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Abstract

This paper presents a stochastic analysis of the time-variant channel impulse response (CIR) of a three

dimensional diffusive mobile molecular communication (MC) system where the transmitter, the absorbing

receiver, and the molecules can freely diffuse. In our analysis, we derive the mean, variance, probability

density function (PDF), and cumulative distribution function (CDF) of the CIR. We also derive the PDF and

CDF of the probability p that a released molecule is absorbed at the receiver during a given time period.

The obtained analytical results are employed for the design of drug delivery and MC systems with imperfect

channel state information. For the first application, we exploit the mean and variance of the CIR to optimize a

controlled-release drug delivery system employing a mobile drug carrier. We evaluate the performance of the

proposed release design based on the PDF and CDF of the CIR. We demonstrate significant savings in the

amount of released drugs compared to a constant-release scheme and reveal the necessity of accounting for

the drug-carrier’s mobility to ensure reliable drug delivery. For the second application, we exploit the PDF of

the distance between the mobile transceivers and the CDF of p to optimize three design parameters of an MC

system employing on-off keying modulation and threshold detection. Specifically, we optimize the detection

threshold at the receiver, the release profile at the transmitter, and the time duration of a bit frame. We show

that the proposed optimal designs can significantly improve the system performance in terms of the bit error

rate and the efficiency of molecule usage.

I. INTRODUCTION

As appropriate channel models are essential for the analysis and design of molecular communication

(MC) systems, MC channel modeling has been extensively studied in the literature, see [1] and references

therein. For example, the simple diffusive channel model of an unbounded three-dimensional (3D) MC

system with impulsive point release of information carrying molecules [2] has been widely used for

system analysis and design, see [3], [4], and references therein. Diffusion channel models with drift
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[5] and chemical reactions [6] have also been considered. However, most of the previously studied

MC channel models assume static communication systems where the transceivers do not move.

Recently, many applications have emerged where the transceivers are mobile, including drug delivery

[7], mobile ad hoc networks [8], and detection of mobile targets [9]. Hence, the modeling and design

of mobile MC systems have gained considerable attention, e.g., see [1], [8]–[15], and references therein.

In [8], a mobile ad hoc nanonetwork was considered where mobile nanomachines collect environmental

information and deliver it to a mobile central control unit. The mobility of the nanomachines was

described by a 3D model but information was only exchanged when two nanomachines collided. In

[9], a leader-follower-based model for two-dimensional mobile MC networks for target detection

with non-diffusive information molecules was proposed. The authors in [10] considered adaptive

detection and inter-symbol interference (ISI) mitigation in mobile MC systems, while [11] analyzed

the mutual information and maximum achievable rate in such systems. However, the authors of [10]

and [11] did not provide a stochastic analysis of the time-variant channel but analyzed the system

numerically. In [12], a comprehensive framework for modeling the time-variant channels of diffusive

mobile MC systems with diffusive transceivers was developed. However, all of the works mentioned

above assumed a passive receiver.

On the other hand, for many MC applications, a fully absorbing receiver is considered to be a more

realistic model compared to a passive receiver as it captures the interaction between the receiver and

the information molecules, e.g., the conversion of the information molecules to a new type of molecule

or the absorption and removal of the information molecules from the environment [2], [3]. Since the

molecules are removed from the environment after being absorbed by the receiver, the channel impulse

response (CIR) for absorbing receivers is a more complicated function of the distance between the

transceivers and the receiver’s radius compared to passive receivers. Therefore, the stochastic analysis

of mobile MC systems with absorbing receiver is very challenging. For the fully absorbing receiver in

diffusive mobile MC systems, theoretical expressions for the average distribution of the first hitting

time, i.e., the mean of the CIR, were derived for a one-dimensional (1D) environment without drift

in [13] and with drift in [14]. Based on the 1D model in [13], the error rate and channel capacity

of the system were examined in [15]. However, none of these works provides a statistical analysis

of the time-variant CIR of a 3D diffusive mobile MC system with absorbing receiver. In this paper,

we address this issue and exploit the obtained analytical results for the stochastic parameters of the

time-variant MC channel for the design of drug delivery and MC systems.

In drug delivery systems, drug molecules are carried to diseased cell sites by nanoparticle drug
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carriers, so that the drug is delivered to the targeted site without affecting healthy cells [7]. After being

injected or extravasated from the cardiovascular system into the tissue surrounding a targeted diseased

cell site, the drug carriers may not be anchored at the targeted site but may move, mostly via diffusion

[16]–[19]. The diffusion of the drug carriers results in a time-variant absorption rate of the drugs even

if the drug release rate is constant. Furthermore, experimental and theoretical studies have indicated

that the total drug dosage as well as the rate and time period of drug absorption by the receptors of

the diseased cells are critical factors in the healing process [18], [20]. Therefore, to satisfy reduce

drug cost, over-dosing, and negative side effects to healthy cells yet satisfy the treatment requirements,

it is important to optimize the release profile of drug delivery systems such that the total amount

of released drugs is minimized while a desired rate of drug absorption at the diseased site during a

prescribed time period is achieved. To this end, the mobility of the drug carriers and the absorption

rate of the drugs have to be accurately taken into account. This can be accomplished by exploiting

the MC paradigm where the drug carriers, diseased cells, and drug molecules are modeled as mobile

transmitters, absorbing receivers, and signaling molecules, respectively [3]. Release profile designs for

drug delivery systems based on an MC framework were proposed in [4], [21]–[23]. However, in these

works, the transceivers were fixed and only the movement of the drug molecules was considered. In

this paper, we exploit the analytical results obtained for the stochastic parameters of the time-variant

MC channel with absorbing receiver for the optimization of the release profile of drug delivery systems

with mobile drug carriers.

In diffusive mobile MC systems, knowledge of the CIR is needed for reliable communication design.

However, the CIR may not always be available in a diffusive mobile MC system due to the random

movements of the transceivers. In particular, the distance between the transceivers at the time of release,

on which the CIR depends, may only be known at the start of a transmission frame. In other words,

the movement of the transceivers causes the CSI to become outdated, which makes communication

system design challenging. In this paper, we consider a mobile MC system employing on-off keying

and threshold detection and optimize three design parameters to improve the system performance

under imperfect CSI. First, we optimize the detection threshold at the receiver for minimization of the

maximum bit error rate (BER) in a frame when the number of molecules available for transmission is

uniformly allocated to each bit of the frame. Second, we optimize the release profile at the transmitter,

i.e., the optimal number of molecules available for the transmission of each bit, for minimization of

the maximum BER in a frame given a fixed number of molecules available for transmission of the

entire frame. Third, we maximize the frame duration under the constraint that the probability that a
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released molecule is absorbed by the receiver does not fall below a prescribed value. Such a design

ensures that molecules are used efficiently as a molecule release occurs only if the released molecule is

observed at the receiver with sufficiently high probability. For the proposed design tasks, the results of

the stochastic analysis of the transceivers’ positions and of the probability that a molecule is absorbed

during a given time period are exploited.

In summary, the main contributions of this paper are as follows:

‚ We provide a statistical analysis of the time-variant channel of a 3D diffusive mobile MC system

employing an absorbing receiver. In particular, we derive the mean, variance, PDF, and CDF of

the corresponding CIR. Moreover, we derive the PDF and CDF of the probability that a molecule

is absorbed during a given time period. The stochastic channel analysis is exploited for the design

of drug delivery and MC systems.

‚ For drug delivery systems, the release profile is optimized for the minimization of the amount of

released drugs while ensuring that the absorption rate at the diseased cells does not fall below a

prescribed threshold for a given period of time. We show that the proposed design requires a

significantly lower amount of released drugs compared to a design with constant-release rate.

‚ For MC systems employing on-off keying modulation and threshold detection based on imperfect

CSI, we optimize three design parameters, namely the detection threshold at the receiver, the

release profile at the transmitter, and the time duration of a bit frame. Simulation results show

significant performance gains for the proposed designs in terms of BER and the efficiency

of molecule usage compared to baseline systems with uniform molecule release and without

limitation on time duration of a bit frame, respectively.

‚ Our results reveal that the transceivers’ mobility has a significant impact on the system performance

and should be taken into account for MC system design.

We note that the derived analytical results for the time-variant CIR of mobile MC systems with

absorbing receiver are expected to be useful not only for the design of the drug delivery and MC

systems considered in this paper but also for the design of detection schemes and the evaluation of

the performance (e.g., the capacity and throughput) of such systems.

This paper expands its conference version [24]. In particular, the analysis of the probability that a

molecule is absorbed during a given time period, the MC system design for imperfect CSI, and the

corresponding simulation results are not included in [24].

The remainder of this paper is organized as follows. In Section II, we introduce the considered

diffusive mobile MC system with absorbing receiver and the time-variant channel model. In Section
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Drug molecule Diseased cells
Spherical Rx

Spherical Tx

Absorbed drug molecule

Fig. 1. System model for drug delivery. The drug carrier and the diseased cells of a tumor are modeled as diffusive spherical transmitter

(Tx) and spherical absorbing receiver (Rx), respectively. The drug molecules are absorbed by Rx, when they hit its surface. Different

distances between Tx and Rx over time are due to Tx’s diffusion.

III, we provide the proposed statistical analysis of the time-variant channel. In Sections IV and V,

we apply the derived results for optimization of drug delivery and MC systems with imperfect CSI,

respectively. Numerical results are presented in Section VI, and Section VII concludes the paper.

