImageNet32 II 0.8618 ¡ 2.2e-16
ImageNet32-C(0.07) I 0.9670 ¡ 2.2e-16

C
IF

A
R

-1
0

CIFAR-10 - 0.9995 0.9064
Constant I 0.9992 0.5512
Constant-C(0.1) I 0.9991 0.4725
Uniform I 0.70958 ¡2.2e-16
Uniform-C(0.02) II 0.99931 0.6964
CIFAR-100 I 0.9994 0.8426
CelebA I 0.9987 0.1390
CelebA-C(0.3) I 0.9994 0.7960
ImageNet32 I 0.9977 0.0048
TinyImageNet I 0.9995 0.3092
SVHN I 0.9989 0.2532
SVHN-C(2.0) I 0.9989 0.2547

C
el

eb
A

CelebA - 0.9992 0.6064
Constant I 0.9989 0.2605
Constant-C(0.1) I 0.9984 0.7184
Uniform II 0.9993 0.6922
Uniform-C(0.012) II 0.9992 0.5815
CIFAR-10 I 0.9992 0.5953
CIFAR-100 I 0.9990 0.3313
ImageNet32 I 0.9993 0.6410
ImageNet32-C(0.2) I 0.9990 0.3676
SVHN I 0.9991 0.4351
SVHN-C(1.8) I 0.9990 0.3600

D.2 Proof of Theorem 6

Proof We can use the similar deduction in Theorem 4 and get
Equation (9).

KL(p∗X(x)||N (0, In))

=Ep∗X(x)

[
log
( p∗X(x)∏k

i=1 p
∗
X̄i

(x)

∏k
i=1 p

∗
X̄i

(x)

N (0, In)

)]
=Ig[p

∗
X ] +Dg[p

∗
X ]

Then we apply Theorem 4 on each Di
g[p
∗
X̄i

] and have

KL(p∗X̄i(x)||N (0, Il))

=KL(p∗X̄i(x)||
l∏

j=1

p∗X̄ij (x)) +
l∑

j=1

KL(p∗X̄ij (x)||N (0, 1))

(18)
Finally, combining Equation (9) and 18 we can obtain Equation
(10). �

APPENDIX E
SUMMARY OF OUR WORK

The flowchart in Figure E.1 can help readers to have an
overview of our work.
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This explains 
why we cannot 
sample OOD 

data from prior.

Sec. 4.1.1, Step (3): The model is trained to minimize forward KL 
divergence between the distribution of ID representations and prior. 

�X(��||��
�) is small. Step (4): Also observe �� is Gaussian-like.

Sec. 4.1.1, Step (2): By Thm. 1, diffeomorphism preserves KL divergence. The 
distributions of ID and OOD representations are far from each other.

�X(��||��) and �X(��||��) are large.

Sec. 4.1.2: By the relaxed triangle inequality theorem (Thm. 
3), the divergence between prior and distribution of OOD 

representation is large. �X(��
� ||��) is large.

��: the distribution of ID data
��: the distribution of OOD data
��: the distribution of ID 
representation
��: the distribution of OOD 
representation
��

� : prior

Sec. 4.1.1, Step (4): By approximate symmetry 
of KL divergence between Gaussians (Thm. 2), 

reverse KL divergence �X(��
� ||��) is small.  

Sec. 4.1.1, Step (5): We can assume ��
� ≈ ��. (In 

Gaussian case, we do not need this assumption.)

Do OOD 
representations 

follow a 
Gaussian-like 
distribution?

Sec. 4.1.1, Step (1): The KL divergence between the distributions of ID and OOD 
datasets is large.

 �X(��||��) and �X(��||��) are large.

Sec. 4.1.2: By the approximate symmetry property (Thm. 2), 
the divergence between distribution of OOD representation 

and prior is large.  �X(��||��
�) is large.�X(��||��

�) is large. 

Category II
problems:
No

Roughly 
Category I 
problems:
Yes

Sec. 5.1.1: Approximate �� with 
Gaussian ��. �X(��||��

�) ≈
�X(��||��

�) is large.

Sec. 5.1.1: By Thm. 5, �X(��||��
�) ≤ �X(��||��

�), 
where �� is Gaussian distribution with the same 
mean vector and covariance matrix with ��. Here 

�� is not approximating ��.

Sec. 4.1.3, Answer 1 to Q1: The distribution of OOD 
representations is far from the prior.

Sec. 5.1.1: Primary GAD criterion: �X(��||��
�) > �X(��||��

�). Easy to 
implement, but computational expensive, does not support PAD. 

We need more.

Sec. 5.2, Using last-scale KL divergence by decomposing divergence (Eq. 7).
New criterion (Eq. 8): �X(��3||��

�) > �X(��3||��
�)

Sec. 5.3, Splitting dimensions into Groups to reduce GAD batch size and 
support PAD. Use group-wise KL divergence in last scale (��) as criterion.

Final criterion: ��[��3] > ��[��3] (Eq. 12).

Sec. 4.2, Answer 2 to Q1: OOD representations locate in specific 
directions with specific norms.

Sec. 5.3.2: How to leverage and approximate ��? 

Do 
representations 

follow a 
Gaussian-like 
distribution?

By Thm. 5, use fitted Gaussian to 
compute the lower bound of �� Use fitted Gaussian to approximate �� 

for OOD data in Category II 
(larger variance, lower 
likelihood):
No

for ID data and OOD 
data in Category I  
(smaller/similar 
variance, lower/similar 
likelihood):
Yes

Finally, we get a conservative criterion 
for both GAD and PAD. Line 13 in 

Algorithm 1.  

These three steps 
also apply for the 

Gaussian case.

OOD detection 
method

Section 5.1. 
Step 1: 

leveraging KL 
divergence

Explanation

OOD 
Detection

Fig. E.1: Overview of our method. The top half explains why we cannot sample OOD data from the flow-based model. The
bottom half is for OOD detection method. Green lines are for the Gaussian case. Blue lines are for the non-Gaussian case.
Please also refer to Figure 1 and 2 in the main text.
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APPENDIX F
BENCHMARKS

Here we briefly introduce the benchmarks used in our
experiments:

1) Constant: The Constant dataset consists of images with
all pixels equal to the same constant C ∼ U{0, 255}.

2) Uniform: The Uniform dataset consists of images with
each pixel sampled independently from U{0, 255}.

3) MNIST [69]: MNIST is a dataset of handwritten digits.
4) FashionMNIST [70]: FashionMNIST is a dataset of

images of clothes and shoes.
5) notMNIST [71]: notMNIST is a dataset of fonts and

extracting glyphs similar to MNIST.
6) KMNIST [72]: KMNIST is a dataset of Japanese charac-

ters.
7) Omniglot [73]: Omniglot is a dataset of handwritten

digits of a set of alphabets.
8) CIFAR-10/100 [74]: CIFAR-10/100 are datasets of natu-

ral images including animals and vehicles.
9) SVHN [75]: SVHN is a dataset of street view housing

numbers.
10) CelebA [76]: CelebA is a dataset of face images of

celebrities.
11) TinyImageNet [77]: TinyImageNet is a subset of Ima-

geNet.
12) ImageNet32 [78]: Imagenet32 is a dataset of small images

called the down-sampled version of Imagenet.
13) LSUN [79]: LSUN is a dataset of scene categories

including bedrooms, classroom, etc.
All datasets are resized to 32×32×3 for consistency. The

size of each test dataset is fixed to 10,000 for comparison. For
grayscale datasets of size 28× 28× 1, we replicate channels
and pad zeros around images. We use the same method
to process LSUN as the baseline method GOD2KS [34].
See Figure K.30 in the supplementary material for example
images of different datasets.

APPENDIX G
MODEL DETAILS

We use the released model (checkpoints) by the author of the
baseline to conduct experiments if possible. Otherwise, we
train the model by ourselves.

The authors of GAD baseline method (i.e., Ty-test) reim-
plement Glow with PyTorch and release only one model
checkpoint trained on CIFAR-10 [22]. We use their model
for CIFAR-10 vs others. For other problems, we train the
official Glow model [64] by ourselves. For VAE, we train
convolutional VAE and use sampled representation for all
problems. Among baseline methods, only the authors of Llast
released their model checkpoints. We use their checkpoints
to produce results on problems not evaluated in the original
paper.

The Glow model consists of three stages, each containing
32 coupling layers with width 512. After each stage, the
latent variables are split into two parts. One half is treated
as the final representations and another half is processed
by the next stage. We use additive coupling layers for
grayscale datasets and CelebA and use affine coupling layers
for SVHN and CIFAR-10. We find no difference between
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Fig. G.1: The training curve of Glow on CelebA32.

these two coupling layers for OOD detection. All priors are
standard Gaussian distribution except for CIFAR-10, which
has learned mean and diagonal covariance. All models are
trained using Adamax optimization method with a batch
size of 64. The learning rate is increased from 0 up to 0.001
in the first 10 epochs and keeps invariable in the remaining
epochs. Flow-based models are resource consuming. We train
Glow on FashionMNIST/SVHN/CelebA32 for 130/390/2000
epochs, respectively. The training curve of Glow on CelebA32
is shown in Figure G.1. We have also conducted experiments
using the checkpoint released by OpenAI [64] for CIFAR-10
vs others. The results are similar.

For VAE, we use convolutional architecture in the encoder
and decoder. The encoder consists of three 4 × 4 × 64
convolution layers. On top of convolutional layers, two dense
layer heads output the mean µ(x) and the standard variance
σ(x) respectively. The decoder has the mirrored architecture
as the encoder. All activations are LeakyReLU with α = 0.3.
For FashionMNIST, SVHN, and CIFAR-10, we use 8-, 16- and
32-dimensional latent space, respectively. Models are trained
using Adam without dropout. The learning rate is 5× 1−4

with no decay.
Details of Baseline Methods.

