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Low-Complexity Optimal Scheduling over
Time-Correlated Fading Channels with

ARQ Feedback
Wenzhuo Ouyang, Atilla Eryilmaz, and Ness B. Shroff

Abstract—We investigate the downlink scheduling problem
under Markovian ON/OFF fading channels, where the instan-
taneous channel state information is not directly accessible,
but is revealed via ARQ-type feedback. The scheduler can
exploit the temporal correlation/channel memory inherentin the
Markovian channels to improve network performance. However,
designing low-complexity and throughput-optimal algorithms
under temporal correlation is a challenging problem. In this
paper, we find that under an average number of transmissions
constraint, a low-complexity index policy is throughput-optimal.
The policy uses Whittle’s index value, which was previouslyused
to capture opportunistic scheduling under temporally correlated
channels. Our results build on the interesting finding that,
under the intricate queue length and channel memory evolutions,
the importance of scheduling a user is captured by a simple
multiplication of its queue length and Whittle’s index value. The
proposed queue-based index policy has provably low complexity.
Numerical results show that significant throughput gains can be
realized by exploiting the channel memory using the proposed
low-complexity policy.

I. I NTRODUCTION

In wireless networks with randomly fluctuating channels,
intelligently scheduling users is critical for achieving high
network efficiency. Under the assumption that the scheduler
possesses accurate instantaneous Channel State Information
(CSI), many sophisticated scheduling algorithms have been
proposed and extensively studied (e.g., [2]-[5]).

In practice, accurate instantaneous CSI is difficult to obtain
at the scheduler. Hence, in this work we consider the important
scenario where the instantaneous CSI is not directly accessible
to the scheduler, but is instead revealed through ARQ-type
feedback onlyafter each scheduled data transmission. Many
works have focused on scheduling algorithms design with im-
perfect CSI, where the channel state is considered independent
and identically distributed (i.i.d.) processes across time (e.g.,
[10]-[13]). On the other hand, although the i.i.d. channel model
facilitates more tractable analysis, it does not capture the
time-correlation of the fading channels. ARQ-based protocols
over time-correlated channels are studied in [6]-[9] underthe
scenarios where user scheduling is not required.

The time-correlation or channel memory inherent in the
fading channels can be exploited by the scheduler for more in-
formed decisions, and hence to obtain large throughput/utility
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gains (e.g., [14]-[26]). Under imperfect CSI, channel memory,
and limited network resources, designing efficient scheduling
schemes is highly challenging. This is because the sched-
uler needs to optimally balance the intricate ‘exploitation-
exploration tradeoff’, i.e., to decide whether to exploit the
channels with more up-to-date CSI, or to explore the channels
with outdated CSI.

In this work, we study downlink scheduling with imperfect
CSI and time correlated channels where, differing from works
[14]-[18] in this domain, the packets destined to each user
randomly arrive in time, and are stored in a corresponding
observable data queue before transmission. As a result, the
queue lengths randomly evolve with time. Our goal is to
design scheduling algorithm that is throughput optimal, i.e.,
no scheduling policy can ensure system stability for arrival
rates that are not supportable by the proposed scheduler. Con-
sidering queue lengths along with imperfect CSI and time cor-
relation is highly challenging because to develop throughput-
optimal scheduler requires a complex characterization of the
interplay between user scheduling, channel memory evolution
and queue evolution. Traditional techniques, which assume
known service rate (e.g.[19][20]), or assume i.i.d. channel
state process and are based on minimizing instantaneous
Lyapunov drift in each slot (e.g., scheduling user with maximal
instantaneous product of queue length and transmission rate
[2][3]), does not apply in this context.

Under this model, because of the aforementioned complica-
tions, traditional Dynamic Programming based approaches can
be used for designing scheduling schemes, but are intractable
due to the well-known ‘curse of dimensionality’. In [21][22],
simple round-robin based scheduling policies are shown to
possess the throughput-optimality property. The optimality of
greedy scheduling algorithm are proven in [23][24]. However,
these schemes [21]-[24] are only optimal in the regime where
users haveidentical ON/OFF Markovian channel statistics.
In [25][26], throughput-optimal frame-based policies arepro-
posed. These policies rely on solving a Linear Programming in
each frame, which is hindered by the curse of dimensionality
where the computational complexity grows exponentially with
the network size.

In this work, we study throughput-optimal downlink
scheduling under imperfect CSI over heterogeneous Marko-
vian fading channels. We consider time-correlation by mod-
eling the fading channel as an ‘ON/OFF’ Markov chain.
Differing from the previous works [21]-[26] that consider
scheduling problems under strict interference constraints (e.g.,
only one user can be scheduled at each time slot), we assume
that each user occupies a dedicated channel, i.e., all userscan
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Fig. 1: Two state Markov Chain model.

transmit simultaneously, but thelong-term averagenumber
of transmissions is limited. In this setup, we show that a
low complexity scheduling policy is throughput optimal. Such
a constraint on long-term average number of transmissions
can be used to limit the long-term energy consumption. An
example to limit the energy consumption is thegreen cellular
networks (e.g., [27]-[29]). It is estimated that the cellular
base stations consume4.5 GW of power globally, which
corresponds to more than40 million metric tons of CO2
emission and over$10 billion electricity bill annually [27][28].
With energy expenditure rising by15-20% each year, an
important objective in green cellular networks design is to
reduce the long-run average number of data transmissions to
decrease energy consumption [28]. Therefore, it is of great
interest to understand the relationship between the achievable
throughput region and the constraint on the long-term average
number of transmissions. The results proposed in this work can
be applied to green cellular networks for throughput-optimal
scheduling under imperfect CSI and the long-term average
energy constraint.

Our contributions are as follows:

• Under the constraint on the long-term average number
of transmissions, we propose a low-complexitythroughput-
optimal policy. The policy operates over separate time frames
and, in each time frame, tries to maximize a queue-weighted
average sum-throughput. We are able to conduct aframe-based
Lyapunov analysisto this policy and prove its optimality by
showing that it minimizes the average Lyapunov drift over
each frame. Compared to the traditional approaches for i.i.d.
channels based on minimizinginstantaneousLyapunov drift
each slot, the frame-based approach is useful for analysis in
scenarios with time-correlated channels. The per-frame com-
putational complexity is at mostO((2τ +1)N log(2τ +1)N)
with the number of usersN , whereτ is a control parameter
independent ofN . Therefore, the policy does not suffer from
the curse of dimensionality.

• The proposed policy builds on Whittle’s index analysis of
Restless Multi-armed Bandit Problem (RMBP) [31], where
Whittle’s index value is used to measure the importance of
scheduling a user under the time-correlated channel [16].
Whittle’s index policies are known to have optimality proper-
ties in various RMBP processes and have been shown to have
low-complexity (e.g., [15][19][20]). We find that, interestingly,
under the coupled queue length and channel memory evolu-
tion, the importance of scheduling a user is measured by a
simplemultiplication of the queue length and Whittle’s index
value that is given in closed-form. This property is essential
for the low-complexity nature of our policy.

II. SYSTEM MODEL

A. Downlink Scheduling Problem

We consider a time-slotted wireless downlink network with
one base station andN users, where each useri occupies
a dedicated wireless channel. The channel state of useri,
denoted byCi[t] at slot t, evolves according to an ON/OFF
Markov chain across time slots within the state spaceS =
{0, 1}, independently across channels. When the channel is in
state ‘1’, one packet can be successfully transmitted, otherwise
no packet can be delivered. As shown in Fig. 1, the channel
state evolution is represented by the transition probabilities

pi11 :=Pr
(

Ci[t]=1
∣

∣Ci[t−1]=1
)

,

pi01 :=Pr
(

Ci[t]=1
∣

∣Ci[t−1]=0
)

.

We assume that the Markovian channels are positively
correlated, i.e.,pi11 > pi01 for i=1, 2, · · · , N . This assumption
is commonly made in this field (e.g., [16][21][25][32]), which
means that auto-correlation of the channel state process isnon-
negative [17]. This means, roughly speaking, that the Markov
channel is more likely to stay in its state than changing to
another state, which captures the typical slow fading or fast
transmission scenarios. For ease of presentation, we ignore the
trivial case whenpi11 = 1 or pi01 = 0, i ∈ {1, · · · , N}.

At the beginning of each time slot, the scheduler chooses
users for data transmission. The scheduling decisions are
made without the exact knowledge of the channel state in
the current slot. Instead, the accurate ON/OFF channel state
of a scheduled user is revealed via ACK/NACK feedback
from the receiver, only at the end of each slot following data
transmission.

We consider the classΦ of (possibly non-stationary)
scheduling policies that make scheduling decisions based on
the history of observed channel states, arrival processes,and
scheduling decisions. Under the aforementioned restrictions
on average energy consumption, the scheduling schemes are
subject to the constraint that the long-term average numberof
scheduled transmissions is underM ,

lim sup
T→∞

1

T
E

[

T−1
∑

t=0

N
∑

i=1

aφi [t]
]

≤M, (1)

whereaφi [t] ∈ {0, 1} indicates whether useri is scheduled at
slot t under policyφ ∈ Φ, andM ≤ N .

Data packets destined for different users are stored in
separate queues before transmission. The queue length for user
i is denoted byqi[t] at slott. We assume that the packet arrivals
for the i-th user form ani.i.d. processAi[t] with meanλi and
a bounded second moment. Hence, thei-th data queue evolves
asqi[t+1]=max{0, qi[t]−ai[t]·Ci[t]}+Ai[t].

B. Belief Value Evolution

The scheduler maintains a belief valueπi[t] for each channel
i, defined as the probability of channeli being in state1 at
the beginning oft-th slot conditioned on the past channel state
observations. The belief values are hence updated according to
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Fig. 2: Belief value evolution,pi11 = 0.8, pi01 = 0.2, bis = 0.5.

the scheduling decisions and accurate channel state feedbacks,

πi[t+ 1] =











pi11 if ai[t] = 1 andCi[t] = 1,

pi01 if ai[t] = 1 andCi[t] = 0,

Qi(πi[t]) if ai[t] = 0,

(2)

whereQi(x)=xpi11+(1−x)pi01 is the belief evolution operator
when useri is not scheduled in the current slot. In our
setup, the belief values are known to be sufficient statistics
to represent the past scheduling decisions and channel state
feedback [33]. In the meanwhile, the belief valueπi[t] is the
expected throughput for useri if it is scheduled in slott.

For the i-th user, we usebic,h to denote the state of its
belief value when the most recent channel state was observed
h time slots ago and was in statec ∈ {0, 1}. The closed form
expression ofbic,h can be calculated from (2) and is given as

bi0,h=
pi01−(pi11−p

i
01)

hpi01
1 + pi01 − pi11

, bi1,h=
pi01+(1−pi11)(p

i
11−p

i
01)

h

1 + pi01 − pi11
.

As depicted in Fig. 2, if the scheduler is never
informed of the i-th user’s channel state, the belief
value monotonically converges to the stationary probability
bis:=pi01/(1 + pi01 − pi11) of the channel being in state1. We
assume that the belief values of all channels are initially set
to their stationary values. It is then clear that, based on (2),
each belief valueπi[t] evolves over a countable state space,
denoted byBi={bis, b

i
c,h : c∈{0, 1}, h∈Z+}.

C. Network Stability Region and Achievable Rate Region

We adopt the following definition of queue stability [3]:
queuei is stable if there exists a limiting stationary distribution
Fi such thatlimt→∞ P (qi[t] ≤ q) = Fi(q). The network
stability regionΛ is defined as the closure of the set of arrival
rate vectors supported by all policies in classΦ that does not
lead to system instability while abiding by the constraint (1).
A policy is called throughput optimalif, for any arrival rate
vectorλ within arbitrary ǫ interior of Λ, i.e., λ + ǫ1 ∈ Λ,
all queues are stable under the policy and constraint (1) is
satisfied.

In the meanwhile, we define theachievable rate regionΓ
as the closure of the set of service rate vectorsγ that can be
achieved by all policies, i.e.,

Γ=Cl
{

γ :∃φ ∈ Φ with γi= lim inf
T→∞

1

T
E
[

T−1
∑

t=0

πi[t] · a
φ
i [t]

]

,

i = 1, · · · , N, subject to constraint(1)
}

, (3)

whereCl{·} denotes the closure of the set. The rate region is

convex since randomization can be performed among different
policies. The achievable rate regionΓ contains the set of the
expected service rate vectors that can be achieved with all the
policies inΦ, in the system withinfinitely backlogged queues.

III. O PTIMAL POLICY FOR WEIGHTED SUM-THROUGHPUT

MAXIMIZATION

In this section, we postpone discussion on queue evolu-
tion and consider a simplified problem with infinitely back-
logged queues, and derive the corresponding optimal policy
for weighted sum-throughput maximization. The policy intro-
duced here, which is based on scaling the Whittle’s index
values, is useful to characterize the boundary point of the
achievable rate regionΓ, and is also an important part in the
throughput-optimal policy in the next section that stabilizes all
arrival rates within the system stability regionΛ – the main
result of the paper.

