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Abstract—Molecular interaction prediction plays a crucial
role in forecasting unknown interactions between molecules,
such as drug-target interaction (DTI) and drug-drug interaction
(DDI), which are essential in the field of drug discovery and
therapeutics. Although previous prediction methods have yielded
promising results by leveraging the rich semantics and topological
structure of biomedical knowledge graphs (KGs), they have
primarily focused on enhancing predictive performance without
addressing the presence of inevitable noise and inconsistent
semantics. This limitation has hindered the advancement of KG-
based prediction methods. To address this limitation, we propose
BioKDN (Biomedical Knowledge Graph Denoising Network)
for robust molecular interaction prediction. BioKDN refines
the reliable structure of local subgraphs by denoising noisy
links in a learnable manner, providing a general module for
extracting task-relevant interactions. To enhance the reliability
of the refined structure, BioKDN maintains consistent and robust
semantics by smoothing relations around the target interaction.
By maximizing the mutual information between reliable struc-
ture and smoothed relations, BioKDN emphasizes informative
semantics to enable precise predictions. Experimental results on
real-world datasets show that BioKDN surpasses state-of-the-
art models in DTI and DDI prediction tasks, confirming the
effectiveness and robustness of BioKDN in denoising unreliable
interactions within contaminated KGs. Code is available at
https://github.com/xiaomingaaa/BioKDN.

Index Terms—Molecular Interaction Prediction, Knowledge
Graph Reasoning, Knowledge-enhanced Network

I. INTRODUCTION

The prediction of molecular interactions, including drug-
target interaction (DTI) prediction [1] and drug-drug inter-
action (DDI) prediction [2]–[4], is pivotal to drug discovery
and therapeutics. The success of interaction prediction based
on knowledge graphs (KGs) in social networks [5], [6] and
recommendations [7]–[9] encourages researchers to develop
various KG-based computational methods to accelerate drug
development [10]–[13]. The biomedical KGs contain a large
number of entities with specific patterns and semantics (e.g.,
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Fig. 1. The explanatory case of noise within DRKG. Chebi:28300 and
DB00130 indicate the same drug L-Glutamine, but they are treated as different
entities, which results in entity unalignment and facts missing. Meanwhile,
the source document represents the gene MSLN as a biomarker for cancer
patients, and no confidence indicates it has a role in the disease Mental
Disorders, which introduces noisy interactions into the KG.

the associated pathways between drugs and targets). The
interaction patterns between biomedical entities can enhance
the prediction of biological connections among various enti-
ties [10]. However, accurately recognizing the unknown inter-
actions between various molecular entities with computational
models remains challenging.

Previous methods utilized the topological properties of the
integrated association networks (e.g., drug-disease-association
networks) to learn low-dimensional vector representations for
predicting unknown interactions [14]–[16]. These methods
adopted network-based models, which ignore the semantic
relations between various entities (e.g., drug, pathway, dis-
ease). Subsequently, a line of works applied the knowledge
graph embedding methods to learn the semantic relations with
multi-dimensional embeddings for predicting DTI [17] and
DDI [18], [19]. However, these approaches often struggle
to learn the topological structure of complex biomedical
knowledge graphs (KGs) efficiently. More recently, various
models [2], [3], [10], [20] utilizing heterogeneous graph neural
networks have achieved promising results. These methods fo-
cus on learning the semantic knowledge and local structure of
the neighboring relational paths, which enables them to capture
the semantic relations and tractable pathways surrounding the
predicted interaction.

Despite their effectiveness, existing KG-based models suf-
fer from noisy interactions and relations within biomedi-
cal KGs [21], [22]. The majority of biomedical knowledge
graphs are generated from unstructured text and multi-source
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databases using natural language processing technology [23],
[24], which can lead to the presence of misaligned entities and
counterfactual links within the KGs. For example, as shown
in Fig. 1, the different entities Chebi:28300 and DB00130
within DRKG represent the same drug L-Glutamine1, which
is misaligned. The source document represents the gene MSLN
is a biomarker of cancer patients, and no evidence indicates
it has a role in the disease Mental Disorders, introducing
noise into the DRKG [24]. In addition, the different relations
drug treats disease and drug inhibits disease represent the
same meaning “one drug can therapy one disease” in the
contexts of Fig. 1, which brings inconsistent semantics.

In this case, current KG-based methods are ineffective due
to the noisy interactions and inconsistent semantics. Based
on the above observations, we propose a novel knowledge-
enhanced denoising network, called BioKDN. We design a
structure reliability learning module for the local subgraph
guided by downstream tasks, to contain reliable interactions.
Inspired by the successful application of smoothing techniques
for image denosing [25], [26] by blurring noisy pixels, we
develop a smooth semantic preservation module that blurs
the similar relations to keep consistent semantics and ignore
task-irrelevant edges. This reduces the negative impact of
noisy interactions and inconsistent semantics existing in the
KG. To further focus on the knowledge-enhanced informative
interactions, we maximize the mutual information between the
representations of reliable structure and smoothed semantics.
BioKDN improves the AUC-ROC and Micro-Recall by 2.19%
and 2.76% respectively on the DrugBank dataset in both DTI
and DDI prediction tasks.

In summary, the contributions of BioKDN include:
• We approach knowledge-enhanced molecular interaction

prediction from a new perspective by adaptively reducing
the negative impact of noisy interactions.

• We innovatively propose learning the reliable structure
and smoothing semantics by blurring similar relations,
which reduces the negative influence of noisy interactions
and maintains consistent semantics.

• We emphasize knowledge-enhanced reliable interactions
by maximizing the mutual information between the
learned structure and smoothed semantics to efficiently
drop information irrelated to downstream tasks.

• Extensive experiments of the DTI and DDI prediction on
benchmark datasets and contaminated KG demonstrate
that BioKDN outperforms the state-of-the-art baselines.

