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Abstract

Promoting creativity is considered an important goal of education, but creativity is
notoriously hard to measure. In this paper, we make the journey from defining a for-
mal measure of creativity that is efficiently computable to applying the measure in a
practical domain. The measure is general and relies on core theoretical concepts in cre-
ativity theory, namely fluency, flexibility, and originality, integrating with prior cognitive
science literature. We adapted the general measure for projects in the popular visual
programming language Scratch. We designed a machine learning model for predicting
the creativity of Scratch projects, trained and evaluated on human expert creativity as-
sessments in an extensive user study. Our results show that opinions about creativity in
Scratch varied widely across experts. The automatic creativity assessment aligned with
the assessment of the human experts more than the experts agreed with each other. This
is a first step in providing computational models for measuring creativity that can be
applied to educational technologies, and to scale up the benefit of creativity education in
schools.

Keywords: Creativity, distances, Scratch, computer science education, automatic assess-
ment tools

1 Introduction

Creativity has been shown to promote students’ critical thinking, self-motivation, and mastery
of skills and concepts Henriksen et al. [2016], Knobelsdorf and Romeike [2008], Resnick et al.
[2017]. To track student’s creative achievement, we require instruments to quantify creativity.
However, creativity is notoriously hard to quantify because it is highly context-dependent
Amabile [2018], Henriksen et al. [2016]. Amabile [2018] addressed this challenge by relying
on a panel of domain experts who assess each creative product. Unfortunately, it is hardly
feasible to ask an expert panel to rate the creative products of millions of students. This begs
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the question whether it is possible to construct an automated creativity assessment technique
that can serve as a surrogate for expert assessment.

Prior attempts at automating creativity assessment include Huang et al. [2010], Kovalkov
et al. [2020], Yeh and Lin [2015]. All these approaches build upon creativity tests from the
psychometric literature Torrance [1972], Williams [1979], Runco et al. [2016], in particular the
fluency, flexibility, and originality scales from Torrance’s test of creative thinking Torrance
[1972]. Fluency refers to the number of generated ideas, flexibility to the number of distinct
classes of generated ideas, and originality to the infrequency of ideas compared to a typical
population. Prior approaches have implemented automatic versions of these scales for specific
domains Huang et al. [2010], Kovalkov et al. [2020], Yeh and Lin [2015].

In this paper, we propose a novel formalization of fluency, flexibility, and originality that
is flexible enough to be adapted across modalities while remaining efficient to compute. Our
formalization requires two ingredients: A set of concepts for each modality, and a distance
between these concepts. Then, we can treat any creative product as a structured combination
of concepts from each modality. We measure fluency as the distance to an empty product,
flexibility as the distance between concepts in the product, and originality as the average
distance to typical products. We show that our measure is a proper generalization of Tor-
rance’s scales Torrance [1972], that is, we obtain Torrance’s notions of fluency, flexibility, and
originality as a special case for a certain distance between concepts.

Note that our formalization is designed to be general. To demonstrate its practical feasibil-
ity, we implement it for a specific multimodal domain, namely Scratch, a visual programming
environment designed for open-ended, creative learning Maloney et al. [2010]. In doing so, we
expand our prior work which considered only code and images Kovalkov et al. [2021]. Scratch
is particularly interesting for automated assessment because many Scratch students program
on their own without access to teacher feedback, such that an automatic feedback system
would benefit them in particular.

We conducted a user study to collect expert assessments of creativity of Scratch projects.
The experts were Scratch instructors without prior knowledge in creativity theory. Each
expert was assigned a set of preselected Scratch projects and asked to separately assess the
creativity of projects according to four different aspects: code, visuals, audio, and idea behind
the project.

We designed an online application to facilitate the assessment process, which allowed the
experts to interact with each project as needed. We compared the resulting expert assessments
to our automatic assessments. We find that the automatic assessments agree with expert
assessments at least as much as experts agree with each other.

The contribution of this work is twofold. First, we provide a novel and general compu-
tational framework to measure creativity, which extends classic notions of creativity in the
literature. Second, we implement this framework for Scratch and thus provide an automatic
measure to scale up creativity assessment.

2 Related Work

The largest body of prior work on creativity stems from psychology, where creativity is con-
sidered a crucial aspect of the human intellect Runco and Jaeger [2012]. Guilford’s model on
the structure of intellect includes creativity as divergent production, meaning the ability to
generate a wide variety of ideas on the same topic Guilford [1956]. Based on this definition
of creativity, creativity tests have been developed, which present participants with a prompt
and ask for as many ideas as possible in reaction to that prompt Torrance [1972], Williams
[1979], Runco et al. [2016], Kim [2006].
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Consider the example in Fig. 1. Here, the prompt consists of three geometric shapes and
the task is to generate as many objects from these shapes as possible. In Torrance’s test
of creative thinking Torrance [1972], we then count the number of generated objects and
call this number fluency ; we call the number of distinct classes of objects flexibility, and we
call the infrequency of objects compared to a typical population of participants originality
Torrance [1972]. In this work, we focus particularly on these three scales from Torrance’s test
as prior research has already established connections between Torrance’s scales and success
in beginner’s programming Hershkovitz et al. [2019], Israel-Fishelson et al. [2021].

A challenge of classic creativity tests is that we need human experts to count the number of
generated ideas and decide which ones belong to the same class. This reliance on human labor
becomes infeasible in scenarios where a large number of people engages in creative activity,
such as large-scale open learning environments like Scratch Maloney et al. [2010]. The problem
is compounded by the fact that a single creativity measurement is likely not enough, given
that creativity is context-dependent and, thus, changes over time Amabile [2018]. Accordingly,
our mission in this paper is to adapt the definition of fluency, flexibility, and originality in
two respects: First, by making it applicable to student submissions in a multimodal learning
environment, such as Scratch. Second, by making it efficiently computable, without the need
for human intervention.

There exists some prior work on automating Torrance’s test for online learning. In par-
ticular, Huang et al. [2010] compute fluency, flexibility, and originality in a collaborative
brainstorming task; Yeh and Lin [2015] automatically count the number of unique ideas in
reaction to an inkblot-like picture; and Kovalkov et al. [2020, 2021] automatically grade the
creativity of Scratch projects with a manually defined measure. Our present work is a general-
ization of these prior approaches by formalizing fluency, flexibility, and originality abstractly,
based on concepts and distances between them. This abstraction has the advantage that we
can transfer conceptual and computational approaches between modalities or even domains
with little need for adaptation.