II. GENERAL SYSTEM AND CHANNEL MODEL

In this section, we first introduce the model for a general diffusive mobile MC system with absorbing

receiver. Subsequently, we specialize the model to drug delivery and communication systems with

imperfect CSI. Finally, we define the time-variant CIR and the received signal.

A. System Model

We consider a linear diffusive mobile MC system in an unbounded 3D environment with constant

temperature and viscosity. The system comprises one mobile spherical transparent transmitter, denoted

by Tx, with radius atx, one mobile spherical absorbing receiver, denoted by Rx, with radius arx, and

the signaling molecules of type X.

The movements of Tx, Rx, and X molecules are assumed to be mutually independent and follow

Brownian motion with diffusion coefficients DTx, DRx, and DX, respectively. This assumption, which

was also made in [12] and [13], is motivated by the fact that the mobility of small objects is governed

by Brownian motion.

We assume that Tx releases molecules at its center instantaneously and discretely during the

considered period of time denoted by T . Let ti and Tb denote the time instant of the i-th release

and the duration of the interval between the i-th and the pi ` 1q-th release, respectively. We have

ti “ pi´ 1qTb and i P t1, . . . , Iu, where I is the total number of releases during T . We denote the

time-varying distance between the centers of Tx and Rx at time t by rptq. Furthermore, let αi and
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A “
řI
i“1 αi denote the number of molecules released at time ti and the total number of molecules

released during T , respectively. For concreteness, we specialize the considered general model to two

application scenarios.

1) Drug Delivery Systems: A drug delivery system comprises a drug carrier releasing drug molecules

and diseased cells absorbing them. We model the drug carrier and diseased cells as Tx and Rx of the

general MC system, respectively, see Fig. 1. The drug carriers in drug delivery systems are typically

nanoparticles, such as spherical polymers or polymer chains, having a size not smaller than 100 nm

[17]. Moreover, drug carriers are designed to carry drug molecules and interaction with the drug or

the receiver is not intended. Hence, the drug carriers can be modeled as mobile spherical transparent

transmitters, Tx. When the drug molecules hit the tumor, they are absorbed by receptors on the

surface of the diseased cells [18], [20]. For convenience, we model the tumor as a spherical absorbing

receiver, Rx. In reality, the colony of cancer cells may potentially have a different geometry, of course.

However, as an abstract approximation, we model the cancer cells as one effective spherical receiver

with radius arx and with a surface area equivalent to the total surface area of the tumor (see Fig. 1).

Hence, the absorption on the actual and the modeled surfaces is expected to be comparable [16].

In a drug delivery system, the drug carriers can be directly injected or extravasated from the blood

into the interstitial tissue near the diseased cells, where they start to move. We assume that the

injection position can be estimated and thus rpt “ 0q is known. The movement of the drug carrying

nanoparticles in the tissue is caused by diffusion and convection mechanisms but diffusion is expected

to be dominant in most cases [16]–[19]. At the tumor site, the drug carrier releases drug molecules

of type X, which also diffuse in the tissue [18]. Hence, we can adopt Brownian motion to model

the diffusion of Tx and X molecules with diffusion coefficients DTx, and DX, respectively [7]. We

consider a rooted tumor and thus DRx “ 0, which is a special case of the considered general system

model.

We assume the instantaneous and discrete release of drugs. After releasing for a period, the drug

carrier may be removed by blood circulation or run out of drugs. Thus, for drug delivery systems, T ,

Tb, ti, and I denote the release period of the drug, the duration of the interval between two releases,

the release instants of the drug molecules, and the number of releases, respectively. A continuous

release can be approximated by letting Tb Ñ 0, i.e., I Ñ 8. Moreover, A and αi denote the total

number of drug molecules released during T and the number of drug molecules released at time ti,

respectively.
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2) Molecular Communication System: For the considered MC system, we assume Brownian motion

of the transceivers and signaling molecules. We assume multi-frame communication between mobile

Tx and Rx with instantaneous molecule release for each bit transmission. Hence, T , Tb, ti, and I

denote the duration of a bit frame, the duration of one bit interval, the beginning of the i-th bit interval,

and the number of bits in a frame, respectively. For an arbitrary bit frame, let bi, i P t1, . . . , Iu, denote

the i-th bit in the bit frame. We assume that symbols 0 and 1 are transmitted independently and

with equal probability. Thus, the probability of transmitting b̃i is Prpb̃iq “ 1{2, where Prp¨q denotes

probability and b̃i P t0, 1u is a realization of bi. We assume that on-off keying modulation is employed.

At time ti, Tx releases αi molecules to transmit bit 1 and no molecules for bit 0. Then, A “
řI
i“1 αi

is the total number of molecules available for transmission in a given bit frame.

B. Time-variant CIR and Received Signal

Considering again the general system model, we now model the channel between Tx and Rx as

well as the received signals at Rx for drug delivery and MC systems, respectively.

1) Time-variant CIR: Let hpt, τq denote the hitting rate, i.e., the absorption rate of a given molecule,

at time τ after its release at time t at the center of Tx. Then, for an infinitesimally small observation

window ∆τ , i.e., ∆τ Ñ 0, we can interpret hpt, τq∆τ as the probability of absorption of a molecule

by Rx between times τ and τ `∆τ after its release at time t. The hitting rate hpt, τq is also referred

to as the CIR since it completely characterizes the time-variant channel, which is assumed to be linear.

For a given distance between Tx and Rx, rptq, the CIR hpt, τq of a diffusive mobile MC system at

time τ is given by [1], [2]

hpt, τq “
arx

?
4πD1τ 3

ˆ

1´
arx
rptq

˙

exp

˜

´
prptq ´ arxq

2

4D1τ

¸

, τ ą 0, (1)

where hpt, τq “ 0, for τ ď 0. Here, D1 is the effective diffusion coefficient capturing the relative

motion of the signaling molecules and Rx, i.e., D1 “ DX `DRx, see [25, Eq. (8)]. In the considered

MC system, due to the motion of the transceivers, the distance rptq is a random variable, and thus,

the CIR hpt, τq is time-variant and should be modeled as a stochastic process [12].

2) Received Signal for Drug Delivery System: In drug delivery, the absorption rate ultimately

determines the therapeutic impact of the drug [18], [20]. Thus, we formally define the absorption

rate as the desired received signal, and make achieving a desired absorption rate the objective for

system design. Recall that hpt, τq∆τ , ∆τ Ñ 0, is the probability of absorption of a molecule by Rx

between times τ and τ `∆τ after the release at time t. If αi molecules are released at Tx at time ti,

the expected number of molecules absorbed at Rx between times t and t`∆t, for ∆tÑ 0, due to
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this release is αihpti, t´ tiq∆t. During the period r0, ts, the total number of released drug molecules

is At “
ř

i αi, @i|ti ă t, and the expected number of drug molecules absorbed between times t and

t`∆t, for ∆tÑ 0 is given by sptq “
ř

i αihpti, t´ tiq∆t, @i|ti ă t. Let gptq denote the absorption

rate of drug molecules X at Rx at time t, i.e., gptq “ sptq{∆t, ∆tÑ 0. Then, we have

g ptq “
ÿ

@i|tiăt

αih pti, t´ tiq . (2)

As mentioned before, the absorption rate gptq, i.e., the received signal, of the tumor cells directly

affects the healing efficacy of the drug. Hence, we will design the drug delivery system such that

gptq does not fall below a prescribed value. Since gptq is a function of hpti, t´ tiq, it is random due

to the diffusion of Tx. Therefore, the design of the drug delivery system has to take into account

the statistical properties of gptq, which can be obtained from the results of the statistical analysis of

hpti, t´ tiq.

3) Received Signal for MC System: For the MC system design, the received signal, denoted by qi,

is defined as the number of X molecules absorbed at Rx during bit interval Tb after the transmission

of the i-th bit at ti by Tx as the received signal, denoted by qi. We detect the transmitted information

based on the received signal, qi. It has been shown in [6] that qi follows a Binomial distribution that

can be accurately approximated by a Gaussian distribution when αi is large, which we assume here.

We focus on the effect of the transceivers’ movements on the MC system performance and design

the optimal release profile of Tx to account for these movements. We assume the bit interval to be

sufficiently long such that most of the molecules have been captured by or have moved far away from

Rx before the following bit is transmitted, i.e., ISI is negligible. We note that enzymes [6] and reactive

information molecules, such as acid/base molecules [26], [27], may be used to speed up the molecule

removal process and to increase the accuracy of the ISI-free assumption. Moreover, we model external

noise sources in the environment as Gaussian background noise with mean and variance equal to η

[1]. Thus, we have

qi „ N
´

µi,b̃i , σ
2
i,b̃i

¯

for bi “ b̃i, (3)

where µi,0 “ σ2
i,0 “ η, µi,1 “ αippti, Tbq ` η, σ2

i,1 “ αippti, Tbqp1 ´ ppti, Tbqq ` η. Here, N pµ, σ2q

denotes a Gaussian distribution with mean µ and variance σ2. ppt, Tbq denotes the probability that a

signaling molecule is absorbed during bit interval Tb after its release at time t at the center of Tx.

For a given distance rptq, ppt, Tbq is given by [2]

ppt, Tbq “

ż Tb

0

hpt, τqdτ “
arx
rptq

erfc

ˆ

rptq ´ arx
2
?
D1Tb

˙

, (4)
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where erfcp¨q is the complementary error function. Since rptq is a random variable and ppt, Tbq is a

function of rptq, ppt, Tbq and any function of ppt, Tbq, e.g., the received signal qi, are random processes.

Moreover, ppt, Tbq is also a function of hpt, τq. Hence, for MC system design, we have to take into

account the statistical properties of ppt, Tbq, which can be obtained based on the proposed statistical

analysis of rptq and hpt, τq.