II. RELATED WORK

A. KG-based Molecular Interaction Prediction

Molecular interaction prediction is increasingly adopted in
biomedical knowledge graphs to identify unknown biological
relations and interactions between various molecular enti-
ties [27]. The line of work mainly focuses on the comple-
tion of DTI and DDI relations on KGs. TriModel [17] and
KG-DDI [18] proposed novel knowledge graph embedding
models to learn the informative global structure and semantic

1https://go.drugbank.com/drugs/DB00130

knowledge for completing the relations of DTI and DDI,
respectively. To obtain rich neighborhood information and
semantic relations of KG, KGNN [2] proposed a graph neural
network to learn the structural relations, which enhances the
prediction of the DDI relations. Subsequently, KGE-NFM [1]
developed a unified knowledge graph embedding framework to
predict missing DTI links by combining the knowledge graph
and recommendation system. However, these methods only
consider the structure of the biomedical KGs. Recent methods
proposed various fusion models to integrate the features of
molecular graphs and KG embeddings for enhancing DTI [10]
and DDI [28] prediction. To focus on the local structure
of the predicted entity pairs, SumGNN [3] designed a new
method to efficiently emphasize the subgraph structure of the
biomedical KG, which aids the drug interaction prediction.
GraIL [29] and SNRI [30] proposed to model the enclosing
subgraph structure and neighboring relational paths around
the target triple to effectively predict unknown links. Besides,
MINES [31] further introduces intercommuncation mecha-
nism and performs prediction on neighbor-enhanced subgraph,
which also achieves promising performance. To filter out
irrelevant entities, AdaProp [32] designed an incremental
sampling mechanism to preserve promising targets. However,
the presence of noise such as entity misalignment, and false
positive triples in the KGs greatly degrades the performance of
these methods. To address the above limitations, we develop
reliable structure learning and smooth semantic preservation
modules to denoise unreasonable interactions and maintain
consistent semantics.

B. Denoising Methods on Graphs

Denoising on graphs has been successfully applied to the
recommendation [33] and social networks [34]. RGCF [35]
proposed a self-supervised robust graph collaborative filtering
model to denoise unreliable interactions and preserve the di-
versity in a contrastive way for the recommendation. Similarly,
SGDL [36] provided a universal solution using self-guided
learning to denoise implicit noisy feedback that can be general-
ized to various recommendation tasks. However, these methods
are limited in their ability to denoise noisy interactions with
positive and negative feedback in domain-specific networks,
and difficult to work on the complex biomedical KGs. To
tackle these limitations, inspired by the smoothing insight in
image denoising [25], [26], we blur the complex relations to
contain consistent semantics and learn the reliable interactions
from the local subgraph.

III. METHODOLOGY

A. Preliminaries

1) Biomedical Knowledge Graph: We define a biomedical
knowledge graph DRKG [24] as Gkg = {(h, r, t)|h, t ∈ E , r ∈
R} where each triple (h, r, t) describes a relation r (e.g., DTI
and DDI) between the biomedical entities h and t.

2) Local Subgraph: Based on GraIL [29], when given a KG
Gkg and a molecular pair (u, v), we extract a local subgraph
surrounding the target link. Initially, we obtain the k-hop
neighboring nodes Nk(u) = {s|d(u, s) ≤ k} and Nk(v) =
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Fig. 2. An example of extracting local (structural reliability) and semantic
subgraphs (semantic consistency) surrounding the target molecular pair (u, v).

{s|d(v, s) ≤ k} for both u and v, where d(·, ·) represents the
shortest path distance between target pair on Gkg . We then
obtain the set of nodes V = {s|s ∈ Nk(u) ∩ Nk(v)} as
vertices of the local subgraph. Finally, we extract the edges E
linked by the set of nodes V from Gkg as the local subgraph
Gsub = (V,E). We show an example in Fig. 2.

3) Semantic Subgraph: Given a molecular pair (u, v), we
define a set of metapaths P = {P1, · · · , Pi, · · · , Pn} between
nodes u and v, where n is the number of defined metapaths
and Pi = (

r1−→, · · · , rk−→). According to the defined set of
metapaths, we can extract various relational paths around the
given link from original KG Gkg to construct a semantic
subgraph Gsem as shown in Fig. 2.

4) Problem Definition: In this paper, we focus on predicting
the missing molecular interactions based on biomedical KG
Gkg by adaptively extracting high-quality facts and offer-
ing additional knowledge. We treat the molecular interaction
prediction as a classification task, aiming to estimate the
interaction probability of various relations (e.g., DTI and DDI).
For a given unknown molecular pair (u, v) with relation r, we
propose a model to predict the interaction probability denoted
as p(u,r,v) = F((u, r, v)|Θ,Gkg,Gsub,Gsem) by maximizing
the mutual information between the local and semantic sub-
graphs, where r represents the DTI or DDI.

B. Initialization of Knowledge Graph

In this paper, we utilize DRKG [24] as our external biomed-
ical KG. DRKG contains complex relationships between bio-
logical entities (e.g., symmetric and inverse interactions among
genes). To effectively learn the semantic knowledge within
the DRKG, we use the knowledge graph embedding method
with relation rotation following in [37]. Given a triple (h, r, t),
we expect that xt = xh ⊙ er, where the ⊙ represents the
element-wise product. xh,xt and er represent the embeddings
of entities h, r and the relation r, respectively. The score
function is defined as follows:

s(h, r, t) = ||xh ⊙ er − xt||, (1)

By minimizing the score of positive triples and maximizing
the score of negative ones, we obtain the entity and relation
embeddings X and E as the initial features of the KG.

C. Subgraph Denoising

1) Structure Reliability Learning: To enable robust esti-
mation of noisy interactions in KGs, we propose a structural
reliability learning module for the local subgraph. This module
can dynamically adjust the reliable subgraph structure by
using the pre-trained node features and the feedback of the
downstream prediction tasks. The underlying assumption is
that nodes with similar features or structures are more likely
to interact with each other than those with irrelevant features
or structures [38], [39]. Our objective is to assign weights
to all edges between the set of nodes using a reliability
estimation function denoted as F (·, ·), which relies on pre-
trained node features. Then, the refined local subgraph can
be generated by filtering out noisy edges with low weight
and retaining the reliable links with larger ones, as shown
in Fig. 3b. Specifically, given an extracted local subgraph
Gsub = (V,E) around the molecular pair (u, v), we model
all possible edges between the nodes as a set of mutually
independent Bernoulli random variables parameterized by the
learned attention weights π.