The reason we use distances is twofold. First, distances are a common representation in
data mining and there is a rich toolbox of distance measures which we can apply for our
purposes Pękalska and Duin [2005]. More importantly, distances are helpful to model the
organization of knowledge in the mind. In particular, we can say that two concepts have
a low distance to each other if humans tend to associate them more easily Hodgetts et al.
[2009], Kenett [2019]. Two popular frameworks in this regard are semantic embeddings and
semantic networks. Semantic embeddings assume that concepts are implicitly represented in
a vector space and that their distance in this space corresponds to their semantic relatedness
Kenett [2019], Landauer et al. [1998]. By contrast, semantic networks assume that concepts
are organized as a graph and that the shortest path distance in the graph represents semantic
relatedness Kenett [2019], Boden [2004], Georgiev and Georgiev [2018], Sowa [2006]. Kenett
[2019] suggests that both frameworks play a role in quantifying creativity by providing com-
plementary notions of distance between concepts. We show later that our formalization is
general enough to accommodate both frameworks.

We test our formalization in the example domain of Scratch. Scratch is an interactive,
block-based, and graphics-focused programming environment used for introductory program-
ming Maloney et al. [2010]. Scratch is particularly interesting for us because Scratch projects
are intended for creative expression Bustillo and Garaizar [2016], Giannakos et al. [2013] and
involve components from three different modalities, namely code, visuals, and audio. Our
ambition is to develop an automatic measure of creativity that can be applied to all three
modalities, whereas prior work has either disregarded image and sound entirely Hershkovitz
et al. [2019] or used only an ad-hoc definition without theoretical justification Kovalkov et al.
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(a) Concept space

X = { , , }

(b) Student submission s (c) reference submission s′

(d) semantic network

0

(e) distance
δ(x, y) 0

0 1 2 1
1 0 2 1
2 2 0 1

0 1 1 1 0

(f) creativity measures

Flue(s) = 4 · δ( , 0) + δ( , 0) + δ( , 0) = 6

Flex(s) = 1
5

[
8 ·
(
δ( , ) + δ( , )

)
+ 2 · δ( , )

]
= 28

5

Orig(s) = 3 · δ( , 0) + δ( , 0) = 4

Figure 1: Example creativity task illustrating our proposed measure of creativity. (a) Par-
ticipants receive a set of three geometric shapes (triangle, rectangle, and circle) as stimulus
and have the task to form objects from these shapes. (b) Example answer (a figure shaped
out of a rectangle, four triangles, and a circle; color is used to disambiguate triangles). (c)
Less creative answer (a house out of a rectangle and a triangle) as reference for originality.
(d) Possible semantic network including the triangle, square, and circle shape. (e) Possible
definition of δ for this task based on the path distance in a semantic network. (f) Fluency,
flexibility, and originality of the figure (b) according to δ.

[2020].

3 Formal Creativity Measure

In this section, we introduce our proposed measure of creativity. Our main inspiration is
Torrance’s test of creative thinking, which quantifies creativity by counting the number of
ideas in a creative product (fluency), the number of unique classes of ideas (flexibility), and
the infrequency of ideas compared to a reference population (originality) Torrance [1972], Kim
[2006]. We use these three scales since prior work has already shown that they lend themselves
for automation in learning environments Huang et al. [2010], Kovalkov et al. [2020], Yeh and
Lin [2015] and are connected to success in beginner’s programming Hershkovitz et al. [2019],
Israel-Fishelson et al. [2021]. However, there are domains where a simple counting scheme
may be insufficient. Consider the example of Scratch projects (Fig. 2). A Scratch project
consists of code, images, and sounds. If we merely count the number of code blocks, images,
and sounds, we would loose a lot of information that could give us additional insight into the
creativity of the project, for example, whether the code used advanced programming concepts
or repeated many simple operations. Instead, we propose to measure the difference between
programming concepts (and concepts more generally) by a distance metric. This distance,
then, is the basis for our formalizations of fluency, flexibility, and originality.

In general, our measure of creativity (Section 3.3) relies on two ingredients, which we
describe next: The concept space (Section 3.1) in which creative products live, and a distance
between concepts (Section 3.2).

https://doi.org/10.1109/TLT.2022.3144442
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3.1 Concept Spaces and Creative Products

We define a creative task as providing a student with a set of building blocks, which the
student can combine to a creative product. We call these building blocks concepts and the
set of all available concepts the concept space X . Consider the example in Fig. 1. Here, the
creative task is to combine the three shapes circle, square, and triangle in a meaningful way.
Accordingly, the concept space is X = { , , }.

Next, we define a creative product s as a combination of concepts. More precisely, we say
that s is a graph s = (Vs, Es), where Vs ⊆ X are the concepts in s and where Es ⊆ Vs × Vs
are the (syntactic) connections between concepts in s. For example, the house in Fig. 1(c)
would be represented as the graph s′ =

(
{ , }, {( , )}

)
, because it involves a square and

a triangle, where the square is connected to the triangle. Similarly, the figure in Fig. 1(b)
would be represented as the graph s =

(
{ , , , , , }, {( , ), ( , ), ( , ), ( , ),

( , )}
)
.

Prior literature has shown that a graph representation is flexible enough to represent
student work in a wide variety of domains and modalities Mokbel et al. [2013]. For example,
we can represent computer programs by syntax trees, where the structure of the code is
represented by the connections within the trees Paaßen et al. [2018], Price et al. [2017], Rivers
and Koedinger [2017]; we can represent images as a collection of depicted objects and their
spatial relation via connections Johnson et al. [2015]; and we can represent audio data as a
sequence of sounds, where connections represent the temporal ordering.

Importantly, to automate creativity computation, we require an automatic way to convert
raw student output into a graph of concepts. Fortunately, such a conversion is natural for
many domains Mokbel et al. [2013]. For example, we describe the conversion for Scratch
projects in Section 4.

3.2 Distances

As a next step, we formalize the semantic relatedness between concepts in a domain by means
of a distance function δ. More precisely, we define a (semantic) distance δ as a function that
maps two concepts x ∈ X and y ∈ X to a real number, such that δ(x, y) ≥ 0, δ(x, y) = δ(y, x),
and δ(x, y) = 0 if and only if x = y. These requirements stem from the mathematical
definition of a distance metric Pękalska and Duin [2005]. We use distances as an interface
because they are sufficient to define creativity but abstract enough to be easily adaptable
across domains and modalities Pękalska and Duin [2005]. Additionally, distances connect
nicely to prior research in cognitive science. To illustrate this connection, we provide two
examples of distances.

First, we consider semantic networks Boden [2004], Sowa [2006]. The theory of semantic
networks suggests that human cognition arranges concepts in a graph, where connections
express semantic relatedness. We can obtain a distance δ from a semantic network by setting
the concept space X to the nodes of the network and δ to the minimum number of edges we
need to traverse to get from one concept to another Georgiev and Georgiev [2018]. Fig. 1(d)
shows a very simple example of such a semantic network. In this network, we connect triangle
and square because they are related—for example, we can construct a square out of two
triangles and the square is the next regular polygon by number of vertices. By contrast,
the circle is not directly related to either shape, which is why we do not connect it directly
but only via a ’neutral shape’ 0. Accordingly, the distance between triangle and square is
δ( , ) = 1, because these shapes are directly connected in the network, and δ( , ) = 2
because we need to make two hops to get from the triangle to the circle. The matrix of all
pairwise distances is shown in Fig. 1(e). In Fig. 3, we use a semantic network to represent

https://doi.org/10.1109/TLT.2022.3144442
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the relatedness between code blocks in Scratch.
Second, we consider semantic embeddings Kenett [2019], Landauer et al. [1998]. Semantic

embeddings assume that concepts have an implicit representation in a high-dimensional vector
space and that their semantic relatedness corresponds to the Euclidean distance or the cosine
similarity between the vectors. Accordingly, we can set δ to the Euclidean distance δ(~x, ~y) =
‖~x − ~y‖2 or the cosine distance δ(~x, ~y) = 1 − ~xT ·~y

‖~x‖·‖~y‖ . In Section 4, we use the Euclidean
distance for sounds and the cosine distance for images in Scratch.