In summary, the design of both drug delivery and MC systems depends on the statistical properties

of the CIR, hpt, τq, and rptq including their means, variances, PDFs, and CDFs, which will be analyzed

in the next section.

III. STOCHASTIC CHANNEL ANALYSIS

In this section, we first analyze the distribution of the distance between the transceivers, rptq, and

then use it to derive the statistics of the time-variant CIR, hpt, τq, and ppt, Tbq as a function hpt, τq.

In particular, we develop analytical expressions for the mean, variance, PDF, and CDF of hpt, τq and

the PDF and CDF of ppt, Tbq.

A. Distribution of the Tx-Rx Distance for a Diffusive System

In the 3D space, rptq is given by rptq “
b

ř

dPtx,y,zuprd,Rxptq ´ rd,Txptqq2, where rd,Txptq and

rd,Rxptq, d P tx, y, zu, are the Cartesian coordinates representing the positions of Tx and Rx at

time t, respectively. Let us assume, without loss of generality, that the diffusion of Tx and Rx

starts at t “ 0. Then, given the Brownian motion model for the mobility of Tx and Rx, we have

rd,Txptq „ N prd,Txpt “ 0q, 2DTxtq and rd,Rxptq „ N prd,Rxpt “ 0q, 2DRxtq, where we assume that

rd,Txpt “ 0q and rd,Rxpt “ 0q are known. Let us define rdptq “ rd,Rxptq ´ rd,Txptq. Then, we have

rdptq „ N prdpt “ 0q, 2D2tq, where D2 “ DTx `DRx is the effective diffusion coefficient capturing

the relative motion of Tx and Rx, see [25, Eq. (10)]. Given the Gaussian distribution of rdptq, we

know that [28]

γ “
rptq
?

2D2t
“

d

ř

dPtx,y,zu r
2
dptq

2D2t
, (5)

follows a noncentral chi-distribution, i.e., γ „ Xkpλq, with k “ 3 degrees of freedom and parameter

λ “

b

ř

dPtx,y,zu r
2
dpt“0q

2D2t
“ r0?

2D2t
, where r0 denotes rpt “ 0q. The statistical properties of random

variable rptq are provided in the following lemma.
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Lemma 1: The mean, variance, PDF, and CDF of random variable rptq, which represents the distance

between the centers of the diffusive mobile Tx and Rx, are given by, respectively,

E trptqu “

c

4D2t

π
exp

ˆ

´
r20

4D2t

˙

`

ˆ

r0 `
2D2t

r0

˙

erf

ˆ

r0
?

4D2t

˙

, (6)

Var trptqu “ r20 ` 6D2t´ E2
trptqu , (7)

frptqprq “
r

r0
?
πD2t

exp

ˆ

´
r2 ` r20
4D2t

˙

sinh

ˆ

r0r

2D2t

˙

, (8)

and Frptqprq “ 1´Q 3
2

ˆ

λ,
r

?
2DTxt

˙

. (9)

where erfp¨q is the error function, QM pa, bq is the Marcum Q-function [29], E t¨u denotes statistical

expectation, Vart¨u denotes variance, and ft¨up¨q and Ft¨up¨q denote the PDF and CDF of the random

variable in the subscript, respectively.

Proof: Please refer to Appendix A.

Remark 1: From (6) and (7), we can observe that when t Ñ 8, we have exp
´

´
r20

4D2t

¯

Ñ 1 and

erf
´

r0?
4D2t

¯

Ñ 0 and, as a result, E trptqu Ñ 8. Intuitively, because of diffusion, the transceivers

eventually move far away from each other on average.

Remark 2: We note that (8) was derived under the assumption that Tx can diffuse in the entire 3D

environment. However, in reality, Tx cannot move inside Rx, i.e., it does not interact with Rx, and

thus will be reflected when it hits Rx’s boundary. Hence, the actual frptqprq, derived in [25], differs

from (8), e.g., frptqprq “ 0 for r ă atx ` arx. However, for very small r, i.e., r « 0, (8) approaches

zero. Hence, (8) is a valid approximation for the actual frptqprq. The validity of this approximation is

evaluated in Section VI via simulations, where, in our particle-based simulation, Tx is reflected upon

collision with Rx [30].

B. Statistical Moments of Time-variant CIR

In this subsection, we derive the statistical moments of the time-variant CIR, i.e., mean mpt, τq and

variance σ2pt, τq. In particular, the mean of the time-variant CIR, mpt, τq, can be written as

mpt, τq “

ż 8

0

hpt, τq
ˇ

ˇ

rptq“r frptqprqdr. (10)

A closed-form expression for (10) is provided in the following theorem.
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Theorem 1: The mean of the impulse response of a time-variant channel with diffusive molecules

released by a diffusive transparent transmitter and captured by a diffusive absorbing receiver is given

by

mpt, τq “
arx

4
a

π pD1τ `D2tqr0τ
exp

ˆ

´
a2rx

4D1τ
´

r20
4D2t

˙„

´e
vpt,τq2

4upt,τq

ˆ

vpt, τq

2upt, τq
` arx

˙

(11)

ˆ erfc

˜

vpt, τq

2
a

upt, τq

¸

` e
wpt,τq2

4upt,τq

ˆ

wpt, τq

2upt, τq
` arx

˙

erfc

˜

wpt, τq

2
a

upt, τq

¸ff

,

where upt, τq, vpt, τq, and wpt, τq are defined, for compactness, as follows

upt, τq “
1

4D1τ
`

1

4D2t
, vpt, τq “ ´

arx
2D1τ

´
r0

2D2t
, wpt, τq “ ´

arx
2D1τ

`
r0

2D2t
. (12)

Proof: Substituting (1) and (8) into (10) and using the integrals given by [31, Eq. (2.3.15.4) and

Eq. (2.3.15.7)], we obtain the expression for mpt, τq in (11).

Remark 3: mpt, τq is a function of time t. Hence, hpt, τq is a non-stationary stochastic process. In

general, at large t, mpt, τq decreases when t increases and eventually approaches zero when t Ñ 8.

This means that as t increases, the molecules released by Tx, on average, have a decreasing chance of

being absorbed by Rx since the transceivers move away from each other as mentioned in Remark 1.

In order to obtain the variance of hpt, τq,

σ2
pt, τq “ φpt, τq ´m2

pt, τq, (13)

we first need to find an expression for the second moment φpt, τq, defined as φpt, τq “ E th2pt, τqu.

The following corollary provides an analytical expression for φpt, τq.

Corollary 1: φpt, τq is given by

φpt, τq “cpt, τq

ż 8

0

`

exp
`

´ûpt, τqr21 ´ v̂pt, τqr1
˘

´ exp
`

´ûpt, τqr21 ´ ŵpt, τqr1
˘˘

(14)

ˆ

ˆ

r1 ´ 2arx `
a2rx
r1

˙

dr1,

where

cpt, τq “
a2rxe

´
a2rx

2D1τ
´

r20
4D2t

8D1πτ 3r0
?
πD2t

, ûpt, τq “
1

2D1τ
`

1

4D2t
, (15)

v̂pt, τq “ ´
arx
D1τ

´
r0

2D2t
, ŵpt, τq “ ´

arx
D1τ

`
r0

2D2t
.

Proof: From the definition, we have

φpt, τq “ E
 

h2pt, τq
(

“

ż 8

0

h2pt, τq
ˇ

ˇ

rptq“r1 frptq pr1q dr1. (16)

Substituting (1) and (8) into (16) and simplifying the expression, we obtain (14).
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Remark 4: The expression in (14) comprises integrals of the form
ş8

0
exp pax2 ` bxq {x dx, where

a and b are constants. Such integrals cannot be obtained in closed form. However, the integrals can

be evaluated numerically in a straightforward manner.

C. Distribution Functions of the Time-variant CIR

In this subsection, we derive analytical expressions for the PDF and CDF of h pt, τq. The PDF of

h pt, τq is given in the following theorem.

Theorem 2: The PDF of the impulse response of a time-variant channel with diffusive molecules

released by a diffusive transparent transmitter and captured by a diffusive absorbing receiver is given

by
$

’

’

’

’

&

’

’

’

’

%

fhpt,τqphq “
frptqpr1phqq

ĥ1pr1phq,τq
´

frptqpr2phqq

ĥ1pr2phq,τq
, for 0 ď h ă h‹,

fhpt,τqphq Ñ 8, for h “ h‹,

fhpt,τqphq “ 0, otherwise,

(17)

where ĥ pr, τq denotes h pt, τq, given by (1), as a function of rptq and τ , frptqprq is given by (8), r1phq

and r2phq, r1phq ă r2phq, are the solutions of the equation ĥ pr, τq “ h, h‹ is the maximum value of

ĥ pr, τq for all values of rptq, and ĥ1pr, τq is given by

ĥ1pr, τq “
arx

?
4πD1τ 3

exp

˜

´
pr ´ arxq

2

4D1τ

¸

ˆ

arx
r2
´
pr ´ arxq

2D1τ

´

1´
arx
r

¯

˙

. (18)

Proof: Please refer to Appendix B.

As stated in the proof of Theorem 2, there are two different values of rptq, r1 and r2, leading to the

same value of ĥpr, τq, i.e., hpt, τq, when 0 ď h ă h‹. Hence, the PDF of hpt, τq is a function of the PDFs

of these two values of rptq. However, when hpt, τq reaches its maximum, fhpt,τqphq approaches infinity

and does not depend on frptqprphqq since the probability of h “ h‹, i.e., Prph “ h‹q “ fhpt,τqphq dh,

is finite and dh approaches 0 at h “ h‹.

