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Abstract—This paper studies the impact of a transmitter’s
molecule generation process on the capacity of a concentra-
tion based Molecular Communication (MC) system. Constraints
caused by the molecule generation process affect the availability
of the molecules at the transmitter. The transmitter has a storage
of molecules, and should decide whether to release or save the
currently produced molecules. As a result, the MC system has
conceptual connections with energy harvesting systems. In this
paper, we consider two scenarios on the propagation channel.
The first scenario assumes a channel with no Inter-symbol
Interference (ISI), i.e., a memoryless channel. We derive bounds
on the capacity of the MC system in this scenario. The second
scenario assumes the MC network with ISI, in which the output
of the channel depends on the history of released molecules in
the pervious time-slots. Based on the assumptions that either
the transmitter or the receiver knows the channel statistics, we
compute a lower bound on the channel capacity.1

Index Terms—Molecular communication (MC) network, Chan-
nel Capacity, inter-symbol interference (ISI).

I. INTRODUCTION

Unlike the classical wireless communication, diffusion

based Molecular Communication (MC) utilizes molecules as

the carriers of information between the communicating parties.

Type, concentration, or the release time of molecules can be

used for signaling by a molecular transmitter. As a result, a

mechanism must be set in place for production of molecules

at the transmitters [1]. For instance, this may be realized by

chemical reactions inside the transmitter nodes. The impact

of this molecule production process on the capacity of a

molecular channel is the subject of this paper.

We assume that the transmitter includes a production unit

as well as a storage unit. The production unit adds some

amount of new molecules in each time-slot to the storage

unit. The production rate of molecules may depend on the

amount of molecules already exist in the storage unit, e.g., the

chemical process responsible for molecule production might

have a faster production rate if the storage unit is empty. The

transmitter communicates its message by controlled opening

of an outlet of the storage unit for a short period of time

and thereby releasing a concentration of molecules into the

environment at the beginning of each time-slot. This model

is comparable with an Energy Harvesting (EH) system in the

classical communications, in which the transmitter harvests

energy and wishes to send its message such that its transmitted

signal is amplitude-constrained to the amount of harvested and

1Authors are listed in the alphabetical order, not according to their contri-
butions.

stored energy at the transmitter [2]–[7]. The transmitter (in the

EH system) may have finite [6] or infinite [8] energy storage

(battery) or it can be assumed with no battery [9].

There are several approaches and models of transmitters

and receivers for diffusion based MC in the literature. We

follow the common approach of choosing one of the models

and adapting our analysis to it. In particular, we adopt the

macro-scale mode of MC and the molecular Poisson model

for our study (see [1], [10] and references therein for a

review of different models and the related results). More

specifically, we assume that the amount of released molecules

is a deterministic concentration (in molar) and the Fick’s law

of diffusion describes the medium. The reception noise is

modeled by a Poisson random variable, i.e., the received signal

has a Poisson distribution whose mean is proportional to the

average concentration of molecules at the receiver.

In this paper, we consider two cases of the Poisson channel,

with or without Inter-Symbol Interference (ISI). The ISI occurs

when a non-negligible portion of transmitted molecules from

the previous time-slots remain in the medium and affect the

communication in the current time-slot. We begin by providing

a number of capacity results when the channel is without ISI.

One should note that though the channel is memoryless in this

case, the problem is still complicated due to the fact that the

transmitter has memory; the number of released molecules

in each transmission is limited by the level of the storage,

which itself depends on the previous transmissions. A similar

phenomenon occurs in the classical energy harvesting systems.

Next, we consider a channel with ISI, i.e., a channel with

memory, and provide a result on its capacity depending on

whether the channel statistics are known at the transmitter or

at the receiver.

A. Related works

In practice, a MC transmitter suffers from constraints on

its molecule production and storage processes [11]–[13]. The

molecule production may be constrained by limitations on

the chemical reactions or the availability of food and energy

for molecule generation at the transmitter [13]. Moreover, in

practical scenarios, the bio-nanomachines store the molecules

that they produce internally or capture externally from the

environment [13]. Thus, the limitation on molecule storage

forces some constraints on the molecule transmitting pro-

cess [14].

Most of the existing works in the literature of diffusion

based MC networks assume availability of a constant number

http://arxiv.org/abs/1802.08965v1
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of molecules at the transmission times [15]. For instance in

the on/off keying, the transmitter releases a fixed amount of

molecules to send bit ‘1’ and stays silent to send bit ‘0’ [15]–

[19]. However, there are a few works that consider the limi-

tations on molecule production at the transmitter [11]–[13]:

the random chemical reactions in the molecule production

process is considered in [11]. This work studies the chemical

description of the transmitters in terms of Langevin equation.