G
′

sub =
⋃

i,j∈V

{(i, j) ∼ Ber (πi,j)} . (2)

Here, V represents the set of nodes within the local subgraph
and (i, j) ∈ E denotes the edge between nodes i and j.
We optimize the reliability probability π jointly with the
downstream molecular interaction prediction tasks. The value
of πi,j describes the task-specific reliability of edge (i, j)
where smaller πi,j indicates that the edge (i, j) is more likely
to be noised and should be assigned a lower weight or be
removed. For each edge between node pair (i, j), the reliable
probability πi,j = F (i, j) can be calculated as follows:

πi,j = sigmoid
(
Z(i)Z(j)T

)
,

Z(i) = MLP (X (i)) ,
(3)

where X (i) represents the pre-trained feature of node i derived
from Section III-B, Z(i) is the learned embedding of node
feature X (i), and MLP (·) denotes a two-layer perceptron in
this work. Since the extracted local subgraph Gsub is not dif-
ferentiable with the probability π as Bernoulli distribution, we
use the reparameterization trick and relax the distribution [33],
[40] Ber(πi,j) in Equation (2) as follows:

Ber(πi,j) ≈ sigmoid

(
1

t

(
log

πi,j

1− πi,j
+ log

ϵ

1− ϵ

))
, (4)

where ϵ ∼ Uniform(0, 1), t ∈ R+ indicates the temperature for
the concrete distribution. After relaxation, the binary entries
(i, j) sampled from a Bernoulli distribution are converted
into a deterministic function of πi,j and ϵ. With t>0, the
function is smoothed with a well-defined gradient ∂Ber(πi,j)

∂πi,j

that enables the optimization of learnable subgraph structure
during the training process. The subgraph structure after the
concrete relaxation is a weighted fully connected graph, which
is computationally expensive. We hence drop the edges of the
subgraph with a probability of less than 0.5 and get the refined
graph G′

sub = (V,E
′
). Subsequently, we perform the L-layer
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Fig. 3. The BioKDN framework comprises three modules for predicting links in a given KG: (a) Initializing the entity and relation embeddings of the KG
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GCNs [41] on the refined subgraph with pre-trained node
features to obtain its global representation hsub as follows:

hl = GCN
(
hl−1,G

′

sub

)
,

hsub =
1

|V |

V∑
i∈V

σ(f(hL(i))),
(5)

where the initial h0 = X and σ(·) represents the activation
function. f(·) denotes the feature transformation operation.

2) Smooth Semantic Preservation: Biomedical KGs often
contain noise and inconsistent relations (e.g., the different rela-
tions drug treats disease and drug inhibits disease represent
the same semantic “drug can therapy disease”) that bring
negative impact into the downstream molecular interaction
prediction tasks [23]. Inspired by the smoothing insight of
image denoising [25], [26], we design a knowledge-enhanced
smooth semantic preservation module, which blurs similar
relations and preserves the smoothed relational semantics
to mitigate the adverse impact of potential inconsistency.
Specifically, we utilize prior knowledge to generalize the
interactions between biological entities into positive, neutral,
and negative semantics based on the consistent meaning of
different relations, thereby smoothing the KG. Subsequently,
we develop a semantic subgraph extraction module to explore
the neighboring relations by extracting the paths with pre-
defined metapaths (i.e., patterns among drug, disease, and
gene entities). Given the molecular pair (u, v), we use the
defined metapaths to extract relational paths and construct a
semantic subgraph Gsem as shown in Fig. 2. After obtaining
the semantic subgraph, we design a L-layer relational graph
neural network (R-GNN) inspired by [30], [42] to obtain
the global semantic representation of Gsem. We define the

updating function of the nodes in l-th layer as:

xl
i =

∑
r∈R

∑
j∈Nr(i)

αi,rW
l
rϕ(e

l−1
r ,xl−1

j ),

αi,r = sigmoid
(
W1

[
xl−1
i ⊕ xl−1

j ⊕ el−1
r

])
,

(6)

where Nr(i) and αi,r denote the neighbors and the weight of
node i under the relation r, respectively. ⊕ indicates the con-
catenation operation. Wl

r represents the transformation matrix
of relation r, ϕ is the aggregation operation ϕ(x, e) = x− e
to fuse the hidden features of nodes and relations, and el−1

r

is optimized from e0r layer by layer. In addition, we initialize
the node feature x0

i and relation representation e0r using the
pretrained embeddings X and E. Finally, we obtain the global
representation hsem of the semantic subgraph Gsem as follows:

hsem =
1

|Vsem|

Vsem∑
i∈Vsem

σ(f(xL
i )), (7)

where Vsem is the node set of semantic subgraph Gsem. For
more information about the smoothed KG and pre-defined
metapaths, please refer to Section IV-B3.

D. MI Maximization in Subgraphs

To preserve the knowledge-enhanced reliable interactions,
we incorporate fusion information from diverse perspectives of
the reliable structure and smoothed semantic relations through
the maximization of mutual information (MI). Specifically, we
adopt InfoNCE [43] to estimate mutual information between
the representations of local structure and semantic subgraphs
globally. In a formal context, when discussing the concept
of subgraph mutual information, we treat the representations
originating from both the reliable structure and the semantic
subgraph, each extracted from a common link, as positive
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pairs. Conversely, the representations stemming from two dis-
tinct links within the refined local structure and the smoothed
semantic are treated as adversarial pairs:

I(hsub;hsem) = − log
exp(d(hsub,hsem)/τ)∑

m∈P exp(d(hsub,hm
sem)/τ)

, (8)

where d(·, ·) is set as a cosine similarity function to measure
the similarity between two representation vectors and τ is a
hyper-parameter indicating the temperature; P represents all
link pairs to be predicted and hm

sem denotes the representation
of global semantic subgraph for the link m.

E. Prediction and Optimization

We consider the molecular interaction prediction a classi-
fication task. For a given molecular pair (u, v) with relation
r, we model the interaction probability p(u,r,v) of the pair by
adopting the learned representations from the structure and
knowledge-enhanced semantic views as follows:

p(u,r,v) = σ(f([hsub ⊕ hsem])), (9)

where the ⊕ indicates the concatenate operation. We then
adopt the cross-entropy loss:

ℓ(u, v) = −
∑
r∈R

log(p(u,r,v))y(u,r,v), (10)

where y(u,r,v) is the real label of the given link. To denoise
unreliable interactions from the structure and semantic sub-
graphs, we jointly optimize the link prediction task and the
self-supervised MI maximization contrastive learning:

ℓtotal(u, v) = ℓ(u, v) + λI(hsub;hsem), (11)

where λ is a hyper-parameter that weighs the contribution of
the self-supervised MI mechanism.