A final feature of our proposed distance-based framework is that we can express the amount
of domain knowledge expressed by a concept via its distance δ(x, 0) to a neutral nullconcept
0. For example, in Scratch code we use the distance δ(x, 0) to express how advanced a
programming concept is (Section 4).

3.3 Computing Creativity

In this section, we adapt Torrance’s scales of fluency, flexibility, and originality Torrance [1972]
to our formalization. First, let us recall how Torrance’s test works: We present participants
with a prompt in form of a concept space X and then ask them to generate as many creative
products over this concept space as possible. The number of generated creative products is
called fluency, the number of distinct classes of generated products is called flexibility, and
the infrequency of products in comparison to a general population is called originality.

Our aim here is slightly different: We consider a single creative product and wish to
quantify the amount of creativity expressed by this product in terms of fluency, flexibility, and
originality. Fortunately, the three scales still apply if we count concepts instead of products.
In more detail, we obtain the following three scales.

3.3.1 Fluency

Torrance’s test defines fluency as the number of generated ideas Kim [2006], Torrance [1972].
Applied to a single creative product, this would mean that a product expresses more fluency if
it contains more concepts. Thanks to our distance-based framework, we can be more nuanced.
We formalize the amount of fluency expressed by a concept x by its distance δ(x, 0) to the
nullconcept. The fluency of a product is the sum over all these distances within the product:

Flue(s) =
∑
x∈Vs

δ(x, 0) (1)

Note that this is a proper generalization over counting the number of concepts because we
can set δ(x, 0) = 1 for all concepts x, yielding Flue(s) = |Vs|. Computationally, fluency is
efficient because it only requires |Vs| distance computations.

For example, the fluency of the figure in Fig. 1(b) is 6 because it consists of six shapes,
each of which has distance 1 to the nullconcept (Fig. 1(f)).

3.3.2 Flexibility

Torrance’s test defines flexibility as the number of distinct classes of ideas that are generated
Kim [2006], Torrance [1972]. In other words, if a participant only generates ideas that belong
to the same class—for example, different houses for the drawing task in Fig. 1—then this
would be counted as a flexibility of one. Each additional distinct class of ideas increases
flexibility by one. According to Kim [2006], this definition is inspired by Guilford’s structure
of intellect model Guilford [1956] and is meant to capture the diversity of generated ideas.
Fortunately, our framework enables us to capture the diversity of concepts in more nuance

https://doi.org/10.1109/TLT.2022.3144442
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than a binary choice whether it’s distinct or not. In particular, we can set the distance δ(x, y)
such that it quantifies how distinct x is from y. Once we have set up δ in this way, we
formalize flexibility as the sum of all pairwise distances between concepts, normalized by a
factor of |Vs| − 1 to maintain the same scale as for fluency.

Flex(s) =
1

|Vs| − 1

∑
x∈Vs

∑
y∈Vs

δ(x, y) (2)

For flexibility, it makes sense to preprocess Vs and remove duplicates. This conforms to
Torrance’s notion that flexibility should represent distinct classes of ideas. With this pre-
processing step, flexibility is a proper generalization over counting the number of distinct
concepts because we can set δ(x, y) = 1 if x 6= y and δ(x, x) = 0, yielding a flexibility of
Flex(s) = |Ṽs|, where Ṽs refers to the duplicate-free version of Vs. Regarding computational
complexity, flexibility requires a sum of pairwise distances, which is in O(|Vs|2).

For example, the figure in Fig. 1(b) yields a flexibility of 28
5 , because it consists of four

triangles, one square, and one circle, and we hence add four times the distance δ( , ) = 1,
four times δ( , ) = 1, four times δ( , ) = 2, four times δ( , ) = 2, one time δ( , ) =
2, and one time δ( , ) = 2, yielding 8 · 1 + 10 · 2 = 28. Then, we normalize by the number
of shapes minus one, yielding 28

5 (Fig. 1(f)).

3.3.3 Originality

Torrance’s test defines originality as the statistical infrequency of ideas in comparison to a
general population Kim [2006], Torrance [1972]. In other words, one first needs to calibrate
the test using a sample of participants from the general population, yielding a frequency f(x)
for each idea x. Then, for each new participant, we can determine the infrequency of each
idea as 1− f(x) and add up these infrequencies to obtain originality.

A shortcoming of this definition is that it can not distinguish the originality of two ideas
which never occurred before. Consider our example in Fig. 1 and let’s compare the figure
in Fig. 1(b) with a variation of the house in Fig. 1(b), where we just add another square to
represent the door of the house. Both shapes, the figure and the altered house, are distinct
from the house s′—but the figure is arguably more original because it is less similar to the
house. This is in line with Runco and Jaeger [2012] who notes that distance to previously
existing ideas can be seen as particular evidence of genius in creative achievement.

Overall, we define the originality of a creative product s as the average distance dδ(s, s′)
to typical products s′ in a sample S.

Orig(s) =
1

|S|
∑
s′∈S

dδ(s, s
′). (3)

Note that, as in Torrance’s definition, we require a sample of typical products S to define
originality. Indeed, this appears to be a fundamental property of originality: We always
need a reference point with respect to which we define something as original Runco and
Jaeger [2012]. For example, Boden [2004] distinguishes between creativity with respect to my
own prior ideas and creativity with respect to the entire prior human history. In education,
Spendlove [2008] suggests to focus on “ordinary” creativity which can regularly be observed,
rather than exceptional genius. Accordingly, the sample S should be chosen to represent
products one would expect of a typical student in the same context. For example, it could
be a sample of products from students of a similar age, school system, and socio-economic
background. Importantly, we may need different samples to account for different contexts
appropriately Amabile [2018].

https://doi.org/10.1109/TLT.2022.3144442
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Another important point is that originality requires a distance dδ between products, which
we define next.

3.3.4 Distances between products

Given a distance δ between concepts, how can we compute a distance dδ between two creative
products s and s′? Here, we take inspiration from cognitive science. Hodgetts et al. [2009]
reviewed how humans perceive similarity between objects that consist of parts and found two
major notions in the literature: Structural alignment and representational distortion.