A. Weighted Sum-throughput Maximization Problem

Consider the following weighted sum-throughput maximiza-
tion problemΨ(r,M) for a given vectorr = (ri)

N
i=1, where

the expected service rate for each useri is scaled by a non-
negative factorri,

max
φ∈Φ

lim inf
T→∞

1

T
E

[

T−1
∑

t=0

N
∑

i=1

ri·πi[t]·a
φ
i [t]

]

(4)

s.t. lim sup
T→∞

1

T
E

[

T−1
∑

t=0

N
∑

i=1

aφi [t]
]

≤M. (5)

The above problemΨ(r,M) is hence a constrained Partially
Observable Markov Decision Process (CPOMDP) [34][35].

B. Whittle’s Index for Restless Multi-armed Bandit Problem

The problem (4)-(5) appears difficult because of the com-
plex ‘exploitation - exploration’ tradeoff. To tackle thisprob-
lem, we study it in the framework of the Restless Multiarmed
Bandit Problem (RMBP) [31] and make use of the associated
Whittle’s indexability analysis. We next give a brief review of
the Whittle’s indices for RMBP.

RMBPs refer to a collection of sequential dynamic resource
allocation problems where several independently evolving
projects compete for service. In each slot, a subset of these
competing projects is served. The state of each project stochas-
tically evolves over time, based on the current state of the
project and on whether the project is served in the slot.
Serving a project brings a reward whose value depends on
its state. Hence, in RMBPs, the controller needs to consider
the fundamental tradeoff between decisions that bring high
instantaneous rewards, versus those decisions that bring better
future rewards but sacrifices the instantaneous rewards. Solv-
ing RMBPs are known to be PSPACE-hard [30] in general.

Whittle’s index analysis [31] for RMBPs considers the
following virtual system: in each slot, the controller makes
one of the two decisions for each projectP : (1) Serve project
P and accrue an immediate reward as a function of its state
which is the same as in the original RMBP. (2) Do not serve
projectP and obtain an immediate rewardω for passivity. The
state evolution of the projectP is the same as in the original
RMBP, depending on its current state and current action. In
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this virtual system, the design goal is to maximize the long-
term expected reward by balancing the ‘reward for serving’
and the ‘subsidy for passivity’ in each slot.

Letting I(ω) denote the set of states of projectP in which
the optimal action is to stay passive, the Whittle’s indexability
condition is defined as follows.

ProjectP is Whittle indexable if the setI(ω) monotonically
increases from∅ to the state spaceS of project P , as ω
increases from−∞ to ∞. The RMBP is Whittle indexable
if every project is Whittle indexable.

If Indexability holds, for each states of a project, the
Whittle’s indexW (s) is defined as the infimum ofω in which
it is optimal to stay idle in theω-subsidized system, i.e.,

W (s) = inf{ω : s ∈ I(ω)}.

Under an average constraint on the number of projects
scheduled per slot, it is known that, upon the satisfaction of
the Indexability condition, an optimal algorithm exists based
on the ‘Whittle’s indices’: activate the projects with large
Whittle’s index value [31].

The RMBP theories and the associated Whittle’s indices
can be used in our downlink scheduling problem. Here, each
downlink user corresponds to a project in the RMBP, with
the associated state being the belief value of its channel.
Correspondingly, the project is considered served if the user is
scheduled for data transmission at a slot. Hence the Whittle’s
index policy is very attractive to provide optimal solutions to
our problem, as we shall elaborate in the rest of the paper.

C. Optimal Policy for Weighted Sum-throughput Maximization

It was shown in that our downlink scheduling problem
is Whittle indexable [18], and, under uniform weight vector
r=1, an optimal policy for problemΨ(1,M) exists based
on Whittle’s indexability analysis of Restless Multi-armed
Bandit Problem [16]. Specifically, for channeli, a closed form
Whittle’s index valueW 1

i (π) is assigned to each belief state
π ∈ Bi. These indices intelligently capture the exploitation-
exploration value to be gained from scheduling the user at the
corresponding belief state [16]. The closed form expression of
the Whittle’s index valueW 1

i (π), π ∈ Bi, is given as follows
[16][18],

W 1
i (π)=







(π−Qi(π))(h+1)+Qi(π)
1−pi

11
+(π−Qi(π))h+Qi(π)

if pi01≤π=bi0,h<bis
pi
01

(1−pi
11

)(1+pi
01

−pi
11

)+pi
11

if bis ≤ π ≤ pi11

(6)

It was shown thatW 1
i (π) monotonically increases withπ

and satisfiesW 1
i (π) ∈ [0, 1] [16][18]. In the following lemma,

we give the optimal algorithm to the problemΨ(r,M) with
arbitrary non-negative weight vectorr. The proof of the lemma
follows the line of [31] and is re-proven in Appendix A.

Lemma 1. There exists an optimal stationary policyφ∗(r,M)
for problemΨ(r,M) (cf. (4)-(5)), parameterized by a user
indexi∗, a thresholdω∗ and a randomization factorρ∗, such
that
(i) The scheduler maintains anr-weighted index value
W r

i (πi[t]) = ri ·W 1
i (πi[t]) for user i.

(ii) User i is scheduled ifW r
i (πi[t])>ω∗, or if W r

i (πi[t])=ω∗

with i>i∗. User i stays idle if W r
i (πi[t])<ω∗, or if

W r
i (πi[t])=ω∗ with i<i∗. If W r

i (πi[t])=ω∗ with i = i∗, user
i is scheduled with probabilityρ∗.

(iii) The parametersi∗, ω∗ andρ∗ are such that the long-term
average number of transmissions equalsM .

Remarks: Interestingly, by multiplying the Whittle’s index
valuesW 1

i (πi[t]) with ri, the optimal policyφ∗(1,M) extends
to more general problemΨ(r,M). This property is important
for designing the throughput-optimal policy in Section IV.

D. Approximatei∗, ω∗ and ρ∗ using State Space Truncation

Note that the parametersi∗, ω∗ andρ∗ need to be carefully
chosen to satisfy the complementary slackness condition, i.e.,
Lemma 1(iii). While directly finding these parameters may be
difficult, we next introduce an algorithm to derive approximate
values of i∗, ω∗ and ρ∗ based on a fictitious model over
truncated belief state space. This fictitious model facilitates
more tractable design and analysis. More importantly, we
shall show that, when implementing these approximate values
over the original untruncated system, the performance willget
arbitrary close to the optimality.

Recall that the belief valueπi[t] evolves over a countable
state spaceBi for useri and approaches the stationary value if
the channel is not active for a long time. This motivates us to
consider the following fictitious belief evolution model over
the truncated state space: the belief value of a user is set toits
steady state (i.e., its channel state history is entirely forgotten)
if the corresponding channel has not been scheduled for a long
time, sayτ slots. We useπτ

i [t] to denote this ‘heuristic belief
value’. The evolution ofπτ

i [t] is hence,

πτ
i [t+ 1] =


















pi11 if ai[t] = 1 andCi[t] = 1,

pi01 if ai[t] = 1 andCi[t] = 0,

Qi(πi[t]) if ai[t] = 0,
∏τ−1

k=1

(

1−ai[t−k]
)

= 0,

bis if
∏τ−1

k=0

(

1−ai[t−k]
)

= 1.

(7)

We let Bτ
i denote the truncated state space for thei-th

user, i.e.,Bτ
i ={b

i
s, b

i
c,l : c∈{0, 1}, l=1, 2, · · · , τ} and let

Bτ = [Bτ
1 , · · · ,B

τ
N ]. Over the fictitious truncated state space,

we consider the following policyφtrunc
j,ω,ρ :

Policy φtrunc
j,ω,ρ over the truncated state space:User i

is scheduled ifW r
i (π

τ
i [t])>ω, or if W r

i (π
τ
i [t])=ω∗ with

i>j. User i stays idle ifW r
i (π

τ
i [t])<ω, or if W r

i (π
τ
i [t])=ω∗

with i<j. If W r
i (π

τ
i [t])=ω with i=j, it is scheduled with

probability ρ.

Under this setup, we let the parameterατ
i (j, ω, ρ) denote

the long-term expected fraction of time transmitting to user i,
i.e.,

ατ
i (j, ω, ρ) = lim sup

T→∞

1

T
E

[

T−1
∑

t=0

a
φtrunc
j,ω,ρ

i [t]
]

, (8)

wherea
φtrunc
j,ω,ρ

i [t] ∈ {0, 1} indicates whether useri is scheduled
at time t under policyφtrunc

j,ω,ρ . The closed-form expression of
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ατ
i (j, ω, ρ) is given by the following lemma. The proof of the

lemma is given in Appendix B.
Lemma 2. Let the valueτ0 be

τ0=
⌈

4max
{ 1

− log(pi
11
−pi

01
)
,

1

log2(pi
11
−pi

01
)
, i=1, · · ·, N

}

⌉

. (9)

Over the truncated state space and under policyφtrunc
j,ω,ρ , if

τ > τ0, the following hold forατ
i (j, ω, ρ),

(i) The closed-form expression ofατ
j (j, ω, ρ) is given by

ατ
j (j, ω, ρ)

=































ρ(bj
0,h

−bj
0,h+1

)+1−pj
11

+bj
0,h+1

ρbj
0,h

+(1−ρ)bj
0,h+1

+(1−pj
11

)(h+1−ρ)
if ω=W r

j (b
j
0,h), h<τ

ρ(bj
0,τ−bjs)+1−pj

11
+bjs

ρbj
0,τ+(1−ρ)bjs+(1−pj

11
)(τ+1−ρ)

if ω=W r
j (b

j
0,τ )

ρ(1−pj
11

+bjs)

(1+τρ)(1−pj
11

)+ρbjs
if ω=W r

j (b
j
s)

0 if ω>W r
j (b

j
s).

The closed-form expression ofατ
i (j, ω, ρ), i 6= j is given by

ατ
i (j, ω, ρ)

=



























































1−pi
11+bi0,h+1

bi
0,h+1

+(1−pi
11

)(h+1)
if h<τ , ω=W r

i (b
i
0,h), i<j

1−pi
11+bi0,h

bi
0,h

+(1−pi
11

)h
if h≤τ , ω=W r

i (b
i
0,h), i > j;

or if h≤τ ,W r
i (b

i
0,h−1)<ω<W r

i (b
i
0,h)

1−pi
11+bis

bis+(1−pi
11

)(τ+1)
if ω=W r

i (b
i
0,τ ), i < j;

or if ω=W r
i (b

i
s), i > j

0 if ω=W r
i (b

i
s), i < j;

or if ω>W r
i (b

i
s).

(ii) For fixed πj∈{b
j
0,1, b

j
0,2, · · ·, b

j
0,τ , b

j
s}, ατ

j (j,W
r
j (πj), ρ)

strictly increases withρ. For fixedρ, ατ
i (j,W

r
i (πi), ρ) strictly

decreases withπi for πi ∈ {bi0,1, b
i
0,2, · · · , b

i
0,τ , b

i
s} and all i.

We approximate the optimal valuesi∗, ω∗ andρ∗ (defined
in Lemma 1) using the fictitious truncated state space model.
The approximate valueiτ , ωτ and ρτ are such that, under
policy φtrunc

iτ ,ωτ ,ρτ
over the truncated state space, the long-term

average number of transmissions equalsM , i.e.,
N
∑

i=1

ατ
i (iτ , ωτ , ρτ ) = M. (10)

Note that, equation (10) is the truncated-state-space cor-
respondence of Lemma 1(iii). We next design an algorithm,
denoted byGτ (r,M), to calculateiτ , ωτ and ρτ , described
to the right and explained next.

• The algorithm first calculates ther-weighted index values
W r

i (πi) by scalingW 1
i (πi) by ri, and stores the value and

the corresponding user in vectorI (line 7-15).
• The algorithm then sorts all ther-weighted indices of each

belief state of all users to a(2τ+1)N -dimensional vectorw
in increasing order (line 16).
• The algorithm then calculatesωτ and ρτ based on the

monotonicity property in Lemma 2(ii). Hence, fixing the
randomization factorρ=1, it increases the thresholdω by
going through the indices inw and calculates the long-term
average number of transmission when thresholdω equals

Algorithm Gτ (r,M): Calculation ofiτ , ωτ andρτ
1: TxTime[i] = 1 for all i ∈ {1, · · · , N}
2: TotalTime= N
3: struct Index
4: { float value
5: int user
6: } I[(2τ + 1)N ],w[(2τ + 1)N ]

7: j = 0
8: for i = 1 to N do
9: for eachπi ∈ Bτ

i do
10: W r

i (πi) = ri ·W 1
i (πi)

11: I[j].value= W r
i (πi)

12: I[j].user= i
13: j ← j + 1
14: end for
15: end for

16: w =sort(I) ⊲ Sort the elements inI in increasing order
of the index value and outputs to vectorw.
For index values that are equal, they are or-
dered in increasing order of the associated
user index.