F. Computational Complexity of BioKDN

BioKDN consists of three main modules: structural reliabil-
ity learning (SRL), smooth semantic preservation (SSP), and
mutual information maximization (MI). The SRL contains a
graph structure learning model whose computational complex-
ity is kD·d+(kD)2·d, where k is the subgraph size, D denotes
the average degree of DRKG, d is the embedding dimension,
and kD represents the average number of nodes within the
subgraph. The SSP contains an RGNN model over subgraphs
whose computational complexity is kD+ kD2

2 + (kD) · d ·L,
where L is the number of layers. The MI module contains an
infoNCE loss computation whose computational complexity
is (N · B +N)d, where N is the number of samples and B
denotes the batch size. The overall computational complexity
of BioKDN is kD((L + 2)d2 + D

2 + 1) + (N · B + N)d.
This shows the complexity of the BioKDN approximation
polynomial, and its efficiency depends mainly on the sample
size, the batch size, the average degree of KG, and the
embedding dimension. Therefore, BioKDN can be scaled to
large-scale sparse KGs (low average node degree), and the
training efficiency can be balanced for large-scale datasets by
reducing the embedding dimension and batch size.

G. Discussion of Smoothing Operation

Biomedical knowledge-enhanced molecular interaction pre-
diction has several key applications such as drug-target in-
teraction (DTI) prediction and drug-drug interaction (DDI)
prediction, which is critical for drug discovery and clinical
research. However, most biomedical KGs are constructed from
publication text and multi-source databases that often contain
unreliable interactions and inconsistent semantics of similar re-
lations. For example, the different relations drug treat disease
and drug inhibit disease represent the same semantic “a drug
can therapy a disease” actually. However, the KG embedding
models will adopt different multi-dimensional vectors to rep-
resent their semantics. This will introduce the inconsistency
of different semantic relations, which degrades the robustness
of representation models. Inspired by the smooth insights of
image denoising [25], [26] by blurring noisy pixels, we smooth
DRKG [24] by blurring inconsistent and sparse relations. The
results in Section IV-F indicate this operation can effectively
reduce the negative impact of inconsistent relations.

IV. EXPERIMENTS

In this section, BioKDN2 performs the molecular interaction
prediction task for two key relations (i.e., drug-target interac-
tion and drug-drug interaction) on biomedical KG.

A. Experimental Setups

1) Datasets: For link prediction of the relation DTI, we em-
pirically perform experiments on two real-world datasets: (1)
DrugBank [44] collects the unique bioinformatics and chem-
informatics resources that contain 12,063 drug-target pairs
with 2,515 drugs, and 2,972 targets. (2) DrugCentral [45] is
a drug database built from multiple sources, which contains
9,317 interactions between 1,061 drugs and 1,388 targets.
For DDI prediction, we evaluate BioKDN on two wide-used
datasets: (3) DrugBank [44] contains 191,984 drug pairs with
86 types associated pharmacological relations for 1,703 drugs
(e.g., increase of cardiotoxic activity). (4) TWOSIDES [46]
dataset contains 335 drugs with 26,443 drug pairs for 200
various side effect types. Following [47], we ensure each DDI
type has at least 900 drug pairs by keeping 200 commonly
occurring types. We adopt the comprehensive DRKG [24]
as the biomedical knowledge graph, which contains 97,238
entities and 5,874,261 triples. To smooth the semantic relations
and filter out task-irrelevant edges of the DRKG, we blur
the interactions between drugs, genes, and diseases into three
types according to the semantic similarity of various relations.

2) Evaluation Metrics: In this paper, we consider the
molecular interaction predictions as classification tasks (i.e.,
Binary classification for DTI prediction [10] and Multi-
class/type for DDI prediction [3]). To quantify the prediction
performance of the two molecular interaction prediction tasks,
we adopted the area under the receiver operating character-
istic curve (AUC-ROC), the area under the precision-recall
curve (AUC-PR) for binary and multi-type classification, and

2Code: https://github.com/xiaomingaaa/BioKDN

https://github.com/xiaomingaaa/BioKDN
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TABLE I
THE BLURRED AND ORIGINAL RELATIONS OF DRKG.

Blurred Relations Original Relations

Gene neutral Gene HumGenHumGen, VirGenHumGen, Q (production), E (affect)
Rg (regulation), I (signaling pathway), H (same protein)

Gene postive Gene V+ (activates), B (bind), E+ (increases expression), W (enhance)

Drug neutral Gene DrugVirGen, DrugHumGen, E (affect), K (metabolism)

Drug positive Gene target, enzyme, carrier, A+ (agonism),
E+ (increase), B (bind), O (transport), Z (enzyme activity)

Drug negative Gene N (inhibit), A- (antagonism), E- (decrease)

Gene negative Drug ANTAGONIST, INHIBITOR, BLOCKER, CHANNEL BLOCKER,
ANTIBODY

Gene neutral Drug OTHER, ALLOSTERIC MODULATOR

Gene positive Drug BINDER, MODULATOR, AGONIST, POSITIVE ALLOSTERIC
MODULATOR, ACTIVATOR, PARTIAL AGONIST

Drug positive Disease Sa (side effect), J (role in disease pathogenesis)

Drug negative Disease treats, T (therapy), C (inhibits cell growth),
Pa (alleviate), Pr (prevent)

Drug neutral Disease Mp (biomarkers)

Gene positive Disease L (improper), U (causal), Y (polymorphisms),
J (role in pathogenesis), G (promote), Ud (mutations)

Gene negative Disease Te (possible therapeutic effect)

Gene neutral Disease D (targets), Md (diagnostic), X (overexpression in disease)

Disease positive Gene DuG (upregulate)

Disease negative Gene DdG (downregulate)

Disease neutral Gene DaG (associate)

Disease neutral Disease DrD (resemble)

F1 score, Recall score for multi-class classification task. The
details of these metrics are as follows:

• AUC-ROC is calculated by
∑n

k=1 TPk∆FPk, where k
is k-th true-positive and false-positive operating point
TPk, FPk, and n represents the number of samples.

• AUC-PR is calculated by
∑n

k=1 Preck∆Reck, where
k is k-th true-positive and false-positive operating point
Preck, Reck, n indicates the number of samples.