In [12] the total molecule concentration at the transmitter is

assumed to be a function of the number of random chemical

reactions between different molecule types. More precisely,

the inherent randomness in the availability of food and energy

is assumed to affect the molecule generation process which

limits the availability of molecules at the transmitter in the

beginning of each time-slot [13]. Due to lack of sufficient

molecules, the lengths of the symbol intervals may vary in

practical MC systems and the constrained transmitter may not

be able to emit molecules with a fixed release frequency [20];

the authors in [20] suggest using two types of molecules for

communicating and symbol synchronization over the channel.

In [21], it is assumed that the amount of available molecules

in the present time-slot, which is referred to as the “state”

of the transmitter, depends on the state and the inputs in the

previous time-slots.

In another line of works, the transmitter is assumed to

actively capture the needed molecules from the environment.

This process is referred to as “molecule harvesting” [14]. Here

the transmitter has the ability to harvest the arrived molecules,

in addition to the background molecules that randomly hit the

transmitter and the ones captured through chemical synthesis

from other materials. In this model, the harvesting process

is constrained by the size of the molecule storage at the

transmitter. The state of the transmitter (i.e., the number of the

molecules at the transmitter’s storage) is updated according to

a weighted combination of the released, the received and the

harvested molecules in the past time-slot [14].

In this paper, we study the transmitter molecule production

constraint. Our work is novel since previous works do not

consider capacity degradation due to the molecule production

constraint at the transmitter. For our study, we adopt a molec-

ular Poisson channel model, an important molecular channel

adopted in many works in the literature [19], [22]–[27],

The rest of the paper is organized as follows. In Section II,

the MC channel and some preliminary definitions are pre-

sented. The main results of the paper on the MC networks

with no ISI are presented in III, including the capacity in the

case of infinite molecule storage, and inner and outer bounds

on the capacity in the case of finite molecule storage. The

main results of the paper on the MC networks with ISI are

presented in IV. The paper is concluded in Section V.

II. SYSTEM MODEL

A. Notation and Definitions

We use the notation xn to denote the sequence

(x0, x1, . . . , xn). Random variables (r.v.s) are denoted by

uppercase letters, while their realizations are denoted by the

lowercase letters. We say that random variables X,Y, Z form

a Markov chain if pZ|XY (z|x, y) = pZ|Y (z|y) for all x, y, z.

We show this Markov chain relation by X → Y → Z . A

sequence of random variables {Xk} for k = 1, 2, · · · is said

to be Asymptotically Mean Stationary (AMS) if

lim
n→∞

1

n

n∑

k=1

P[Xk ∈ A] = P (A) (1)

exists for all measurable A. Under this condition, P is also a

probability measure and is named the stationary mean of the

AMS sequence [33].

B. Channel Model

In our setting, we have a point-to-point communication

channel in which the information is conveyed by the molecule

concentration released into the environment by the transmit-

ter. A deterministic channel between the transmitter and the

receiver, based on the Fick’s law of diffusion, is assumed. A

reception noise is assumed at the receiver; the concentration

of molecules is detected by a Poisson reception process at

the receiver [28]. A common example of the Poisson recep-

tion process is the particle counting noise of a transparent

receiver [29], [30]. A transparent receiver consists of a trans-

parent sphere of a certain volume. It counts the number of

molecules that fall into its sphere. A transparent receiver is

passive in the sense that it does not affect the diffusion medium

by imposing a boundary condition to the differential equation

describing the diffusion process. The precise mathematical

description of a Poisson reception process is as follows:

if the concentration of molecules around the receiver is ρ
moles, the receiver’s measurement is distributed according to

Poisson(κρ) for some constant κ. Since the variance of a

Poisson distribution is proportional to its mean, the larger the

ρ, the noisier the receiver’s reception will be.

We assume a time-slotted transmission. The transmitter

instantaneously releases Xi moles of molecules into the envi-

ronment at the beginning of each time-slot for i = 0, 1, 2, . . . .
In other words, if the transmitter is located at ~r = 0 and has

a clock with frequency 1/Ts, the transmitter’s channel input

is the impulse train
∑

k

Xkδ(~r = 0)δ(t− kTs).

The Fick’s law of diffusion describes propagation of molecules

in the environment. Here, we assume that the communication

is invariant over time, and the boundary conditions are set

to zero, i.e., there is no molecule production source besides

the transmitter. As a result, the diffusion medium (described

by the Fick’s law of diffusion) becomes a linear time-invariant

(LTI) system and can be characterized by its impulse response.