17: for k = 1 to size(w) do

18: NewTime[w[k].user] = ατ
w[k].user(w[k].value, 1)

19: TimeDiff = TxTime[w[k].user]−NewTime[w[k].user]
20: TotalTime= TotalTime− TimeDiff
21: if TotalTime< M then
22: iτ = w[k − 1].user
23: ωτ = w[k−1].value
24: TxTime[w[k−1].user] = M−

∑

i6=w[k−1].user
TxTime[i]

25: ρτ = βw[k−1].user(ωτ ,TxTime[w[k−1].user])
26: Break
27: end if
28: TxTime[w[k].user]=NewTime[w[k].user]
29: end for
30: return ωτ , ρτ

to that index. For each element ofw, it first calculates
the long-term expected fraction of time NewTime[w[k].user]
transmitting to the corresponding userw[k].user in line 18,
and hence the decreased amount, denoted by TimeDiff, as
compared with previous value TxTime[w[k].user] in line 19.
Note that, in each iteration, only the user corresponding to
w[k] will have an updated expected fraction of transmission
time. The total expected number of transmission, denoted by
TotalTime, is then updated by decreasing the same amount
(line 20). The thresholdω keeps increasing until the total
expected number of transmission is belowM (line 21). Noting
thatατ

i (ω, 1) decreases withω, we then setiτ = w[k−1].user
and ωτ = w[k − 1].value (line 21-22). Then we calculate
the expected transmission time to the user that corresponds
to w[k − 1] (line 23) and select the randomization factorρτ
so that the constraint (10) is satisfied (line 24), where the
function βi : (ω, α) → ρ calculates the randomization factor
ρ required to achieve the long-term expected fraction of time
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α transmitting to useri at thresholdω, and is derived from
lemma 2(i) as,

βi(ω, α)

=



























(1−α)(1−pi
11+bi0,h+1)−αh(1−pi

11)

(1−α)(bi
0,h+1

−bi
0,h

)−α(1−pi
11

)
if ω=W r

i (b
i
0,h), h<τ ;

(1−α)(1−pi
11+bis)−ατ(1−pi

11)

(1−α)(bis−bi
0,τ )−α(1−pi

11
)

if ω=W r
i (b

i
0,τ );

α(1−pi
11)

(1−ατ)(1−pi
11

)+(1−α)bis
if ω=W r

i (b
i
s);

0 if ω>W r
i (b

i
s).

E. Performance of policy over untruncated state space with
approximate parametersωτ , ρτ

We next examine, over theoriginal untruncated model, the
policy that uses the approximated parametersiτ , ωτ andρτ .
We denote such policy asφτ (r,M) and present it next.

Algorithm φτ (r,M): r-weighted Index Policy
1: Initialization phase: The parametersiτ , ωτ and ρτ are

calculated by algorithmGτ (r,M).
2: At slot t: useri is scheduled if ther-weighted index value

W r
i (πi[t]) > ωτ , or if W r

i (πi[t])=ωτ with i>iτ . User i
stays passive ifW r

i (πi[t]) < ωτ , or if W r
i (πi[t])=ωτ

with i<iτ . If W r
i (πi[t])=ωτ with i=iτ , useri is scheduled

with probabilityρτ .

Remark: The computational complexity of the initialization
phase of algorithmφτ (r,M) is dominated by sorting the index
values in AlgorithmGτ (r,M) (line 16), which has complexity
O
(

(2τ + 1)N · log
(

(2τ + 1)N
))

. After initialization, ther-
weighted Index Policyφτ (r,M) takes a very simple threshold-
type form with per-slot computational complexityO(N).

We letV ∗(r,M) be the weighted sum-throughput under the
optimal policyφ∗(r,M) defined in lemma 1, and letVτ (r,M)
be that under the afore-mentioned policyφτ (r,M), i.e.,

V ∗(r,M)= lim inf
T→∞

1

T
E

[

T−1
∑

t=0

N
∑

i=1

ri·πi[t]·a
φ∗(r,M)
i [t]

]

. (11)

Vτ (r,M)= lim inf
T→∞

1

T
E

[

T−1
∑

t=0

N
∑

i=1

ri·πi[t]·a
φτ (r,M)
i [t]

]

. (12)

Since we also require the long-term average number of
transmissions of the policyφτ (r,M) to satisfy the con-
straint (1), we denoteZτ (r,M) as the time-average expected
number of transmissions under this policy, i.e.,

Zτ (r,M) = lim sup
T→∞

1

T
E

[

T−1
∑

t=0

N
∑

i=1

a
φτ (r,M)
i [t]

]

.

Recall thatτ0 is defined in Lemma 2. The next lemma
shows that the policyφτ (r,M) asymptotically achieves the
maximum weighted sum-throughput of (4)(5) as the truncation
size increases, while abiding the long-term average numberof
transmissions constrain (1). The proof is given in AppendixC.

Lemma 3. For τ ≥ τ0, we have

(i) The weighted sum-throughput performance difference be-
tween the policiesφ∗(r,M) andφτ (r,M) is bounded by

|V ∗(r,M)− Vτ (r,M)| ≤ f(τ)

N
∑

i=1

ri, (13)

wheref(τ)=
∑N

i=1 fi(τ), which satisfiesf(τ)→0 as τ→∞
with

fi(τ) =
ρ(bi0,τ − bi0,τ+1) + 1− pi11 + bi0,τ+1

ρbi0,τ+(1−ρ)bi0,τ+1+(1−pi11)(τ+1−ρ)
. (14)

(ii) The long-term average number of transmissions under pol-
icy φτ (r,M) satisfies the constraint (1), i.e.,Zτ (r,M) ≤M .

Remark: Note that the truncation sizeτ needs to be suffi-
ciently large (i.e.,τ ≥ τ0) to prove the Lemma. This is because
sufficiently large truncation size can provide enough level
of approximation that facilitates analytical characterization.
Specifically, in the proof,τ0 is used in Lemma 4.

IV. QUEUE-BASED INDEX POLICY OVER TIME
FRAMES

Note that the Index Policy in the last section, as well as
the associated Whittle’s index value, is for the system with
infinitely backlogged queues and the corresponding weighted
sum-throughput maximization problem (4)-(5). In this sec-
tion, we consider scheduler design under random arrival of
data packets and the associated queue evolution in the time-
correlated downlink. The objective here is to not only obtain
maximum weighted sum-throughput, but also maintain queue
stability. In the presence of queue evolution, the problem get
much more complicated. Note that, in the weighted sum-
throughput maximization problem, the reward of scheduling
a user is captured by the Whittle’s index value. Under the
additional consideration of queue stability, the queue lengths
need to be jointly taken into account for scheduling, i.e., a
user is scheduled for transmission not only because it has a
high index value, but may also because it has a large queue
length.

Next, we propose a throughput-optimal scheduling policy
based on scaling the Whittle’s index by the queue length. The
policy is implemented over separate time-frames and has low-
complexity.

We divide the time slots{0, 1, 2, · · · } into separatetime
framesof length T , i.e., thek-th frame,k ∈ {0, 1, 2, · · · },
includes time slotskT, · · ·, (k+1)T−1. The scheduling deci-
sions in thek-th frame are made based on the queue length
informationq[kT ] at the beginning of that frame. During the
k-th frame, the policyφτ (q[kT ],M), developed in the last
section, is implemented. Formally, theT -frame queue-based
index policy, denoted by Q-Indexτ (T,M), is introduced next.
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Algorithm Q-Indexτ(T,M):T -Frame Queue-based Index Policy
1: The time slots are divided into frames of lengthT . Slot t

is in thekth frame if kT ≤ t < (k+1)T , k ∈ {0, 1, · · · }.
2: At the beginning of the kth frame: At the beginning

of slot kT , implement the algorithmGτ (q[kT ],M) that
outputsωτ andρτ .

3: In each slot t of the kth frame:
•User scheduling: user i is scheduled if theq[kT ]-
weighted index value W

q[kT ]
i (πi[t])>ωτ , or if

W
q[kT ]
i (πi[t])=ωτ with i>iτ . User i stays passive

if W
q[kT ]
i (πi[t])<ωτ , or if Wq[kT ]

i (πi[t])=ωτ with i<iτ .
If Wq[kT ]

i (πi[t]) = ωτ with i=iτ , useri is scheduled with
probability ρτ . If a user with empty queue is scheduled,
then a dummy packet is transmitted to the user.
•ARQ feedback: At the end of each slot, the scheduled
users send ARQ feedback to the BS. The belief values are
updated according to the feedback at the scheduler.

Remarks: We next describe the intuition behind designing the
above algorithm.
(1) Note that, for queue stability, instead of using queue length
information in every slot, it is sufficient only to consider the
sampled queue length information at the periodic slots, i.e.,
q[kT ], k = 0, 1, · · · . The queue is stable if and only if the
periodically sampled queue length evolution process is stable.
(2) Within each frame, we wish to maximize the weighted
sum-throughput, where each user’s throughput is weighted by
its queue length sample value at the beginning of the time
frame. Hence, in step 2-3, we implement the Index policy
φτ (q[kT ],M) developed in the previous section. The rationale
is because, first, we would like to schedule the users to
achieve the higher throughput promised by the Index policy
that exploits the temporal correlated channels. Moreover,for
system stability, we would like to choose users with large
queue-lengths. Hence, by considering the queue weighted
throughput and using the Index policyφτ (q[kT ],M) in frame
T , an overloaded queue can get served with potentially higher
rate. As a direct result, a useri’s index is scaled by its queue
lengthq[kT ].
(3) An intuitive explanation of the multiplication of index
and queue length is as follows. We schedule a user not only
because of its longer queues, but also when its underlying
‘channel quality’ is favorable (in terms of both exploitation
and exploration values). Consider the example where a user’s
channel is strongly correlated and is observed ‘0’ state in the
previous slot. Hence it is highly likely to stay in ‘0’ state
for a while. Hence scheduling it can result in wasted system
resource since packets are unlikely to be successfully deliv-
ered. Correspondingly, this ‘quality’ of a channel is reflected
in the close-to-zero Whittle’s index value. The multiplication
of queue length and the Whittle’s index value is able to
capture both the queue length and the channel’s ‘quality’ for
scheduling. Summation of the index and queue length, on the
other hand, fails capture both of these properties.
(4) Dividing the time slots into different frames brings us
advantages in the realm of large frame length (i.e.,T ). Since
we implement the Index policy within each finite-horizon

frame, if the frame length is small, we lose from exploiting the
channel correlation because the Index policy is optimal only in
the infinite horizon. As the frame length scales, the (per-slot)
loss of exploiting the channel correlation diminishes.
(5) Note that a dummy packet is transmitted to a scheduled
user with empty queue. The dummy packet is known to
the users and contains no new information and hence does
not bring throughput gains if it is transmitted. However, the
scheduler will still receive channel state update from the
corresponding scheduled users. This mechanism is useful to
establish our results.

The next proposition and corollary establish throughput-
optimality of the queue-based index policy over time frames,
where, recall that,f(τ) is given in Lemma 3. The proof is
given in Appendix D.

Proposition 1. If τ≥τ0, then there existT0 and function
g(τ)=3f(τ) such that the following holds wheneverT>T0:
If the arrival rate λ satisfiesλ + g(τ)1∈Γ and the T -
frame queue-based index policy Q-Indexτ (T,M−g(τ)/2) is
implemented, then all queues are stable and constraint (1) on
the average number of transmissions is satisfied. The function
g(τ) satisfieslimτ→∞ g(τ) = 0.

Corollary 1. The achievable rate regionΓ, expressed in (3),
is equal to the stability regionΛ.

Proof: Recall that the achievable rate regionΓ corresponds
to the expected service rate vectors that can be achieved in
the system with infinitely backlogged queues, by any policy
in Φ. Now consider all the arrival rates within the interior of
the stability regionΛ. For each arrival vectorλ ∈ Λ, there
exists a certain policy inΦ that stabilizes it, i.e., provides a
service rate not belowλ. Therefore, the achievable rate region
Γ provides an upper bound on the stability regionΛ. Since the
previous proposition states that the queue-based index policy
stabilizes arrival rates arbitrarily close to the boundaryof the
achievable rate regionΓ, the achievable rate regionΓ and
the stability regionΛ share the same interior. Because both
regionsΓ and Λ are defined over closure of sets, we have
Γ = Λ. �

Proposition 1 and Corollary 1 together establish the through-
put optimality of the proposed policy. With sufficiently large
τ and T , the proposed policy Q-Indexτ (T,M−g(τ)/2) can
support arrival rateλ within arbitraryǫ interior of the stability
region, i.e.,λ+ ǫ1 ∈ Λ and satisfy constraint (1).
Remarks:
(1) Note that, in Proposition 1, the parameterM in the queue-
based index policy is scaled down byg(τ)/2. This mechanism
is needed to guarantee the constraint on the long-term average
number of transmission. The details are given in the proof.
(2) In the queue-based index policy, a user is scheduled based
on its q[kT ]-weighted Whittle’s index value. The Whittle’s
index value is necessary for the results because it measuresthe
importance of a wireless channel for scheduling, considering
jointly the instantaneous throughput and future throughput
(e.g., see [18][31], Lemma 1). It is interesting to note that
a simple multiplication of queue length and Whittle’s index
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Fig. 3: Comparison of stability regions. Parameters used:
p111 = 0.7, p101 = 0.2; p211 = 0.8, p201 = 0.3

value captures the importance of scheduling a user under two
sophisticated system features – the queue evolution and the
fundamental exploration-exploitation tradeoff.
(3) Calculation ofq[kT ]-weighted index value is very sim-
ple, which only requires scaling thepre-calculatedWhittle’s
index value. Under the queue-based index policy, in each
frame, implementation ofGτ (q[kT ],M−g(τ)) in step 2 of
policy Q-Indexτ (T,M−g(τ)) has computational complexity
O((2τ + 1)N log(2τ + 1)N), while implementing step3 of
policy Q-Indexτ (T,M−g(τ)) over the frame has complexity
O(TN) (see the remark in Section III-E). Accordingly, the
per-framecomplexity isO((2τ + 1)N log(2τ + 1)N + TN).
Therefore, as the frame lengthT scales up, theper-slot
complexity decreases towardO

(

N
)

.
(4) The scheduling decisions are made by comparing each
user’s own index value to a threshold, independently from
other users. Hence our policy is also applicable fordistributed
implementationin uplink scenarios.