• F1 score: average F1 score over different classes as
1
N

∑N
k=1

2Pk·Rk

Pk+Rk
, where N is the number of classes and

Pk, Rk indicate the precision and recall for k-th class.
This metric is more sensitive to the results for classes
where samples are fewer.

• Recall score: average Recall score over different classes
as 1

N

∑N
k=1

TPk

TPk+FNk
.

We perform 10-fold cross-validation on all datasets, and for
each iteration, two blocks will be selected as the validation
set and the test set respectively. For binary and multi-type
classification tasks, we select the best model based on the
AUC-ROC of the validation set. In addition, we select the
optimal model based on the F1 score of the validation set for
the multi-class classification task.

3) Smoothed Relations: To effectively capture the consis-
tent semantic information in DRKG and reduce the negative
impact of noisy interactions and irrelevant edges on down-
stream tasks, we blur the relations according to the semantic
similarity of the original relationship. As shown in Table I,
we filter out all entities except drug, gene (i.e., target), and
disease, and classify the relationships between them into
three categories (i.e., positive, neutral, and negative). Take the
original relations E+ and A+ as an example, they are similar
as the semantic “activation” and as the blurred association

TABLE II
THE EXAMPLES OF PRE-DEFINED METAPATHS.

Prediction Task Metapaths

drug-target interaction

(drug neutral disease, disease neutral gene)
(drug neutral gene, gene neutral gene),
(drug positive disease, disease neutral gene),
(drug negative disease, disease positive gene),
(drug negative gene, gene positive gene),
...

drug-drug interaction

(drug neutral disease, disease neutral drug),
(drug neutral gene, gene positive drug),
(drug positive disease, disease positive drug),
(drug negative disease, disease positive drug),
(drug negative gene, gene positive drug),
...

TABLE III
OPTIMAL HYPER-PARAMETER OF BIOKDN FOR EACH TASK.

DTI DDI

learning rate 10−2 10−2

batch size 64 64
embed dim 128 64
λ 0.5 0.1
π 0.5 0.3
τ 0.5 1
k-hop 2 2
KG initializer RotatE RotatE

Drug positive Gene, which represent drugs have a role in
increasing the expression of genes. In Fig. 4, the distribution
of blurred relations of the smoothed KG is shown. We observe
that the sparse links are blurred, which reduces the negative
influence of noisy interactions.

B. Data Preprocessing

1) Sample Details: For the DrugBank and DrugCentral
datasets in predicting DTIs, we ensure the positive and
negative samples for each drug are balanced by generating
them randomly. Following SumGNN [3], we keep the same
settings by stratified sampling DDI from DrugBank for cross-
validation. For the TWOSIDES dataset, we follow the method
in [47] to generate negative counterparts for every positive
sample from the unknown set of drug pairs. We perform 10-
fold cross-validation and select the best model based on the
AUC-ROC of the validation set. The average performance and
standard deviation evaluated on the test set are reported. To
avoid data leakage, we removed observable DTI and DDI
facts from the external KG in advance.

2) Entities Mapping: DRKG provides the IDs for each
entity that can link to widely used external databases (e.g.,
DrugBank IDs for drugs, Gene IDs for targets/proteins). Thus
we link drugs and targets from the four datasets to correspond-
ing entities in DRKG by using their IDs.

3) Pre-defined Metapaths of DRKG: To model relational
paths and semantic information of DRKG efficiently, we
define a set of reasonable metapaths for constructing semantic
subgraphs. Specifically, we focus on the prediction of rela-
tions drug-target interaction (DTI) and drug-drug interaction
(DDI). For DTI prediction, we extract semantic subgraphs



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

gene_neutral_gene

drug_neutral_gene

gene_negative_drug

gene_neutral_drug

gene_positiv
e_drug

drug_positiv
e_gene

drug_positiv
e_disease

drug_negative_gene

drug_negative_disease

drug_neutral_disease

gene_positiv
e_disease

gene_negative_disease

gene_neutral_disease

gene_postive_gene

disease_negative_gene

disease_neutral_disease

disease_neutral_gene

Relations

0

20

40

60

80

100
N

um
be

r o
f T

rip
le

s (
K

)
97.4

61.6

8.8 8.7
3.3

28.8
22.9

16.0

57.6

2.2

89.5

2.8 3.1

28.0

15.4

0.5

12.6
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TABLE IV
THE PERFORMANCE ON DRUGBANK AND DRUGCENTRAL FOR DTI
PREDICTION. THE BOLDFACE DENOTES THE HIGHEST SCORE AND

UNDERLINE INDICATES THE SECOND HIGHEST SCORE.

Methods DrugBank DrugCentral

AUC-ROC AUC-PR AUC-ROC AUC-PR

GCN-KG 80.41 ± 0.15 79.33 ± 0.21 84.66 ± 0.32 83.88 ± 0.15
RotatE 77.65 ± 0.31 75.99 ± 0.13 81.18 ± 0.62 81.03 ± 0.11
GraIL 80.54 ± 0.17 81.37 ± 0.37 82.74 ± 0.45 82.89 ± 0.57

TriModel 81.23 ± 0.13 81.85 ± 0.22 80.91 ± 0.21 81.59 ± 0.55
SNRI 81.33 ± 0.39 82.09 ± 0.33 82.74 ± 0.45 82.89 ± 0.57

AdaProp 81.45 ± 0.15 82.01 ± 0.24 83.65 ± 0.22 83.27 ± 0.36
KG-MTL 82.55 ± 0.31 81.79 ± 0.52 84.39 ± 0.55 83.13 ± 0.74

KGE-NFM 82.71 ± 0.22 82.09 ± 0.52 86.34 ± 0.16 84.65 ± 0.14

BioKDN 84.90 ± 0.35 84.52 ± 0.44 88.79 ± 0.23 87.36 ± 0.19
ours w/o SRL 82.32 ± 0.13 82.55 ± 0.11 86.26 ± 0.07 85.24 ± 0.12
ours w/o SSP 81.78 ± 0.23 83.19 ± 0.21 86.54 ± 0.14 86.28 ± 0.15
ours w/o MI 82.05 ± 0.09 82.18 ± 0.18 86.34 ± 0.09 86.98 ± 0.17

using all 1-hop metapaths between drug and target (i.e.,
gene). Similarly, in DDI prediction, we adopt 1-hop metapaths
between drug and drug as the relational schemes to extract
semantic subgraphs. We illustrate some pre-defined metapaths
in Table II. DRKG is a large-scale KG that integrates other
widely-used biomedical KGs (e.g., Hetionet and GNBR). Thus
DRKG contains 5,874,261 triples with 107 relations, which
covers the relations from other KGs. We have categorized the
biomedical relations from DRKG into positive, neutral, and
negative in Table I. Thus we can map the relations of other
biomedical KGs (e.g., Hetionet) directly using this mapping
table, without re-manual processing.