The CDF of hpt, τq is given in the following corollary.

Corollary 2: The CDF of the impulse response of a time-variant channel with diffusive molecules

released by a diffusive transparent transmitter and captured by a diffusive absorbing receiver is given

by
$

’

’

’

’

&

’

’

’

’

%

Fhpt,τqphq “ Frptqpr1phqq ` 1´ Frptqpr2phqq, for 0 ď h ď h‹,

Fhpt,τqphq “ 0, for h ă 0,

Fhpt,τqphq “ 1, for h ą h‹,

(19)
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where Frptqprq is given by (9).

Proof: From the definition of the CDF and (17), we have

Fhpt,τqphq “

ż h

0

fhpt,τqpȟqdȟ “

ż h

0

frptqpř1pȟqq

Bĥpř1, τq{Bř1
´

frptqpř2pȟqq

Bĥpř2, τq{Bř2
dȟ (20)

“

ż r1phq

0

frptqpř1qdř1 ´

ż r2phq

8

frptqpř2qdř2 “ Frptqpr1phqq ` 1´ Frptqpr2phqq,

where ř1 and ř2, ř1 ă ř2, are the solutions of the equation ĥ př, τq “ ȟ. This completes the proof.

Similar to the PDF, the CDF of h pt, τq also depends on the CDFs of two values of rptq, i.e., r1phq

and r2phq.

D. Distribution Functions of ppt, Tbq

Calculating the mean of ppt, Tbq involves an integral of the form
ş8

0
erfc paxq expp´b2x2 ` cxqdx,

with appropriate constants a, b, c ą 0, for which a closed-form expression is not known. However,

based on the results in Subsections III-A and III-C, we obtain the PDF and CDF of ppt, Tbq in the

following corollary.

Corollary 3: The PDF and CDF of the probability that a diffusive molecule is absorbed by a

diffusive absorbing receiver during an interval Tb after its release at time t by a diffusive transparent

transmitter are, respectively, given by

fppt,Tbqppq “ ´
frptqpr̃ppqq

p1pr̃q
, (21)

Fppt,Tbqppq “ 1´ Frptqpr̃ppqq, (22)

where frptqprq and Frptqprq are given by (8) and (9), respectively. Here, r̃ppq is the solution of the

equation ppt, Tbq “ p and p1pr̃q is given by

p1pr̃q “ ´
arx
r̃2

erfc

ˆ

r̃ ´ arx
2
?
D1Tb

˙

´
arx

r̃
?
πD1Tb

exp

ˆ

´
pr̃ ´ arxq

2

4D1Tb

˙

. (23)

Proof: The proof of Corollary 3 follows the same steps as the proof of Theorem 2 and Corollary 2

and exploits that ppt, Tbq is a function of rptq as shown in (4). From (23), we observe that p1pr̃q ă 0

so the equation ppt, Tbq “ p has only one solution. Then, we apply the relations for the PDFs and

CDFs of functions of random variables [32] to obtain (21) and (22).

The mean, variance, PDF, and CDF of h pt, τq and ppt, Tbq can be exploited to design efficient and

reliable synthetic MC systems. As examples, we consider the design and analysis of drug delivery

and MC systems in the following two sections.
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IV. DRUG DELIVERY SYSTEM DESIGN

In this section, we apply the derived stochastic parameters of the time-variant CIR for absorbing

receivers for the design and performance evaluation of drug delivery systems.

A. Controlled-Release Design

The treatment of many diseases requires the diseased cells to absorb a minimum rate of drugs

during a prescribed time period at minimum cost [20]. To design an efficient drug delivery system

satisfying this requirement, we minimize the total number of released drug molecules, A “
řI
i“1 αi,

subject to the constraint that the absorption rate gptq is equal to or larger than a target rate, θptq,

for a period of time, denoted by TRx. We allow θptq to be a function of time so that the designed

system can satisfy different treatment requirements over time. Since gptq is random, we cannot always

guarantee gptq ě θptq. Hence, we will design the system based on the first and second order moments

of gptq and use the PDF and CDF of gptq to evaluate the system performance. In particular, we

reformulate the constraint such that the mean of gptq minus a certain deviation is equal to or above

the threshold θptq during TRx, i.e., E tgptqu ´ βV tgptqu ě θptq, 0 ď t ď TRx, where Vt¨u denotes

standard deviation and β is a coefficient determining how much deviation from the mean is taken into

account. Based on (2), the constraint can be written as a function of αi as follows

E tgptqu ´ βV tgptqu
paq

ě
ÿ

@i|tiăt

αi pE th pti, t´ tiqu ´ βV th pti, t´ tiquqěθptq, (24)

for 0 ď t ď TRx. Inequality paq in (24) is due to E tgptqu “ E

"

ř

@i|tiăt

αih pti, t´ tiq

*

“
ř

@i|tiăt
αi

ˆE th pti, t´ tiqu and Minkowski’s inequality [33]:

V tgptqu “

»

–E

$

&

%

¨

˝

ÿ

@i|tiăt

pαih pti, t´ tiq ´ E tαih pti, t´ tiquq

˛

‚

2,

.

-

fi

fl

1{2

(25)

ď
ÿ

@i|tiăt

αi
“

E
 

ph pti, t´ tiq ´ E th pti, t´ tiquq
2
(‰1{2

“
ÿ

@i|tiăt

αiV th pti, t´ tiqu .

Note that we may not be able to find αi such that (24) holds for all values of β and θptq. For

example, when β is too large, E tgptqu´βV tgptqu can be negative and hence (24) cannot be satisfied

for θptq ą 0. However, when E th pti, t´ tiqu ą βV th pti, t´ tiqu, i.e., either β or V th pti, t´ tiqu

are small, such that βV th pti, t´ tiqu is sufficiently small, we can always find αi so that (24) holds

for arbitrary θptq. Since time t is a continuous variable, the constraint in (24) has to be satisfied

for all values of t, 0 ď t ď TRx, and thus there is an infinite number of constraints, each of which
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corresponds to one value of t. Therefore, we simplify the problem by relaxing the constraints to hold

only for a finite number of time instants t “ tn “ n∆tn, where n “ 1, . . . , N and ∆tn “ TRx{N .

Then, the proposed optimization problem for the design of αi is formulated as follows

min
αiě0,@i

A “
I
ÿ

i“1

αi (26)

s.t.
ÿ

i,tiăt

αi pm pti, n∆tn ´ tiq ´ βσ pti, n∆tn ´ tiqq ě θpn∆tnq, for n “ 1, . . . , N,

where m pt, τq and σ pt, τq are the mean (11) and the standard deviation (13) of h pt, τq, respectively.

Since mpt, τq and σpt, τq do not oscillate but are well-behaved and smooth functions of t as shown in

Section VI, a small value of N (e.g., N “ 5) is usually enough to meet the continuous constraint (24)

for all t. Having m pt, τq in (11) and σ pt, τq in (13) and treating the αi as real numbers, (26) can be

readily solved numerically as a linear program. We note that although the numbers of drug molecules

αi are integers, for tractability, we solve (26) for real αi and quantize the results to the nearest integer

values.

We note that the problem in (26) is statistical in nature and provides guidance for the offline design

of the drug delivery system.

B. System Performance

Since gptq ě θptq is required for proper operation of the system, we evaluate the system performance

in terms of the probability that the drug absorption rate satisfies the target rate gptq ě θptq, denoted

by Pθptq “ Pr tgptq ě θptqu. Pθptq is given in the following theorem.

Theorem 3: The system performance metric Pθptq can be expressed as

Pθptq “1´ fα1hpt1,t´t1q pθptqq ˚ ¨ ¨ ¨ ˚ fαi´1hpti´1,t´ti´1q pθptqq ˚ Fαihpti,t´tiq pθptqq , (27)

where ˚ denotes convolution, and i “ 1, 2, . . . satisfies ti ď t. In (27), we define fαihpti,t´tiq pθptqq “

1{αi ˆ fhpti,t´tiq pθptq{αiq and Fαihpti,t´tiq pθptqq “ Fhpti,t´tiq pθptq{αiq.

Proof: From the definition of the CDF, we have

Pθptq “ 1´ Fgptq tθptqu “ 1´

ż θptq

0

fgptqpgqdg. (28)

Due to the summation of independent random variables in (2), i.e., independent releases at ti, we have

fgptqpgq “
`

fα1hpt1,t´t1q ˚ ¨ ¨ ¨ ˚ fαihpti,t´tiq
˘

pgq. (29)
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Substituting (29) into (28), then using the integration property of the convolution, i.e.,
ż θptq

0

`

fα1hpt1,t´t1q ˚ ¨ ¨ ¨ ˚ fαihpti,t´tiq
˘

pgqdg “ fα1hpt1,t´t1q pθptqq ˚ ¨ ¨ ¨ ˚

ż θptq

0

fαihpti,t´tiqpgqdg, (30)

and using the definition of the CDF, we obtain (27).

We note that the analytical expressions for the PDF and CDF of hpt, τq in Theorem 2 and Corollary 2,

respectively, are not in closed form. Nevertheless, the evaluation of the system performance in (27)

can be approximated by a discrete convolution which can be easily evaluated numerically.

Furthermore, we note that a minimum value of Pθptq can be guaranteed based on the statistical

moments of the CIR without knowledge of the PDF and the CDF as shown in the following proposition.