V. NUMERICAL RESULTS

A. Illustration of Stability Region

In Fig. 3, we compute the stability regionΛ and compare it
with other regions of interest. We consider the scenario with
two users and with the scheduling constraint on the long-
term average number of scheduled transmissionsM = 1.
The Markov transition statistics are selected as(p111, p

1
01) =

(0.7, 0.2), (p211, p
2
01) = (0.8, 0.3). For comparison, in the same

system, we consider another scenario where the scheduler
throws away the ARQ feedback from the scheduled user. We
denote the corresponding stability region byΛNoFb, expressed
as ΛNoFb = {λ : λ1/b

1
s + λ2/b

2
s ≤ 1} [36]. As can be

observed in the figure, by exploiting the channel memory from
ARQ feedback, our policy achieves significant throughput gain
(as high as30%) over the policy that ignores the channel
memory. We also compare the stability regionΛ with that
of a ‘genie-aided’ system, denoted byΛGenie. In the ‘genie-
aided’ system, the same scheduling constraint (1) is imposed,
while a genie reveals channel states ofall usersin the current

slot to the scheduler at the end of the slot. The regionΛGenie

is expressed as

ΛGenie = b1sb
2
sλ00 + (1− b1s)b

2
sλ01 + b1s(1− b2s)λ10

+(1− b1s)(1 − b2s)λ11

with λij ∈ Λij whereΛij = CH{(p1i1, 0), (0, p
2
j1)}, i, j =

0, 1 with CH{·} denoting the convex hull of the set [25].
Because the genie facilitates more informed decisions at the
scheduler, the resultant stability regionΛGenie provides an
outer bound on regionΛ, as demonstrated in Fig. 3.

B. Delay Performance Analysis

In this section, we numerically evaluate the delay perfor-
mances of the proposed policy. We consider a two users
system with the long-term average number of transmission
constraintM = 1, i.e., one user can be scheduled on average.
The channel states of both users evolve as the ‘ON/OFF’
Markov chain with transition statistics(p111, p

1
01)=(0.7, 0.2),

(p211, p
2
01)=(0.8, 0.3), i.e., which can be typical situations

where both users have moderate degree of correlation across
time.

Over this system, we implement the proposedT -
frame queue-based index policy Q-Indexτ (T,M−g(τ)/2),
defined in section IV with τ=20. We first consider
fixed arrival ratesλ1=λ2=0.25 and implement the poli-
cies Q-Indexτ (T,M−g(τ)/2) with frame lengthsT=10 and
T=100, respectively. The sample paths of the average queue
length, i.e.,

(

Q1[t] +Q2[t]
)

/2, are plotted in Fig. 4. It can be
observed that, while the queues in both scenarios are stable,
the variation of the queue evolution is notably higher when
the frame size changes from10 to 100. This is because, as the
frame size increases, the frame-based algorithm obtains less
frequent updates of the queue sizes. Therefore, within a frame,
the algorithm can continue to serve a user even if its current
queue length becomes small while neglecting the other user
that has accumulated a large queue size, leading to a higher
degree of queue length variation as well as average queue size.
Correspondingly, higher delay and delay variation are expected
as the frame size increases. For example, suppose the initial
queue length of user1 is empty, while the initial queue length
for user2 is nonempty. Then user1 in the first frame will not
be scheduled. Now after the first frame, the expected queue
length of user1 will be significantly larger for the case when
T = 100 compared with the case whenT = 10. Hence, at the
second frame, the scheduler dedicates most of the resources
to user1. As a result, the expected queue length of the user
1 will go down after second frame, and the expected queue
length of user2 will grow. Both the expected change of queue
lengths of user1 and 2 will be much more significant when
T = 100 compared with whenT = 10. The process repeats in
time and results in a higher degree of queue length variation
whenT = 100 as compared toT = 10.

We next implement the aforementioned policy
Q-Indexτ (T,M−g(τ)/2) and evaluate the average queueing
delay experienced by users as the arrival rates scale toward
the boundary of the stability region, with varying frame
length T . For the two user system previously discussed,



9

0 2 4 6 8 10

x 10
4

0

20

40

60

Time

A
ve

ra
ge

 q
ue

ue
 le

ng
th

 

 

T=10
T=100

Fig. 4: Sample paths of queue evolution.

Fig. 5 examines the average queueing delay when the arrival
rate vector(λ1, λ2) increases withλ1=λ2=λ. As can be
observed in the figure, as the arrival rates grow toward the
boundary of stability region, the queue length quickly blows
up, resulting in steep increase of delay. The steep increase
is because, as the arrival rates grow toward the boundary of
stability region, the queue lengthes quickly blow up because
they are becoming unstable, resulting in steep increase of
average delay. Fig. 5 also show that, as the frame length
grows, the average delay in the downlink network increases.
This is, again, a consequence of infrequent update of queue
length information at the scheduler.

Another interesting observation can be observed
from Fig. 5. When we implement the proposed policy
Q-Indexτ (T,M−g(τ)/2) with the frame lengthsT growing
from 9 to 100, the system delay curves for different values
of T start to build up significantly ataround the same value
(i.e., around0.29 which is on the boundary of the stability
region). Note that we needed the frame size to be large
enough to prove Proposition 1. However, in practice, the
frame sizeT may not need to be as large to guarantee
queue stability. This numerical result, along with many other
numerical evaluations we have conducted, indicates that the
queues are stable under only moderate value of frame size in
the proposed queue-based index policy.

Fig. 5 also plots the delay performance of a policyφNoFb

that ignores the channel memory, i.e., not using the channel
state feedback. In each slot of this policy, a useri with the
largest multiplication of steady state transmission rate (i.e.,bis)
and queue lengthqi[t] is scheduled. The delay performance
of maximum weight matching policyφMWM is also plotted,
where, in each slott, a useri with the largest multiplication
of belief value πi[t] and queue lengthqi[t] is scheduled.
Fig. 5 further plots the delay performance of a naive policy
φNaiveInd where a useri with the largest multiplication of
index valueW 1

i (π
i[t]) and queue lengthqi[t] is scheduled.

For all of these policies, the values of arrival rateλ where the
queueing delay increases steeply are at a smaller value thanour
proposed policy, implying the sub-optimality of these policies.
This is partly because these policies only schedule strictly M
users per slot, but our work is in the domain of a relaxed
constraint of average number of scheduled users. The sub-
optimality of policy φMWM is also because it only exploits
the channel condition in the instantaneous slot, i.e.,πi[t], but it
does not consider exploring outdated channels. It is interesting
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Fig. 5: Delay performance comparison whenN = 2.

to note that policyφMWM andφNaiveInd performs better than
the policy that ignores channel state feedback, as the value
of λ where steep increase of queueing delay occurs is much
larger as compared toφNoFb. This observation illustrates the
throughput gains that can be achieved by using the channel
state feedback.

VI. CONCLUSION

In this work, we have studied downlink scheduling problem
over Markovian evolving ON/OFF fading channels and imper-
fect instantaneous channel state information. The scheduling
decisions are made based on the single-bit ARQ-type feedback
and the channel memory inherent in the Markovian chan-
nels. We propose a throughput-optimal policy that operates
over time frames. In the proposed policy, the importance of
scheduling a user is measured by a simple multiplication of
the queue length and Whittle’s index value. Because of this
property, the proposed policy has low-complexity per frame
in the network size and the truncation level of the belief
state space. Most notably, our policy does not suffer from
the curse of dimensionality that is observed in earlier works
in this context. Numerical evaluations show that significant
throughput performance gains can be achieved by exploiting
the channel memory, via the frame-based low-complexity
queue-based index policy with moderate frame size. Future
directions include considering larger state space model, and
considering feedback mechanisms that collects CSI from
unscheduled users, as well as more stringent instantaneous
scheduling constraints. Another open direction is to consider
adaptive power allocation with hybrid ARQ protocols (e.g.,
[9]), where the index value not only implies the attractiveness
of scheduling a user, but also guides the power allocation
across time.

APPENDIX A
PROOF OFLEMMA 1

The proof of the lemma is an extension of the proof of
Proposition 1 in [16]. Consider the problemΨ(r,M) with
weight vector r. The constraint (1) can be written in an
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equivalent form that requires at leastN −M channels to be
passiveon average, i.e.,

lim inf
T→∞

1

T
E

[

T−1
∑

t=0

N
∑

i=1

(1−aφi [t])
]

≥ N −M. (15)

Associating a Lagrange multiplierω to the constraint (15),
we have the following Lagrangian functionL(φ, ω) for prob-
lem Ψ(r,M),

L(φ, ω)= lim inf
T→∞

1

T
E

[

T−1
∑

t=0

N
∑

i=1

ri·πi[t]·a
φ
i [t]

]

+ω· lim inf
T→∞

1

T
E

[

T−1
∑

t=0

N
∑

i=1

(1−aφi [t])
]

−ω·(N−M). (16)

The dual function D(ω) is defined as D(ω) =
maxφ∈Φ L(φ, ω). Following the lines of proof in [16] we have

D(ω) =
N
∑

i=1

U ri
i (ω) + ω(N −M).

in which U ri
i (ω) is aω-subsidy problem under weightri,

U ri
i (ω) = max

φ∈Φi

lim sup
T→∞

1

T
E

[

T−1
∑

t=0

[

ri·πi[t]·a
φ
i [t]

+ ω · (1−aφi [t])
]

]

, (17)

whereΦi denotes the set of scheduling policies that activate
and idle the useri according to the observed channel history.
In the above problem (17), for each channeli at belief state
πi, it will receive a rewardriπi when it activates, otherwise
it will receive a subsidyω for passivity. We letIrii (ω) ⊆ Bi
be the set of belief states for which it is optimal to stay idle.

Under the unit weightri = 1, it was shown in [18] that
the problem is Whittle indexable, i.e.,I1i (ω) monotonically
increases from∅ to Bi as ω increase from0 to ∞ for each
user i. The Whittle’s index valueW 1

i (π) is defined as the
infimum subsidy value for which the belief stateπ is at the
boundary ofI1i (ω), i.e.,

W 1
i (π) = inf{ω : π ∈ I1i (ω)}.

It follows from [16] that, for theω-subsidy problem under
unit weight ri = 1, the optimal policy is to activate the user
at time slott if W r

i (π) > ω, and to stay idle ifW r
i (π) < ω,

with tie breaking arbitrarily ifW r
i (π) = ω.

We next extend the optimal algorithm for theω-subsidy
problem under unit weight to the general case with arbitrary
non-negative weightri. An equivalent form ofU ri

i (ω) is as
follows,

U ri
i (ω)

=ri max
φ∈Φi

lim sup
T→∞

1

T
E

[

T−1
∑

t=0

[

πi[t]a
φ
i [t]+

ω

ri
(1−aφi [t])

]

]

. (18)

Therefore, the optimal solution for theω-subsidy problem
(17) with weightri takes the same form as the optimal solution
for theω/ri-subsidy problem with weight1. Accordingly, the
optimal solution takes the following form: a useri is scheduled

at slott if W r
i (πi[t]) > ω/ri, and stay idle ifW r

i (π) < ω/ri,
with tie breaking arbitrarily ifW 1

i (π) = ω/ri.
We define ther-weighted index value asW r

i (π) = ri ·
W 1

i (π), π ∈ Bi, i ∈ {1, · · · , N}. The optimal policy for the
reward maximization problem in (18) is then to activate the
user i if W r

i (π) > ω, and to stay idle ifW r
i (π) < ω,

with tie breaking arbitrarily ifW r
i (π) = ω. Because of

this threshold-based policy and arbitrary tie-breaking atthe
threshold, the dual function valueD(ω) can be achieved
by the following threshold-based policy implemented over
the r-weighted index valuesW r

i (π): User i is scheduled if
W r

i (πi)>ω, or if W r
i (πi)=ω with i>j. User i stays idle if

W r
i (πi)<ω, or if W r

i (πi)=ω with i<j. If W r
i (πi)=ω with

i=j, useri is scheduled with probabilityρ.
Following the similar proof techniques of Lemma 11 in

[16], by appropriately choosing the aforementioned parameters
(j, ω, ρ) to be (i∗, ω∗, ρ∗) such that the constraint (1) on
the average number of transmissions is strictly satisfied with
equality, the corresponding policy is optimal for the problem
Ψ(r,M). Denoting such a policy asφ∗(r,M), the proposition
is proven.