Structural alignment Markman and Gentner [1993] measures distance by the difficulty
of aligning the parts of both objects. For example, consider the figure s in Fig. 1(b) and
the house s′ in Fig. 1(c). We can align the square and one triangle of both objects, but
the remaining three triangles and the circle of the figure can not be aligned, meaning that
structural alignment would tell us that s and s′ are fairly dissimilar. However, when we
compare the figure s to itself, we can align every shape, meaning that the distance is zero.

Representational distortion Chater and Hahn [1997] measures distance by the effort needed
to transform one object into another by a sequence of predefined transformations. For exam-
ple, we can transform the figure s into the house s′ by removing the circle and three triangles
and putting the remaining triangle on top of the square.

In general, both structural alignment and representational distortion are hard to com-
pute. Structural alignment requires a search over the combinatorially large space of possible
alignments between two objects to find the best one, and representational distortion requires
a search over the infinitely large space of possible transformation sequences that turn one
object into another. Fortunately, algorithmic research in the past decades has found special
cases where these searches become efficient, namely edit distances Bille [2005], Bougleux et al.
[2017], Levenshtein [1966], Paaßen et al. [2018], Zhang and Shasha [1989].

To define an edit distance, we start from structural alignment. In particular, we define
an alignment between two products s and s′ as a set of tuples M ⊆ (Vs ∪ {0})× (Vs′ ∪ {0})
such that any concept in Vs occurs exactly once on the left-hand-side and any concept in
Vs′ occurs exactly once on the right-hand-side. Consider again the example of the figure s
in Fig. 1(b) and the house s′ in Fig. 1(c). One possible alignment between s and s′ would
be M = {( , ), ( , 0), ( , 0), ( , 0), ( , ), ( , 0)}, that is, we align one of the four limbs
of the figure to the roof of the house and the torso of the figure to the house’s wall
. All remaining shapes in s, namely , , , and , can not be aligned to anything in s′

anymore, such that we must align them to the nullconcept instead. Note that other alignments
are possible as well, for example M ′ = {( , ), ( , 0), ( , 0), ( , 0), ( , 0), ( , )}, where
one of the limbs of the figure is aligned with the wall of the house and the head of the figure
is aligned with the roof of the house. Intuitively, the latter alignment is worse because we do
not align similar concepts of both products, even though we could. Edit distances follow the
same intuition: We define the cost cδ(M) of an alignment M as the sum over the distances
between aligned parts and we define the edit distance dδ(s, s′) as the cost of the cheapest
alignment between s and s′. More formally, we obtain:

dδ(s, s
′) = min

M∈M(s,s′)
cδ(M), where cδ(M) =

∑
(x,y)∈M

δ(x, y), (4)

and whereM(s, s′) denotes the set of all alignments between s and s′.
Returning to our example above, we see thatM has the cost cδ(M) = 3·δ( , 0)+δ( , 0) =

4 and M ′ has the cost cδ(M ′) = δ( , ) + 3 · δ( , 0) + δ( , 0) + δ( , ) = 7, that is, M is
cheaper than M ′. Indeed, M is the cheapest possible alignment between s and s′, meaning

https://doi.org/10.1109/TLT.2022.3144442
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that cδ(M) = dδ(s, s
′) = 3. Provided that s′ is the only product in our sample S, this value

also expresses the originality of s (Fig. 1(f)).
It can be shown that the cheapest alignment M can be found automatically in O((|Vs|+

|Vs′ |)3) using the Hungarian algorithm Munkres [1957]. Even better, it is possible to restrict
the set of alignmentsM to take specifics of our data into account. For example, for sound we
want to make sure that the alignment preserves the temporal order, yielding the sequence edit
distance of Levenshtein [1966] with the complexity O(|Vs| · |Vs′ |). For code, we want that the
tree structure of the program syntax is maintained, yielding the tree edit distance of Zhang
and Shasha [1989] with complexity O(|Vs|2 · |Vs′ |2).

Beyond their computational appeal, edit distances have another advantage: they unify
structural alignment and representational distortion. This is because we can convert any
alignment between two products s and s′ to a sequence of transformations from s to s′

and vice versa. In particular, any tuple (x, 0) ∈ M corresponds to a deletion of concept x
from s, any tuple (0, y) ∈ M corresponds to an insertion of concept y into s, and any tuple
(x, y) ∈M corresponds to a replacement of concept x with concept y. In this translation, costs
are preserved, such that the cheapest alignment also corresponds to the cheapest sequence of
deletions, insertions, and replacements between s and s′ Bougleux et al. [2017], Zhang and
Shasha [1989]. Hence, structural alignment and representational distortion become equivalent.

We note that we are not the first to apply edit distances on educational data. Edit dis-
tances are a typical tool to compare computer programs Paaßen et al. [2018], Price et al. [2017],
Rivers and Koedinger [2017] and have previously been suggested as a domain-independent
measure of proximity for educational data Mokbel et al. [2013]. To us, this is additional
encouragement that edit distances are a natural way to compute originality in educational
settings.

Finally, we note that 3 is a proper generalization of Torrance’s definition in terms of
infrequency. In particular, we recover infrequency as a special case by setting dδ to the
alignment distance in 4, and by setting δ(x, x) = δ(0, x) = 0 with δ(x, y) = 1, otherwise. For
a proof, refer to the supplementary material.

This concludes our formalization of creativity. We will now turn to the domain of Scratch
and elaborate on how we implement our proposed creativity measure for the three modalities
of code, images, and sound.

4 Creativity in Scratch

Scratch is a block-based programming environment with a strong focus on visual output that
is used for introductory programming Maloney et al. [2010]. Fig. 2 presents a sample Scratch
project, a game called “Magnetic Challenge.” In this game, the player’s task is to steer a
magnet across a path of spike obstacles as fast as possible while collecting coins, using the
keyboard keys or the mouse. As shown in Fig. 2, the Scratch interface is divided into five
sections: In the stage area (Fig. 2(e)), the user can select a graphical background for their
project. In the sprites area (Fig. 2(d)), the user can add new foreground images (sprites)
to their project. Such sprites can be drawn manually, chosen from the Scratch library, or
uploaded. The code blocks area (Fig. 2(a)) provides an overview of all possible code that the
user may attach to sprites or backgrounds. Blocks are grouped into predefined categories,
such as “motion,” “looks,” and “events.” Additionally, a user can use the extension category
to load additional block packages with advanced functionality, such as “video” and “text to
speech.” Finally, users can create custom blocks, which will appear in “My Blocks.”

The workspace area (Fig. 2(b)) displays all code blocks associated with the currently
selected sprite or background. Users can drag and drop blocks from the code blocks area to
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(a) Code blocks (b) Workspace

(c)
O
utput

(d) Sprites (e) Stage

Figure 2: Screenshot of an example Scratch project. (a) Overview of possible code blocks.
(b) Code blocks related to the currently selected sprite (the door). (c) Current output. (d)
Overview of all sprites. (e) Stage/background.

the workspace and combine them in the workspace as needed. Each block combination starts
with an event and continues with blocks that are executed sequentually whenever the event
occurs. For example, Fig. 2(b) displays all blocks associated with the “door” sprite in the
“Magnetic Challenge” game. Finally, the output area (Fig. 2(c)) executes the project such
that the user can interact with it.