Proposition 1: For a given solution of (24), a lower bound on Pθptq “ Pr tgptq ě θptqu is given as

follows

Pθptq ě 1´
1

β2
. (31)

Proof: By using (24) and the Chebyshev inequality [34], we obtain

Pθptq
paq

ě Pr
!

|gptq ´ E tgptqu| ď E tgptqu ´ θptq
) pbq

ě 1´
V2 tgptqu

pE tgptqu ´ θptqq2
pcq

ě 1´
1

β2
, (32)

where paq can be obtained by expanding the absolute value on the right-hand side, pbq is due to the

Chebyshev inequality, and pcq is due to (24). This completes the proof.

Remark 5: Proposition 1 is not only useful for evaluating the system performance, but also provides

a guideline for the design of the release profile of drugs in (26). For example, to ensure a high

absorption rate probability of Pθptq ě 0.75, from (31), we need to set the β coefficient in (26) as

β “ 2. Note that a useful bound can only be obtained based on (31) when β ą 1 and (24) is satisfied.

V. MC SYSTEM DESIGN FOR IMPERFECT CSI

In this section, we apply the stochastic analysis presented in Section III for the design of MC systems

with imperfect CSI. The CSI is imperfect due to the movement of the transceivers and assumed to be

known only at the beginning of a bit frame. In particular, we optimize three design parameters of a

diffusive mobile MC system employing on-off keying modulation and threshold detection, namely the

detection threshold at Rx, the release profile at Tx, and the time duration of a bit frame. By choosing

the optimal values of those three parameters, we can improve the system performance while keeping

the overall system relatively simple. First, we optimize the detection threshold for minimization of

the maximum BER in a frame assuming a uniform release profile. This approach can be employed

in very simple MC systems where Tx is not capable of adjusting the number of released molecules.
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Second, we optimize the release profile at Tx for minimization of the maximum BER in a frame,

assuming a fixed detection threshold and a fixed number of molecules available for transmission in the

frame. This second approach to MC optimization improves the system performance in terms of BER

but requires a mechanism to control the number of molecules released at Tx. Third, we design the

optimal duration of the bit frame satisfying a constraint on the efficiency of molecule usage. Thus, this

third approach improves the system performance in terms of the efficiency of molecule usage. The

three proposed designs can be performed offline. Furthermore, they can be combined with each other

or carried out separately depending on the capabilities and requirements of the system. For all three

designs, as a first step, we need to derive the BER as a function of the number of released molecules.

A. Detection and BER

We consider a simple threshold detector at Rx, where the received signal qi is compared with a

detection threshold, denoted by ξ, in order to determine the detected bit b̂i as follows

b̂i “

$

’

&

’

%

1 if qi ą ξ,

0 if qi ď ξ.
(33)

Given the assumption of no ISI and Prpb̃iq “ 1{2, from (3) and (33), the error probability of the

i-th bit, denoted by Pbpbiq, can be simplified as [25, Eq. (12)]

Pbpbiq “
1

2
´

1

4
erf

ˆ

ξ ´ η
?

2η

˙

`
1

4

ż 8

0

frptqpriqerf pζipξ, αiqq dri, (34)

where frptqpriq is given in (8), ri is rptiq for brevity, and ζipξ, αiq “
ξ´µi,1
σi,1

?
2
“

ξ´pαippti,Tbq`ηq?
2pαippti,Tbqp1´ppti,Tbqq`ηq

.

Note that Pbpbiq depends on i since the distance rptiq between the transceivers is a function of release

time ti.

B. Optimal Detection Threshold for Uniform Release

We first consider system design for uniform release, where the number of available molecules is

uniformly allocated across all bits of a frame. To facilitate reliable communication, our objective is to

optimize the detection threshold, ξ, such that the maximum value of the error rate of the bits in a

frame is minimized, given the total number of available molecules in a frame, A, i.e.,

min
ξ

max
i
tPbpbiqu s.t. αi “ A{I. (35)

From (34), the problem is equivalent to

min
ξ

max
i

"
ż 8

0

frptqpriqerf pζipξ, αiqq dri ´ erf

ˆ

ξ ´ η
?

2η

˙*

s.t. αi “ A{I. (36)
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The following lemma reveals the convexity of the problem in (36).

Lemma 2: For η ă ξ ă µi,1, the objective function in (36) is convex in ξ.

Proof: Please refer to Appendix C.

Note that η ă ξ ă µi,1 is intuitively satisfied for typical system parameters since the decision threshold

should be higher than the average noise level when bit ”0” is sent but should not exceed the mean

of the received signal when bit ”1” is sent. Otherwise, a high error rate would result. Due to the

convexity of problem (36), the global optimum ξ can be easily obtained by numerical methods such

as the interior-point method [32].

C. Optimal Release with Fixed Detection Threshold

For the second proposed design, we aim to optimize the release profile, i.e., the number of molecules

available for release for each bit, αi, such that maxi tPbpbiqu is minimized given a total number of

molecules A that are available for release in a frame

min
α

max
i
tPbpbiqu s.t.

I
ÿ

i“1

αi “ A, (37)

where α “ rαi, α2, . . . , αIs.

For a given threshold ξ, we can re-express (37) based on (34) as

min
α

max
i

"
ż 8

0

frptqpriqerf pζi pξ, αiqq dri

*

s.t.
I
ÿ

i“1

αi “ A. (38)

The following lemma states the convexity of the optimization problem in (38).

Lemma 3: For η ă ξ ă µi,1, the objective function in (38) is convex in α.

Proof: Please refer to Appendix D.

Hence, the global optimum of (38) can be readily obtained by numerical methods such as the

interior-point method.

Note that, for tractability, similar to the proposed drug delivery design, we solve (36) and (38) for

real αi and quantize the results to the nearest integer values.

D. Optimal Time Duration of a Bit Frame

In the third proposed design, we consider the molecule usage efficiency for communication. We

evaluate the efficiency based on ppt, Tbq, i.e., the probability that a signaling molecule is absorbed

during bit interval Tb after its release at time t. If ppt, Tbq is too small, none of the released molecules

may actually reach the receiver and thus the molecules are wasted, i.e., the system has low efficiency.

Hence, we want to keep ppt, Tbq above a certain value, denoted by ψ. Intuitively, as on average hpt, τq
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decreases over time t, ppt, Tbq, which is the integral over hpt, τq with respect to τ , also on average

decreases over time. Therefore, our objective is to choose the maximum duration of a bit frame,

denoted by T ‹, such that ppt, Tbq ą ψ for t ď T ‹ ´ Tb, where t is the release time.

Since ppt, Tbq is a random process, we cannot enforce ppt, Tbq ą ψ but can only bound the

probability that ppt, Tbq ą ψ is satisfied, i.e., Pr pppt, Tbq ą ψq ě P , where P is a design parameter.

Moreover, we have

Pr pppt, Tbq ą ψq “ 1´ Fppt,Tbqpψq
paq
“ Frptqpr̃pψqq, (39)

where equality paq is due to (22). As such, we can re-express the problem as maximizing the duration

of a bit frame such that Frptqpr̃pψqq ě P holds. To this end, in the following lemma, we analyze

Frptqpr̃pψqq as a function of time t.

Lemma 4: Frptqpr̃pψqq is a decreasing function of time t.

Proof: Please refer to Appendix E.

Since Lemma 4 shows that Frptqpr̃pψqq is a decreasing function of time, the maximum duration

of a bit frame satisfying Frptqpr̃pψqq ě P can be found by solving FrpT ‹´Tbqpr̃pψqq “ P , where

FrpT ‹´Tbqpr̃pψqq is given in (9).

Remark 6: If multiple frames are transmitted, the proposed design framework can be applied to

each frame, respectively. However, the optimal designs may be different for different frames due to the

moving transceivers, whose distances are assumed to be perfectly estimated at the start of each frame.

Remark 7: Here, we discuss a system with an absorbing receiver. Nevertheless, the proposed optimal

design framework can also be applied to transparent receivers. For a transparent receiver, ppt, Tbq is

the probability that a molecule is observed inside the volume of the transparent receiver at time Tb

after its release at time t at the center of Tx.

VI. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate the accuracy of the derived expressions and

analyze the performance of the MC systems in the considered application scenarios. We use the set

of simulation parameters summarized in Table I, unless stated otherwise. The parameters are chosen

to match the actual system parameters in drug delivery systems, as will be explained in detail in

Subsection VI-B.

A. Time-variant Channel Analysis

In this subsection, we numerically analyze the time-variant MC channel. For verification of the

accuracy of the expressions derived in Section III, we employ a hybrid particle-based simulation
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TABLE I

SYSTEM PARAMETERS USED FOR NUMERICAL RESULTS

Parameter Value Parameter Value

DTx [m2
{s] 1ˆ 10´14 DRx [m2

{s] 0

DX [m2
{s] 8ˆ 10´11 r0 [m] 10ˆ 10´6

atx [m] 1ˆ 10´7 arx [m] 1ˆ 10´6

T [h] 24 TRx [h] 24

I 3000 N 5

Tb[s] 28.8 θptqrs´1
s 1
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0
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Fig. 2. Mean of the CIR hprptq, τq as a function of time τ .
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Fig. 3. PDF of the CIR fhpt,τqphq for τ “ 0.17 s and t “

t36, 360, 3600u s.

approach. In particular, we use particle-based simulation of the Brownian motion of the transceivers

to generate realizations of the random distance between Tx and Rx, rptq. Then, we use Monte Carlo

simulation to obtain the desired statistical results by suitably averaging the CIRs (1) obtained for

the realizations of rptq. For particle-based simulation of the Brownian motion of Tx, Tx performs a

random walk with a random step size in space in every discrete time step of length ∆tst “ 1 ms. The

length of each step in space is modeled as a Gaussian random variable with zero mean and standard

deviation
?