APPENDIX B
PROOF OFLEMMA 2

We next prove the Lemma forατ
j

(

j, ω, ρ
)

.
Case (1). First considerατ

j

(

j,W r
j (b

j
0,h), ρ

)

with h < τ .
Hence userj is scheduled if its belief value is abovebj0,h, or
is scheduled with probabilityρ at belief valuebj0,h. According
to the belief value evolution rule (2), in the next slot, its belief
value will either bepj11 or pj01, depending on the whether the
revealed channel state is ‘0’ or ‘ 1’ at the end of the current slot.
If the user’s belief value is belowbj0,h, it will not be scheduled
and its belief value will move one step towardbj0,h+1. Hence,
in this case, the belief value evolution for userj follows a
Markov Chain overBτ

j , as depicted in Fig. 6.
From Fig. 6, one can observe that the belief Markov chain is

ergodic and the recurrent states are{bj1,1, b
j
0,l, l = 1, · · · , h+

1}. We denote the stationary probability of belief value being
πj asζj(πj), πj ∈ Bτ

j . The global balance equations are

ρ(1−bj0,h)ζj(b
j
0,h)+ζj(b

j
0,h+1)(1−b

j
0,h+1)

+bj1,1(1−p
j
11) = ζj(b

j
0,1)

ζj(b
j
0,1) = ζj(b

j
0,2) =, · · · ,= ζj(b

j
0,h)

(1− ρ)ζj(b
j
0,h) = ζj(b

j
0,h+1)

ρζj(b
j
0,h) + ζj(b

j
0,h+1) = (1− pj11)ζj(b

j
1,1)

From the balance equations, we can calculate the expression
of the stationary probability as follows,

ζj(πj)

=































1−pj
11

ρbj
0,h

+(1−ρ)bj
0,h+1

+(1−pj
11

)(h+1−ρ)
if πj=bj0,k, k ≤ h;

(1−ρ)(1−pj
11

)

ρbj
0,h

+(1−ρ)bj
0,h+1

+(1−pj
11

)(h+1−ρ)
if πj=bj0,h+1;

bj
0,h+1

+ρ(bj
0,h

−bj
0,h+1

)

ρbj
0,h

+(1−ρ)bj
0,h+1

+(1−pj
11

)(h+1−ρ)
if πj=bj1,1;

0 otherwise.
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0,1

jb
0,2

jb 0, 1

j

hb +0,

j

hb 1,1

jb1 1 1

0,

j

hbρ
0, 1

j

hb +

0,(1 )j hbρ −
0, 11 j

hb +−

1,11
j
p−

1 ρ−
1,1

j
p

0, 2

j

hb +

0, 2

j

hb +

0, 21 j

hb +−

Fig. 6: Belief value transition in steady state when
ω=W r

j (b
j
0,h).

Hence, the expected fraction of time transmitting to userj
is

ατ
j

(

j,W r
j (b

j
0,h), ρ

)

= ρζj(b
j
0,h) + ζj(b

j
0,h+1) + ζj(b

j
1,1)

=
ρ(bj0,h − bj0,h+1) + 1− pj11 + bj0,h+1

ρbj0,h+(1−ρ)bj0,h+1+(1−pj11)(h+1−ρ)
,

as given in Lemma 2(i). To prove part (ii), we consider its
reciprocal, i.e.,

[ατ
j

(

j,W r
j (b

j
0,h), ρ

)

]−1

=1 +
(1− pj11)(h− ρ)

ρ(bj0,h − bj0,h+1) + 1− pj11 + bj0,h+1

=1+
1− pj11

bj0,h+1−b
j
0,h

[

1−
1− pj11 + bj0,h+1 + h(bj0,h − bj0,h+1)

ρ(bj0,h−b
j
0,h+1) + bj0,h+1 + (1− pj11)

]

.

(19)

Considering the numerator inside the parenthesis of (19),
we have

1− pj11 + bj0,h+1 + h(bj0,h − bj0,h+1)

≥1− pj11 + bj0,h+1 + (h+ 1)(bj0,h − bj0,h+1) ≥ 0,

where the last inequality is from (51). Noting that the de-
nominator inside the parenthesis of (19) strictly decreases
with ρ, hence[ατ

j

(

j,W r
j (b

j
0,h), ρ

)

]−1 strictly decreases with
ρ. Thereforeατ

j

(

j,W r
j (πj), ρ

)

strictly decreases withρ for
πj for πj ∈ {b

j
0,1, b

j
0,2, · · · , b

j
0,τ−1}

Since for h+1<τ , ατ
j (j,W

r
j (b

j
0,h), 0) =

ατ
j (j,W

r
j (b

j
0,h+1), 1), we have,

ατ
j (j,W

r
j (b

j
0,h+1), ρ) ≤ ατ

j (j,W
r
j (b

j
0,h+1), 1)

= ατ
j (j,W

r
j (b

j
0,h), 0)

≤ ατ
j (j,W

r
j (b

j
0,h), ρ).

Therefore, for fixedρ, ατ
j (j,W

r
j (πj), ρ) strictly decreases

with πj for πj ∈ {b
j
0,1, b

j
0,2, · · · , b

j
0,τ−1}.

Case (2). Next considerατ
j

(

j,W r
j (b

j
τ ), ρ

)

. We can perform

a similar analysis as in case (1) to obtain

ατ
j

(

j,W r
j (b

j
0,τ ), ρ

)

=
ρ(bj0,τ − bjs) + 1− pj11 + bjs

ρbj0,τ+(1−ρ)bjs+(1−pj11)(τ+1−ρ)
,

[ατ
j

(

j,W r
j (b

j
0,τ ), ρ

)

]−1

= 1+
1− pj11
bjs−b

j
0,τ

[

1−
1− pj11 + bjs + τ(bj0,τ − bjs)

ρ(bj0,τ−b
j
s) + bjs + (1− pj11)

]

. (20)

When τ > τ0, it can be derived that the numerator
1− pj11 + bjs + τ(bj0,τ − bjs) inside (20) is positive. Therefore
ατ
j

(

j,W r
j (b

j
0,τ ), ρ

)

strictly increases withρ. Similar to Case
(1), we have

ατ
j (j,W

r
j (b

j
0,τ ), ρ) ≤ ατ

j (j,W
r
j (b

j
0,τ ), 1) = ατ

j (j,W
r
j (b

j
0,τ−1), 0)

≤ ατ
j (j,W

r
j (b

j
0,τ−1), ρ).

Case (3). Considerατ
j

(

j,W r
j (b

j
s), ρ

)

. Similar to Case (1),
we obtain,

ατ
j

(

j,W r
j (b

j
s), ρ

)

=
ρ(1 − pj11 + bjs)

(1 + τρ)(1 − pj11) + ρbjs
.

Taking the reciprocal we have

[ατ
j

(

j,W r
j (b

j
s), ρ

)

]−1 =
1

1− pj11 + bjs

(

(1− pj11)(τ +
1

ρ
) + bjs

)

,

which strictly decreases withρ. Hence ατ
j

(

j,W r
j (b

j
s), ρ

)

strictly increases withρ. We also have

ατ
j (j,W

r
j (b

j
s), ρ) ≤ ατ

j (j,W
r
j (b

j
s), 1) = ατ

j (j,W
r
j (b

j
0,τ ), 0)

≤ ατ
j (j,W

r
j (b

j
0,τ ), ρ).

From Case (1)-(3), the lemma is established for
ατ
j

(

j,W r
j (b

j
0,h), ρ

)

. Noting that for useri 6= j, there is
no randomization associated with scheduling. Hence, the
above derivation forατ

j

(

j,W r
j (b

j
0,h), ρ

)

naturally extends to
ατ
i

(

j,W r
i (b

j
0,h), ρ

)

. The only change is there is no longer
randomization involved. Details are hence neglected here.

APPENDIX C
PROOF OFLEMMA 3

A. Proof outline

We establish the proof by first proving lemma 4 that bounds
the difference of weighted sum-throughput between policies
with different threshold parameters, with respective to the
difference between expected fraction of transmission timeto
each user. We then prove the lemma under two cases, i.e.,
whether ω∗ < W r

i (b
i
0,τ ) for all user i. The first case is

uncomplicated to prove. For the second case, we first prove a
useful fact that only one of the three cases holds:ωτ > ω∗, or
ωτ = ω∗ with ρτ < ρ∗ andiτ = i∗, or ωτ = ω∗ with iτ > i∗.
Based on these cases, we can bound the difference between
expected fraction of time transmitting to different users.We
then use Lemma 4 to finish the proof.

B. Notations

Recall that, in the untruncated state space, the optimal policy
φ∗(r,M) corresponds to the parameters(i∗, ω∗, ρ∗). Also
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recall that, in the truncated state space, the policyφτ (r,M)
corresponds to the parameter(iτ , ωτ , ρτ ).

Over the actualuntruncatedmodel, consider the following
policy denoted asφuntrunc

j,ω,ρ with the parameters(j, ω, ρ): User
i is scheduled ifW r

i (πi[t])>ω, or if W r
i (πi[t])=ω∗ with

i>j. User i stays idle ifW r
i (π

τ
i [t])<ω, or if W r

i (π
τ
i [t])=ω∗

with i<j. If W r
i (π

τ
i [t])=ω with i=j, it is scheduled with

probability ρ. In this model, similar to (8), we letαi(j, ω, ρ)
denote the long-term expected fraction of time transmitting to
useri under policyφuntrunc

j,ω,ρ , i.e.,

αi(j, ω, ρ) = lim sup
T→∞

1

T
E

[

T−1
∑

t=0

a
φuntrunc
j,ω,ρ

i [t]
]

. (21)

The closed-form expression ofαi(j, ω, ρ) can be calculated
from the same technique we used to prove Lemma 2 as
follows.

αi(j, ω, ρ)

=







































ρ(bi0,h−bi0,h+1)+1−pi
11+bi0,h+1

ρbi
0,h

+(1−ρ)bi
0,h+1

+(1−pi
11

)(h+1−ρ)
if ω=W r

i (b
i
0,h), i=j;

1−pi
11+bi0,h+1

bi
0,h+1

+(1−pi
11

)(h+1)
if ω=W r

i (b
i
0,h), i<j

1−pi
11+bi0,h

bi
0,h

+(1−pi
11

)h
if ω=W r

i (b
i
0,h), i > j;

or if W r
i (b

i
0,h−1)<ω<W r

i (b
i
0,h), i 6= j

0 if ω≥W r
i (b

i
s).

(22)

We also letυi(j, ω, ρ) denote the long-term expected trans-
mission rate to useri, i.e.,

υi(j, ω, ρ) = lim inf
T→∞

1

T
E

[

T−1
∑

t=0

ri · πi[t] · a
φuntrunc
j,ω,ρ

i [t]
]

, (23)

Over the truncated model, correspondingly, we let
υτ
i (j, ω, ρ) denote the long-term expected transmission rate

to useri under policyφtrunc
j,ω,ρ defined in section III-D, i.e.,

υτ
i (j, ω, ρ) = lim inf

T→∞

1

T
E

[

T−1
∑

t=0

ri · π
τ
i [t] · a

φtrunc
j,ω,ρ

i [t]
]

. (24)

Using techniques similar to the proof of Lemma 2, we can
derive the analytical expressions ofυi(j, ω, ρ) andυτ

i (j, ω, ρ)
as follows,

υi(j, ω, ρ) =






































ri·
ρbi0,h+(1−ρ)bi0,h+1

ρbi
0,h

+(1−ρ)bi
0,h+1

+(1−pi
11

)(h+1−ρ)
if ω=W r

i (b
i
0,h), i=j

ri·
bi0,h+1

bi
0,h+1

+(1−pi
11

)(h+1)
if ω=W r

i (b
i
0,h), i<j

ri·
bi0,h

bi
0,h

+(1−pi
11

)h
if ω=W r

i (b
i
0,h), i>j

or if W r
i (b

i
0,h−1)<ω<W r

i (b
i
0,h), i 6= j

0 if ω≥W r
i (b

i
s).