1) S . The authors of S modified the official Glow model by
using zero padding and removing ActNorm layer [28].
They did not explain the reason for such modification.
In principle, such modification to models should not
affect the baseline method. Since the authors did not
release their source code and model checkpoint, we
reimplement S method using the official Glow model
[84] for those problems not evaluated in [28]. We also use
FLIF [88] as the compressor, which is the best compressor
in [28]. We find the performance of S degenerates on
the official Glow model.

2) Llast. We use the model checkpoints released by the
authors of Llast for results not reported in the original
publication [29].

3) DoSE. The authors of DoSE did not release their source
code and model. We reimplement DoSESVM on the
official Glow model for problems not evaluated in
[30]. We use the same parameters as the original paper.
The performance of DoSE on the official Glow model
trained on SVHN is slightly better than the results in
[30]. We also find the performance of DoSE degenerates
severely on CelebA32 vs CIFAR-10/100 compared with
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the results reported in their original publication (below
75% AUROC). We did not present these results in the
main text.

APPENDIX H
DISCUSSION

Normality of Representations. The normality of ID and
OOD representation facilitates our theoretical analysis and
OOD detection algorithm on flow-based model. In our exper-
iments, we find that the normality of OOD representation is
a widely existing phenomenon under flow-based models. We
are investigating the underlying reason. Most importantly,
our method performs even better on Category II problems,
although the criterion computes the lower bound of the KL
divergence.

Both Flow-based model and VAE are trained to minimize
KL divergence between pZ and prior. However, it seems that
the normality of ID/OOD representations is a characteristic
of flow-based model.

In principle, we can construct latents following any
distribution and decode these latents back to data space
to construct an OOD dataset. Note that such manipulation
does not necessarily make our OOD detection method fail,
although it can violate the normality hypothesis. Besides,
such manipulation is much more difficult to conduct than
the data manipulations presented in this paper because we
need the model parameters.

PAD Results. From the results of three Glow models
trained on SVHN/CelebA/CIFAR-10 (Table 1 in the main
text), we can see that the more high-quality generated images
are, the better performance our method can achieve. This is
consistent with our theoretical analysis. Our method has the
a solid theoretical foundation. We believe that our method
can achieve better performance with the increasing success
of flow-based model in the future.

Limitation. Our method requires the model to capture
the distribution of training data. For example, Glow trained
on CIFAR-10 does not generate meaningful images. Thus, the
KL divergence between the distributions of ID representation
and prior is not small enough. So our theoretical analysis
does not apply to this problem well. This is why our method
does not achieve high AUROC on CIFAR-10 vs CIFAR-100.
We think it is hard to achieve high AUROC with a model
which does not succeed in generating meaningful images
(see Figure K.31 in the supplementary material). In such a
case, the model generates “OOD data” that differ from the
training set. Besides, the similarity between CIFAR-10 and
CIFAR-100 also brings obstacles to OOD methods.

There are two possible solutions for the most challenging
problem CIFAR-10 vs CIFAR-100. The first one is to improve
the model. Modeling data is a long-standing goal of unsu-
pervised learning [57]. Up to now, it is still hard to generate
high-quality CIFAR-10-like images using unconditional flow-
based models. The second possible solution is to use a more
sensitive criterion to estimate KL divergence or dependence.
We leave this direction as future work.

Ty-test applies to flow-based model, VAE, and auto-
regressive model. Our method applies to models which learn
independent or disentangled representations [59], [60], [61],
[89], [90], [91], [92], not including auto-regressive model.

Other Baselines.
In this paper, we mainly choose recently proposed

methods applicable to flow-based model as baselines. We did
not choose WAIC [20] whose results could not be reproduced
by Nalisnick et al [22]. We did not choose the likelihood ratios
method [35] as the baseline either for several reasons. First, in
[28], Serrà et al. interpret their method S as a likelihood-ratio
test statistic and achieve better performance than likelihood
ratios. Second, the authors of the likelihood ratios method
[35] did not report results on flow-based models. So we
choose method S rather than likelihood ratios as baseline.
Finally, we choose SOTA method DoSE as baseline, which is
better than log p(x), log p(z), WAIC, and likelihood ratio as
reported in [30].

In [34], the authors propose GOD2KS mainly for GAD. In
the appendix of [34], the authors also use data augmentation
to support PAD using GOD2KS. However, they only report
a few PAD results based on RealNVP. The PAD results
of GOD2KS on CIFAR-10 vs SVHN/CelebA/LSUN with
RealNVP are 85%/57%/46% AUROCs, respectively. Our
method achieves 82.6%/85.2%/99.2% AUROCs on the same
three problems with Glow. Due to this situation, we did not
use GOD2KS as PAD baseline.

Just after we receive the first round of review comments,
Osada et al. propose PRE method [93], which uses recon-
struction error and typicality-based penalty to perform point-
wise anomaly detection with flow-based model. PRE uses
the original Equation (4) in [93] as anomaly score. The
larger the score, the more likely the input is OOD. We
did not choose PRE as baseline for two reasons. First, the
authors of PRE do not use as many dataset compositions
in evaluation as ours. They also use ID datasets of different
sizes. It is hard to compare two methods in this situation.
Second, similar to Annulus Method, PRE can also be attacked
by data manipulation M1 (rescaling representations). For
each OOD dataset S = {x}, we can use data manipula-
tion M1 (see Subsection 3.1) to construct an OOD dataset
S′ = {x′ = f−1(

√
d f(x)
|f(x)| )|x ∈ S} (see Figure K.4 and

Figure K.5). For input x′ ∈ S′, the representation z′ = f(x′)
locates in the typical set annulus of prior precisely and
Equation (4) in [93] equals 0. This can make PRE method
achieve near 0 AUROC.

Other Comparisons. Explicit generative models, includ-
ing autoregressive models, flow-based models, and VAEs,
can provide users with likelihoods (or lower bound). An
ideal explicit generative model should: 1) generate new
data from the training data distribution and 2) provide
likelihood indicating the confidence of whether the data
belongs to the training data distribution. Implicit generative
models (i.e., GAN) do not produce likelihood, so these two
kinds of models are under different settings. Commonly,
explicit generative models are compared together in anomaly
detection publications. All the baseline methods applying
to flow-based model are compared with explicit generative
models in evaluation. (e.g., [20], [23], [28], [29], [30], [35]).

We notice that the existing hybrid model [94] achieves
better performance on leave-one-out setting on MNIST 7. It
is unfair to compare a flow-based method with a hybrid

7. The author of [94] did not report experimental results on cross-
dataset problems.
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model combining explicit and implicit generative models.
For example, existing work has shown that the combination
of GAN and flow-based model can improve the quality of the
generated images of flow-based model. For example, in Flow-
GAN [95], flow-based model is used to avoid mode collapse.
Adversarial training is used to improve the image quality
of flow-based model. The method is to sample noise z from
the typical set of prior and use a discriminator to distinguish
f−1(z) and training data. In our data manipulation M1
(rescaling representations to the typical set), we find that
Glow trained by maximum likelihood estimation cannot
expel OOD representation from the typical set of prior (see
Subsection 3.1). In Flow-GAN, adversarial training tends to
compel Glow (f−1) to map latents in the typical set of prior to
in-distribution images. Importantly, our theoretical analysis
also applies to flow-GAN whose loss function includes the
basic loss function of Glow. We did not conduct experiments
on Flow-GAN [95] because Flow-GAN uses old flow-based
models NICE [36] and RealNVP [14]. Besides, adversarial
training would affect the divergences in flow-based model.
We will explore the properties of hybrid models which
combine the SOTA flow-based model and GAN in the future.

We conduct comprehensive experiments to evaluate
our method on different dataset compositions falling into
Category I and II. Flow-based models have different behaviors
for these two categories of problems. Commonly, one OOD
detection method’s performance may vary on different
problems. Several existing OOD detection methods have
been evaluated with very few datasets (e.g., only CIFAR-10)
as the training dataset. We did not compare our method
with such methods for two reasons. First, there is no result
reported on more problems. Second, our method requires the
model to succeed in modeling the training dataset. Unluckily,
flow-based model is not as successful as other datasets
on CIFAR-10. This affects our method. We think it is not
comprehensive if using only CIFAR-10 as training dataset in
evaluation.

Researchers also propose ensembling algorithms for
anomaly detection [96], which is orthogonal to our method.
We plan to explore this direction in the future.

Models. We did not conduct more experiments on flow-
based models with various architectures. In principle, a
more expressive model can make the forward KL divergence
smaller, and our method can benefit more.

Our theoretical analysis relies on the assumption that the
KL divergence between the distributions of ID and OOD
representations is large (see Section 4.1.1 in the main text).
So our analysis does not apply to VAE and autoregressive
models directly. According to the Brouwer Invariance of
Domain Theorem [97], Rn cannot be homeomorphic to Rm

if n 6= m . The Brouwer Invariance of Domain Theorem also
implies that there is no dead neuron in flow-based model.
Otherwise, we can construct diffeomorphism from high to
low dimensional space. For VAE, a high-dimensional latent
space may contain nearly dead neurons. This may reduce the
performance of our method. We did not conduct experiments
on other VAE variations, e.g., β-VAE [92], FactorVAE [59],
β-TCVAE [60], and DIP-VAE [61]. These variations add more
regularization strength on disentanglement and have more
independent representations than vanilla VAE [62]. We will
conduct experiments on larger VAE models and variations

in the future.
Finally, we use the model checkpoints released by base-

lines as long as possible. These released models should be
tuned elaborately for their methods, so our method benefits
less from fine-tuning.

APPENDIX I
MORE RELATED WORK

OOD Detection. In [29], Schirrmeister et al. find the like-
lihood contributed by the last scale of Glow (Llast) is
better than log p(x) for PAD. Their method relies on the
decomposition of the likelihood (original Equation (3) in
[29]). Such decomposition requires that the split two parts
at each stage of Glow are independent. This may not hold
for OOD data due to covariate shift. Experimental results
show that the last-scale log-likelihood of OOD data may be
larger than 0 (See Figure K.8 in the supplementary material).
So the criterion used by Llast should not be explained as
likelihood for OOD data. Finally, as shown in Table 1, Llast
is also affected by data manipulation.