Importantly, Scratch programs are multimodal, including code, images, and sound. To
fully account for the creativity in a Scratch project, we want to include all three modalities in
our creativity measure. We do so by applying our framework from Section 3 to each modality
separately, meaning that for code, images, and sound we obtain a measure of fluency, flexibil-
ity, and originality, repectively. The fact that our framework applies to all three modalities
attests to the generality of our methods. In Section 5.4, we combine fluency, flexibility, and
originality from code, images, and sound into an overall creativity measure via a machine
learning model. This model is trained to match human creativity assessments.

4.0.1 Code creativity

Similar to previous works, we represent a Scratch project’s code as a collection of syntax
trees Price et al. [2017] one representing the stage, and one per sprite. The concept space
X contains all predefined blocks and extension blocks in the Scratch language, as well as
user-defined custom blocks, and the null concept. We define the distance metric δ as the
shortest-path distance in the semantic network in Fig. 3. Our network models the hierarchy
of Scratch blocks, where we distinguish between predefined blocks, extension blocks, and
custom blocks. Within each category, we further distinguish subcategories as defined by the
Scratch language. For predefined blocks, these are motion, events, control, etc. (Fig. 2(a)).
For extensions, these are the single extension packages, such as video and text to speech. For
custom blocks, the Scratch environment does not provide subcategories.

The edge labels in Fig. 3 represent the length of each edge. The distance between any two
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Figure 3: Semantic network, organizing the concept space X and distance δ for Scratch
blocks. Code blocks are distinguished into predefined, extension, and custom blocks, with
subcategories for predefined (events, motion, . . .) and extensions (pen, translate, . . .). The
distance between blocks corresponds to the shortest path distance in the network. For exam-
ple, δ( , ) = 0.5 + 0.5 + 1 + 0.5 + 0.5 = 3.

blocks equals sum over all edges that we need to traverse to get from one block to the other.
For example, the distance between the “move” block and the “when key pressed” block is two
due to the following calculation.

δ( , ) =δ( , ) + δ( , predefined)+

δ(predefined, ) + δ( , ) = 0.5 · 4

Overall, we obtain a distance of one between blocks in the same subcategory, a distance
of two between blocks in different subcategories but the same category, a distance of three
between predefined and extension blocks or between extension blocks and custom blocks, and
a distance of four between predefined and custom blocks.

The distance to the nullconcept reflects how much programming knowledge and effort is
required to use the block. For predefined blocks, we obtain a distance of three, for extension
blocks a distance of four, and for custom blocks a distance of five.

Based on this distance, we computed code fluency, flexibility, and originality of 45 Scratch
projects. Table 1 presents the resulting statistics.

We compute fluency via 1, which counts how many blocks are contained in a program,
with a custom block being “worth” five points of fluency, an extension block four points, and a
predefined block three points. For example, in the “Magnetic Challenge” program, the “go to”
block presented in Fig. 2 is a predefined block from class “motion”. The program gets three
points for this block, and an overall fluency score of 21 484, which is higher then the average
fluency score of the projects we assessed. The high number occurs because we use squared δ
in practice, which has the added value of making fluency interpretable as a squared length,
and flexibility as a variance.

For the flexibility measure, we first remove all duplicated blocks as recommended in Sec-
tion 3.3. For example, the project “Magnetic Challenge” uses the “go to” block and “when flag
clicked” block more than once (Fig. 2(b)). Then, we compute 2. For example, the distance
between the “go to” block and the “when flag clicked” block contributes two to flexibility.
Overall, after normalizing by the number of the unique blocks |Ṽs| = 72 in the program, it
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Table 1: Code Creativity Statistics

fluency flexibility originality

mean 13 342.46 372.16 4105.02
std 19 398.40 128.60 2848.86
min 883 89.75 834
max 119 849 747.82 23 468

obtains a flexibility score of 477.92 which is higher then the average flexibility score of the
projects we assessed.

Originality requires a sample of projects, meaning we need a reference point with respect
to which a project is original or not. This follows prior work by Torrance [1972], Runco
and Jaeger [2012]. Since the choice of sample can influence originality, we considered three
reference samples, two with 20 programs, one with 10 programs. The samples were chosen
randomly out of our 45 unique Scratch projects with overlap. Depending on the sample,
the “Magnetic Challenge” program in Fig. 2 got three different scores for originality: 7023.05,
6641.53, and 3260.5. The average originality across projects is 4105.02 (see Table 1), indicating
that the code originality of “Magnetic Challenge” is relatively high.

Further, to compute originality as defined in Section 3.3, we need an alignment distance
between Scratch projects. To do so, we follow the three-step approach of Price et al. [2017] for
block-based programming. First, we compute the tree edit distance Zhang and Shasha [1989]
between the stage syntax trees of both programs. Then, we compute all pairwise tree edit
distances between sprites in both programs. Finally, we feed this result into the Hungarian
algorithm Munkres [1957] to obtain an optimal matching between the sprites. Regarding
computational efficiency, we obtain a time complexity of O(m2

stage · n2stage + m · n · m2
sprite ·

n2sprite + (m+ n)3) where mstage and nstage are the number of blocks in the stage, msprite and
nsprite are the maximum number of blocks per sprite, and m and n are the number of sprites.
Because all these numbers are usually quite small in Scratch projects, this computation is still
fast Price et al. [2017].

4.0.2 Visual creativity

Projects in Scratch may contain different images, either provided by Scratch, drawn by the
users, or uploaded by them. The concept space X consists of all possible images that could be
included in a project. Note that this space is infinitely large and varied, including images of
various sizes, file formats, content, etc. Accordingly, we decide to apply a semantic embedding
approach, where we embed images in a shared space before we compare them Kenett [2019],
Landauer et al. [1998]. But what is an appropriate, semantic embedding for images? In
computer vision, tremendous progress has been achieved via deep neural networks Feng et al.
[2019], which have achieved state-of-the-art performance in challenging tasks such as object
detection Lin et al. [2019], image classification Xia et al. [2017], and fault diagnosis Wen et al.
[2019]. Note that all these tasks concern the semantics of an image, such that deep neural
networks appear as a useful tool for our purpose. In particular, we select ResNet50 He et al.
[2016]. ResNet50 is a convolutional deep neural network with residual connections, which
achieved state-of-the-art results in the famous ImageNet competition He et al. [2016]. It has
been shown to capture semantic differences between images in tasks such as medical image
classification Reddy and Juliet [2019], software classification Rezende et al. [2017], and many
more.
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Table 2: Visual Creativity Statistics

fluency flexibility originality

mean 102.74 27.75 0.57
std 106.53 33.69 0.03
min 4.00 0.60 0.52
max 583.00 192.00 0.66

ResNet50 translates each image into a vector. Accordingly, we represent the images in a
Scratch project as a set of vectors, one per image. To compare the image vectors, we chose
the Cosine distance δ(~x, ~y) = 1 − ~xT ·~y

‖~x‖·‖~y‖ because it is invariant against effects of scale and
size. Using this distance, we computed the visual fluency, flexibility, and originality for 45
Scratch projects. Table 2 presents the resulting statistics.