(25)

The expression ofυτ
j (j, ω, ρ) is given as follows,

υτ
j (j, ω, ρ) =































rj ·
ρbj

0,h
+(1−ρ)bj

0,h+1

ρbj
0,h

+(1−ρ)bj
0,h+1

+(1−pj
11

)(h+1−ρ)
if h<τ , ω=W r

j (b
j
0,h);

rj ·
ρbj

0,τ+(1−ρ)bjs

ρbj
0,τ+(1−ρ)bjs+(1−pj

11
)(τ+1−ρ)

if ω=W r
j (b

j
0,τ );

rj ·
ρbjs

(1+τρ)(1−pj
11

)+ρbjs
if ω=W r

j (b
j
s);

0 if ω>W r
j (b

j
s).

(26)

The expression ofυτ
i (j, ω, ρ), i 6= j is expressed as follows.

υτ
i (j, ω, ρ) =



























































ri·
bi0,h+1

bi
0,h+1

+(1−pi
11

)(h+1)
if h<τ , ω=W r

i (b
i
0,h), i<j

ri·
bi0,h

bi
0,h

+(1−pi
11

)h
if h≤τ , ω=W r

i (b
i
0,h), i > j;

or if h≤τ ,W r
i (b

i
0,h−1)<ω<W r

i (b
i
0,h)

ri·
bis

(1+τ)(1−pi
11

)+bis
if ω=W r

i (b
i
0,τ ), i < j;

or if ω=W r
i (b

i
s), i > j

0 if ω=W r
i (b

i
s), i < j

or if ω>W r
i (b

i
s).

(27)

C. Proof of Lemma 3

We first prove the following lemma that provides properties
of ατ

i (j, ω, ρ) andυτ
i (j, ω, ρ).

Lemma 4. For a useri, if τ ≥ τ0, we have

(i) For fixed πj∈{b
j
0,1, b

j
0,2, · · ·, b

j
0,τ , b

j
s}, υτ

j (j,W
r
j (πi), ρ)

strictly increases withρ. For fixedρ, υτ
i (j,W

r
i (πi), ρ) strictly

decreases withπi for πi ∈ {bi0,1, b
i
0,2, · · · , b

i
0,τ , b

i
s} and all i;

(ii) for any two sets of parameter{j1, ω1, ρ1} and{j2, ω2, ρ2},
∣

∣

∣
υτ
i (j1, ω1, ρ1)− υτ

i (j2, ω2, ρ2)
∣

∣

∣

≤ri ·
∣

∣

∣
ατ
i (j1, ω1, ρ1)− ατ

i (j2, ω2, ρ2)
∣

∣

∣
.

Proof: See Appendix E. �

Note that we needτ ≥ τ0 for the proof to hold. Since
the untruncated state space is in the asymptotic regime of the
truncated scenario whenτ→∞, a straightforward extension
of properties ofατ

i (j, ω, ρ) andυτ
i (j, ω, ρ) in Lemma 2 and

Lemma 4 toαi(j, ω, ρ) and υi(j, ω, ρ) in the untruncated
scenario leads to the next Lemma.

Lemma 5. For a useri, if τ ≥ τ0, we have

(i) For fixed πj∈{b
j
0,1, b

j
0,2, · · ·, b

j
0,τ , b

j
s}, υj(j,W

r
j (πi), ρ)

and αi(j,W
r
i (πi), ρ) strictly increase withρ. For fixed ρ,

υi(j,W
r
i (πi), ρ) and αi(j,W

r
i (πi), ρ) strictly decrease with

πi for πi ∈ {bi0,1, b
i
0,2, · · · , b

i
0,τ , b

i
s};

(ii) for any two sets of parameters{j1, ω1, ρ1} and
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{j2, ω2, ρ2},
∣

∣

∣
υi(j1, ω1, ρ1)−υi(j2, ω2, ρ2)

∣

∣

∣

≤ri·
∣

∣

∣
αi(j1, ω1, ρ1)− αi(j2, ω2, ρ2)

∣

∣

∣
.

We proceed to prove Lemma 3 under two cases.

Case (1). If the thresholdω∗ satisfiesω∗ < W r
i (b

i
0,τ ) for all

useri, then the approximation parametersiτ = i∗, ωτ = ω∗

and ρτ = ρ∗. This is because, ifω∗ < W r
i (b

i
0,τ ) for all

user i, no user will stay idle for more thanτ slots under
the optimal policy φ∗(r,M). To see this in more detail,
the expected amount of transmissions equals toM , i.e.,
∑N

i=1 α
τ
i (j, ω, ρ) = M , when j = i∗, ω = ω∗, ρ = ρ∗,

which meets the constraint (10). Therefore, thanks to the
strict monotonicity property in Lemma 2(ii), the algorithm
Gτ (r,M) outputs iτ = i∗, ωτ = ω∗ and ρτ = ρ∗, and
hence policyφτ (r,M) is equivalent to the policyφ∗(r,M).
We hence have

∣

∣V ∗(r,M)−Vτ (r,M)
∣

∣=0 andZτ (r,M)=M .

Case (2). If there exists a useri with ω∗ ≥ W r
i (b

i
0,τ ), we

let Θ denote the corresponding set of users, i.e.,Θ = {i :
W r

i (b
i
0,τ ) ≤ ω∗}. Therefore,
∣

∣V ∗(r,M)− Vτ (r,M)
∣

∣

=
∣

∣

N
∑

i=1

υi(i
∗, ω∗, ρ∗)−

N
∑

i=1

υi(iτ , ωτ , ρτ )
∣

∣

≤
∑

i∈Θ

∣

∣

∣
υi(i

∗, ω∗, ρ∗)−υi(iτ , ωτ , ρτ )
∣

∣

∣

+
∑

i/∈Θ

∣

∣

∣
υi(i

∗, ω∗, ρ∗)−υi(iτ , ωτ , ρτ )
∣

∣

∣
. (28)

Before bounding (28), we first show that, for this case, we
have only one of the three cases:ωτ > ω∗, or ωτ = ω∗ with
ρτ < ρ∗ and iτ = i∗, or ωτ = ω∗ with iτ > i∗.

We prove the above statement by first showing that
∑N

i=1 α
τ
i (i

∗, ω∗, ρ∗)≥
∑N

i=1 αi(i
∗, ω∗, ρ∗) = M : For any

user i /∈ Θ, we haveατ
i (i

∗, ω∗, ρ∗) = αi(i
∗, ω∗, ρ∗) since

(i∗, ω∗, ρ∗) does not exceed the truncation level. For user
i ∈ Θ, 1) if ω∗ ≥ W r

i (b
i
s), we haveατ

i (i
∗, ω∗, ρ∗) ≥

αi(i
∗, ω∗, ρ∗) sinceαi(i

∗, ω∗, ρ∗)=0. 2) If W r
i (b

i
0,τ ) < ω∗ <

W r
i (b

i
s) for i ∈ Θ, we have

ατ
i (i

∗, ω∗, ρ∗) =ατ
i (i

∗,W r
i (b

i
s), 1) =

1− pi11 + bis
(1 + τ)(1 − pi11) + bis

>
1− pi11 + bi0,τ+1

(1 + τ)(1 − pi11) + bi0,τ+1

=αi(i
∗,W r

i (b
i
0,τ ), 0) ≥ αi(i

∗, ω∗, ρ∗),

where the first equality holds because, whenW r
i (b

i
0,τ ) <

ω∗ < W r
i (b

i
s), the user is scheduled when its belief value

is not below bis and stays idle otherwise. Because of the
truncation, the next belief value abovebi0,τ is bis. Since user
ith index value will not be exactlyω∗, the randomization
factor ρ∗ at the threshold does not play a role. Hence the
expected fraction of transmission timeατ

i (i
∗, ω∗, ρ∗) equals

ατ
i (i

∗,W r
i (b

i
s), 1), i.e., transmit to useri when its belief value

is not belowbis with probability 1. The second and the third
equality are from lemma 2(i) and (22), respectively. The first
inequality holds sincebis > bi0,τ+1. The last inequality holds
becauseW r

i (b
i
0,τ )<ω∗<W r

i (b
i
s), hence from (22) and the

monotonicity property in Lemma 5(i),

αi(i
∗,W r

i (b
i
0,τ ), 0)=αi(i

∗,W r
i (b

i
0,τ+1), 1)

=αi(i
∗, ω∗, ρ∗) if W r

i (b
i
0,τ )<ω∗<W r

i (b
i
0,τ+1),

αi(i
∗,W r

i (b
i
0,τ ), 0)=αi(i

∗,W r
i (b

i
0,τ+1), 1)

≥αi(i
∗, ω∗, 1) ≥ αi(i

∗, ω∗, ρ∗) if W r
i (b

i
0,τ+1)≤ω

∗<W r
i (b

i
s).

3) If ω∗ = W r
i (b

i
0,τ ), similarly, for i ∈ Θ,

ατ
i (i

∗, ω∗, ρ∗) > αi(i
∗, ω∗, ρ∗).

Hence from 1)-3) we haveατ
i (i

∗, ω∗, ρ∗) ≥ αi(i
∗, ω∗, ρ∗)

for i ∈ Θ. Also noting that, fori /∈ Θ, αi(i
∗, ω∗, ρ∗) =

ατ
i (i

∗, ω∗, ρ∗), we hence have

N
∑

i=1

ατ
i (i

∗, ω∗, ρ∗) =
∑

i∈Θ

ατ
i (i

∗, ω∗, ρ∗) +
∑

i/∈Θ

ατ
i (i

∗, ω∗, ρ∗)

=
∑

i∈Θ

ατ
i (i

∗, ω∗, ρ∗) +
∑

i/∈Θ

αi(i
∗, ω∗, ρ∗)

≥
∑

i∈Θ

αi(i
∗, ω∗, ρ∗) +

∑

i/∈Θ

αi(i
∗, ω∗, ρ∗)

=

N
∑

i=1

αi(i
∗, ω∗, ρ∗)=M.

Hence if we implement the policy with threshold parameters
(i∗, ω∗, ρ∗) over the fictitious truncated belief space, the
expected number of transmissions will equal to or exceed
the constraint. Therefore, from the monotonicity propertyin
Lemma 2, to ensure the constraint (10) on the long-term
expected number of transmissions over the truncated state
space, it must be one of the following three casesωτ > ω∗, or
ωτ = ω∗ with ρτ < ρ∗ andiτ = i∗, or ωτ = ω∗ with iτ > i∗.
From this property as well as Lemma 5(i), we have,

αi(iτ , ωτ , ρτ ) ≤ αi(i
∗, ω∗, ρ∗) for all i, (29)

and, becausei ∈ Θ,

υi(iτ , ωτ , ρτ )≤υi(i
∗, ω∗, ρ∗)≤υi(i,W

r
i (b

i
0,τ ), 1), for i∈Θ.

(30)

Hence, fori ∈ Θ,
∣

∣υi(i
∗, ω∗, ρ∗)−υi(iτ , ωτ , ρτ )

∣

∣≤υi(i,W
r
i (b

i
0,τ ), 1)

≤ri·αi(i,W
r
i (b

i
0,τ ), 1), (31)

where the first inequality is from (30) and the last equality
holds because instantaneous reward is upper bounded byri.

Similar to (30), from the monotonicity properties of
ατ
i (j, ω, ρ) andαi(j, ω, ρ) and becausei ∈ Θ,

ατ
i (iτ , ωτ , ρτ ) ≤ ατ

i (i
∗, ω∗, ρ∗) ≤ ατ

i (i,W
r
i (b

i
0,τ ), 1), i ∈ Θ,

(32)

αi(i
∗, ω∗, ρ∗) ≤ αi(i

∗, ω∗, 1) ≤ αi(i,W
r
i (b

i
0,τ ), 1), i ∈ Θ.

(33)
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For i /∈ Θ, we haveατ
i (i

∗, ω∗, ρ∗) = αi(i
∗, ω∗, ρ∗). Hence,

∑

i/∈Θ

∣

∣υi(i
∗, ω∗, ρ∗)−υi(iτ , ωτ , ρτ )

∣

∣

≤
∑

i/∈Θ

ri·
∣

∣αi(i
∗, ω∗, ρ∗)−αi(iτ , ωτ , ρτ )

∣

∣

=
∑

i/∈Θ

ri ·
[

αi(i
∗, ω∗, ρ∗)− αi(iτ , ωτ , ρτ )

]

≤
∑

i/∈Θ

ri ·
∑

i/∈Θ

[

αi(i
∗, ω∗, ρ∗)− αi(iτ , ωτ , ρτ )

]

≤
∑

i/∈Θ

ri ·
[

∑

i/∈Θ

[

αi(i
∗, ω∗, ρ∗)− ατ

i (iτ , ωτ , ρτ )
]

+

∑

i/∈Θ

[

ατ
i (iτ , ωτ , ρτ )− αi(iτ , ωτ , ρτ )

]

]

, (34)

where the first inequality is from Lemma 5(ii) and the first
equality holds from (29).