Theoretical Analysis. Previous works [37], [98] analyze
the training objective of flow-based model in KL divergence
form. We apply the property of diffeomorphism to inves-
tigate the divergences between distributions in flow-based
models in the setting of OOD detection. We also propose
new theorems on the properties of KL divergence between
Gaussian distributions for further analysis. Currently, there is
no similar work on the properties of KL divergence between
Gaussian distributions. Theorems 2, and 3 can be used as
basic theorems in machine/deep learning and information
theory. For example, after we post the manuscript containing
the proofs of Theorems 2 and 3 on Arxiv [45], the relaxed
triangle inequality (Theorem 3) has been used in constrained
variational policy optimization for safe reinforcement learn-
ing [99].

Other Approximator and Divergence Estimation. In
principle, GMM can approximate a target density better
than a single Gaussian distribution [100]. We tried to use
GMM to approximate the distribution of representations and
use Monte Carlo sampling to estimate the KL divergence
between GMMs. The results show GMM is worse than using
Gaussian distribution for OOD detection. The reasons are
twofold: a) it is inappropriate to use GMM for modeling ID
representations that follow a Gaussian-like distribution. b)
the batch size is too small (usually 5 ∼ 10) to estimate the
parameters of GMM.

We also tried the SOTA φ-divergence estimation method
applicable for VAE, i.e. RAM-MC [52]. Results show that
RAM-MC can also be affected by data manipulation M2
(adjusting contrast, see Section 3.1) 8.

OOD Sampling. In this paper, we sample OOD data
using the fitted Gaussian from OOD representations to verify
that OOD representations reside in specific directions. Such
directions can be partially captured by the sample mean
and sample covariance. In [49], the authors sample noise
ε ∼ N (µ̃, I) and generate OOD data f−1(ε) using flow-
based model, where µ̃ is the sample mean of OOD representa-

8. This does not prove that RAM-MC is not applicable to general-
purpose divergence estimation.
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tions. They did not use the sample covariance of OOD repre-
sentations. Their manuscript is released contemporaneously
with the first edition of this paper [101]. Some researchers
have explored other OOD sampling methods. Sinha et al.
use various operations including Jigsaw, Stitching on normal
images to generate negative data [102]. These negative data
can be used to help GAN to improve generation quality
and OOD detection ability. However, their performance of
OOD detection on CIFAR-10 vs others is worse than our
method. Dionelis et al. propose to generate samples [103]
on the boundary of the support of data distributions which
is learned by flow-based model. Their method does not
modify the parameters of flow-based model and has the
same OOD detection ability as the original flow-based model.
In this paper, we sample OOD data in order to verify that
OOD representations reside in specific directions that can
be partially captured by the sample mean and covariance
of representations. We will explore more work on OOD
sampling in the future.

Local Pixel Dependence. In [23], Kirichenko et al. reshape
the representations of flow-based models to the original input
shape (32× 32× 3) and analyze the induction biases of flow-
based model. Their work reveals the reshaped representation
manifests local pixel dependence. Our work show that the
representations with a raw shape (4× 4× 48) also manifest
local pixel dependence.

OOD Detection With Auxiliary Data. OOD detection
can be improved with the help of an auxiliary outlier dataset.
In [29], Schirrmeister et al. improve likelihood-ratio-based
method by the help of a huge outlier dataset (80 Million
Tiny ImageNet). This is not unsupervised learning due to the
exposure to outliers in training as like [68]. Besides, the huge
outlier dataset includes almost all the image classes in the
testing phase. We did not compare with such methods due
to different problem settings.

Classification of Problems. We classify OOD problems
into Category I and II according to the variance and like-
lihoods of datasets. This criterion is roughly similar to the
complexity used in [28]. See Figure K.32 in the supplementary
material for details.

APPENDIX J
MORE EXPERIMENTAL RESULTS

J.1 GAD Results on Glow

FashionMNIST vs Others. Table J.1 shows the GAD results
of Glow trained on FashionMNIST. The results of baselines
are referenced from [22], in which the authors use bootstrap
method to establish thresholds. We use a low false positive
rate to establish a threshold t (see Algorithm 1) and then
compute the corresponding true positive rate with t. Take
FashionMNIST vs MNIST with batch size m = 2 as example.
We find the threshold t corresponding to false positive rate
0.01 which is the second lowest one among all the baselines
(column 2 in Table J.1). Then we use t to compute the
corresponding true positive rate 0.43± 0.02. For larger batch
sizes (m = 10, 25), we set the thresholds t, achieving a most
rigorous 0 false positive rate.

SVHN/CIFAR-10/CelebA vs Others. Table J.2, J.3 and
J.4 shows numerical GAD results corresponding to Figure 3

in the main text. Table J.5 shows GAD results with smaller
batch sizes 2 and 4.

CelebA vs CIFAR-10/100 are challenging for Ty-test.
In principle, if the train and test split of ID dataset have
coinciding likelihoods, the worst AUROC of Ty-test should
be around 50%. But Ty-test only achieves 1.7% and 2.9%
AUROCs on these two problems. The reasons are two-fold.
First, CIFAR-10/100 have coinciding likelihoods with CelebA.
Please see Figure K.10 for details. Second, we find it is hard
to make the likelihood distributions of CelebA train and
test split fit very well on the official Glow model even
within 2,000 epochs (see Figure G.1 for training curve). The
likelihoods of CIFAR-10/100 are closer to CelebA train set
than the CelebA test set. This misleads Ty-test to make
wrong decisions (below 10% AUROC). This also makes
Ty-test perform worse when batch size is larger because
a larger batch size eliminates randomness (see Table J.2). On
the contrary, our method is not affected by such possible
underfitting or overfitting.

Comparison with GOD2KS. Table J.6 shows the compar-
ison of our method with GOD2KS. Our method is better.

Mixture of OOD Datasets. Table J.7 shows the results of
KLODS when OOD dataset is a mixture of two of the three
datasets: SVHN, CelebA, and CIFAR-10.

Ablation Study. Table J.8 shows the results of ablation
study. Except for CIFAR-10 vs ImageNet32-C(0.3), the order
of performance is KLODS > KLOD > KLOD-all > Ty-test.
The only exception is CIFAR-10 vs ImageNet32-C(0.3). Note
that KLOD only applies to GAD.

One-vs-Rest. Table J.9 shows GAD Results (AUROC and
AUPR in percentage) of Glow on One-vs-Rest on MNIST.

GlowGMM. Figure J.1 and Table J.10 shows the results of
GAD on FashionMNIST. Our method achieves 100% AUROC
on average when the batch size is 25. The baseline only
reaches 22.7% AUROC. Recent works have improved the
accuracy of conditional Glow on classification problems [26],
[104]. However, as long as GlowGMM does not achieve
100% classification accuracy, the question proposed in the
introduction remains.

Table J.11 shows the results of using p(z) for one-vs-rest
classification on FashionMNIST with GlowGMM. p(z) is
not a good criterion for OOD detection. For example, the
AUROC for class 8 vs rest is only 55.5%.

Generating OOD data Using GlowGMM. In Section 5.1,
we sample blurred OOD data with fitted Gaussian distribu-
tion. In GlowGMM, we can generate high-quality OOD images
with fitted Gaussian distribution from OOD representations.
Figure J.2(a) shows the generated images using noise sam-
pled from each Gaussian component Ni(µi, diag(σ2

i )) (1 ≤
i ≤ 10) as prior. The i-th column corresponds to the i-
th Gaussian Ni. Figure J.2(b) shows the generated images
using the similar operation in Section 5.1.1. For each i,
we compute the representations {z} of the ((i + 1)%10)-
th class and normalize them under Ni(µi, diag(σ2

i )) as
z′ = (z − µi)/σi. We use the normalized representation
{z′} to fit a Gaussian distribution Ñi(µ̃i′ , Σ̃i′). Then We
sample εi′ ∼ Ñi(µ̃i′ , Σ̃i′) and unnormalize εi′ back using
parameters of the i-th component as εi′ · σi + µi. Finally,
we compute f−1(εi′ · σi + µi) to generate new images.
As shown in Figure J.2(b), we can generate almost high
quality images of the ((i + 1)%10)-th class from the fitted
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TABLE J.1: GAD Results on Glow trained on FashionMNIST. The ID column reflects FPR (ideally should be 0) and the
MNIST and notMNIST columns are TPR (ideally should be 1). The results of baselines are referenced from [22]. Notable
failures (under 0.5 TPR) are underlined.

m=2 m=10 m=25
Method ID MNIST notMNIST ID MNIST notMNIST ID MNIST notMNIST
Ty-test 0.02±0.01 0.14±0.10 0.08±0.04 0.02±0.02 1.00±0.00 0.69±0.11 0.01±0.00 1.00±0.00 1.00±0.00
t-test 0.01±0.00 0.08±0.00 0.06±0.00 0.01±0.00 1.00±0.00 0.67±0.01 0.01±0.00 1.00±0.00 0.99±0.00
KS-Test 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.00 1.00±0.00 0.61±0.01 0.00±0.00 1.00±0.00 0.98±0.01
Max Mean Dis. 0.05±0.02 0.17±0.06 0.04±0.03 0.02±0.02 0.63±0.12 0.37±0.24 0.04±0.04 1.00±0.00 1.00±0.00
Kern. Stein Dis. 0.05±0.05 0.16±0.14 0.01±0.01 0.01±0.01 0.21±0.11 0.01±0.00 0.02±0.03 0.76±0.21 0.00±0.00
Annulus Method 0.01±0.01 0.00±0.00 0.96±0.03 0.02±0.00 0.00±0.00 1.00±0.00 0.03±0.03 0.00±0.00 1.00±0.00
KLODS 0.01±0.00 0.43±0.02 0.95±0.00 0.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00 1.00±0.00

TABLE J.2: GAD Results (AUROC and AUPR in percentage) of KLODS and Ty-test on Glow with batch sizes 5 and 10. The
higher the better. The performance of Ty-test on CelebA vs CIFAR-10/100 decreases when the batch size is larger. See our
explanation in Section 6.2.1 in the main text.