2DTx∆tst. Furthermore, we also take into account the reflection of Tx upon collision with

Rx. When Tx hits Rx, we assume that it bounces back to the position it had at the beginning of the

considered simulation step [30].

Fig. 2 shows the mean of the CIR, mpt, τq, as a function of τ . In general, for large τ , mpt, τq
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decreases when t increases as expected since the transceivers move away from each other on average.

For large τ , mpt, τq also decreases when τ increases as would be the case in a static system. Note

that in the simulations, unlike the analysis, we have taken into account the reflection of Tx when it

hits Rx. Therefore, the good agreement between simulation and analytical results in Fig. 2 suggests

that the reflection of Tx does not have a significant impact on the statistical properties of hpt, τq and

the approximation in (8) and the analytical results obtained based on it are valid.

In Fig. 3, we plot the PDF of the CIR for time instances t “ t36, 360, 3600u s and τ “ 0.17 s. Fig. 3

shows that when t increases, a smaller value of hpt, τq is more likely to occur since, on average, the

transceivers move away from each other. When t is very large, it is likely that the molecules cannot

reach Rx, and hence, cannot be absorbed, consequently hpt, τq Ñ 0. We also observe that hpt, τq has

a maximum value and fhpt,τq phpt, τqq Ñ 8 when hpt, τq approaches the maximum value as stated

in (17). For example, hpt “ 36 s, τ “ 0.17 sq is random but its maximum possible value is 0.29 and

fhpt“36 s,τ“0.17 sq p0.29q Ñ 8.

Fig. 2 and 3 show a perfect match between simulation and analytical results. This confirms the

accuracy of our analysis of the time-variant CIR in Sections III. Since particle-based simulation is

costly, in the following subsections, we adopt Monte-Carlo simulation by averaging our results over

105 independent realizations of both the distance rptq and the CIR. The distance rptq is calculated from

the locations of the transceivers, which are generated from Gaussian distributions, see Subsection III-A.

In particular, rptq “
b

ř

dPtx,y,zuprd,Rxptq ´ rd,Txptqq2, where rd,Txptq „ N prd,Txpt “ 0q, 2DTxtq,

rd,Rxptq „ N prd,Rxpt “ 0q, 2DRxtq, rd,Txpt “ 0q “ 0, and rd,Rxpt “ 0q “ 1{
?

3r0. The CIR is given

by (1) for each realization of rptq.

B. Drug Delivery System Design

In this section, we provide numerical results for the considered drug delivery system. As mentioned

above, the parameters in Table I are chosen to match real system parameters, e.g., the diffusion

coefficient DX of drug molecules vary from 10´9 to 10´14 m2{s [19], drug carriers have sizes

atx ě 100 nm [17], the size of tumor cells is on the order of µm, and drug carriers can be injected or

extravasated from the cardiovascular system into the tissue surrounding the targeted diseased cell site

[18], i.e., close to the tumor cells. The dosing periods in drug delivery systems are on the order of

days [35], i.e., 24 h. For simplicity, we set N “ 5 and the value of the required absorption rate is set

to θptq “ 1 s´1. We choose I relatively large to obtain small intervals Tb.

In Fig. 4, we plot the number of released molecules αi versus the corresponding release time ti [h]

for different system parameters. The coefficients are obtained by solving the optimization problem



22

0 5 10 15 20
2,000

3,000

4,000

5,000

6,000

DTx = 10−14m2/s

DTx = 5× 10−14m2/s

DTx = 10−13m2/s

DTx = 0m2/s

Benchmark

Release time ti [h]

α
i

β = 0

β = 0.4

β = 1

β = 2

Fig. 4. Optimal number of released molecules αi as a function of

release time ti [h] for different system parameters and T “ 24 h.

The black horizontal dotted line is the benchmark when the αi are

not optimized.

7.992 7.994 7.996 7.998 8 8.002 8.004 8.006 8.008
0

0.5

1

1.5

2

2.5

3

3.5

design 1

design 2

design 3

Time t [h]

E
{g

(t
)}

an
d
V
{g

(t
)}

E {g(t)} analysis
E {g(t)} simulation
V {g(t)} analysis
V {g(t)} simulation
θ(t)
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1002-th release, i.e., at about 8 h, for three different designs. Design
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with DTx “ 10´13 m2
{s and β “ 0; design 2 (blue line) and 3

(red line): optimal design for
`
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˘

“
`
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`
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˘

, respectively.

in (26) with β “ t0, 0.4, 1, 2u for DTx “ 10´14 m2{s and β “ t0, 0.4u for DTx “ t5, 10u ˆ 10´14

m2{s. As mentioned in the discussion of (24), we cannot choose large values of β when the diffusion

coefficient is large, i.e., the standard deviation is large, as the problem in (26) may become infeasible.

Fig. 4 shows that for all considered parameter settings, we first have to release a large number of

molecules for the absorption rate to exceed the threshold. Then, in the static system with DTx “ 0 m2{s,

the optimal coefficient decreases with increasing time, since a fraction of the molecules previously

released from Tx linger around Rx and are absorbed later. However, for the time-variant channel, Tx

eventually diffuses away from Rx as time t increases and hence, molecules released at later times by

Tx will be far away from Rx and may not reach it. Therefore, at later times, the amount of drugs

released has to be increased for the absorption rate to not fall below the threshold. For larger DTx, Tx

diffuses away from Rx faster and thus, the number of released molecules αi have to increase faster.

This type of drug release, i.e., first releasing a large amount of drugs, then reducing and eventually

increasing the amount of released drugs again, is called a tri-phasic release [36]. Once we have

designed the release profile, we can implement it by choosing a suitable drug carrier as shown in [36].

Moreover, as expected, for larger β, we need to release more drugs to ensure that (26) is feasible. The

black horizontal dotted line in Fig. 4 is a benchmark where the αi, @i, are not optimized but naively
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set to αi “ α1 “ 5493. For this naive design, A “ α1I « 1.65 ˆ 107, whereas with the optimal αi,

for β “ 0 and DTx “ 10´13 m2{s, A “ 1.2 ˆ 107, i.e., 27% less than the A required for the naive

design, and for β “ 1 and DTx “ 10´14 m2{s, A “ 7.6ˆ 106, i.e., 54% less than the A required for

the naive design. This highlights that applying the optimal release profile can save significant amounts

of drugs and still satisfy the therapeutic requirements. Moreover, as observed in Fig. 4, at later times,

e.g., ti ą 15 h for DTx “ 10´13m2{s, the values of αi required to satisfy the desired absorption rate

are higher than the fixed αi used in the naive design, i.e., the benchmark, which means that the naive

design cannot provide the required absorption rate.

In Fig. 5, we plot the mean and standard deviation of the absorption rate, E tgptqu and V tgptqu,

between the 1000-th release and the 1002-th release for three designs. For designs 1 and 2, we assumed

DTx “ 10´13 m2{s and β “ 0, and for design 3, we adopted DTx “ 10´14 m2{s and β “ 1. Note

that the considered time window, e.g., between the 1000-th release and the 1002-th release, is chosen

arbitrarily in the middle of T to analyze the system behavior between individual releases. For design

1, Tx diffuses with DTx “ 10´13 m2{s but the release profile is designed without accounting for Tx’s

mobility, i.e., the adopted αi are given by the green line in Fig. 4 obtained under the assumption

of DTx “ 0 m2{s. For designs 2 and 3, the mobility of Tx is taken into account. The black dashed

line marks the threshold θptq that gptq should not fall below. It is observed from Fig. 5 that when

Tx diffuses but the design does not take into account the mobility, the requirement that the expected
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absorption rate, E tgptqu, exceeds θptq, is not satisfied for most of the time. For design 2 with β “ 0,

we observe that E tgptqu ą θptq always holds but E tgptqu´V tgptqu ą θptq does not always hold. For

design 3 with β “ 1, we observe that E tgptqu ´V tgptqu ą θptq always holds since β ą 0 enforces a

gap between E tgptqu and θptq. In other words, even if gptq deviates from the mean, it can still exceed

θptq.

In Fig. 6, we present the system performance in terms of the probability that gptq ě θptq, Pθptq, for

the time period between the 1000-th and 1002-th releases, i.e., at about 8 h. The lines and markers

denote simulation and analytical results, respectively. Fig. 6 shows a good agreement between analytical

and simulation results. In Fig. 6, we observe that Pθptq increases with increasing β because the design

for larger β enforces a larger gap between E tgptqu and θptq, as can be seen in Fig. 5. Moreover, for

a given β, Pθptq will be different for different DTx. In particular, for larger DTx, Pθptq is smaller

due to the faster diffusion and increasing randomness of the CIR. Moreover, in Fig. 6, the green line

shows that the naive design, i.e., design 1 in Fig. 5, has very poor performance. In Fig. 6, we also

observe that between two releases, Pθptq first increases due to the released drugs and then decreases

due to drug diffusion. Furthermore, in Fig. 6, we also show the lower bound on Pθptq derived in

Proposition 1 for DTx “ 10´14 m2{s and β “ 2, where (31) yields Pθptq ě 0.75. Fig. 6 shows that

the red dash-dotted line, i.e., Pθptq for DTx “ 10´14 m2{s and β “ 2, is indeed above the horizontal

black dashed line, i.e., Pθptq “ 0.75.