Visual fluency is computed via 1, which collapses to Flue(s) = |Vs| because the Cosine
distance to the zero vector is always δ(x, 0) = 1 − 0 = 1. As stated in Section 3, this is
equivalent to the fluency definition in Torrance’s test. For example, the “Magnetic Challenge”
project contains |Vs| = 105 images. This is higher than the average fluency score of the
projects we assessed (Table 2).

To measure visual flexibility, we use 2, where x and y represent the different images in a
program, and |Vs| is the total number of these images. For example, the “Magnetic Challenge”
project contains a lot of images, but many of them are visually similar, such as four variants of
spikes which only differ in the number of spikes and their orientation. Accordingly, the cosine
distance between the corresponding ResNet50 embeddings is very low, which in turn means
that they do not contribute much to flexibility. Overall, the flexibility score for “Magnetic
challenge” is 23.29, which is below the average flexibility score of 27.75 (Table 2), suggesting
that the visual flexibility of “Magnetic challenge” is relatively low.

We compute visual originality as the average pairwise distance between the images in the
project and the images in reference projects. As with code, we used three randomly sampled
groups of projects for reference. For the “Magnetic Challenge” project, we thus obtained
originality scores of 0.56 in the first group, 0.55 in the second, and 0.52 in the third. The
first two scores are close to the mean score of the programs in our study, and the third is
the minimum score as shown in Table 2, indicating that the visual originality of “Magnetic
challenge” is relatively low.

4.0.3 Audio creativity

Projects in Scratch can contain different sounds, either predefined by Scratch, recorded by
the user, or uploaded by the user. As with images, the space of possible sounds is infinitely
large and varied, including various file formats, lengths, pitch, etc. Accordingly, we opt for
a semantic embedding approach again. However, in contrast to images, we do not represent
sounds as a single vector, but as a time series of vectors to take into account how sound can
change over time. As a tool for our embedding, we use the pyAudioAnalysis Python package
Giannakopoulos [2015]. PyAudioAnalysis has been used to extract extract audio features
statistics which describe the the wave properties of a sound, including Fourier frequencies,
energy-based features, Mel-Frequency Cepstral Coefficients (MFCC), and similar representa-
tions Giannakopoulos [2015]. For each sound we extracted 136 features. As the sounds differ
in sampling rates, we used different window and step sizes: 220 frames for smaller sampling
rates (such as 11 025 Hz, 22 050 Hz and 24 000 Hz) and 250 for larger sampling rates (such as
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Table 3: Audio Creativity Statistics

fluency flexibility originality

mean 9 160 44 771 043 1744
std 12 744 69 719 132 849
min 41.20 0 1009
max 51 983 316 353 033 4379

44 100 Hz and 48 000 Hz). Each project is then represented as set of 2-dimensional matrices,
each representing a sound. As a distance metric δ, we compute the Euclidean distance between
features at matching time stamps as suggested in previous sound comparisons studies San Se-
gundo et al. [2017]. As the length of the sounds can differ, we apply padding on the end of the
shorter representation before calculating the distance as suggested by Le Bel [2017]. Using
this distance, we computed audio fluency, flexibility, and originality for 45 Scratch projects.
Table 3 presents the resulting statistics.

Audio fluency is computed using 1, where we represent the null concept as a 2-D array
filled with zeros. For example, “Magnetic Challenge” received a fluency score of 1771.69, which
is much lower than the average fluency score of 9160.

For audio flexibility, we measure the distance between each pair of sounds in the program
using 2. x and y are different sounds in a program and |Vs| is the total number of these
sounds. The “Magnetic Challenge” program has six sounds (|Vs| = 6), and a flexibility score
of 1 177 416 which is about a quarter of the mean score of the programs’ in our study as shown
in Table 3. This indicates that the audio flexibility of “Magnetic Challenge” is relatively low,
as well.

Finally, audio originality is computed as the average distance of each sound in a program
to sounds in a sample of reference programs. As with code and visual creativity, we used three
different samples, yielding originality scores of 1126.93, 1204.83 and 1055.61 for the “Magnetic
Challenge” project. All three are lower than the mean score of audio originality in our study,
indicating that the audio originality of “Magnetic Challenge” is relatively low.

Overall, the example of “Magnetic Challenge” indicates that we can pinpoint which modal-
ity of a project contributes to creativity (here: the code) and which do not (here: visual and
audio). This shows that, although the creativity measure of a particular project can be rela-
tively high in one modality, this does not necessarily imply that other modalities in a student’s
project also exhibit high creativity scores. Hence, it is important to examine them all.

5 Human Creativity Assessment

In the previous sections, we established a theory-driven formalization of creativity and ap-
plied it to Scratch programs. In this section, we describe a user study to collect expert
assessments of creativity in Scratch projects. Each expert was assigned a set of preselected
Scratch projects. The experts were Scratch instructors without prior knowledge in creativity
theory. Our primary research question is whether we can predict human expert assessments
from the automatic creativity measures in Section 4.

We asked the experts to evaluate four different aspects of each project, namely code,
visuals, audio, and idea. The first three aspects capture the different modalities of Scratch
projects, whereas the latter aspect refers to the general idea behind the project. As Scratch
enables creating different types of projects (stories, tutorials, games, etc.) in diverse domains
(math, fashion, medicine, TV shows, etc.), the idea aspect can be important to capture crucial
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Figure 4: Home screen of the assessment tool.

context for an experts’ assessment Resnick et al. [2009]. Additionally, we asked experts to
weigh each aspect according to its importance for creativity. The overall creativity score for
each project corresponded to the weighted sum of the creativity assessments of each aspect.

5.1 Scratch Creativity Assessment Tool

To facilitate the assessment process, we developed a web-application named “Scratch Creativ-
ity Assessment Tool.” Experts started on the home screen (Fig. 4), which displayed all of
the projects that are assigned to an expert. The creativity score of evaluated projects also
appeared, allowing experts to compare scores and change them at will.

By clicking on a thumbnail on the home screen, experts could navigate to a creativity
questionnaire for the respective project. Each questionnaire began with an interactive display
of the project, such that experts could test it before assessing its creativity. The questionnaire
was, then, divided into five section, namely one per aspect (code, visuals, audio, and idea)
and a final section for the creativity assessment. The questions in the first four sections were
designed to prime the expert’s creativity assessment by presenting them with possible creativ-
ity criteria relating to fluency, flexibility, and originality in Scratch projects. For example, the
questionnaire regarding the visual aspects (Fig. 5(a)) contained the binary question “Does the
project contain images created by the user?”, related to fluency. If the answer was “yes,” then
questions about these images were revealed, for example, “Rate the novelty of these images,”
related to originality. An expert could give a rating between 0 and 100 for such questions.