ID↓ OOD↓
Batch size→ m=5 m=10
Method→ KLODS Ty-test KLODS Ty-test
Metric→ AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Fa
sh

.

Constant 100.0±0.0 100.0±0.0 42.1±0.3 42.1±0.2 100.0±0.0 100.0±0.0 41.7±0.5 41.9±0.2
MNIST 99.8±0.0 99.8±0.0 97.6±0.1 95.8±0.5 100.0±0.0 100.0±0.0 99.7±0.1 99.6±0.1
MNIST-C(10.0) 100.0±0.0 100.0±0.0 88.2±0.3 81.8±0.2 100.0±0.0 100.0±0.0 95.8±0.5 93.5±1.2
notMNIST 100.0±0.0 100.0±0.0 77.5±0.3 74.6±0.4 100.0±0.0 100.0±0.0 87.1±0.2 85.4±0.4
notMNIST-C(0.005) 100.0±0.0 100.0±0.0 25.0±0.6 35.8±0.2 100.0±0.0 100.0±0.0 23.8±0.4 35.5±0.1

SV
H

N

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.008) 100.0±0.0 100.0±0.0 13.5±0.5 33.0±0.1 100.0±0.0 100.0±0.0 11.1±0.5 32.6±0.1
CelebA 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.08) 99.7±0.0 99.7±0.0 50.7±0.7 47.0±0.3 100.0±0.0 100.0±0.0 55.2±0.4 49.1±0.3
CIFAR-10 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-10-C(0.12) 97.0±0.2 97.4±0.2 31.6±0.5 37.9±0.2 99.3±0.1 99.4±0.1 25.0±0.3 35.6±0.1
CIFAR-100 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-100-C(0.12) 96.9±0.1 97.3±0.1 35.3±0.5 39.4±0.2 98.9±0.3 99.0±0.3 27.2±0.8 36.3±0.2
ImageNet32 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
ImageNet32-C(0.07) 99.8±0.0 99.8±0.0 45.5±0.9 46.0±0.5 100.0±0.0 100.0±0.0 42.1±0.7 44.1±0.5
LSUN 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
LSUN-C(0.06) 99.9±0.0 99.0±0.0 42.8±0.6 42.5±0.3 100.0±0.0 100.0±0.0 42.3±0.5 42.2±0.1

C
IF

A
R

-1
0

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.02) 100.0±0.0 100.0±0.0 11.5±0.0 32.9±0.0 100.0±0.0 100.0±0.0 9.3±0.0 32.5±0.0
CelebA 99.2±0.1 99.4±0.1 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.3) 84.3±0.3 84.4±0.4 28.4±0.5 36.7±0.2 94.5±0.3 94.7±0.3 23.5±0.5 35.2±0.1
ImageNet32 90.0±0.2 92.1±0.1 99.2±0.1 99.3±0.1 95.0±0.4 96.2±0.2 100.0±0.0 100.0±0.0
ImageNet32-C(0.3) 72.0±0.3 72.6±0.4 40.9±0.4 43.2±0.2 74.3±0.6 74.8±0.8 32.0±0.7 38.5±0.3
SVHN 97.6±0.2 97.8±0.2 98.6±0.1 98.4±0.1 99.8±0.0 99.8±0.0 99.9±0.1 99.9±0.1
SVHN-C(2.0) 100.0±0.0 100.0±0.0 33.5±0.4 61.0±0.2 100.0±0.0 100.0±0.0 27.2±0.5 58.2±0.1
LSUN 100.0±0.0 100.0±0.0 99.9±0.0 99.9±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
LSUN-C(0.3) 90.0±0.2 90.8±0.2 52.2±0.8 48.8±0.4 91.2±0.2 92.0±0.2 56.6±0.4 51.3±0.3

C
el

eb
A

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.012) 100.0±0.0 100.0±0.0 36.2±0.7 39.6±0.2 100.0±0.0 100.0±0.0 30.9±0.7 37.9±0.2
CIFAR-10 99.6±0.0 99.6±0.0 7.2±0.2 31.4±0.0 100.0±0.0 100.0±0.0 1.7±0.1 30.8±0.0
CIFAR-100 99.8±0.0 99.8±0.0 9.5±0.3 31.8±0.1 100.0±0.0 100.0±0.0 2.9±0.2 30.9±0.0
ImageNet32 100.0±0.0 100.0±0.0 78.1±0.4 85.6±0.3 100.0±0.0 100.0±0.0 83.9±0.4 89.6±0.2
ImageNet32-C(0.2) 100.0±0.0 100.0±0.0 26.0±0.3 36.4±0.2 100.0±0.0 100.0±0.0 18.2±0.3 33.8±0.0
SVHN 100.0±0.0 100.0±0.0 78.7±0.3 73.3±0.9 100.0±0.0 100.0±0.0 86.6±0.8 83.3±1.4
SVHN-C(1.8) 100.0±0.0 100.0±0.0 3.5±0.2 31.0±0.0 100.0±0.0 100.0±0.0 0.5±0.1 30.7±0.0
LSUN 100.0±0.0 100.0±0.0 65.4±0.3 64.3±0.2 100.0±0.0 100.0±0.0 71.2±0.3 70.0±0.5
average 98.1 98.2 64.6 69.0 98.8 98.9 64.0 68.4

Gaussian. These results verify that OOD representations
reside in specific directions that can be characterized by the
mean and covariance matrix of OOD representations. We did
not conduct more experiments on OOD sampling because it
is beyond the scope of this paper.

J.2 GAD Results on VAE

Figure J.3 and Table J.12 show GAD results on convolutional
VAE on problems FashionMNIST/SVHN/CIFAR10 vs oth-
ers.

Table J.13 shows the GAD results on CIFAR10 vs CI-
FAR100/ImageNet32.

Table J.14 shows the results of using reconstruction
probability Ez∼qφ [log pθ(x|z)] for OOD detection in VAE.

J.3 PAD results on Glow
Table J.15 shows PAD results (AUROC in percentage) of
Joint confidence loss method, ODIN, Joint confidence loss
method+ODIN, DoSE and KLODS.
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TABLE J.3: GAD Results (AUROC and AUPR in percentage) of KLODS and Annulus Method (R) (reimplementation) on
Glow with batch sizes 5 and 10. The higher the better. Our reimplementation of Annulus Method achieves much better results than
that reported in [22] (referenced by Table J.1).

ID↓ OOD↓
Batch size→ m=5 m=10
Method→ KLODS Annulus Method (R) KLODS Annulus Method (R)
Metric→ AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Fa
sh

.

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
MNIST 99.8±0.0 99.8±0.0 98.6±0.0 98.7±0.0 100.0±0.0 100.0±0.0 99.9±0.0 99.9±0.0
MNIST-C(10.0) 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
notMNIST 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
notMNIST-C(0.005) 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

SV
H

N

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.008) 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.08) 99.7±0.0 99.7±0.0 50.0±0.2 49.3±0.1 100.0±0.0 100.0±0.0 49.6±0.2 49.2±0.1
CIFAR-10 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-10-C(0.12) 97.0±0.2 97.4±0.2 59.6±0.0 58.2±0.0 99.3±0.1 99.4±0.1 63.5±0.1 62.0±0.5
CIFAR-100 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-100-C(0.12) 96.9±0.1 97.3±0.1 70.9±0.2 70.4±0.3 98.9±0.3 99.0±0.3 78.2±0.3 77.9±0.4
ImageNet32 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
ImageNet32-C(0.07) 99.8±0.0 99.8±0.0 76.3±0.2 75.7±0.3 100.0±0.0 100.0±0.0 84.2±0.5 83.8±0.5
LSUN 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
LSUN-C(0.06) 99.9±0.0 99.0±0.0 96.4±0.1 96.1±0.1 100.0±0.0 100.0±0.0 99.4±0.1 99.4±0.1

C
IF

A
R

-1
0

Constant 100.0±0.0 100.0±0.0 62.0±1.9 67.2±2.5 100.0±0.0 100.0±0.0 66.7±4.5 75.6±2.8
Uniform 100.0±0.0 100.0±0.0 6.3±1.0 31.8±0.4 100.0±0.0 100.0±0.0 7.3±1.4 34.1±1.6
Uniform-C(0.02) 100.0±0.0 100.0±0.0 54.4±2.1 63.3±2.6 100.0±0.0 100.0±0.0 61.3±2.9 71.8±2.7
CelebA 99.2±0.1 99.4±0.1 36.8±1.9 48.3±2.2 100.0±0.0 100.0±0.0 45.4±4.9 60.6±4.1
CelebA-C(0.3) 84.3±0.3 84.4±0.4 55.9±2.8 63.0±2.7 94.5±0.3 94.7±0.3 48.4±2.8 62.1±2.8
ImageNet32 90.0±0.2 92.1±0.1 45.8±1.9 55.2±1.4 95.0±0.4 96.2±0.2 43.8±2.5 57.7±2.1
ImageNet32-C(0.3) 72.0±0.3 72.6±0.4 47.2±2.6 56.1±2.5 74.3±0.6 74.8±0.8 51.3±3.5 64.5±2.7
SVHN 97.6±0.2 97.8±0.2 47.3±1.6 56.9±2.4 99.8±0.0 99.8±0.0 49.4±2.4 63.0±2.4
SVHN-C(2.0) 100.0±0.0 100.0±0.0 45.0±1.5 56.0±1.9 100.0±0.0 100.0±0.0 39.4±0.9 54.9±1.5
LSUN 100.0±0.0 100.0±0.0 29.1±1.2 44.6±2.2 100.0±0.0 100.0±0.0 29.9±4.2 46.5±4.2
LSUN-C(0.3) 90.0±0.2 90.8±0.2 49.4±2.1 58.1±2.3 91.2±0.2 92.0±0.2 43.6±1.1 58.1±1.0

C
el

eb
A

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.012) 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-10 99.6±0.0 99.6±0.0 99.5±0.0 99.6±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-100 99.8±0.0 99.8±0.0 99.6±0.0 99.6±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
ImageNet32 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
ImageNet32-C(0.2) 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
SVHN 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
SVHN-C(1.8) 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
LSUN 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
average 98.1 98.2 80.3 83.3 98.8 98.9 81.1 85.2
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Fig. J.1: GAD results(AUROC) on GlowGMM trained on FashionMNIST. Numerical results are shown in Table J.10 in the
supplementary material.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 24

TABLE J.4: GAD Results (EER in percentage) of KLODS, Ty-test and Annulus Method (Annulus.) on Glow with batch sizes 5
and 10. The lower the better.