C. Implementation Details of BioKDN

All the experiments in this work were conducted on a Linux
server with an Intel Xeon(R) Platinum 8255C Processor (12
vCPU @2.5GHz), 43GB of RAM, and 2 RTX 2080Ti cards
(11GB of RAM each). We implement BioKDN in Pytorch
with Python 3.8.5.

To avoid data leakage, we removed observable DTI and
DDI facts from the KG in advance. The average perfor-
mance and standard deviation evaluated on the test set are
reported on Table IV and Table V. We adopt the Xavier
initializer [48] to initialize the model parameters and opti-
mize BioKDN with Adam [49]. The grid search is applied

TABLE V
THE RESULTS COMPARISON ON DRUGBANK AND TWOSIDES FOR DDI
PREDICTION. THE BEST IS MARKED WITH BOLDFACE AND THE SECOND

BEST IS WITH UNDERLINE.

Methods DrugBank (Multi-class) TWOSIDES (Multi-label)

Micro-F1 Micro-Rec AUC-ROC AUC-PR

GCN-KG 79.34 ± 0.16 82.56 ± 0.23 85.22 ± 0.32 82.57 ± 0.12
RotatE 76.41 ± 0.11 80.71 ± 0.15 85.92 ± 0.18 82.69 ± 0.21
GraIL 83.39 ± 0.35 76.11 ± 0.46 83.72 ± 0.18 80.73 ± 0.09
KGNN 76.13 ± 0.32 74.62 ± 0.42 86.97 ± 0.23 82.71 ± 0.41
SNRI 84.57 ± 0.13 82.13 ± 0.19 85.24 ± 0.54 81.75 ± 0.27

AdaProp 83.26 ± 0.10 82.01 ± 0.12 86.41 ± 0.13 82.53 ± 0.21
SumGNN 85.58 ± 0.10 82.79 ± 0.19 87.42 ± 0.16 82.65 ± 0.07

BioKDN 87.51 ± 0.11 85.55 ± 0.13 88.62 ± 0.09 84.73 ± 0.12
ours w/o SRL 85.67 ± 0.19 82.31 ± 0.13 86.21 ± 0.21 82.36 ± 0.25
ours w/o SSP 84.59 ± 0.15 83.01 ± 0.19 85.38 ± 0.06 83.12 ± 0.22
ours w/o MI 85.07 ± 0.31 82.87 ± 0.24 85.96 ± 0.05 82.81 ± 0.32

to retrieve optimal hyper-parameters. We tune the learning
rate among {10−4, 10−3, 10−2, 10−1}, the embedding size in
{32, 64, 128, 256, 512}, the size of subgraphs in {1, 2, 3, 4}-
hop and the pruning threshold π in {0.1, 0.3, 0.5, 0.7, 0.9}.
Besides, we set weight λ = 0.5 of the loss function. In
addition, we search the weight λ of the contrastive loss
among {0.1, 0.3, 0.5, 0.7, 0.9, 1} and the temperature τ among
{0.5, 1, 2}. The final used hyperparameters of BioKDN for
each prediction task are shown in Table III.

D. Baselines

To verify the performance of BioKDN, we compare it
against various baselines as follows:

• GCN-KG and RotatE [37] adopted the graph neural
network [41] and relational rotation in complex space
to learn the embedding of entities and relations from the
DRKG, and then predicted the links for DTI or DDI using
the embeddings.

• GraIL [29] utilized a local subgraph for inductive rela-
tion prediction on KGs. To model neighboring relations
effectively, SNRI [30] adopted the semantic subgraphs by
extracting semantic relational paths to learn informative
embedding. To filter out irrelevant entities, AdaProp [32]
designed an incremental sampling mechanism to preserve
the nearby targets.

• TriModel [17] and KGE-NFM [1] developed new meth-
ods to learn the relational representation of entities and
relations, then predict the unknown links for DTI. Ad-
ditionally, KG-MTL [10] proposed a global knowledge
enhanced multi-task method to predict unknown DTI.

• KGNN [2] aggregated neighborhood information for each
node from their local receptive via GNN on the biomed-
ical knowledge graph for link prediction of relation DDI.
SumGNN [3] focused on extracting information from the
local subgraph in a learnable way and considered the DDI
prediction as multi-type and multi-class classification
tasks.

Our approach focuses on subgraph-based reasoning on the
biomedical knowledge graph to robustly predict molecular
interactions. From the technical perspective, we compare the
SOTA models based on knowledge graph representation (e.g.,
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Fig. 5. Hyper-parameter sensitivity analysis of DTI prediction based on the DrugBank dataset.

RotatE, 2018) and subgraph-based robust GNN (e.g., AdaProp,
2023 and SNRI, 2022). Meanwhile, we compare the optimal
models (e.g., SumGNN, 2021, KGE-NFM, 2021, and KG-
MTL, 2022) for KG-based molecular interaction prediction
from the application perspective. This study provides a detailed
and systematic comparison of notable methods in subgraph
reasoning alongside KG-enhanced molecular interaction pre-
diction models.

E. Implementation Details of Baselines

For baselines, we adopt official code packages from
the authors for RotatE3 [37], GraIL4 [29], SNRI5 [30],
AdaProp6 [32], TriModel7 [17], KGE-NFM8 [1], KGNN9 [2]
and SumGNN10 [3]. We use the GCN module of the DGL11

library on external DRKG [24] to implement GCN-KG and
capture the embeddings of all molecules. For fair comparisons,
we tune them for optimal performance.