C. Molecular Communication System Design

In this subsection, we show numerical results for the second application scenario, i.e., an MC

system with imperfect CSI. We apply again the system parameters in Table I except that here we set

DRx “ 10´11 m2{s, I “ 30, η “ 1, T “ 300 s, and Tb “ T {I “ 10 s to also allow Rx to move and to

reduce the transmission window compared to the drug delivery system.

In Fig. 7, we consider the optimal release design, i.e., the optimal number of molecules available

for transmission of each bit in a frame, for an MC system with fixed detection thresholds and fixed A,

A “ t103, 104, 105u. The fixed detection thresholds ξ are obtained from Subsection V-B by assuming

uniform release. Fig. 7 reveals that in order to minimize the maximum BER in a frame, fewer molecules

should be released at the beginning of the frame and the number of released molecules gradually

increases with time. This is expected since, on average, for later release times, more molecules are

needed to compensate for the increasing distance between the transceivers.

Fig. 8 shows the maximum BER within a frame for uniform release and the proposed release

design obtained from (38), with a fixed detection threshold obtained from (36), as a function of A for
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T “ t100, 300, 3000u s. As can be observed, the proposed optimal release profile leads to significant

performance improvements compared to uniform release, especially for large A. For example, for

A “ 105 and T “ 3000 s, the maximum BER is reduced by a factor of 8 for optimal release compared

to uniform release. On the other hand, to achieve a given desired BER, the total number of molecules

A required for optimal release is lower than that for uniform release. In the inset of Fig. 8, we show

the BER as a function of bit index i in one frame for uniform and optimal release for A “ 104 and

T “ 300 s. We observe that the optimal release achieves a lower maximum BER compared to the

uniform release. We also observe that the optimal release leads to approximately the same BER for

each bit in a frame which highlights the benefits of the proposed design.

Fig. 9 shows the probability that ppt, Tbq is larger than a given value ψ, Pr pppt, Tbq ą ψq, as

a function of time t. Pr pppt, Tbq ą ψq provides information about the probability that a released

molecule is absorbed at the Rx, i.e., the efficiency of molecule usage. We observe from Fig. 9 that

Pr pppt, Tbq ą ψq is a decreasing function of time as expected from the analysis in Subsection V-D.

Moreover, for a given t, Pr pppt, Tbq ą ψq is smaller for larger ψ. Furthermore, we can deduce the

maximum time duration of a bit frame, T ‹, satisfying a required molecule usage efficiency from Fig. 9.

For example, for t ď 300 s, Pr pppt, Tbq ą 0.02q ě 0.8 holds. Thus, T ‹ “ t` Tb “ 310 s guarantees a

molecule usage efficiency of Pr pppt, Tbq ą 0.02q ě 0.8.
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VII. CONCLUSIONS

In this paper, we considered a diffusive mobile MC system with an absorbing receiver, in which

both the transceivers and the molecules diffuse. We provided a statistical analysis of the time-variant

CIR and its integral, i.e., the probability that a molecule is absorbed by Rx during a given time period.

We applied this statistical analysis to two system design problems, namely drug delivery and on-off

keying based MC with imperfect CSI. For the drug delivery system, we proposed an optimal release

profile which minimizes the number of released drug molecules while ensuring a target absorption

rate for the drugs at the diseased site during a prescribed time period. The probability of satisfying

the constraint on the absorption rate was adopted as a system performance criterion and evaluated.

We observed that ignoring the reality of the Tx’s mobility for designing the release profile leads

to unsatisfactory performance. For the MC system with imperfect CSI, we optimized three design

parameters, i.e., the detection threshold at Rx, the release profile at Tx, and the time duration of a

bit frame. Our simulation results revealed that the proposed MC system designs achieved a better

performance in terms of BER and molecule usage efficiency compared to a uniform-release system

and a system without limitation on molecule usage, respectively. Overall, our results showed that

taking into account the time-variance of the channel of mobile MC systems is crucial for achieving

high performance.

APPENDIX A: PROOF OF LEMMA 1

To prove (6), we have
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where Γp¨q denotes the Gamma function, equality paq is due to (5), equality pbq is due to [37, Eq. (1.5)],

and equality pcq is obtained by applying [31, Eq. (5.2.11.6) and Eq. (5.2.11.7)]. Simplifying the final

expression, we obtain (6).
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To prove (7), we have
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where equality paq is obtained due to (5), equality pbq is due to [37, Eq. (1.5)], and equality pcq is

obtained by applying the Maclaurin series of the exponential function. From (40) and (41), we obtain

(7) since Var trptqu “ E tr2ptqu ´ E2 trptqu.

To prove (8), we have
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where fγ pγq is the PDF of γ. Equality paq in (42) exploits the fact that γ is a function of rptq [34,

Eq. (5-16)]. Equality pbq in (42) is obtained from the expression for PDF fγ pγq [28, Eq. (1.6)] and the

relation I1{2pxq “
b

2
πx

sinhpxq, where I1{2pxq is the Bessel function of the first kind and order 1{2.

Moreover, since rptq
?
2DTxt

follows a noncentral chi distribution, we obtain (9) as [29, Eq. (1)]
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APPENDIX B: PROOF OF THEOREM 2

For this proof, we keep in mind that ĥ pr, τq and h pt, τq are two functions of different variables

but give the same value h since r is a function of t. Taking the derivative of (1) with respect to

r, we obtain (18). From (18), we observe that ĥ1pr, τq “ 0 is equivalent to a cubic equation in

r, given by ar3 ` br2 ` cr ` d “ 0, with properly defined coefficients a, b, c, d and discriminant

∆ “ 18abcd ´ 4b3d ` b2c2 ´ 4ac3 ´ 27a2d2. From (18), we have ∆ ă 0 and thus ĥ1pr, τq “ 0 has

only one real valued solution, denoted by r‹, which corresponds to the maximum value of ĥpr, τq,

denoted by h‹. Then, from (18), we observe that ĥ1pr, τq ą 0 for r ă r‹ and ĥ1pr, τq ă 0 for r ą r‹.

Therefore, the equation ĥ pr, τq “ h has two solutions r1phq and r2phq, r1phq ă r2phq, when h ă h‹,

and has only one solution r‹ when h “ h‹ “ ĥ pr‹, τq. Finally, we derive (17) by exploiting [34,

Eq. (5-16)] for the PDF of functions of random variables. Moreover, for h “ h‹, ĥ1pr, τq “ 0 so

fhpt,τqphq “
frptqpr

‹q

ĥ1pr‹,τq
Ñ 8.
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APPENDIX C: PROOF OF LEMMA 2

To prove Lemma 2, we need to prove that erf pζipξ, αiqq ´ erf
´

ξ´η
?
2η

¯

is convex in ξ. erfp¨q is a

convex and non-decreasing function for negative arguments and a concave and non-decreasing function

for positive arguments. For η ă ξ ă µi,1, we have ζipξ, αiq ă 0 and ξ´η
?
2η
ą 0. Moreover, ζipξ, αiq and

ξ´η
?
2η

are affine functions of ξ. Then, erf pζipξ, αiqq is a convex and non-decreasing function of an affine

function and thus is convex in ξ [32, Eq. (3.10)]. erf
´

ξ´η
?
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¯

is a concave and non-decreasing function

of an affine function and thus is concave in ξ [32, Eq. (3.10)]. Therefore, erf pζipξ, αiqq ´ erf
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?
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¯

is convex, which concludes the proof.

APPENDIX D: PROOF OF LEMMA 3

To prove Lemma 3, we need to prove that erf pζipξ, αiqq is convex in α. First, erfp¨q is a convex

and non-decreasing function for negative arguments and ζipξ, αiq ă 0 for ξ ă µi,1. Second, when

η ă ξ, ζipξ, αiq is a convex function in α since its Hessian matrix is positive semi-definite. Then,

erf pζipξ, αiqq is a convex and non-decreasing function of a convex function, and thus, it is convex in

α for η ă ξ ă µi,1 [32, Eq. (3.10)], which concludes the proof.

APPENDIX E: PROOF OF LEMMA 4

To prove Lemma 4, we need to prove BFrptqprq

Bt
ă 0. Using the Taylor series expansion of the sinhp¨q

function in (8), we obtain

BFrptqprq

Bt
“
B

Bt

˜

ż r

0

x

r0
?
πD2t

exp

ˆ

´
x2 ` r20
4D2t

˙ 8
ÿ

n“0

1

p2n` 1q!

ˆ

r0x

2D2t

˙2n`1

dx

¸

(44)

“

ż r

0

x

r0
?
πD2

8
ÿ

n“0

«

1

p2n` 1q!

ˆ

r0x

2D2

˙2n`1
B

Bt

ˆ

exp

ˆ

´
x2 ` r20
4D2t

˙

t´2n´3{2
˙

ff

dx

“

ż r

0

x

r0
?
πD2

8
ÿ

n“0

«

1

p2n` 1q!

ˆ

r0x

2D2

˙2n`1

exp

ˆ

´
x2 ` r20
4D2t

˙

t´2n´5{2

ˆ

ˆ

´2n´ 3{2`
x2 ` r20
4D2t

˙

dx ď 0.

REFERENCES

[1] V. Jamali, A. Ahmadzadeh, W. Wicke, A. Noel, and R. Schober, “Channel modeling for diffusive molecular communication–A

tutorial review,” Proceedings of the IEEE, Early Access, pp. 1–46, 2019.

[2] H. B. Yilmaz, A. C. Heren, T. Tugcu, and C. Chae, “Three-dimensional channel characteristics for molecular communications

with an absorbing receiver,” IEEE Commun. Lett., vol. 18, no. 6, pp. 929–932, Jun. 2014.