ID↓ OOD↓
Batch size→ m=5 m=10
Method→ KLODS Ty-test Annulus. KLODS Ty-test Annulus.

Fa
sh

.
Constant 0.0±0.0 54.2±0.4 0.0±0.0 0.0±0.0 53.9±0.8 0.0±0.0
MNIST 0.9±0.2 5.6±0.3 6.1±0.4 0.0±0.0 1.2±0.2 1.6±0.3
MNIST-C(10.0) 0.0±0.0 14.7±0.5 0.6±0.1 0.0±0.0 7.3±0.2 0.0±0.0
notMNIST 0.0±0.0 29.5±0.3 0.0±0.0 0.0±0.0 20.8±0.3 0.0±0.0
notMNIST-C(0.005) 0.0±0.0 44.5±0.4 0.0±0.0 0.0±0.0 39.4±0.5 0.0±0.0

SV
H

N

Constant 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Uniform 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Uniform-C(0.008) 0.0±0.0 79.1±0.6 0.0±0.0 0.0±0.0 81.7±0.4 0.0±0.0
CelebA 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
CelebA-C(0.08) 8.0±0.3 43.2±0.3 50.3±0.3 2.3±0.2 40.2±0.8 50.2±0.3
CIFAR-10 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
CIFAR-10-C(0.12) 24.0±0.5 64.1±0.3 43.2±0.4 18.7±0.5 70.9±0.3 40.6±0.6
CIFAR-100 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
CIFAR-100-C(0.12) 23.3±0.4 61.0±0.3 34.6±0.3 19.4±0.5 68.2±0.2 29.2±0.7
ImageNet32 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
ImageNet32-C(0.07) 9.3±0.2 53.7±0.6 30.8±0.3 4.0±0.3 56.4±0.6 23.8±0.4
LSUN 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
LSUN-C(0.06) 0.8±0.1 54.1±0.4 9.6±0.3 0.0±0.0 42.3±0.5 3.7±0.5

C
IF

A
R

-1
0

Constant 0.0±0.0 0.0±0.0 41.4±2.0 0.0±0.0 0.0±0.0 37.8±4.7
Uniform 0.0±0.0 0.0±0.0 87.6±1.2 0.0±0.0 0.0±0.0 89.2±3.3
Uniform-C(0.02) 0.0±0.0 85.9±0.5 48.0±2.3 0.0±0.0 87.5±1.0 41.3±3.4
CelebA 3.9±0.2 0.9±0.1 59.2±1.8 0.4±0.1 0.0±0.0 55.1±4.1
CelebA-C(0.3) 23.3±0.7 65.5±0.6 46.0±2.7 13.4±0.5 69.5±0.8 50.4±3.0
ImageNet32 18.9±0.6 3.8±0.3 53.5±0.9 12.3±0.6 0.8±0.1 55.4±3.2
ImageNet32-C(0.3) 35.3±0.6 57.1±0.5 51.4±2.8 32.6±1.3 64.0±0.7 50.9±2.7
SVHN 8.0±0.2 5.6±0.2 52.2±1.8 2.5±0.4 1.1±0.2 52.5±2.4
SVHN-C(2.0) 0.2±0.1 61.3±0.4 53.7±1.7 0.0±0.0 67.0±0.6 59.0±1.5
LSUN 0.0±0.0 1.2±0.1 65.9±0.8 0.0±0.0 0.0±0.0 65.4±4.7
LSUN-C(0.3) 18.2±0.3 47.7±0.6 51.1±1.0 17.2±0.4 44.7±0.9 54.1±2.1

C
el

eb
A

Constant 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Uniform 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Uniform-C(0.012) 0.0±0.0 71.0±0.5 0.1±0.0 0.0±0.0 78.3±0.6 0.0±0.0
CIFAR-10 3.2±0.3 85.1±0.6 3.4±0.3 0.1±0.1 93.1±0.6 0.4±0.2
CIFAR-100 2.8±0.2 82.9±0.1 3.0±0.2 0.0±0.0 91.6±0.5 0.3±0.1
ImageNet32 0.0±0.0 26.4±0.2 0.0±0.0 0.0±0.0 20.7±0.8 0.0±0.0
ImageNet32-C(0.2) 0.0±0.0 67.7±0.6 0.0±0.0 0.0±0.0 73.7±0.5 0.0±0.0
SVHN 0.0±0.0 28.5±0.2 0.0±0.0 0.0±0.0 22.0±0.4 0.0±0.0
SVHN-C(1.8) 0.0±0.0 90.0±0.4 0.0±0.0 0.0±0.0 97.0±0.3 0.0±0.0
LSUN 0.0±0.0 38.8±0.5 0.0±0.0 0.0±0.0 34.6±0.3 0.0±0.0
average 4.6 33.9 33.9 3.2 34.0 19.5

(a) (b)

Fig. J.2: GlowGMM with 10 components trained on FashionMNIST. (a) sampling from Ni(µi, diag(σ2
i )). The i-th column

corresponds to Gaussian distribution Ni. (b) For Ni, we fit another Gaussian distribution Ñi(µ̃i′ , Σ̃i′) using the normalized
representations (by parameters of Ni) of inputs of the ((i+ 1)%10)-th class. The i-th column shows images generated from
Ñi.
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TABLE J.5: GAD Results (AUROC and AUPR in percentage) of KLODS and Ty-test on Glow with batch sizes 2 and 4. The
higher the better.

ID↓ OOD↓
Batch size→ m=2 m=4
Method→ KLODS Ty-test KLODS Ty-test
Metric→ AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Fa
sh

.

Constant 100.0±0.0 100.0±0.0 40.6±0.4 41.3±0.2 100.0±0.0 100.0±0.0 41.0±0.5 41.6±0.2
MNIST 91.6±0.1 91.8±0.2 88.7±0.2 81.1±0.4 99.4±0.0 99.4±0.0 96.1±0.1 93.2±0.1
MNIST-C(10.0) 97.2±0.1 97.3±0.1 74.0±0.3 65.2±0.2 100.0±0.0 100.0±0.0 85.4±0.2 77.4±0.5
notMNIST 99.2±0.0 99.4±0.0 64.0±0.3 61.8±0.3 100.0±0.0 100.0±0.0 74.3±0.4 71.2±0.3
notMNIST-C(0.005) 100.0±0.0 100.0±0.0 23.2±0.2 35.3±0.0 100.0±0.0 100.0±0.0 24.8±0.3 35.7±0.1

SV
H

N

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.008) 99.9±0.0 99.8±0.0 14.6±0.5 33.2±0.1 100.0±0.0 100.0±0.0 14.5±0.4 33.2±0.1
CelebA 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.08) 90.1±0.2 88.6±0.4 49.0±0.3 46.6±0.2 96.2±0.2 95.1±0.3 55.8±0.4 50.4±0.3
CIFAR-10 100.0±0.0 100.0±0.0 99.9±0.0 99.9±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-10-C(0.12) 77.2±0.2 76.1±0.2 36.6±0.2 40.0±0.1 81.9±0.3 80.6±0.2 32.9±0.8 38.3±0.3
CIFAR-100 99.9±0.0 99.9±0.0 99.9±0.0 99.9±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-100-C(0.12) 79.8±0.3 79.3±0.3 40.6±0.4 42.1±0.2 83.5±0.2 82.7±0.1 36.5±0.7 39.9±0.3
ImageNet32 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
ImageNet32-C(0.07) 97.8±0.1 98.1±0.1 48.4±0.3 48.2±0.1 100.0±0.0 100.0±0.0 42.5±0.3 44.1±0.1
LSUN 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
LSUN-C(0.06) 98.1±0.0 97.7±0.1 41.3±0.4 42.0±0.2 99.8±0.0 99.7±0.0 42.4±0.4 42.4±0.1

C
IF

A
R

-1
0

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.02) 100.0±0.0 100.0±0.0 9.9±0.0 32.5±0.0 100.0±0.0 100.0±0.0 11.2±0.0 32.8±0.0
CelebA 93.3±0.1 94.6±0.1 98.0±0.1 98.1±0.0 98.4±0.1 98.7±0.1 99.9±0.0 99.9±0.0
CelebA-C(0.3) 72.4±0.3 71.6±0.3 32.4±0.3 38.1±0.1 81.3±0.3 81.2±0.3 29.7±0.4 37.1±0.1
ImageNet32 82.2±0.2 85.2±0.1 93.1±0.2 94.6±0.2 87.8±0.2 90.2±0.2 98.3±0.2 98.7±0.1
ImageNet32-C(0.3) 68.2±0.1 69.1±0.3 47.8±0.3 48.0±0.2 70.2±0.3 71.0±0.2 42.6±0.9 44.0±0.6
SVHN 90.0±0.1 90.7±0.2 91.2±0.1 88.1±0.3 96.2±0.1 96.5±0.1 97.6±0.1 96.8±0.2
SVHN-C(2.0) 99.1±0.1 99.2±0.0 39.2±0.1 64.0±0.1 100.0±0.0 100.0±0.0 35.2±0.5 61.9±0.2
LSUN 100.0±0.0 100.0±0.0 97.4±0.0 97.8±0.0 100.0±0.0 100.0±0.0 99.8±0.0 99.8±0.0
LSUN-C(0.3) 86.8±0.1 87.6±0.2 46.6±0.4 45.5±0.2 89.2±0.3 90.0±0.2 50.4±0.3 47.7±0.2