Thus, the concentration of molecules at the receiver at the

end of the i-th time-slot can be expressed as the convolu-

tion
∑i

j=0 ζjXi−j , where ζj represents the channel impulse

response coefficient. The receiver’s measurement follows a

Poisson distribution as Yi ∼ Poisson(κ
∑i

j=0 ζjXi−j). Letting

pj = κζj , we can write Yi ∼ Poisson(
∑i

j=0 pjXi−j) for

i = 0, 1, 2, . . . . We refer to {pi} as the channel coefficients.

We assume that the reception noise at the receiver in different
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time slots are mutually independent, i.e., Yi’s are condition-

ally independent given the transmission amounts {Xi}. If

the reception noise is the particle counting noise, to satisfy

independence of the reception noises one should adopt the

common assumption in the literature that the sampling period

Ts is not very small [31, Section IV], [10, Remark 1].

We say that the channel is without ISI if pi is negligible for

i > 0. In this case, Yi ∼ Poisson(p0Xi), and

p(yn|xn) =

n∏

i=1

p(yi|xi). (2)

The channel is said to be with ISI if the output of the channel

in i-th time-slot depends on the past inputs of the channel in

the previous time-slots with weights pj , j ∈ {0, . . . , i} (see

Fig. 1).

C. Transmitter Model

The transmitter opens the outlet of its molecule storage

unit for a short period of time at the beginning of each

time-slot. The channel input xi, at time-slot i, represents the

deterministic released molecule concentration (in molar) into

the environment. We assume that the transmitter has si moles

of molecules in the beginning of i-th time-slot (in its storage

unit). Moreover, the amount of molecules in the storage unit

after recharging for the duration of the i-th time-slot is denoted

by f(si), where f(·) is a known function. We expect that

f(si) ≥ si, i.e., molecule production is non-negative in the i-
th time slot. Also, we expect f(·) to be a non-decreasing

function, i.e., f(s) ≥ f(s′) for s ≥ s′. The intuition here

is that if the transmitter starts off with s mole of molecules, it

will have more molecules after recharging than if it starts off

with s′ < s moles of molecules. In some practical scenarios,

the production rate of new molecules (f(s)−s) decreases in s,

the amount of molecules already existing in the storage unit.

We do not need to make such a restrictive assumption on the

function s 7→ f(s)− s for our results to hold.

If Si is the amount of molecules in the transmitter at i-th
time-slot, we assume that Xi ≤ Si moles of molecules are

released into the environment. Thus, we will have

Si+1 = f(Si −Xi). (3)

In other words, Si reduces to Si − Xi because of molecule

release and then recharges to f(Si −Xi).
We assume that the transmitter starts off empty, i.e., S0 = 0.

If we have no transmission (Xi = 0) and just recharging, we

will have Si = f(Si−1) for i = 1, 2, . . . ; and thus, Si = f i(0)
where

f i(s) , (f ◦ f ◦ f · · · ◦ f
︸ ︷︷ ︸

i times

)(s).

Since we assumed that f(s) ≥ s for all s, the equation Si =
f(Si−1) implies that Si ≥ Si−1. Therefore, f i(0) is a non-

decreasing sequence of non-negative reals. Let

ϕ = lim
i→∞

f i(0), (4)

be the amount of molecules after recharging for infinite time

(when there is no transmission); we set ϕ = ∞ if the sequence

Fig. 1. Modeling the molecular communication networks with constrained
transmitter and ISI effect as a point-to-point molecule-harvesting Poisson
channel with memory.

f i(0) tends to infinity (as discussed later). From (4), it follows

that given any s∗ ∈ [0, ϕ), it is possible to save molecules for

a finite number of time instances n0 and reach the molecular

level s∗ or larger in the transmitter’s reservoir (when there is

no transmission). That is Sn0
≥ s∗.

We say that the transmitter has finite molecule capacity

and saturates if ϕ < ∞, and has unbounded molecule

capacity if ϕ = ∞. If ϕ < ∞, from (4) we have f(ϕ) =
limi→∞ f i+1(0) = ϕ, i.e., ϕ is a fixed point of f . If ϕ = ∞,

from monotonicity of f and (4) we have

lim
x→∞

f(x) = ∞,

which we can interpret as f(ϕ) = ϕ for ϕ = ∞ by

symbolically extending the domain of f to include ∞.