Fig. 5(b) shows questions relating to the project code, such as evaluating the code com-
plexity, efficiency, and novelty, as well as rating the effort put into the code. Questions about
the project idea asked the experts to include a short description of the project’s idea as they
understand it, and to rate how much novelty and effort were required for developing the idea.
If the project included sounds, experts were asked if these sounds were recorded by the user,
uploaded, or were predefined by Scratch. Additionally, the experts rated the novelty of the
sounds and the effort invested in the audio aspect.
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Figure 5: Appraisal questions in the user study. (a) Questions on visual creativity. (b)
Questions on code creativity. (c) Overall creativity assessment.

In the final section of the questionnaire (Fig. 5(c)), we asked experts to provide creativity
scores for each aspect on a scale from 0 to 100. In order to capture aspects that went
beyond code, visuals, audio, or idea, we included a text field where experts could include any
additional aspect related to creativity, and an additional rating for the creativity of these
additional aspects.

Once experts were done with assessing the creativity of the projects, they returned to the
home screen and clicked on “I’m done” (Fig. 4). This led them to a final screen where we asked
them to weigh the different aspects according to their importance for creativity. Weights were
automatically scaled to values between zero and one, and normalized to a sum up to one.

This concludes our description of the Scratch creativity assessment tool. We now continue
to describe our expert recruitment scheme and our study results.

5.2 Expert Assessment

For our study, we recruited five experts from four countries: Cuba, Vietnam, India, and Israel.
All experts had at least two years experience in teaching Scratch to students of different ages
in schools and after-school activities.

We selected 45 unique projects of different types (games and stories), created by different
users (age between 9 and 18, from 25 different countries, with 4 to 258 created projects). The
assignment of programs to the experts was randomized uniformly. Four experts evaluated 20
projects, each, while one evaluated ten projects. 80% of projects were reviewed by more than
one expert. In the remainder of this paper, we designate our experts by the digits one to five.

Table 4 shows the weights assigned by the experts to the different aspects. On average,
experts assigned the highest weights to idea (range .25–.3; mean .29) and visuals (range .2–.3;
mean .28), a medium weight to code (range .2–.3; mean .23), a low weight to audio (range
.1–.2; mean .15), and a very low weight to other aspects (range .02–.1; mean .05). This
highlights that a single modality is likely insufficient to capture the full richness of creativity
in Scratch projects. On the other hand, the high weight for the idea aspect is a challenge for
automatic creativity assessment as the idea of a project is particularly difficult to capture in
an automatic computation.
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Table 4: Expert Importance Weights for each aspect

Expert Code Visual Audio Idea

1 .25 .35 .10 .25
2 .22 .28 .15 .30
3 .20 .20 .20 .30
4 .20 .30 .15 .30
5 .30 .25 .13 .30

mean .23 .28 .15 .29

Table 5: Expert Creativity Scores

Expert Statistic Code Visual Audio Final score

1 Mean 69.55 75.85 45.95 67.59
SD 24.04 24.97 23.80 21.31

2 Mean 66.75 67.70 65.80 66.89
SD 13.11 14.28 21.05 13.80

3 Mean 70.75 77.65 59.10 65.30
SD 10.18 10.50 29.49 11.89

4 Mean 72.90 83.40 81.80 76.11
SD 24.00 20.11 20.06 17.78

5 Mean 64.60 68.55 51.80 63.52
SD 15.27 13.15 29.01 13.17

Table 5 presents the statistics of code, visual, audio, and final creativity scores provided
by the experts. We note that not all the projects included audio; therefore, their score for this
aspect is zero, which leads to the high standard deviations in this aspect across all experts.
We note that the highest scores were provided by expert four and that this expert as well as
expert one had the highest standard deviation for visual, code, and final creativity scores. By
contrast, experts two and five gave slightly lower scores with smaller standard deviation.

Overall, we observe that experts vary both in their scores as well as in the importance
of each aspect. In the following section, we analyze the agreement between experts in more
detail.

5.3 Agreement Between Experts

The numeric agreement agreement between experts on overlapping projects was affected by
discrepancies in how experts graded the projects assigned to them, as seen in Table 5. For
example, experts two, four, and five all evaluated the project “Magnetic Challenge”. Expert
two gave this project a creativity score of 82 for the code aspect, while expert four gave it
a score of 42, and expert five gave a score of 84. Table 5 suggests that experts five and two
scored the code aspect on a similar range, whereas expert four gave higher scores with a larger
variance.

We note that the differences between experts do not indicate a mistake or lack of expertise.
It reflects the fact that creativity assessment is largely subjective Amabile [2018]. To partially
compensate for this, we henceforth measure agreement using Kendall’s τ Abdi [2007], which
considers rank agreement rather than numeric agreement. This measure ranges from minus
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one (complete disagreement between rankings) to plus one (perfect match) and is determined
based on overlapping projects for each pair of experts.

Fig. 6 displays the number of overlapping projects (in brackets) as well as Kendall’s τ for
each pair of experts. We evaluated agreement separately for code (Fig 6(a)), visual (Fig 6(b)),
and audio creativity (Fig 6(c)), as well as the weighted average of these three scores (Fig 6(d)).

Note that experts two and four had only one overlapping project, therefore Kendall’s τ
cannot be calculated for them. As shown in the Table, experts one and five mostly agree on
audio creativity (τ = .71) but disagree on visual and code creativity as well as for the weighted
score. These substantial differences in the rankings of projects in three out of the four scores
suggests that they differ in their interpretation of creativity. For example, for the code aspect,
the same project was ranked first by expert five and sixteenth by expert one. By contrast,
experts two and five have a relatively high agreement for all aspects (τ = .38, τ = .39, and
τ = .61, respectively). These experts have relatively similar scores (Table 5) and weights
(Table 4), suggesting that they interpret creativity in similar ways. The highest agreement
for visual and code creativity are between experts three and four (τ = .67 and τ = .91).
Experts one and five have the highest agreement on the audio creativity, and experts two and
five have the highest agreement on the weighted creativity ranking, although they have lower
agreement on each aspect separately. This can be explained by the fact that experts two and
five were more consistent in their agreement across aspects.

Despite some examples of high agreement, the average τ in Fig. 6 is rather low (−.01
for code, −.01 for visual, .15 for audio, and −.13 for the weighted combination). We note
that this low agreement occurred even though we had primed the experts with the same
questionnaire, indicating that even a shared frame of reference is not necessarily sufficient to
achieve consistent creativity assessments from human experts. These expert disagreements
underline the challenge in quantifying creativity.

Next, we develop a machine learning model to predict human-like creativity assessments
from the automatic creativity scores described in Section 4.