C
el

eb
A

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.12) 99.2±0.0 99.3±0.0 35.1±0.2 39.3±0.1 100.0±0.0 100.0±0.0 29.4±0.4 37.5±0.1
CIFAR-10 86.3±0.2 86.4±0.2 21.4±0.2 34.6±0.1 98.5±0.1 98.6±0.1 10.2±0.3 31.9±0.1
CIFAR-100 89.6±0.2 90.0±0.2 25.0±0.2 35.9±0.0 99.2±0.1 99.3±0.1 12.9±0.1 32.5±0.0
ImageNet32 100.0±0.0 100.0±0.0 76.4±0.3 83.5±0.1 100.0±0.0 100.0±0.0 76.9±0.4 84.5±0.2
ImageNet32-C(0.2) 99.2±0.0 99.3±0.0 34.6±0.2 40.3±0.1 100.0±0.0 100.0±0.0 28.4±0.2 37.4±0.0
SVHN 99.9±0.0 99.9±0.0 69.3±0.1 62.5±0.1 100.0±0.0 100.0±0.0 76.0±0.2 70.5±0.4
SVHN-C(1.8) 100.0±0.0 100.0±0.0 14.5±0.2 32.9±0.1 100.0±0.0 100.0±0.0 5.6±0.2 31.3±0.0
LSUN 100.0±0.0 100.0±0.0 60.2±0.1 58.8±0.3 100.0±0.0 100.0±0.0 63.8±0.1 62.5±0.3
average 94.8 94.9 64.4 65.2 97.0 97.0 64.7 68.6

TABLE J.6: GAD Results (AUROC and AUPR in percentage) of KLODS and GOD2KS on Glow with batch sizes 5 and 10. We
run our method for 5 times. The higher the better. We reference the results on all problems of GOD2KS reported in [34],
where the authors did not report average results of multiple runs.

ID↓ OOD↓
Batch size→ m=5 m=10
Method→ KLODS GOD2KS KLODS GOD2KS
Metric→ AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

FashionMNIST
MNIST 99.8±0.0 99.8±0.0 98 98 100.0±0.0 100.0±0.0 100 100
KMNIST 99.9±0.0 99.9±0.0 97 96 100.0±0.0 100.0±0.0 100 100
Omniglot 100.0±0.0 100.0±0.0 100 100 100.0±0.0 100.0±0.0 100 100

SVHN

CelebA 100.0±0.0 100.0±0.0 100 99 100.0±0.0 100.0±0.0 100 100
CIFAR-10 100.0±0.0 100.0±0.0 92 84 100.0±0.0 100.0±0.0 99 98
CIFAR-100 100.0±0.0 100.0±0.0 93 86 100.0±0.0 100.0±0.0 99 98
LSUN 100.0±0.0 100.0±0.0 99 98 100.0±0.0 100.0±0.0 100.0 100.0

CIFAR-10
CelebA 99.2±0.1 99.4±0.1 86 92 100.0±0.0 100.0±0.0 96 98
SVHN 97.6±0.2 97.8±0.2 96 98 99.8±0.0 99.8±0.0 100 100
LSUN 100.0±0.0 100.0±0.0 60 58 100.0±0.0 100.0±0.0 58 56

CelebA

CIFAR-10 99.6±0.0 99.6±0.0 84 73 100.0±0.0 100.0±0.0 94 91
CIFAR-100 99.8±0.0 99.8±0.0 82 71 100.0±0.0 100.0±0.0 94 90
SVHN 100.0±0.0 100.0±0.0 97 98 100.0±0.0 100.0±0.0 100 100
LSUN 100.0±0.0 100.0±0.0 85 75 100.0±0.0 100.0±0.0 96 92
average 99.7 99.7 90.6 87.6 100.0 100.0 95.4 94.5
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TABLE J.7: GAD Results (AUROC and AUPR in percentage) of KLODS and Ty-test on Glow with batch size 5 and 10. For
SVHN, CIFAR-10, and CelebA, we choose one dataset as ID data and the mixture of the other two datasets as OOD data.

ID↓ OOD ↓
Batch size→ m=5 m=10
Method→ KLODS Ty-test KLODS Ty-test
Metric→ AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

SVHN CelebA+CIFAR-10 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-10 SVHN+CelebA 98.2±0.2 98.5±0.2 60.8±0.3 64.4±0.5 99.8±0.0 99.9±0.0 52.8±1.0 58.1±1.1

CelebA SVHN+CIFAR-10 100.0±0.0 100.0±0.0 20.7±0.2 34.9±0.1 100.0±0.0 100.0±0.0 11.8±0.5 32.3±0.1
average 99.4 99.5 60.5 66.4 99.9 100.0 54.9 63.5

TABLE J.8: GAD Results (AUROC in percentage) of ablation study. We compare four methods Ty-test, KLOD-all, KLOD, and
KLODS. KLODS is the best one.

ID OOD↓ Batch size m=10 m=25
Method Ty-test KLOD-all KLOD KLODS Ty-test KLOD-all KLOD KLODS

Fa
sh

.M

Constant 41.6±0.41 100.0±0.0 100.0±0.0 100.0±0.0 39.1±0.8 100.0±0.0 100.0±0.0 100.0±0.0
MNIST 99.2±0.1 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
MNIST-C(10.0) 84.9±0.3 100.0±0.0 100.0±0.0 100.0±0.0 94.7±0.3 100.0±0.0 100.0±0.0 100.0±0.0
notMNIST 92.7±0.5 100.0±0.0 100.0±0.0 100.0±0.0 98.9±0.2 100.0±0.0 100.0±0.0 100.0±0.0
notMNIST-C(0.005) 7.0±0.6 100.0±0.0 100.0±0.0 100.0±0.0 2.7±0.2 100.0±0.0 100.0±0.0 100.0±0.0

SV
H

N

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.008) 11.8±0.3 100.0±0.0 100.0±0.0 100.0±0.0 5.2±0.6 100.0±0.0 100.0±0.0 100.0±0.0
CelebA 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.08) 54.7±0.5 100.0±0.0 100.0±0.0 100.0±0.0 58.2±0.3 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR10 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR10-C(0.12) 54.7±0.5 86.2±0.3 100.0±0.0 100.0±0.0 12.6±0.9 98.3±0.5 99.1±0.3 100.0±0.0
CIFAR100 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR100-C(0.12) 26.9±1.3 86.0±0.8 95.5±0.4 100.0±0.0 12.0±1.1 96.2±1.0 97.2±0.2 100.0±0.0
ImageNet32 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
ImageNet32-C(0.07) 42.6±0.4 100.0±0.0 100.0±0.0 100.0±0.0 35.7±0.3 100.0±0.0 100.0±0.0 100.0±0.0

C
IF

A
R

10

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.02) 10.7±0.1 100.0±0.0 100.0±0.0 100.0±0.0 5.1±1.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.3) 23.4±5.3 100.0±0.0 100.0±0.0 100.0±0.0 12.6±0.7 100.0±0.0 100.0±0.0 100.0±0.0
ImageNet32 100.0±0.0 99.7±0.1 99.3±0.0 94.7±0.1 100.0±0.0 95.3±0.7 99.0±0.3 98.9±0.4
ImageNet32-C(0.3) 31.7±0.7 98.4±0.2 94.8±0.3 73.1±1.5 15.0±1.0 97.5±0.3 96.7±0.5 76.9±1.3
SVHN 99.9±0.0 96.7±0.2 99.1±0.0 99.8±0.1 100.0±0.0 87.6±0.5 99.6±0.1 100.0±0.0
SVHN-C(2.0) 26.7±0.6 100.0±0.0 100.0±0.0 100.0±0.0 58.2±0.2 100.0±0.0 100.0±0.0 100.0±0.0

C
el

eb
A

CIFAR10 1.0±0.1 94.3±0.8 99.8±0.0 100.0±0.0 0.0±0.0 95.6±0.5 100.0±0.0 100.0±0.0
CIFAR100 2.0±0.2 94.7±0.4 99.8±0.0 100.0±0.0 0.0±0.0 95.2±0.4 100.0±0.0 100.0±0.0
ImageNet32 87.9±0.3 100.0±0.0 100.0±0.0 100.0±0.0 96.7±0.4 100.0±0.0 100.0±0.0 100.0±0.0
ImageNet32-C(0.2) 18.2±0.3 100.0±0.0 100.0±0.0 100.0±0.0 7.8±0.3 100.0±0.0 100.0±0.0 100.0±0.0
SVHN 91.5±0.6 100.0±0.0 100.0±0.0 100.0±0.0 98.6±0.2 100.0±0.0 100.0±0.0 100.0±0.0
SVHN-C(1.8) 1.4±0.2 100.0±0.0 100.0±0.0 100.0±0.0 0.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
average except CIFAR10 vs ImageNet32-C(0.3) 65.49 98.76 99.79 99.82 64.43 98.94 99.83 99.96
average 64.40 98.75 99.63 98.95 62.84 98.89 99.73 99.22

TABLE J.9: GAD Results (AUROC and AUPR in percentage) of Glow on One-vs-Rest on MNIST. The higher is the better.