With the assumption that the transmitter starts off empty, we

only need to define the function f over the interval [0, ϕ]. The

reason is that for any transmission sequence {Xi} satisfying

Xi ≤ Si, we will have Si ≤ ϕ. This follows from induction

Si+1 = f(Si −Xi) ≤ f(Si) ≤ f(ϕ) = ϕ, (5)

where we use the monotonicity property of f(.). Hence, we

assume that the function f(.) is well-defined over [0, ϕ].

D. Channel Capacity

The transmitter wishes to send the message M which is

uniformly distributed over the set M = {0, 1}k to the receiver

in n channel uses. The communication rate is R = k/n bits

per channel use. The rate R is achievable if for any 0 <
ǫ ≤ 1 there exists a code (respecting the transmitter’s input

constraints) with rate R− ǫ whose average error probability is

less than ǫ. The channel capacity C is the maximum achievable

communication rate.

Capacity calculation is complicated due to the memory

introduced into the problem by the constraints on the trans-

mitter. The transmitter should adapt its molecule release to

the amount of produced molecules in the current time-slot and

the consumed molecules in the previous time-slots. Thus, the

transmitter has memory.

III. MC NETWORK WITHOUT ISI

In this section, we present our main results on the capacity

of the MC network without ISI, i.e., Yi ∼ Poisson(p0Xi) for

all i.
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For a given memoryless channel p(y|x) (here a Poisson

channel) on input alphabet X = [0,∞) and a real c ≥ 0, let

us define:

Rc = sup
pX : E[X]≤c

I(X ;Y ), (6)

R̃c = sup
pX : 0≤X≤c

I(X ;Y ). (7)

The difference between Rc and R̃c is that in Rc we take

supremum over all distributions on [0,∞) with an expected

value be at most c, while in R̃c we take supremum over all

distribution whose support is [0, c].
Theorem 1: Let

∆u = sup
s∈[0,ϕ]

f(s)− s. (8)

Then the channel capacity C satisfies:

R̃∆u
≤ C ≤ R∆u

. (9)

Proof: To see the upper bound, note that the number of

molecules produced in each recharging period cannot exceed

∆u. Therefore, the average number of consumed molecules

cannot be larger than ∆u:

1

n

n∑

i=1

Xi ≤ ∆u. (10)

Observe that (6) is the channel capacity under the average

input cost constraint ∆u given in (10) [32]. As a result,

the upper bound then follows from the known result on the

capacity of memoryless channels with an average input cost

constraint [32]. Because we assume no ISI in this section, our

channel is a memoryless Poisson channel and the result of

[32] can be utilized.

It remains to prove the lower bound on the capacity: C ≥
R̃∆u

. Take an arbitrary s ∈ [0, ϕ) and let

c = f(s)− s. (11)

We prove that R̃c = suppX : X≤c I(X ;Y ) is an achievable

rate. This will complete the proof because s has been taken

arbitrary in [0, ϕ), and furthermore

∆u = sup
s∈[0,ϕ]

f(s)− s = sup
s∈[0,ϕ)

f(s)− s,

as f(ϕ) − ϕ = 0. To show that R̃c is achievable, it suffices

to show that for any arbitrary distribution pX on [0, c], the

mutual information I(X ;Y ) is an achievable rate.

Let s∗ = f(s) = s+c. Then from (11) we have f(s∗−c) =
s∗. We claim that s∗ ∈ [0, ϕ]. This is because s∗ = f(s) ≤
f(ϕ) = ϕ where we used the monotonicity property of f .

Since s ∈ [0, ϕ), we can use the save strategy at the beginning

and wait for a finite number of time instances to reach the

molecule level s or larger in the transmitter’s reservoir. If we

wait for one more time step, we reach the molecule level s∗ =
f(s). Hence, there is some finite number n0 such that Sn0

≥
s∗ assuming that we do not transmit any molecules in the first

n0 time steps.

We would like to start transmitting in time instances i > n0.

We claim that if we limit the transmission level to c, then

transmitter’s molecular reservoir will not drop below s∗. In

other words, if Xi ≤ c for i > n0 we have Si ≥ s∗ for all

i > n0. This follows from induction. Assuming that Si ≥ s∗

and using the fact that Xi ≤ c, we have

Si+1 = f(Si −Xi) ≥ f(Si − c) ≥ f(s∗ − c) = s∗. (12)

The above argument shows that it is possible to transmit

any sequence Xi satisfying Xi ≤ c for all i > n0, as the

molecular reservoir is always at least s∗ and hence never

hits zero. By letting the blocklength n tend to infinity, the

initial finite time instances n0 becomes negligible compared

to transmission length n and results in no rate loss. We obtain

the achievability of R̃c = suppX : X≤c I(X ;Y ) via Shannon’s

point to point achievability scheme, i.e., by constructing i.i.d.