5.4 Predicting Creativity Scores

Our aim in this section is to build a machine learning model which receives the automatic
creativity scores of Section 4 as input and outputs an overall creativity score for a Scratch
project that is similar to a score a human expert would give. Such a model could serve as
surrogate for a human expert panel and could support students and teachers in assessing the
creativity of Scratch projects swiftly and frequently. We note that we can not expect a high
accuracy of such a model, given that experts disagree with each other, leading to highly noisy
training data. Nonetheless, we are checking whether a first step in this direction is possible,
and whether we can obtain a model that agrees with each expert more than they agree with
each other.

We use an XGBoost regressor Chen and Guestrin [2016] to predict the expert creativity
scores for each project. As input features we used the computed originality, flexibility, and
fluency measures for visual, code, and audio aspects, as described in Section 4. This provided
us with nine features for each project. The reference sample S for computing originality
included all other projects that the each expert rated.

We created two types of XGBoost models: First, a single-expert model trained on projects
for each expert separately and, second, a combined model trained on the projects from all
experts together. We note that for the combined model, projects that were evaluated by more
than one expert were treated as different instances.

For each type of model, we created four different prediction models, 1) predicting the code
creativity score, 2) predicting the visual creativity score, 3) predicting the audio creativity
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(a) Code creativity (b) Visual creativity

(c) Audio creativity (d) Weighted combination

Figure 6: Kendall’s τ between pairs of experts with overlapping projects. (The number of
overlapping projects is shown in parentheses.) (a) Code creativity. (b) Visual creativity. (c)
Audio creativity. (d) Weighted sum of visual, code, and audio creativity score.
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Table 6: Kendall’s τ Between XGBoost Regressor and Experts Scores

Expert Code Visual Audio Weighted combination

1 .52 .52 .49 .48
2 .51 .42 .32 .45
3 .53 .58 .69 .45
4 .46 .52 .43 .53
5 .52 .42 .44 .53

Combined .43 .44 .41 .46

score, and 4) predicting the overall project score by the weighted combination score of visual,
code, and audio. The features consisted of the originality, flexibility, and fluency for the code
aspect (model 1), the originality, flexibility, and fluency for the visual aspect (model 2), the
originality, flexibility, and fluency for audio aspect (model 3), or all of them (model 4), that
is, all nine features (three for originality, three for flexibility, and three for fluency).

The combined model was evaluated using tenfold crossvalidation. To ensure that the test
set contained at least two projects, the single-expert models were evaluated using five folds.

The combined model and the single-expert models were developed using the official im-
plementation of XGBoost Chen and Guestrin [2016]. We selected the hyperparameters based
on the structure of our data. In more detail, we set the upper complexity limit of the model
to ten trees for the expert with ten projects, fifteen for the rest of the experts, and 29 trees
for the combined experts. We set the maximum tree depth based on the number of features.

We evaluated the creativity score prediction via the following steps. First, we predicted
creativity scores for test data projects. Second, we combined these scores with the training
data scores to obtain a ranked list of all projects. Finally, we computed Kendall’s τ , comparing
this ranked list with the expert-given ranked list. This approach was applied using only the
pairs with at least one instance from the test data. This method yielded sufficiently many
pairs to compute Kendall’s τ .

Table 6 presents the resulting τ values. As seen from the table, when predicting the
creativity ranking for visual and code aspects, we achieve a τ of .51 and above for three out
of five experts. This score is higher than that of the inner-agreement between the experts
themselves that is reported in Fig. 6(a) and 6(b) (except for the pairs three and four, and one
and four). For audio creativity, we achieve a τ of .42 or higher for four out of five experts. This
score is higher than the inner-agreement between the majority of experts pairs (except for
the three pairs (1, 5), (1, 4), and (2, 5)) as shown in Fig. 6(c). When predicting the weighted
creativity score, we achieve a τ of over .45 for all experts. This score is higher than that of
the inner-agreement between the majority of experts (except for two pairs (2, 5), and (3, 4)´)
as suggested by Fig. 6(d).

The bottom row in Table 6 presents the results for the combined XGBoost regressor model.
Given the disagreement between experts, we would expect that this model performs worse
than the single-expert models. Indeed, this is the case for code creativity. However, for audio
creativity, the combined model achieves a higher agreement than the model for expert two,
for visual creativity it achieves a higher agreement than the model for experts two and five,
and for the weighted combination it achieves a higher agreement than the model for experts
two and three. This indicates that the combined model can aggregate data from multiple
experts in a useful way, despite the disagreement between experts.

For all aspects, the combined model achieves τ above .41, which is higher than the agree-
ment scores between most pairs of experts—eight out of nine for the code aspect, six out of
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nine for the audio aspect, and seven pairs out of nine for the visual aspect as well as the
weighed combination—and clearly higher than the average τ between experts (−.13 for the
weighted combination). Overall, our results indicate that an automatic model is able to pro-
duce creativity scores which are human-like and which form a compromise between multiple
experts.

6 Limitations

While our implementation for Scratch provides first evidence that automatic creativity scores
can approximate human scores, there are still limitations of our study. First, we considered
a rather small sample of experts and our results are not necessarily representative for a
broader group of experts. Second, our machine learning model is trained on the expert’s
data. For a proper validation of our model, our scores would have to be compared with a new
group of experts. Third, our fluency model for images and code was rather coarse-grained,
especially for custom code blocks. Future work could improve this model by including more
nuanced measures, such as code complexity Moreno-León et al. [2016]. Fourth, we used a
random reference sample for creativity. However, we could inject more domain knowledge
by adjusting our reference sample, for example by selecting the demo projects supplied by
Scratch or the standard image set provided by Scratch. Fifth, our current scheme is a static
assessment. Future work could investigate how students’ creativity scores evolve over time
and how teaching impacts creativity scores. Finally, any scheme for (automated) assessment
raises ethical issues, such as fairness, and ought to be implemented with care. Future work
should investigate how creativity assessment impacts students, for example, with respect to
their confidence and self-image.

7 Conclusion

We introduced a novel measure of creativity with three components: the distance to an empty
product (fluency), the distance between concepts in the product (flexibility), and the distance
to typical products (originality). Our measure only requires two ingredients: a set of concepts
that students can use and a (semantic) distance between those concepts. This makes our
measure easily applicable across modalities. For example, in this work, we represented code
by its syntactic building blocks, we represented images by neural network embeddings, and we
represented sound as a sequence of audio features. We showed that our proposed measure is
a proper generalization of fluency, flexibility, and originality as proposed by Torrance [1972].

To validate our distance-based creativity measure, we applied it to Scratch projects and
compared it to the creativity assessment of human experts. We found that an XGBoost
model using fluency, flexibility, and originality as input agreed at least as well with human
assessments as humans agreed with each other. This is partially because human experts
tended to disagree, indicating again that creativity is hard to quantify. But it also provides
some evidence that automatic measures of creativity can approximate human assessments of
creativity.
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