Batch size m=5 m=10
Method KLODS Ty-test KLODS Ty-test
Metric AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
class 0 vs rest 92.9±1.2 93.4±1.1 86.5±1.5 89.9±1.1 99.1±0.6 99.2±0.5 95.7±1.6 96.8±1.0
class 1 vs rest 96.6±0.5 96.9±0.6 100.0±0.0 100.0±0.0 99.8±0.1 99.8±0.1 100.0±0.0 100.0±0.0
class 2 vs rest 85.0±0.7 85.8±0.9 69.8±1.5 74.8±1.8 95.0±1.2 95.2±1.2 76.7±1.4 81.7±1.4
class 3 vs rest 65.5±2.6 64.9±3.2 65.7±1.5 70.0±1.3 76.2±1.5 77.0±1.1 68.1±2.1 72.7±1.7
class 4 vs rest 94.8±0.6 95.3±0.5 77.4±0.8 82.2±1.4 99.8±0.1 99.8±0.1 81.6±2.1 86.0±1.8
class 5 vs rest 66.3±2.3 66.1±2.6 61.6±2.2 64.6±2.2 78.3±2.4 78.6±3.0 62.6±2.7 64.6±2.8
class 6 vs rest 88.0±1.0 88.4±0.9 64.3±1.7 66.9±1.1 98.0±0.7 98.2±0.7 58.6±1.2 63.0±1.2
class 7 vs rest 94.0±0.5 94.3±0.6 91.0±0.3 93.2±0.1 99.2±0.3 99.3±0.3 96.3±1.1 97.4±0.6
class 8 vs rest 76.0±1.4 76.8±1.6 81.2±1.6 85.7±1.3 86.2±1.4 86.7±1.8 92.1±0.8 93.7±1.0
class 9 vs rest 95.0±0.7 95.6±0.8 76.3±1.5 80.2±1.8 99.7±0.2 99.7±0.2 80.1±2.6 84.2±1.9
average 85.4 85.8 77.4 80.8 93.1 93.4 81.2 84.0
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TABLE J.10: GAD results (AUROC and AUPR in percentage) on GlowGMM trained on FashionMNIST.

Batch size m=25
Method KLODS Ty-test
Metrics AUROC AUPR AUROC AUPR
class 0 vs rest 100.0±0.0 100.0±0.0 5.4±1.6 31.2±0.3
class 1 vs rest 100.0±0.0 100.0±0.0 15.7±2.4 33.4±4.9
class 2 vs rest 100.0±0.0 100.0±0.0 0.5±0.5 30.7±0.0
class 3 vs rest 99.9±0.1 99.9±0.1 89.6±2.5 91.3±2.3
class 4 vs rest 100.0±0.0 100.0±0.0 0.7±0.6 30.7±0.0
class 5 vs rest 100.0±0.0 100.0±0.0 64.2±1.4 66.4±2.9
class 6 vs rest 99.9±0.1 99.9±0.1 0.0±0.0 30.7±0.0
class 7 vs rest 100.0±0.0 100.0±0.0 31.4±2.8 46.6±3.3
class 8 vs rest 100.0±0.0 100.0±0.0 0.4±0.5 30.7±0.0
class 9 vs rest 100.0±0.0 100.0±0.0 69.0±3.6 76.0±1.7
average 100 100 27.7 46.8

TABLE J.11: GlowGMM trained on FashionMNIST. Use p(z) as criterion for 1 vs rest classification.

Method p(z)
Metrics AUROC AUPR
class 0 vs rest 72.7±1.6 72.0±1.4
class 1 vs rest 85.1±0.6 86.2±0.6
class 2 vs rest 74.8±4.5 76.9±4.0
class 3 vs rest 68.9±4.7 71.2±4.5
class 4 vs rest 77.1±2.1 78.4±3.2
class 5 vs rest 71.7±1.4 71.9±1.2
class 6 vs rest 73.5±7.8 73.7±8.6
class 7 vs rest 86.9±0.4 88.6±0.4
class 8 vs rest 55.5±0.9 53.8±0.5
class 9 vs rest 86.6±0.3 87.1±0.3
average 75.3 76.0
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Fig. J.3: GAD results (AUROC) on convolutional VAE. with batch sizes 5 and 10. The X-axis labeled with OOD datasets
with abbreviated names. MNI: MNIST, not: notMNIST, CB: CelebA, C10/100: CIFAR-10/100, Im: ImageNet, SV: SVHN. The
number k after the dataset name indicates the dataset with adjusted contrast with a factor k. For example, CB-0.7 means
CelebA-C(0.7). Numerical results are shown in Table J.12 in the supplementary material.
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TABLE J.12: GAD results (AUROC and AUPR in percentage) of KLOD on VAE.

ID↓ OOD↓
Batch size→ m=10 m=25
Method→ KLOD Ty-test KLOD Ty-test
Metric→ AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Fa
sh

. MNIST 99.7±0.1 99.5±0.2 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
MNIST-C(0.4) 99.8±0.0 99.8±0.0 39.1±0.7 40.5±0.3 100.0±0.0 100.0±0.0 37.6±1.9 39.8±0.7
notMNIST 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

SV
H

N

CelebA 92.2±0.6 82.3±1.1 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.7) 86.2±0.9 76.5±1.5 39.9±1.2 41.2±0.5 100.0±0.0 100.0±0.0 47.4±1.5 44.3±0.7
CIFAR-10 90.9±1.3 81.3±2.3 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-10-C(0.4) 77.6±8.8 69.9±1.3 49.8±0.6 45.8±0.3 99.7±0.2 99.6±0.3 58.8±0.9 50.2±0.4
CIFAR-100 90.4±0.4 80.3±0.6 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-100-C(0.4) 80.5±1.0 73.2±1.8 40.3±0.8 40.7±1.3 99.8±0.0 99.8±0.0 40.5±0.4 41.3±0.2
ImageNet32 89.3±8.6 80.1±1.5 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
ImageNet32-C(0.3) 74.6±0.6 67.8±0.7 27.9±1.0 36.5±0.3 99.0±0.0 99.0±0.0 27.9±1.0 36.5±0.3
average 89.2 82.8 72.5 73.2 99.9 99.9 73.8 73.8

ID ↓ OOD↓ Batch size m=25 m=50

C
IF

A
R

-1
0

CelebA 99.1±0.4 99.1±0.4 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.7) 94.2±0.6 93.8±0.8 42.3±1.1 42.8±0.6 100.0±0.0 100.0±0.0 39.3±2.0 41.1±1.0
ImageNet32 54.0±1.9 53.4±0.7 99.8±0.1 99.8±0.1 94.0±0.6 94.0±0.5 100.0±0.0 100.0±0.0
ImageNet32-C(0.8) 77.4±1.4 77.3±1.8 47.8±1.5 48.0±1.5 98.8±0.5 98.9±0.4 46.4±1.7 46.8±1.2
SVHN 91.8±1.5 91.1±2.3 99.8±0.0 99.8±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
SVHN-C(1.5) 94.2±1.5 91.1±2.3 60.0±1.7 61.4±1.7 100.0±0.0 100.0±0.0 53.6±2.7 55.7±1.6
average 85.1 84.3 75.0 75.3 98.8 98.8 73.2 73.9

TABLE J.13: GAD results (AUROC and AUPR) of KLOD without split representations on VAE trained on CIFAR10 and
tested on CIFAR100. Each row is for one batch size.

Problem CIFAR10 vs CIFAR100 CIFAR10 vs ImageNet32
Method KLOD Ty-test KLOD Ty-test
Metric AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
m=50 72.9±0.7 73.7±2.1 73.8±0.5 74.3±1.8 94.0±0.6 94.0±0.5 100.0±0.0 100.0±0.0
m=100 90.9±1.0 91.3±1.3 82.6±0.5 83.5±1.1 99.9±0.2 99.9±0.2 100.0±0.0 100.0±0.0
m=150 98.0±0.4 98.1±0.5 88.4±1.3 88.6±2.3 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

TABLE J.14: VAE trained on CIFAR10. Use reconstruction probability for OOD data detection.

Method reconstruction probability
Metrics AUROC AUPR
SVHN 17.6±0.0 34.3±0.0
CelebA 83.1±0.0 82.5±0.0
ImageNet32 72.4±0.2 75.0±0.1
CIFAR100 52.3±0.0 53.6±0.0
average 56.4 61.4

TABLE J.15: PAD results (AUROC in percentage) of Joint confidence loss method, ODIN, Joint confidence loss method+ODIN,
DoSE, and KLODS. We use all the problems evaluated in the original publication of Joint confidence loss method [83]. Our
method outperforms all baselines.
* The authors of Joint confidence loss method [83] did not report AUROC result of Joint confidence loss method+ODIN on
SVHN vs TinyImageNet. Since joint confidence loss+ODIN is reported to be better than Joint confidence loss method, so we
just use 100% AUROC.

ID OOD confidence loss joint confidence loss ODIN joint confidence loss+ODIN DoSE KLODS

SVHN
CIFAR-10 83 97.6 94 99 96.2 98.9
TinyImageNet 98 99.5 95 100* 100 99.8
LSUN 98.5 99.8 94 100 91.6 100

CIFAR-10
SVHN 46.5 67.5 85 85 95.5 82.6
TinyImageNet 67 72.5 76 86 76.7 83.9
LSUN 62.5 76 78 87.5 98 98.9
average 75.9 85.5 87 92.9 93 94.0
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APPENDIX K
FIGURES

This section contains figures referred to in the other parts.
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Fig. K.1: Distributions of likelihoods of ID dataset (train and test) and OOD dataset. (a) and (b) show the normalized
histogram of log p(z) and log p(x) on Glow trained on FashionMNIST, respectively. (c) shows the normalized histogram
of log p(x) on Glow trained on CIFAR-10. (d) shows that log p(x) of OOD data can be manipulated by adjusting the
contrast of images. SVHN-HIGH-CONTRAST and SVHN-GRAY are SVHN with adjusted contrast by a factor of 2.0 and 0.3,
respectively.
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Fig. K.2: Residual flow trained on CIFAR-10 assigns (a) higher log p(x) for SVHN; (b) similar log p(z) for SVHN; and (c)
coinciding log p(x) for SVHN with increased contrast with a factor of 2. We use the official implementation at [105] and the
model checkpoint released at [106].
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Fig. K.3: Train GlowGMM on FashionMNIST. The i-th subfigure shows the histogram of log-probabilities of 10 centroids
under the i-th Gaussian component. All log-probabilities are close to 768 × log(1/

√
2π) ≈ −705.74, which is the log-

probability of the center of 768-dimensional standard Gaussian distribution. These results indicate that these centroids are
close to each other.
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Fig. K.4: Rescaling z to the typical set of prior. For each input x, we can compute z = f(x), and rescale z to the typical
set annulus of Gaussian prior as z′ =

√
d z
|z| . Then we map z′ back to visible space as x′ = f−1(z′). We observe that x′ is

similar to x. See Figure K.5 for examples.