codewords from a pX defined on [0, c].
Theorem 2: Assume that ϕ = ∞. Let

∆ℓ = lim inf
s→∞

(f(s)− s) . (13)

Then the channel capacity can be bounded from below as

follows:

C ≥ R∆ℓ
. (14)

Proof: We prove that Rc is an achievable rate for any

c < ∆ℓ. By the definition of ∆ℓ, there exists some s∗ > 0
such that for any s ≥ s∗ we have

f(s) ≥ s+ c. (15)

To prove that Rc = suppX : E[X]≤c I(X ;Y ) is achievable,

we need to prove achievability of I(X ;Y ) for an arbitrary

distribution pX satisfying E[X ] ≤ c. The idea is to mimic the

proof of [5] here and prove this by considering distributions

on a finite support. Take some positive real number K , and

an arbitrary distribution pX of finite support on [0,K]. Here

K may be larger than c, but the distribution of X is required

to satisfy E[X ] ≤ c. It is shown in [5] that achievability of

I(X ;Y ) for such finite support distributions is enough to show

the achievability of Rc.

As in [5], we wait at the beginning for a finite amount of

time and save molecules so that the amount of saved molecules

exceeds a number w (to be specified later). Because ϕ = ∞,

we can take w as large as we want.

As long as Si ≥ K + s∗, we have Si −Xi ≥ s∗ and hence

from (15) we have

Si+1 = f(Si −Xi) ≥ Si −Xi + c. (16)

In other words, a production of c moles of molecules is

guaranteed as long as the molecular reservoir level stays above

K + s∗.

In [5], the update rule Si+1 = Si−Xi+c is considered. Here

in the inequality (16), the sequence Si has a larger growth and

dominates the process of [5]. This indicates that the same proof

can be mimicked here since (16) shows that in each step, more

molecules are produced than the update rule Si+1 = Si−Xi+c
of [5]. The number w should be chosen to ensure that with

high probability, starting from w molecules, Si remains above
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K + s∗ so that (16) remains valid. But this is possible with

the same argument as in [5].

Remark 1: Theorems 1 and 2 give a tight characterization

of capacity C for the case of infinite battery capacity ϕ = ∞ if

∆ℓ = ∆u. For example, this occurs if f(s) = s+ v for some

constant v, i.e., when we have a constant production rate.

Theorem 2 is comparable with an EH system with an infinite

battery [5]. In [5], it is shown that the capacity of Gaussian

EH channel with an infinite battery, with the average arrived

energy P , is equal to the capacity of the Gaussian point-to-

point channel with average power constraint P .

In the following, we find a lower bound on the capacity

when ϕ < ∞.

Theorem 3: Assume that ϕ < ∞. Let qX|S(x|s) be a

conditional distribution on

{(x, s) : f(0) ≤ s ≤ ϕ, 0 ≤ x ≤ s}

such that the Markov chain S0 = 0, Si+1 = f(Si − Xi)
with pXi|Si

= qX|S asymptotically converges to a stationary

distribution qS , i.e., pSi
tends to qS in total variation distance

as i tends to infinity. Then the capacity is lower bounded as

C ≥ I(X ;Y |S), (17)

where qX,S,Y = qX,SpY |X where pY |X is the Poisson channel

Y ∼ Poisson(p0X).

Proof: Assume that we start with S0 = 0 and choose

Xi from Si according to qX|S . Consider the update rule

Si+1 = f(Si − Xi). This yields a sequence {(Si, Xi, )} for

i = 0, 1, 2, · · · . Let Yi ∼ Poisson(p0Xi) be a memoryless

channel. Then we have

p(yn, xn, sn) =

n∏

i=1

p(si|xi−1, si−1)q(xi|si)p(yi|xi). (18)

We claim that {(Si, Xi, Yi)} is an Asymptotically Mean

Stationary (AMS) sequence. As argued in [33], the AMS

condition allows us to conclude that

lim
n→∞

1

n
I(Xn;Y n)

is a lower bound on the capacity of the channel. Next, we

show that {(Si, Xi, Yi)} is an Asymptotically Mean Stationary

(AMS) sequence. Observe that {Si} is a Markov chain (on

a countable state space) starting from S0 = 0. Furthermore,

from the definition of the qS,X in the statement of the theorem,

qS is a limiting stationary distribution for this Markov chain

and p(Si) converges to qS in total variation distance. Because

pXi,Yi|Si
(xi, yi|si) = qX|S(xi|si)pY |X(yi|xi), the distribution

of pSi,Xi,Yi
also converges to qS,X,Y and {(Si, Xi, Yi)} will

be proven to be an Asymptotically Mean Stationary (AMS)

sequence.