F. Comparison with Baselines

We report the performance of our model and baselines for
predicting molecular interactions of the relations DTI and DDI
in Table IV and Table V, respectively. As shown in Table IV,
we observe BioKDN achieves the best prediction results in
the DTI task on both DrugBank and DrugCentral datasets.
Specifically, BioKDN improves the AUC-ROC and AUC-PR
by at least 2.19% and 2.43% respectively on the DrugBank
dataset and achieves the 2.45% and 2.71% absolute increase
over the best baseline on DrugCentral data. For the prediction
of DDI, we find that the boosts of BioKDN on DrugBank for
the multi-class task in Micro-F1 and Micro-Recall score up to
1.93% and 2.76% respectively. The performance of BioKDN
on the TWOSIDES dataset has achieved 1.2%, and 2.02%
improvement in AUC-ROC and AUC-PR compared with the
best baseline.

Furthermore, we have the following observations: (1) Com-
pared with RotatE, the GCN-KG utilizing the neighboring

3github.com/DeepGraphLearning/KnowledgeGraphEmbedding
4https://github.com/kkteru/grail
5https://github.com/Tebmer/SNRI
6https://github.com/LARS-research/AdaProp
7The official source is not accessed, we requested the code from the author

at: https://github.com/xiaomingaaa/BioKDN/baseline/trimodel.py
8https://zenodo.org/records/5500305
9https://github.com/xzenglab/KGNN
10https://github.com/yueyu1030/SumGNN
11https://github.com/dmlc/dgl

TABLE VI
THE PERFORMANCE OF BIOKDN ON DRUGBANK FOR DTI PREDICTION

WITH VARIOUS KGE METHODS.

Metrics TransE RotatE DistMult

AUC-ROC 84.01 84.88 84.23
AUC-PR 83.87 84.37 84.11

information and structures achieves better performance on
DTI and DDI prediction, which indicates that the neighbor-
ing structure benefits the downstream prediction tasks. (2)
Compared with TriModel and KGNN, the SNRI using local
semantic relations performs better than them on DrugBank
for predicting DTI and DDI, which implies that the local
semantic relations are more effective than the global structure
and relations in predicting unknown molecular interactions.
(3) Among the subgraph-based methods (i.e., GraIL, SNRI,
and SumGNN), BioKDN can achieve superior improvement.
This is because the noisy interactions in the local subgraph
may make it hard for models to learn reliable neighbor-
hood information effectively, degrading their performance.
(4) BioKDN outperforms AdaProp in pruning task-irrelevant
facts, indicating that knowledge-enhanced smoothing seman-
tics can effectively improve the performance of denoising
noisy interactions. In short, the BioKDN reduces the negative
influence of noise by denoising unreliable interactions in a
learnable way and preserving knowledge-enhanced smoothing
semantics, resulting in superior results.

G. Ablation Study

To investigate the impact of each module in BioKDN, we
perform an ablation study on all datasets for DTI and DDI
prediction by removing: (i) structure reliability learning (called
ours w/o SRL), (ii) smooth semantic preservation (called ours
w/o SSP), (iii) Mutual information (MI) maximization of dual-
view subgraphs (called ours w/o MI), respectively. We can
observe that all variants of BioKDN perform worse than the
original model in Table IV and Table V, which verifies the
effectiveness of each component.
ours w/o SRL. We observe a significant reduction in perfor-
mance across all datasets for DTI and DDI prediction after
removing the structure reliability learning module. This sug-
gests that the unreliable subgraph structure is less expressive
for downstream tasks and cannot effectively eliminate the
negative influence of noisy interactions. In contrast, a complete
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Fig. 6. Performance over various noisy types with different ratios for DTI
prediction. The bar represents the AUC-ROC and the line indicates the
degradation ratio on the value. The smaller the drop rate, the better.

reliable structure can improve the performance of the original
model by removing possible noise and retaining trustworthy
interactions.
ours w/o SSP. From the results reported in Table IV and
Table V, we notice a significant degradation in performance
on all datasets when omitting the semantic subgraph of
the smooth semantic preservation module. This observation
demonstrates the effectiveness of the semantic subgraph, ex-
tracted by pre-defined metapaths, in keeping the consistent
semantics of task-relevant relations. Intuitively, ours w/o SRL
together with ours w/o SSP demonstrate the effectiveness of
denoising unreliable interaction from the local structure and
smooth semantic views.
ours w/o MI. Additionally, removing the MI maximization
from BioKDN results in a reduction of performance on all
datasets for both tasks. The results demonstrate that the
learned reliable substructure, guided by knowledge-enhanced
smoothing semantics and the removal of task-irrelevant rela-
tions, is effective in enhancing the performance of KG-based
methods. These findings of the various variants show that the
original model BioKDN can effectively enhance the superior
performance of the link prediction tasks.

H. Performance on Different KG initializers

We used knowledge graph embedding (KGE) methods to
initialize the vector representation of entities and relations.
To find the best KGE methods, we performed BioKDN on
TransE [50], RotatE [37], and DistMult [51] for the DTI
prediction task. The performance of them is reported in
Table VI. We can observe that RotatE achieves the best result,
which shows that modeling complex relations in advance
is beneficial to prediction performance. Therefore, we adopt
RotatE12 to learn the vector representation of KG elements
(e.g., drug/target molecules).

I. Hyper-parameter Sensitivity

1) Impact of embedding size: We explore the effect of
hidden embedding size by varying it from 32 to 516. The
left of Fig. 5 depicts the changing trend of the AUC-ROC
and AUC-PR values on the DrugBank dataset evaluated on
BioKDN. Based on the results, we observe that the AUC-
ROC values of BioKDN variation across different embedding
sizes collapsed into a hunchback shape. The reason could be

12We have provided details in Section III-B
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that enough embedding size can represent more information,
while the larger one will progressively introduce a lot of noise
with the degradation of BioKDN.

2) Impact of reliability estimation: To investigate the im-
pact of various reliability estimation functions F (·, ·) defined
in the Section Structure Reliability Learning, we conduct
experiments by varying the estimation types to the Attention,
MLP, Weighted Cosine, and Cosine. As illustrated in Fig. 5,
the Attention with linear attention modeling the reliability
weight between nodes set has the best performance. The
MLP adopts a 2-layer preceptor, which achieves a secondary
best result by learning the weight of the node pairs from
the extracted local subgraph. This is because the attention
mechanism can better model the importance of node pairs
compared with the MLP, which improves the effectiveness
of estimating the reliable edges. Additionally, the parametric
Weighted Cosine is better than the non-parametric Cosine
indicating the learned weight guided by downstream tasks is
more efficient.