(a) (b) (c)

Fig. K.5: Train Glow on FashionMNIST and test on (a), (b) MNIST and (c) notMNIST . We scale the representations of OOD
dataset to the typical set of prior Gaussian distribution. The scaled latent vectors still correspond to nearly the same images.
(a) and (c): rescale only the last scale of OOD representation to the typical set of prior. The first and second scales are kept as
standard Gaussian noise. (b) rescale the OOD representations at all scales to the typical set of prior.

Fig. K.6: Glow trained on FashionMNIST. Histogram of log p(x). We can manipulate the likelihood distribution of OOD
dataset by adjusting the contrast. “-C(k)” means the dataset with adjusted contrast by a factor of k.
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Fig. K.7: Official Glow trained on SVHN. Histogram of log p(x), log p(z), and log p(x) contributed by the last scale. We can
manipulate the likelihood distribution of OOD dataset by adjusting the contrast. “-C(k)” means the dataset with adjusted
contrast by a factor of k. Note that the distribution of log p(x) of the last scale and log p(z) have a similar shape. This is
because the log-determinant of the last scale is similar for every data point in the same dataset. We do not observe this
phenomenon in Glow trained on CIFAR-10.
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Fig. K.8: To reproduce the results of baseline method Llast precisely, we use the implementation of Glow model and
checkpoint trained on SVHN released by the authors of Llast. The log p(x) of the last scale of OOD and ID data also coincide
under data manipulation. We can also see that the log p(x) of the last scale even becomes positive for OOD data. The authors
also said that the metric used by Llast could not be explained as log-likelihood for OOD data.
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Fig. K.9: Glow trained on CIFAR10. Histogram of log p(x). We can manipulate the likelihood distribution of OOD dataset by
adjusting the contrast. “-C(k)” means the dataset with adjusted contrast by a factor of k. The ranges of log p(x) of CelebA
and LSUN are too large to break the scale of the figure. For CIFAR10 vs Uniform, log p(x) of Uniform are too small.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 34

14000 12000 10000 8000 6000 4000 2000 0
0

200

400

600

800

1000

1200

logpx
celeba32-TRAIN
celeba32
Constant

14000 12000 10000 8000 6000 4000
0

200

400

600

800

1000

1200

logpx
celeba32-TRAIN
celeba32
Uniform-C(0.012)

14000 12000 10000 8000 6000 4000 2000
0

200

400

600

800

1000

1200

logpx
celeba32-TRAIN
celeba32
CIFAR10

14000 12000 10000 8000 6000 4000 2000
0

200

400

600

800

1000

1200

logpx
celeba32-TRAIN
celeba32
CIFAR100

6 5 4 3 2 1 0
1e8

0

2000

4000

6000

8000

10000

logpx
celeba32-TRAIN
celeba32
Imagenet32

14000 12000 10000 8000 6000 4000 2000
0

200

400

600

800

1000

1200

logpx
celeba32-TRAIN
celeba32
Imagenet32-C(0.2)

14000 12000 10000 8000 6000 4000
0

200

400

600

800

1000

1200

logpx
celeba32-TRAIN
celeba32
SVHN

14000 12000 10000 8000 6000 4000
0

200

400

600

800

1000

1200

logpx
celeba32-TRAIN
celeba32
SVHN-C(1.8)

14000 12000 10000 8000 6000 4000
0

200

400

600

800

1000

1200

logpx
celeba32-TRAIN
celeba32
LSUN

Fig. K.10: Glow trained on CelebA. Histogram of log p(x). We can manipulate the likelihood distribution of OOD dataset by
adjusting the contrast. “-C(k)” means the dataset with adjusted contrast by a factor of k. It is hard to make the likelihoods of
train and test split of CelebA fit well on the official Glow model.
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Fig. K.11: Glow trained on FashionMNIST and tested on MNIST/notMNIST. Histogram of non-diagonal elements in the
correlation coefficient of representations.
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Fig. K.12: Glow trained on FashionMNIST. Heatmap of correlation of FashionMNIST representations.
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Fig. K.13: Glow trained on FashionMNIST. Heatmap of correlation of MNIST representations.
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Fig. K.14: Glow trained on FashionMNIST. Heatmap of correlation of notMNIST representations.
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Fig. K.15: Glow trained on SVHN. Histogram of non-diagonal elements of correlation of representations.
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Fig. K.16: Glow trained on CIFAR10. Histogram of non-diagonal elements of correlation of representations.
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Fig. K.17: Glow trained on CelebA. Histogram of non-diagonal elements of correlation of representations.
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Fig. K.18: Samples from 3-d Gaussian distribution N (µ,Σ). The mean µ and covariance matrix Σ determines
where the data locate in. (a) µ = (0, 0, 0), Σ = ((1, 0, 0)>, (0, 1, 0)>, (0, 0, 1)>). (b) µ = (0, 1, 1), Σ =
((1, 0.98, 0.98)>, (0.98, 1, 0.98)>, (0.98, 0.98, 1)>).

Fig. K.19: Glow trained on CIFAR-10. Generated images from prior (up), fitted Gaussian distribution from the representations
of OOD dataset notMNIST (down).
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(a) (b) (c)

(d) (e)

Fig. K.20: Glow trained on CIFAR10. Generated images according to the fitted Gaussian distribution from representations of
(a) MNIST; (b) CIFAR100; (c) SVHN; (d) ImageNet32; (e) CelebA. We replicate MNIST into three channels and pad zeros for
consistency. These results demonstrate that the covariance of representations contains important information of an OOD
dataset.

(a) (b) (c)

Fig. K.21: Glow trained on CelebA32×32, sampling according to (a) standard Gaussian distribution; (b) fitted Gaussian
distribution from MNIST representations; (c) fitted Gaussian distribution from CIFAR10 representations.

Fig. K.22: Glow trained on FashionMNIST. Sampling according to prior (up), fitted Gaussian distribution from representations
of MNSIT (middle) and notMNIST (down).
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(a) (b)

Fig. K.23: (a) Train Glow on CelebA and sample from the fitted Gaussian distribution of SVHN. (b) Train on FashionMNIST
and sample from the fitted Gaussian distribution of notMNIST. From top to down, the sampled noises from Gaussian
distribution are scaled by temperature 0, 0.25, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, respectively.

1350 1300 1250 1200 1150 1100 1050
0

50

100

150

200

250

300

350

log(p(z))
FashionMNIST-TEST
MNIST-TEST
FashionMNIST-SAMPLED
MNIST-SAMPLED

(a) FashionMNIST vs MNIST

2000 1800 1600 1400 1200 1000
0

50

100

150

200

250

300

350

log(p(z))
FashionMNIST-TEST
notMNIST-TEST
FashionMNIST-SAMPLED
notMNIST-SAMPLED

(b) FashionMNIST vs notMNIST

Fig. K.24: Glow trained on FashionMNIST. Histogram of log p(z) of (a) FashionMNIST vs MNIST, (b) FashionMNIST vs
notMNIST under Glow. The green part corresponds to the log p(z) of noises sampled from the fitted Gaussian distribution
of OOD datasets.
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Fig. K.25: VAE trained on FashionMNIST. Heatmap of correlation of (a)FashionMNIST (b)MNIST (c) notMNIST
representations. (d) Histogram of non-diagonal elements of correlation of sampled representations.
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Fig. K.26: VAE trained on SVHN. Histogram of non-diagonal elements of correlation of sampled representations.
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Fig. K.27: VAE trained on CIFAR10. Histogram of non-diagonal elements of correlation of sampled representations.
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Fig. K.28: Split a random vector Z ∼ pZ into k subvectors Z̄i ∼ pZ̄i (1 ≤ i ≤ k). We treat k subvectors as k samples
from a mixture of distributions pZ̄i = 1/kΣki=1pZ̄i . In the figure, we use the same color to indicate neighboring pixels that
are strongly correlated. For example, if the second element Z̄i,2 and the third element Z̄i,3 are strongly correlated for all
1 ≤ i ≤ k, we can say that Z̄m,2 and Z̄m,3 are also strongly correlated. This is why we can leverage local pixel dependence
in our method.
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Fig. K.29: Train Glow on SVHN and test on ImageNet32. We randomly select the 8-th channel. The subfigure at i-th row
and j-th column shows the correlation between the pixel at position (i, j) and all other pixels. Adjacent pixels tend to have
stronger correlation.
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(a) SVHN (b) SVHN with increased contrast by a
factor of 2, have lower likelihood

(c) CelebA32 (d) CelebA32 with decreased contrast by
a factor of 0.3, have higher likelihood

(e) ImageNet32 (f) ImageNet32 with decreased contrast by
a factor of 0.3, have higher likelihood

Fig. K.30: Examples of datasets and their mutations. Under Glow trained on CIFAR10, these mutated datasets have a similar
likelihood distribution with CIFAR10 test split.
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(a) (b) (c)

Fig. K.31: Generated images from Glow trained on (a)FashionMNIST; (b)CIFAR-10; (c)CelebA32.
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Fig. K.32: The distributions of complexity estimated by the lengths of compressed files of datasets. We use FLIF as compressor
and compute lengths in bits per dimension. Datasets with decreased contrast has lower complexity.
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