To sum this up, we have that

lim
n→∞

1

n
I(Xn;Y n)

is a lower bound on the capacity of the channel. Next, note

that

I(Xn;Y n) = H(Y n)−H(Y n|Xn)

= H(Y n)−
n∑

i=1

H(Yi|Xi)

=

n∑

i=1

H(Yi|Y1:i−1)−H(Yi|Xi)

≥
n∑

i=1

H(Yi|Y1:i−1, Si)−H(Yi|Xi)

=

n∑

i=1

H(Yi|Si)−H(Yi|Xi)

=

n∑

i=1

H(Yi|Si)−H(Yi|Xi, Si)

=

n∑

i=1

I(Xi;Yi|Si)

where we used the fact that Yi → Xi → Si and Yi → Si →
Y1:i−1 form Markov chains, which are implied from (18).

Because pSi,Xi,Yi
tends to qS,X,Y as i tends to infinity, we

have

lim
n→∞

1

n
I(Xn;Y n) ≥ lim

n→∞

1

n

n∑

i=1

I(Xi;Yi|Si) = Iq(X ;Y |S).

IV. MC NETWORK WITH ISI

In this section, we present our main results on the capacity

of the MC network with ISI. As we mentioned in Section II-B,

in this channel Xi and Yi ∼ Poisson(
∑i

j=0 pjXi−j) represent

the channel input and the channel output, respectively (see

Fig. 1). Let C(p) denote the capacity of a channel with

coefficient sequence p. Calculation of C(p) is complicated by

the fact that the channel has memory.

Assume that the channel coefficient sequence p belong to

a class P . Here, we consider two scenarios: the first scenario

assumes that the transmitter is aware of the actual p ∈ P , but

the receiver only knows the class P and is unaware of the

sequence p ∈ P . A rate is achievable if there is a sequence of

coding strategies for the transmitter and receiver whose error

probability vanishes regardless of the choice of p ∈ P . The

second scenario is the other way around; it assumes that the

receiver is aware of the actual p ∈ P , and the transmitter only

knows the class P . Thus, the two scenarios differ in terms

of whether the “channel state information” is available at the

transmitter or receiver.

To state our results, we begin by a definition:

Definition 1: Given two sequences p = (pj) and p̃ = (p̃j)
of channel coefficients, we say p̃ � p if

p̃j =

j
∑

k=0

qj−kpk, (19)

for some non-negative sequence q0, q1, · · · satisfying
∑∞

j=0 qi ≤ 1.
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Intuitively speaking, p̃ � p can be understood as a channel

with a coefficient sequence p̃ having a more spread out channel

coefficient profile than the channel with a coefficient sequence

p.

Example 1: As an example, given any p̃ we have p̃ � p
where p = (pj) is defined as follows: pi = 0 for i ≥ 1 and p0
is any number greater than or equal to

∑

i p̃i.

Our main results are as follows:

Theorem 4: Assume that the molecule production function

f(·) is a concave function (in addition to the constraints of

Section II-C). Take some channel coefficient sequence p̃ =
(p̃j) such that p̃ � p for all p ∈ P . Then, C(p̃) is an achievable

rate for any channel coefficient profile p ∈ P when p is known

only at the transmitter.

Theorem 5: Take some channel coefficient sequence p̃ =
(p̃j) such that p̃ � p for all p ∈ P . Then, for any

molecule production function f(·), C(p̃) is an achievable rate

for any channel coefficient profile p ∈ P when p is known

only at the receiver.

Remark 2: Theorem 4 imposes more restrictions on the

function f(·) compared to Theorem 5. Functions f(x) =
min(x+c, ϕ) and f(x) =

√
x+ c for c > 0 are two examples

of increasing and concave functions.

Remark 3: From Example 1, we know that given any

channel coefficient sequence p̃ = (p̃j), the sequence p =
(
∑

j p̃j , 0, 0, · · · , 0) satisfies p̃ � p. Since p corresponds to

a memoryless channel, the above theorems confirms that ISI

cannot be utilized to increase the channel capacity.