Consider the first summand inside the parenthesis of
(34). Since

∑N
i=1 αi(i

∗, ω∗, ρ∗) =
∑N

i=1 α
τ
i (iτ , ωτ , ρτ ) =

M , subtracting both sides by
∑

i/∈Θ ατ
i (iτ , ωτ , ρτ ) +

∑

i∈Θ αi(i
∗, ω∗, ρ∗) we have

∑

i/∈Θ

[

αi(i
∗, ω∗, ρ∗)−ατ

i (iτ , ωτ , ρτ )
]

=
∑

i∈Θ

[

ατ
i (iτ , ωτ , ρτ )−αi(i

∗, ω∗, ρ∗)
]

≤
∑

i∈Θ

∣

∣ατ
i (iτ , ωτ , ρτ )−αi(i

∗, ω∗, ρ∗)
∣

∣. (35)

Note that, fori ∈ Θ, from (32)-(33),
∣

∣ατ
i (iτ , ωτ , ρτ )− αi(i

∗, ω∗, ρ∗)
∣

∣ ≤ αi(i,W
r
i (b

i
0,τ ), 1). (36)

Substituting (36) back to (35), we have
∑

i/∈Θ

[

αi(i
∗, ω∗, ρ∗)−ατ

i (iτ , ωτ , ρτ )
]

≤
∑

i∈Θ

αi(i,W
r
i (b

i
0,τ ), 1).

(37)

Now consider the second summand inside (34), we have,
for i /∈ Θ,

ατ
i (iτ , ωτ , ρτ )−αi(iτ , ωτ , ρτ ) = 0, if ωτ < W r

i (b
i
0,τ ),

(38)

ατ
i (iτ , ωτ , ρτ )−αi(iτ , ωτ , ρτ )

≤αi(i,W
r
i (b

i
0,τ ), 1), if ωτ=W r

i (b
i
0,τ ), (39)

where (39) holds because bothατ
i (iτ , ωτ , ρτ ) ≤

αi(i,W
r
i (b

i
0,τ ), 1) and αi(iτ , ωτ , ρτ ) ≤ αi(i,W

r
i (b

i
0,τ ), 1).

Therefore,
∑

i/∈Θ

[

ατ
i (iτ , ωτ , ρτ )−αi(iτ , ωτ , ρτ )

]

≤
∑

i/∈Θ

αi(i,W
r
i (b

i
0,τ ), 1). (40)

Substituting (37) and (40) in (34),

∑

i/∈Θ

∣

∣υi(i
∗, ω∗, ρ∗)−υi(iτ , ωτ , ρτ )

∣

∣≤
∑

i/∈Θ

ri

N
∑

i=1

αi(i,W
r
i (b

i
0,τ ), 1).

(41)

From (31) and (41), the difference in (28) can be bounded
as follows,

∣

∣V ∗(r,M)− V ∗
τ (r,M)

∣

∣

≤
∑

i∈Θ

ri · αi(i,W
r
i (b

i
0,τ ), 1) +

∑

i/∈Θ

ri

N
∑

i=1

αi(i,W
r
i (b

i
0,τ ), 1)

≤
N
∑

i=1

ri ·
N
∑

i=1

αi

(

i,W r
i (b

i
0,τ ), 1

)

.

We let fi(τ)=αi

(

i,W r
i (b

i
0,τ ), 1

)

and f(τ)=
∑N

i=1 fi(τ).
Sinceαi

(

i,W r
i (b

i
0,τ ), 1

)

→ 0 asτ →∞, part (i) of the lemma
is established. From (29), we have

Zτ (q,M) =
N
∑

i=1

αi(iτ , ωτ , ρτ ) ≤
N
∑

i=1

αi(i
∗, ω∗, ρ∗) = M,

which proves part (ii). �

APPENDIX D
PROOF OFPROPOSITION1

Define Lyapunov functionL(q) = 1
2

∑N
i=1 q

2
i . We consider

theT -frame average Lyapunov drift∆L(q[kT ]) over thek-th
frame, expressed as,

∆L(q[kT ])/T

=
1

T
E

[

L(q[(k + 1)T ])− L(q[kT ])
∣

∣ q[kT ],π[kT ]
]

≤BT +

N
∑

i=1

qi[kT ] · λi −
N
∑

i=1

qi[kT ] ·
1

T

· E
[

T−1
∑

t=0

πi[kT+t]·a
φτ (q[kT ],M−g(τ)/2)
i [kT+t]

∣

∣

∣
π[kT ]

]

,

(42)

whereB is a constant whose value is determined by the second
moment of the arrival process [37]. Becauseλ + g(τ)1 ∈ Γ,
for any non-negative vectorq, we have

N
∑

i=1

qi · (λi + g(τ)) ≤ V ∗(q,M),

whereV ∗(q,M) is defined in (11). The Lyapunov drift (42)
now becomes,

∆L(q[kT ])/T ≤ BT−g(τ)
N
∑

i=1

qi[kT ]+

V ∗(q[kT ],M)−V T
τ (q[kT ],M−g(τ)/2)
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= BT−g(τ)
N
∑

i=1

qi[kT ]+V ∗(q[kT ],M)−Vτ (q[kT ],M)

+ Vτ (q[kT ],M)−Vτ (q[kT ],M−g(τ)/2)

+ Vτ (q[kT ],M−g(τ)/2)−V
T
τ (q[kT ],M−g(τ)/2). (43)

whereVτ (q[kT ],M) is defined in (12), andV T
τ (q[kT ],M) is

the T -horizon expected transmission rate achieved under the
policy φτ (q[kT ],M), i.e.,

V T
τ (q[kT ],M)

=

N
∑

i=1

qi[kT ]
1

T
E

[

T−1
∑

t=0

πi[kT+t]·a
φτ (q[kT ],M)
i [kT+t]

∣

∣

∣
π[kT ]

]

.

Note that, in (43), the differenceV ∗(q[kT ],M) −
Vτ (q[kT ],M) is bounded in Lemma 3. We proceed to
bound the rest of the terms in (43). Specifically, the
differenceVτ (q[kT ],M−g(τ)/2)−V T

τ (q[kT ],M−g(τ)/2) is
bounded in Lemma 6, and the differenceVτ (q[kT ],M) −
Vτ (q[kT ],M−g(τ)/2) is bounded in Lemma 7. These bounds
help us to bound the Lyapunov drift∆L(q[kT ])/T and later
to establish the proof using Lyapunov stability theory.

We denoteZT
τ (q,M) as the finiteT -horizon expected

number of transmissions, under the policyφτ (q[kT ],M), i.e.,

ZT
τ (q,M) =

1

T
E

[

T−1
∑

t=0

N
∑

i=1

a
φτ (q,M)
i [t]

]

.

The next lemma states that, as the length of the time horizon
tends to infinity, the expected achieved rate in finite horizon
asymptotically converges to infinite horizon achievable rate,
and the expected number of transmissions converges to the
valueM .

Lemma 6. For any M andκ > 0, we have, uniformly overq,
M , and the initial stateπ[kT ],

(a) there exist positive constantsc1 and c2 such that

∣

∣

∣
Vτ (q,M)− V T

τ (q,M)
∣

∣

∣
<

(

κ+ c1 exp(−c2T )
)

N
∑

i=1

qi.

(b) there exist positive constantsd1 and d2 such that
∣

∣

∣
ZT
τ (q,M)−M

∣

∣

∣
<

(

κ+ d1 exp(−d2T )
)

.

Proof: We first prove part (a). We define the random variable
µT
τ (q,M) as

µT
τ (q,M) =

N
∑

i=1

qi
1

T

T−1
∑

t=0

πi[kT+t] · a
φτ (q,M)
i [kT+t].

Therefore,V T
τ (q,M) = E

[

µT
τ (q,M)

]

. We denote event

Ω :=
{∣

∣µT
τ (q,M)− Vτ (q,M)

∣

∣ ≤ κ
∑N

i=1 qi
}

, then

E

[

∣

∣µT
τ (q,M)− Vτ (q,M)

∣

∣

]

≤E
[

∣

∣µT
τ (q,M)− Vτ (q,M)

∣

∣

∣

∣

∣
Ω
]

· Pr(Ω)

+ E

[

∣

∣µT
τ (q,M)− Vτ (q,M)

∣

∣

∣

∣

∣
Ω
]

· Pr(Ω)

≤κ
N
∑

i=1

qi+
N
∑

i=1

qi·Pr
(∣

∣µT
τ (q,M)−Vτ (q,M)

∣

∣>κ
N
∑

i=1

qi
)

. (44)

Note that
∣

∣µT
τ (q,M)− Vτ (q,M)

∣

∣

=
∣

∣

∣

N
∑

i=1

qi ·
[ 1

T

T−1
∑

t=0

πi[kT + t] · a
φτ (q,M)
i [kT + t]

− lim
T→∞

1

T

T−1
∑

t=0

πi[kT + t] · a
φτ (q,M)
i [kT + t]

]∣

∣

∣

≤
N
∑

i=1

qi ·
[

N
∑

i=1

[ 1

T

T−1
∑

t=0

πi[kT + t] · a
φτ (q,M)
i [kT + t]

− lim
T→∞

1

T

T−1
∑

t=0

πi[kT + t] · a
φτ (q,M)
i [kT + t]

]2] 1
2

:=

N
∑

i=1

qi·
∥

∥ητ (q,M)− ητ
T (q,M)

∥

∥.

where the inequality follows from Cauchy-Schwarz inequality
andητ (q,M) andητ

T (q,M) are vectors with

ητi (q,M) = lim
T→∞

1

T

T−1
∑

t=0

πi[kT+t] · a
φτ (q,M)
i [kT+t], (45)

ητT,i(q,M) =
1

T

T−1
∑

t=0

πi[t] · a
φτ (q,M)
i [kT + t]. (46)

Therefore,

Pr
(∣

∣µT
τ (q,M)− Vτ (q,M)

∣

∣ > κ
N
∑

i=1

qi
)

≤Pr
(∥

∥ητ (q,M)− ητ
T (q,M)

∥

∥ > κ
)

≤Pr
(

∪Ni=1

{∣

∣ητT,i(q,M)− ηi(q,M)
∣

∣ > κ/N
}

)

≤
N
∑

i=1

Pr
(
∣

∣ητT,i(q,M)− ητi (q,M)
∣

∣ > κ/N
)

. (47)

Recall that, under the policyφτ (q,M), the belief states
of different users, i.e.,{Bτ

i , i = 1, · · · , N}, are sorted, in
the initialization phase given by algorithmGτ (q,M), in the
vectorw according to theirq-weighted index values. Consider
another vectorς where each elementςi corresponds to the
unique belief state theith elementwi represents. So each
weighing vectorq corresponds to a vectorw and henceς.
Note that, the activation/passive scheduling decision to auser
depends on the the location of the threshold for transmission,
i.e., above which belief value the user is scheduled and
with how much randomization. From the implementation of
algorithmGτ (q,M), as long as different policies correspond
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to the sameς, for each user, the transmission/idle action (at
each belief state) is the same function of belief state, and hence
the belief state of each user evolves as the same finite-state
space ergodic Markov chain. Therefore, for a policy, denoted
by φς , that corresponds to a vectorς, there exist constantscς1
andcς2 such that, for each useri uniform over the initial belief
state andq [39] ,

Pr
(∣

∣

∣

1

T

T−1
∑

t=0

πi[t] · a
φς

i [t]− lim
T→∞

1

T

T−1
∑

t=0

πi[t]·a
φς

i [t]
∣

∣

∣
> κ/N

)

< cφ
ς

1 exp(−cφ
ς

2 T ). (48)

Note that the number of users, as well as the number of
vectorsς, are finite. From (45)-(48), there exist constantsc1
andc2 such that, regardless ofq and the initial belief state,

Pr
(∣

∣µT
τ (q,M)− Vτ (q,M)

∣

∣ > κ

N
∑

i=1

qi
)

< c1 exp(−c2T ).

Substituting the above inequality in (44), part(a) thus holds.

The proof of part (b) follows a similar approach as part (a).
Here, the immediate reward isaφ

τ (q,M)
i [kT + t] instead of

πi[kT + t] · a
φτ (q,M)
i [kT + t]. �

Lemma 7. When τ>τ0, for any ǫ>0, the difference be-
tween the expected transmission rate achieved under policy
φτ (q,M) andφτ (q,M − ǫ) satisfies the following bound,

∣

∣Vτ (q,M)− Vτ (q,M − ǫ)
∣

∣ ≤ ǫ
N
∑

i=1

qi.