3) Impact of temperature coefficient τ : We evaluate the
influence of different temperatures τ for BioKDN in Fig. 5.
We can see that as τ becomes larger, the effect of BioKDN
gradually decreases. This indicates that a large τ will cause
BioKDN to be unstable, thus making the effect worse. There-
fore, we set τ = 0.5 for the DTI task.

4) Impact of learning rate: We conduct experiments to
study the influence of the learning rate by varying it to be
10−1, 10−2, 10−3, and 10−4. The results show a hunchback
shape in Fig. 5 and we observe that BioKDN achieves the best
result when 10−2 is adopted. Finally, we set the learning rate
as 10−2 for downstream tasks.

5) Impact of λ and π: We conduct experiments to study
the impact of the pruning threshold π and the loss weight
λ of MI module shown in Table VII. λ is tested on various
scales when π = 0.1 and π is evaluated on various values
when λ = 0.5. We can observe that the AUC-ROC values of
BioKDN across different λ and π collapsed into a hunchback
shape, which shows a balanced coordination is beneficial. Thus
the performance of BioKDN was reported under λ = 0.5 and
π = 0.5.

J. Robustness of Interaction Noises

1) Performance on Contaminated KGs: To verify the ef-
fectiveness of structure reliability learning and smooth se-
mantic preservation modules in denoising interaction noise,
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TABLE VII
THE AUC-ROC VALUES OF BIOKDN ON DRUGBANK FOR DTI

PREDICTION ACROSS DIFFERENT λ AND π.

Parameter 0.1 0.3 0.5 0.7 0.9 1

λ 83.11 83.97 84.78 84.26 84.16 83.96
π 84.13 84.01 84.83 83.67 82.21 -
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Fig. 9. The performance of BioKDN on Drugbank compared with SNRI and
GraIL on various sizable subgraphs.

we generate different proportions of structural and semantic
negative interactions (i.e., 25%, 50%, and 75%) to contaminate
the training knowledge graph. The reported performance of
various models is evaluated on the unchanged test set shown
in Fig. 6. Structural noises are generated by sampling un-
known triples from all possible entity-relation-entity combi-
nations, while semantic noises are sampled from all missing
triples with reasonable entity-relation-entity schemes (e.g., the
scheme (drug, drug disease treat, disease)). We then perform
BioKDN and its variants (i.e., ours w/o SSP for structural
noise and ours w/o SRL for semantic noise) on the noisy KG
and compare their performance with semantic subgraph-based
SNIR and global KG-based TriModel. As shown in Fig. 6 and
Fig. 7, the AUC-ROC and Micro-F1 values on DrugBank for
DTI and DDI prediction tasks are reported. Additionally, the
corresponding performance degradation ratios are presented.

We observe that as more noise is added, the performance
of all models deteriorates for both structural and semantic
experiments. This is because the introduced noise weakens
the expressive power of the aggregated neighbor information.
However, BioKDN and its variants exhibit smaller degradation
than other methods for both types of noise. The variants
ours w/o SSP and ours w/o SRL show lighter changes as

the noise increases than SNRI and TriModel on structural
and semantic noise respectively, which indicates the structure
reliability learning and smooth semantic subgraph can effec-
tively denoise noisy interactions and ignore task-irrelevant
relations. Furthermore, the gaps between BioKDN and SNRI
or SumGNN grew larger with increasing noise. This is because
BioKDN pays more attention to the informative interactions by
maximizing the mutual information between the refined and
semantic subgraphs. This phenomenon shows that BioKDN
can effectively mitigate noises using reliable structure and
smoothed semantics.

2) Impact of k-hop Subgraph: To evaluate the global ef-
fectiveness of BioKDN, we conduct experiments to compare
the impact of k-hop subgraphs with baselines SNRI [30] and
GraIL [29]. As shown in Fig. 9, BioKDN experiences less
performance degradation than SNRI and GraIL in both DTI
and DDI predictions. This occurs because as the subgraph
size increases, more noise is introduced, which can negatively
impact model performance. However, the automatic denoising
mechanism of BioKDN helps minimize the adverse effects of
noisy interactions. This finding demonstrates that BioKDN can
effectively handle noise by leveraging a reliable structure and
smooth semantics.

K. Case Study

We conduct a case study for predicting DTI relation between
the drug DB00130 and the gene PPAT to demonstrate the
effectiveness of BioKDN, shown in Fig. 8. In the original
subgraph, the different entities DB00130 and Chebi:28300 rep-
resent the same drug L-Glutamine, but they are unalignment,
resulting in the absence of an interactive edge (i.e., DB00130,
same as, glutaminase). By learning the reliable structure of
the original subgraph, BioKDN effectively establishes a con-
nection between the drug DB00130 and the gene glutaminase,
which brings favorable information for predicting the DTI
relation between DB00130 and PPAT. However, SNRI directly
reasoning on the original subgraph without considering the
noises. In addition, AdaProp uses a novel sample strategy
to filter out task-irrelevant edges within the local subgraph
and prune them, potentially ignoring reliable information and
failing to build missing edges to bring information interaction.
This case shows that BioKDN can effectively learn a reliable
structure, enhancing the performance of link prediction.
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V. CONCLUSION

In this paper, we proposed a biomedical knowledge-
enhanced denoising network, called BioKDN, to mitigate
the negative influence caused by the noise and inconsistent
semantics hiding in the KG. BioKDN designed both structure
reliability learning and semantic smoothing modules to extract
reliable structure and keep semantic relations consistent for
robust DTI and DDI predictions. Our experiments on four
datasets and contaminated KGs for DTI and DDI predictions
demonstrate that BioKDN significantly outperforms several
existing state-of-the-art methods. These results verify the ro-
bustness of our model against interaction noises. However,
the semantic smoothing strategy of BioKDN is limited when
applied to other domains for denoising. In the future, we
will design a generalized denoising model based on KGs to
remove noisy facts in the real world rather than just being
irrelevant to downstream tasks. In addition, the effectiveness
of reliable structure learning motivates us to design a robust
relation discovery method for broader applications. Based on
this, we can construct a high-quality and reliable biomedical
KG as the foundation for accelerating drug discovery.
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