Proof of Theorem 4: In this case, the receiver is unaware

of the p ∈ P . The receiver proceeds with the assumption that

the true channel coefficient is p̃. The idea is to show that

any code for a channel with coefficient p̃ can be “simulated”

by a code for channel p at the transmitter. More specifically,

choose an arbitrary n-code of rate R designed for a channel

with coefficients p̃ consisting of a set of codewords x̃n(m)
for m ∈ {1, 2, . . . , 2nR}. The codeword x̃n(m) satisfies the

transmitter molecule production constraint (i.e., transmission

in each stage is less than the amount of molecules available

in the transmitter reservoir). The receiver assumes that the

actual channel coefficient is p̃ and uses the decoding algorithm

for this channel code. The transmitter gets the true channel

coefficient p and uses the following strategy:

1) From p̃ � p, it computes a non-negative sequence

(q0, q1, . . .) such that

p̃j =

j
∑

k=0

qj−kpk.

2) To transmit message m ∈ {1, 2, . . . , 2nR}, it transmits

xj(m) =

j
∑

k=0

qj−kx̃k(m), j = 0, 1, . . . , n, (20)

on the channel, where x̃n(m) is the codeword of the

codebook for p̃ corresponding to message m.

With this strategy, the receiver gets Yi ∼
Poisson(

∑i

j=0 pi−jxj(m)). Observe that

i∑

j=0

pi−jxj(m) =

i∑

j=0

pi−j

j
∑

k=0

qj−kx̃k(m) (21)

=

i∑

k=0

x̃k(m)
( i∑

j=k

qj−kpi−j

)

=
i∑

k=0

x̃k(m)p̃i−k.

Therefore, Yi ∼ Poisson(
∑i

j=0 p̃i−j x̃j(m)), as if the code-

word x̃n(m) was transmitted over a channel with the coef-

ficient sequence p̃. Hence, (20) allows for the simulation of

channel p̃ from channel p.

The crucial and more difficult step is to show that the

sequence of transmission xn(m) defined in (20) satisfies

the transmitter cost constraint. To prove this, we use the

assumption that each codeword x̃n(m) satisfies the transmitter

cost constraint. That is,

x̃i(m) ≤ s̃i(m)

where s̃0(m) = 0 and s̃i(m) = f(s̃i−1(m) − x̃i−1(m)) is

the number of molecules in transmitter’s reservoir at time i if

message m is transmitted. Our claim follows from Lemma 1

in the Appendix.

Proof of Theorem 5: In this case, the transmitter is

unaware of the p ∈ P . The transmitter proceeds with the

assumption that the true channel coefficient sequence is p̃.

The idea is to convert the channel p to the channel p̃ by an

operation at the receiver. Choosing an arbitrary n-code of rate

R designed for a channel with a coefficient sequence p̃ con-

sisting of a set of codewords x̃n(m) for m ∈ {1, 2, . . . , 2nR},

the transmitter sends the codeword x̃n(m), assuming that the

actual channel coefficient sequence is p̃. The receiver gets the

true channel coefficient sequence p and uses the following

strategy: from p̃ � p, the receiver computes a non-negative

sequence (q0, q1, . . .) such that

p̃j =

j
∑

k=0

qkpj−k.

Next, having received the sequence (Y0, Y1, Y2, · · · , Yn),
the receiver produces the sequence (Ỹ0, Ỹ1, Ỹ2, · · · , Ỹn) as

follows: for each 0 ≤ k ≤ n, we produce ran-

dom variables Ŷ0k, Ŷ1k, Ŷ2k, · · · , Ŷkk, Zk from a multino-

mial distribution with Yk balls and probability sequence

(qk, qk−1, · · · , q0, 1−
∑k

i=0 qi). We assume that the variables

Ŷ0k, Ŷ1k, Ŷ2k, · · · , Ŷkk, Zk for different values of k are pro-

duced independently. Then, we let

Ỹj =

j
∑

i=0

Ŷij .

Note that Yi ∼ Poisson(
∑i

k=0 pi−kx̃k(m)), 0 ≤ i ≤ n
are independent given x̃n(m). By the thinning property of

Poisson distribution, and the fact that sum of independent

Poisson random variables is again a Poisson random variable,
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we obtain that Ŷij ∼ Poisson(qj−i

∑i

k=0 pi−kx̃k(m)) and

furthermore, Ŷij for different values of i, j are mutually

independent. We have

Ỹj =

j
∑

i=0

Ŷij ∼ Poisson(

j
∑

i=0

qj−i

i∑

k=0

pi−kx̃k(m))

= Poisson(

j
∑

k=0

x̃k(m)

j
∑

i=k

qj−ipi−k)

= Poisson(

j
∑

k=0

x̃k(m)p̃j−k).