Proof: Suppose, under the weightq, the policiesφτ (q,M)
andφτ (q,M − ǫ) correspond to parameter set{iτM , ωτ

M , ρτM}
and(iτM−ǫ, ω

τ
M−ǫ, ρ

τ
M−ǫ), respectively. For useri, we letyi(ǫ)

denote be the difference between activation time under policy
φτ (q,M − ǫ) andφτ (q,M), i.e., yi(ǫ) = αi(i

τ
M , ωτ

M , ρτM )−
αi(i

τ
M−ǫ, ω

τ
M−ǫ, ρ

τ
M−ǫ), where, recall that,αi(j, ω, ρ) is de-

fined in (22). From Lemma 5(i), we haveyi(ǫ) ≥ 0, ∀i. Since
the difference of the total expected number of transmissions
between the two policies isǫ, we have

∑N
i=1 yi(ǫ) = ǫ. From

Lemma 5(ii), we have,
∣

∣Vτ (q,M)− Vτ (q,M−ǫ)
∣

∣

=
∣

∣

∣

N
∑

i=1

vi(i
τ
M , ωτ

M , ρτM )−
N
∑

i=1

υi(i
τ
M−ǫ, ω

τ
M−ǫ, ρ

τ
M−ǫ)

∣

∣

∣

≤
N
∑

i=1

∣

∣

∣
vi(i

τ
M , ωτ

M , ρτM )− υi(i
τ
M−ǫ, ω

τ
M−ǫ, ρ

τ
M−ǫ)

∣

∣

∣

≤
N
∑

i=1

qi ·
∣

∣

∣
αi(i

τ
M , ωτ

M , ρτM )− αi(i
τ
M−ǫ, ω

τ
M−ǫ, ρ

τ
M−ǫ)

∣

∣

∣

=
N
∑

i=1

qi · yi(ǫ) ≤
N
∑

i=1

qi

[

N
∑

j=1

yj(ǫ)
]

= ǫ
N
∑

i=1

qi.

We hence have proved the lemma. �

From Lemma 3 and Lemma 6-7, the Lyapunov drift (43)

can be further bounded as follows,

∆L(q[kT ])/T

≤BT+

[

−g(τ)+f(τ)+
g(τ)

2
+
(

κ+ c1 exp(−c2T )
)

]

·
N
∑

i=1

qi[kT ]

=BT+
[

−
g(τ)

2
+f(τ)+

(

κ+c1 exp(−c2T )
)

]

N
∑

i=1

qi[kT ]

=BT +
[

− f(τ)/2 +
[

κ+ c1 exp(−c2T )
]

]

N
∑

i=1

qi[kT ]

(49)

where the last equality holds because we letg(τ) = 3f(τ).
For fixedτ , by choosingκ sufficiently small andT sufficiently
large, sayT > T1, the Lyapunov drift is negative whenever the
sum of the queue lengths gets sufficiently large. Therefore,the
queues are stable according to the Foster-Lyapunov criterion.

Note that, under the policy Q-Indexτ (T,M−g(τ)/2),
the expected number of transmissions in thek-th frame,
ZT
τ (q[kT ],M − g(τ)/2), is bounded by Lemma 6 as,

∣

∣

∣
ZT
τ (q[kT ],M−g(τ)/2)−(M−g(τ)/2)

∣

∣

∣
<
(

κ+d1 exp(−d2T )
)

,

for some constantd1 andd2. Therefore, there existsT2 such
that ZT

τ (q[kT ],M − g(τ)/2) < M for T > T2. Hence, the
long term constraint on the average number of transmissionsis
satisfied. From Lemma 3, we havelimτ→∞ g(τ) = 0. Letting
T ′ = max{T1, T2}, the proposition is then established.

APPENDIX E
PROOF OFLEMMA 4

(i) We first prove part (i) of the lemma withi = j.
Case (1). Ifπj = bj0,h andh < τ , we consider the reciprocal

of υτ
j (W

r
j (b

j
0,h), ρ),

rj · [υ
τ
j (j,W

r
j (b

j
0,h), ρ)]

−1 = 1 +
(1− pj11)(h+ 1− ρ)

ρ(bj0,h − bj0,h+1) + bj0,h+1

=1+
1− pj11

bj0,h+1−b
j
0,h

[

1+
bj0,h+1−(h+1)(bj0,h+1−b

j
0,h)

ρ(bj0,h+1 − bj0,h)− bj0,h+1

]

(50)

Consider the numerator in the parenthesis of (50)

bj0,h+1−(h+1)(bj0,h+1−b
j
0,h) = (h+ 1)bj0,h − hbj0,h+1

=[1 + (1− pj11 + pj01)h]b
j
0,h − hpj01

=
pj01[1− (pj11 − pj01)

h]

1− (pj11 − pj01)
− hpj01(p

j
11 − pj01)

h

=pj01[1+(pj11−p
j
01)+· · ·+(pj11−p

j
01)

h−1]−hpj01(p
j
11−p

j
01)

h

>hpj01(p
j
11−p

j
01)

h − hpj01(p
j
11−p

j
01)

h = 0. (51)

Since the denominator in the parenthesis of (50) strictly
increases withρ, [υτ

j (j,W
r
j (b

j
0,h), ρ)]

−1 strictly decreases with
ρ and henceυτ

j (W
r
j (j, b

j
0,h), ρ) strictly increases withρ in this

case.
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Case (2). Ifπj = bj0,τ , we have

rj · [υ
τ
j (j,W

r
j (b

j
0,τ ), ρ)]

−1 = 1 +
(1− pj11)(τ + 1− ρ)

ρ(bj0,τ − bjs) + bjs

=1 +
1− pj11
bjs − bj0,τ

[

1 +
bjs − (τ + 1)(bjs − bj0,τ )

ρ(bjs − bj0,τ )− bjs

]

. (52)

When τ > τ0, it can be derived that the numerator
bjs − (τ + 1)(bjs − bj0,τ) inside (52) is positive. Therefore,
υτ
j (j,W

r
j (b

j
0,τ ), ρ) strictly increases withρ in this case.

Case (3). Ifπj = bjs,

rj · [υ
τ
j (j,W

r
j (b

j
s), ρ)]

−1 =
1

bjs

(

τ(1 − pj11) +
1− pj11

ρ
+ bjs

)

It is then clear from the above expression that
υτ
j (j,W

r
j (b

j
s), ρ) strictly increases withρ in this case.

Now consider fixed ρ. For υτ
j (W

r
j (b

j
0,h), ρ) and

υτ
j (j,W

r
j (b

j
0,h+1), ρ) with h+ 1 ≤ τ , we have

υτ
j (j,W

r
j (b

j
0,h), ρ) ≥ υτ

j (j,W
r
j (b

j
0,h), 0)=υτ

j (j,W
r
j (b

j
0,h+1), 1)

≥ υτ
j (j,W

r
j (b

j
0,h+1), ρ),

where the first and last inequality is from case (1) we
have just proven. The first equality is from expression (27).
Since υτ

j (j,W
r
j (b

j
0,h), ρ) = υτ

j (j,W
r
j (b

j
0,h), 0) only if

ρ = 0, and υτ
j (j,W

r
j (b

j
0,h+1), 1) = υτ

j (j,W
r
j (b

j
0,h+1), ρ)

only if ρ = 1. We hence haveυτ
j (j,W

r
j (b

j
0,h), ρ) >

υτ
j (j,W

r
j (b

j
0,h+1), ρ) strictly. Following a similar derivation,

we haveυτ
j (j,W

r
j (b

j
0,τ ), ρ) > υτ

j (j,W
r
j (b

j
s), ρ). Therefore

the monotonicity property in part (i) holds for userj with
randomized transmission. The monotonicity result easily ex-
tends to useri 6= j where there is no longer randomization in
scheduling useri.

(ii) We proceed to prove part (ii) by first establishing the
statement whenj1 = j2 = j, ω1 = ω2 = ω.

Case (1). Ifω = W r
j (b

j
0,h) and h < τ , from Lemma 2(i)

and (27) we have that

υτ
j (j, ω, ρ) = rj

[

ατ
j (j, b

j
0,h, ρ)+

+
−(1− pj11)

ρbj0,h + (1− ρ)bj0,h+1 + (1 − pj11)(h+ 1− ρ)

]

. (53)

Case (2). Ifω = W r
j (b

j
0,τ ), we have

υτ
j (j, ω, ρ) = rj

[ ρbj0,τ + (1− ρ)bjs

ρbj0,τ + (1 − ρ)bjs + (1 − pj11)(τ + 1− ρ)

]

=rj

[

ατ
j (j, ω, ρ)+

−(1− pj11)

ρbj0,τ+(1−ρ)bjs+(1−pj11)(τ+1−ρ)

]

. (54)

Case (3) Ifω = W r
j (b

j
s), we have

υτ
j (j, ω, ρ) = rj

[ bjsρ

τρ(1 − pj11) + (1− pj11) + ρbjs

]

=rj

[

ατ
j (j, ω, ρ) +

−ρ(1− pj11)

τρ(1 − pj11) + (1− pj11) + ρbjs

]

. (55)

Case (4). Ifω > W r
j (b

j
s), sinceυτ

j (j, ω, ρ) = ατ
j (j, ω, ρ) =

0, the statement holds trivially.

Note that, in the above Case (1)-(3), the second summand
in (53)-(55) decreases with the randomization parameterρ.
Since, from Lemma 2(ii) and part (i), bothατ

j (j, ω, ρ) and
υτ
j (j, ω, ρ) increase withρ, we have for anyρ1 > ρ2,

0≤υτ
j (j, ω, ρ1)−υ

τ
j (j, ω, ρ2)≤rj

[

ατ
j (j, ω, ρ1)−α

τ
j (j, ω, ρ2)

]

.

We also haveυτ
i (j, ω, ρ1) = υτ

i (j, ω, ρ1) andατ
i (j, ω, ρ1) =

ατ
i (j, ω, ρ1) for i 6= j since there is no randomization

associated with useri. Therefore, for all useri,

0≤υτ
i (j, ω, ρ1)−υ

τ
i (j, ω, ρ2)≤ri

[

ατ
i (j, ω, ρ1)−α

τ
i (j, ω, ρ2)

]

.
(56)

Next consider wheni < j,

0 =υτ
i (j, ω, ρ)−υ

τ
i (i, ω, 0)

=ri ·
[

ατ
i (i, ω, 1)−α

τ
i (i, ω, 0)

]

=ri ·
[

ατ
i (i, ω, ρ)−α

τ
i (i, ω, 0)

]

. (57)

When i = j, from (56) we have

υτ
i (j, ω, ρ)−υ

τ
i (i, ω, 0)≤ri

[

ατ
i (j, ω, ρ)−α

τ
i (i, ω, 0)

]

. (58)

When i > j,from (56) we have

υτ
i (j, ω, ρ)−υ

τ
i (i, ω, 0)

=υτ
i (i, ω, 1)−υ

τ
i (i, ω, 0)

≤ri
[

ατ
i (i, ω, 1)−α

τ
i (i, ω, 0)

]

≤ri
[

ατ
i (i, ω, ρ)−α

τ
i (i, ω, 0)

]

. (59)

Therefore, from (57)-(59), we have

υτ
i (j, ω, ρ1)−υ

τ
i (i, ω, 0) ≤ ri

[

ατ
i (i, ω, 1)−α

τ
i (i, ω, 0)

]

(60)

Similarly, we have

υτ
i (i, ω, 1)−υ

τ
i (j, ω, ρ) ≤ ri

[

ατ
i (i, ω, 1)−α

τ
i (j, ω, ρ)

]

. (61)

Now consider the case whenω1 6= ω2. Supposeω1 =
W r

i (b
i
0,h1

) andω2 = W r
i (b

i
0,h2

) with h1 < h2 ≤ τ .
∣

∣

∣
υτ
i (j1,W

r
i (b

i
0,h1

), ρ1)−υ
τ
i (j2,W

r
i (b

i
0,h2

), ρ2)
∣

∣

∣

≤
∣

∣

∣
υτ
i (j1,W

r
i (b

i
0,h1

), ρ1)−υ
τ
i (i,W

r
i (b

i
0,h1

), 0)

+
∑

h1<h<h2

[

υτ
i (i,W

r
i (b

i
0,h), 1)− υτ

i (i,W
r
i (b

i
0,h), 0)

]

+ υτ
i (i,W

r
i (b

i
0,h2

), 1)− υτ
i (j2,W

r
i (b

i
0,h2

), ρ2)
∣

∣

∣

≤ri

∣

∣

∣
ατ
i (j1,W

r
i (b

i
0,h1

), ρ1)−α
τ
i (i,W

r
i (b

i
0,h1

), 0)

+
∑

h1<h<h2

[

ατ
i (i,W

r
i (b

i
0,h), 1)− ατ

i (i,W
r
i (b

i
0,h), 0)

]

+ ατ
i (i,W

r
i (b

i
0,h2

), 1)− ατ
i (j2W

r
i (b

i
0,h2

), ρ2)
∣

∣

∣

=ri

∣

∣

∣
ατ
i (j1,W

r
i (b

i
0,h1

), ρ1)−α
τ
i (j2,W

r
i (b

i
0,h2

), ρ2)
∣

∣

∣

=ri

∣

∣

∣
ατ
i (j1, ω1, ρ1)−α

τ
i (j2, ω2, ρ2)

∣

∣

∣
,

where the first inequality is becauseυτ
i (i,W

r
i (b

i
0,h), 0) =
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υτ
i (i,W

r
i (b

i
0,h+1), 1) and ατ

i (i,W
r
i (b

i
0,h), 0) =

ατ
i (i,W

r
i (b

i
0,h+1), 1), which can be observed from (27)

and Lemma 2(i). The second equality is from (60)-(61). For
other combinations ofω1 and ω2, the proof holds similarly.
Part (ii) thus holds.
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