29

[3] N. Farsad, H. B. Yilmaz, A. Eckford, C. B. Chae, and W. Guo, “A comprehensive survey of recent advancements in molecular

communication,” IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 1887–1919, Feb. 2016.

[4] M. Femminella, G. Reali, and A. V. Vasilakos, “A molecular communications model for drug delivery,” IEEE Trans. Nanobiosci.,

vol. 14, no. 8, pp. 935–945, Dec. 2015.

[5] S. Kadloor, R. S. Adve, and A. W. Eckford, “Molecular communication using brownian motion with drift,” vol. 3, no. 1, pp.

89–99, Jun. 2012.

[6] A. Noel, K. Cheung, and R. Schober, “Improving receiver performance of diffusive molecular communication with enzymes,”

IEEE Trans. Nanobiosci., vol. 13, no. 1, pp. 31–43, Mar. 2014.

[7] U. A. K. Chude-Okonkwo, R. Malekian, B. T. Maharaj, and A. V. Vasilakos, “Molecular communication and nanonetwork for

targeted drug delivery: A survey,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 3046–3096, May 2017.

[8] A. Guney, B. Atakan, and O. B. Akan, “Mobile ad hoc nanonetworks with collision-based molecular communication,” IEEE

Trans. Mobile Comput., vol. 11, no. 3, pp. 353–366, Mar. 2012.

[9] T. Nakano, Y. Okaie, S. Kobayashi, T. Koujin, C. Chan, Y. Hsu, T. Obuchi, T. Hara, Y. Hiraoka, and T. Haraguchi, “Performance

evaluation of leader-follower-based mobile molecular communication networks for target detection applications,” IEEE Trans.

Commun., vol. 65, no. 2, pp. 663–676, Feb. 2017.

[10] G. Chang, L. Lin, and H. Yan, “Adaptive detection and ISI mitigation for mobile molecular communication,” IEEE Trans.

Nanobiosci., vol. 17, no. 1, pp. 21–35, Jan. 2018.

[11] L. Lin, Q. Wu, F. Liu, and H. Yan, “Mutual information and maximum achievable rate for mobile molecular communication

systems,” IEEE Trans. Nanobiosci., vol. 17, no. 4, pp. 507–517, Oct. 2018.

[12] A. Ahmadzadeh, V. Jamali, and R. Schober, “Stochastic channel modeling for diffusive mobile molecular communication systems,”

IEEE Trans. Commun., vol. 66, no. 12, pp. 6205–6220, Dec. 2018.

[13] W. Haselmayr, S. M. H. Aejaz, A. T. Asyhari, A. Springer, and W. Guo, “Transposition errors in diffusion-based mobile molecular

communication,” IEEE Commun. Lett., vol. 21, no. 9, pp. 1973–1976, Sep. 2017.

[14] N. Varshney, W. Haselmayr, and W. Guo, “On flow-induced diffusive mobile molecular communication: First hitting time and

performance analysis,” IEEE Trans. Mol. Biol. Multi-Scale Commun., Early Access, pp. 1–1, Jul. 2019.

[15] N. Varshney, A. K. Jagannatham, and P. K. Varshney, “On diffusive molecular communication with mobile nanomachines,” in

2018 52nd Annual Conference on Information Sciences and Systems (CISS), Mar. 2018, pp. 1–6.

[16] M. Sefidgar, M. Soltani, K. Raahemifar, H. Bazmara, S. Nayinian, and M. Bazargan, “Effect of tumor shape, size, and tissue

transport properties on drug delivery to solid tumors,” Journal of Biological Engineering, vol. 8, no. 12, Jun. 2014.

[17] A. Pluen, P. A. Netti, R. K. Jain, and D. A. Berk, “Diffusion of macromolecules in agarose gels: Comparison of linear and

globular configurations,” Biophysical Journal, vol. 77, no. 1, pp. 542–552, 1999.

[18] B. K. Lee, Y. H. Yun, and K. Park, “Smart nanoparticles for drug delivery: Boundaries and opportunities,” Chemical Engineering

Science, vol. 125, pp. 158–164, Apr. 2015.

[19] X. Wang, Y. Chen, L. Xue, N. Pothayee, R. Zhang, J. S. Riffle, T. M. Reineke, and L. A. Madsen, “Diffusion of drug delivery

nanoparticles into biogels using time-resolved microMRI,” The Journal of Physical Chemistry Letters, vol. 5, no. 21, pp. 3825–3830,

Oct. 2014.

[20] K. B. Sutradhar and C. D. Sumi, “Implantable microchip: the futuristic controlled drug delivery system,” Drug Delivery, vol. 23,

no. 1, pp. 1–11, Apr. 2014.

[21] Y. Chahibi, M. Pierobon, and I. F. Akyildiz, “Pharmacokinetic modeling and biodistribution estimation through the molecular

communication paradigm,” IEEE Trans. Biomed. Eng., vol. 62, no. 10, pp. 2410–2420, Oct. 2015.

[22] S. Salehi, N. S. Moayedian, S. S. Assaf, R. G. Cid-Fuentes, J. Sol-Pareta, and E. Alarcn, “Releasing rate optimization in a single

and multiple transmitter local drug delivery system with limited resources,” Nano Commun. Netw., vol. 11, pp. 114–122, Mar.

2017.



30

[23] S. Salehi, N. S. Moayedian, S. H. Javanmard, and E. Alarcn, “Lifetime improvement of a multiple transmitter local drug delivery

system based on diffusive molecular communication,” IEEE Trans. Nanobiosci., vol. 17, no. 3, pp. 352–360, Jul. 2018.

[24] T. N. Cao, A. Ahmadzadeh, V. Jamali, W. Wicke, P. L. Yeoh, J. Evans, and R. Schober, “Diffusive mobile MC for controlled-release

drug delivery with absorbing receiver,” in 2019 IEEE International Conference on Communications (ICC), May 2019.

[25] A. Ahmadzadeh, V. Jamali, A. Noel, and R. Schober, “Diffusive mobile molecular communications over time-variant channels,”

IEEE Commun. Lett., vol. 21, no. 6, pp. 1265–1268, Jun 2017.

[26] N. Farsad and A. Goldsmith, “A molecular communication system using acids, bases and hydrogen ions,” in 2016 IEEE 17th

International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), July 2016, pp. 1–6.

[27] V. Jamali, N. Farsad, R. Schober, and A. Goldsmith, “Diffusive molecular communications with reactive signaling,” in 2018 IEEE

International Conference on Communications (ICC), May 2018, pp. 1–7.

[28] K. S. Miller, R. I. Bernstein, and L. Blumenson, “Generalized Rayleigh processes,” Quarterly of Applied Mathematics, vol. 16,

no. 2, pp. 137–145, Jul. 1958.

[29] G. H. Robertson, “Computation of the noncentral chi-square distribution,” The Bell System Technical Journal, vol. 48, no. 1, pp.

201–207, Jan 1969.

[30] Y. Deng, A. Noel, M. Elkashlan, A. Nallanathan, and K. C. Cheung, “Modeling and simulation of molecular communication

systems with a reversible adsorption receiver,” IEEE Trans. Mol. Biol. Multi-Scale Commun., vol. 1, no. 4, pp. 347–362, Dec 2015.

[31] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series. New York: Gordon and Breach Science, 1986, vol. 1.

[32] S. Boyd and L. Vandenberghe, Convex Optimization. USA: Cambridge University Press, 2004.

[33] D. A. Stephens, “Math 556 Mathematical Statistics I - Some Inequalities,” Lecture Notes, Fall 2008.

[34] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes. USA: McGraw-Hill, 2002.

[35] D. Y. Arifin, L. Y. Lee, and C. Wang, “Mathematical modeling and simulation of drug release from microspheres: Implications to

drug delivery systems,” Advanced Drug Delivery Reviews, vol. 58, no. 12, pp. 1274–1325, Sep 2006.

[36] S. Fredenberg, M. Wahlgren, M. Reslow, and A. Axelsson, “The mechanisms of drug release in poly(lactic-co-glycolic acid)-based

drug delivery systems - A review,” International Journal of Pharmaceutics, vol. 415, no. 1, pp. 34–52, May 2011.

[37] J. H. Park, “Moments of the generalized Rayleigh distribution,” Quarterly of Applied Mathematics, vol. 19, no. 1, pp. 45–49, Apr.

1961.


	I Introduction
	II General System and Channel Model
	II-A System Model
	II-A1 Drug Delivery Systems
	II-A2 Molecular Communication System

	II-B Time-variant CIR and Received Signal
	II-B1 Time-variant CIR
	II-B2 Received Signal for Drug Delivery System
	II-B3 Received Signal for MC System


	III Stochastic Channel Analysis
	III-A Distribution of the Tx-Rx Distance for a Diffusive System
	III-B Statistical Moments of Time-variant CIR 
	III-C Distribution Functions of the Time-variant CIR 
	III-D Distribution Functions of p(t,Tb)

	IV Drug Delivery System Design
	IV-A Controlled-Release Design
	IV-B System Performance

	V MC System Design for Imperfect CSI
	V-A Detection and BER
	V-B Optimal Detection Threshold for Uniform Release
	V-C Optimal Release with Fixed Detection Threshold
	V-D Optimal Time Duration of a Bit Frame

	VI Numerical Results
	VI-A Time-variant Channel Analysis
	VI-B Drug Delivery System Design
	VI-C Molecular Communication System Design

	VII Conclusions
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Theorem ??
	Appendix C: Proof of Lemma ??
	Appendix D: Proof of Lemma ??
	Appendix E: Proof of Lemma ??
	References