Furthermore, Ỹj for different values of j are mutually inde-

pendent because they involve summation over disjoint sets of

Ŷij . As a result, Ỹi is exactly what we obtain if x̃n(m) were

passed through the channel p̃. This completes the proof of the

receiver being able to apply a post-processing to convert the

channel p to p̃.

V. CONCLUSIONS

In this paper, a molecular communication (MC) system

is considered in which the information is encoded in the

concentration of the molecules, and the molecule generation

process causes some constraints on the transmitter. Moreover,

it is assumed that the number of received molecules at the

receiver follows a Poisson distribution of the channel input.

Two scenarios on the MC channel with no Inter-symbol

Interference (ISI) and the MC channel with ISI were studied.

For the case of no-ISI scenario, lower and upper bounds on

the channel capacity were derived. For the case of channels

with ISI, we provided a capacity result for the cases where the

channel coefficient sequence is known either at the transmitter

or at the receiver.
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APPENDIX

Lemma 1: Let (x̃0, s̃0, x̃1, s̃1, · · · ) be a sequence satisfying

s̃0 = 0, x̃i ≤ s̃i, and s̃i+1 = f(s̃i − x̃i) for i ≥ 0. Let

q0, q1, · · · be a sequence of non-negative numbers satisfying
∑

i qi ≤ 1. Let

xj =

j
∑

k=0

qj−kx̃k, j = 0, 1, . . . .

Then, assuming that f is a concave molecule production

function, there is a sequence (s0, s1, · · · ) of non-negative

numbers satisfying s0 = 0, xi ≤ si and si+1 = f(si−xi) for

any i ≥ 0.

Proof of Lemma 1: We begin by first proving the

following fact about the function f : given any non-negative

numbers αi and vi such that
∑

i αi ≤ 1 we have

f(
∑

i

αivi) ≥
∑

i

αif(vi). (22)

To see this, let κ =
∑

j αj ∈ [0, 1]. Then,

f(
∑

i

αivi) = f((1− κ) · 0 +
∑

i

αivi)

≥ (1− κ)f(0) +
∑

i

αif(vi) (23)

≥
∑

i

αif(vi),

where (23) from Jensen’s inequality for the concave function

f .

We prove the Lemma by induction on i. We form the

induction by assuming a stronger induction hypothesis: we

assume that we have defined si for i ≤ T such that xi ≤ si,
si = f(si−1 − xi−1) and additionally

sj ≥
j

∑

k=0

qj−ks̃k, j = 1, 2, . . . , T. (24)

Then, we prove that sT+1 = f(sT − xT ) will satisfy

xT+1 ≤ sT+1 (25)

sT+1 ≥
T+1∑

k=0

qT+1−ks̃k. (26)

The base of the induction is clear. Since x̃1 ≤ s̃1 = 0, we

have x1 = q0x̃1 = 0. Therefore, x1 ≤ s1 = 0 and s1 ≥ q0s̃1
hold. Equation (26) holds because

sT+1 = f(sT − xT )

≥ f(
T∑

k=0

qT−ks̃k − xT ) (27)

= f(
T∑

k=0

qT−k(s̃k − x̃k)) (28)

≥
T∑

k=0

qT−kf(s̃k − x̃k) (29)

=

T∑

k=0

qT−ks̃k+1 (30)

= qT+1s̃0 +

T∑

k=0

qT−ks̃k+1 (31)

=

T+1∑

k=0

qT+1−ks̃k,

where (27) follows from the induction hypothesis and mono-

tonicity of f , (28) follows from the definition of xT , (29)

follows from (22), (30) follows from the definition of s̃k+1

and (31) follows from the fact that s̃0 = 0.

Equation (25) holds because

xT+1 =

T+1∑

k=0

qT+1−kx̃k

=

T+1∑

k=1

qT+1−kx̃k (32)

≤
T+1∑

k=1

qT+1−ks̃k (33)

=
T+1∑

k=1

qT+1−kf(s̃k−1 − x̃k−1) (34)

≤ f(
T+1∑

k=1

qT+1−k(s̃k−1 − x̃k−1)) (35)

= f(

T∑

k=0

qT−k(s̃k − x̃k))

= f

(
(

T∑

k=0

qT−ks̃k
)
− xT

)

(36)

≤ f(sT − xT ) (37)

= sT+1,

where (32) follows from x̃0 = 0, (33) follows from x̃k ≤ s̃k,

(34) follows from the definition of s̃k, (35) follows from (22),

(36) follows from definition of xT and finally, (37) follows

from induction hypothesis (24) and the fact that f is non-

decreasing.
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