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Low-Complexity Optimal Scheduling over
Time-Correlated Fading Channels with
ARQ Feedback

Wenzhuo Ouyang, Atilla Eryilmaz, and Ness B. Shroff

Abstract—We investigate the downlink scheduling problem gains (e.g.,[[I4]H[26]). Under imperfect CSI, channel meyno
under Markovian ON/OFF fading channels, where the instan- and limited network resources, designing efficient schiadul
taneous channel state information is not directly accesslb, schemes is highly challenging. This is because the sched-

but is revealed via ARQ-type feedback. The scheduler can | ds t timallv bal the intricate ° loitadi
exploit the temporal correlation/channel memory inherentin the Y€ N€eAs (o oplimally balance the intricate exploiiatio

Markovian channels to improve network performance. Howeve ~ €xploration tradeoff’, i.e., to decide whether to expldiet
designing low-complexity and throughput-optimal algorithms channels with more up-to-date CSl, or to explore the channel
under temporal correlation is a challenging problem. In this with outdated CSI.

paper, we find that under an average number of transmissions In this work, we study downlink scheduling with imperfect

constraint, a low-complexity index policy is throughput-gtimal. - g
The policy uses Whittle's index value, which was previouslysed CSl and time correlated channels where, differing from work

to capture opportunistic scheduling under temporally correlated  [14]-[18] in this domain, the packets destined to each user
channels. Our results build on the interesting finding that, randomly arrive in time, and are stored in a corresponding

under the intricate queue length and channel memory evolutns, observable data queue before transmission. As a result, the
the importance of scheduling a user is captured by a simple queue lengths randomly evolve with time. Our goal is to

multiplication of its queue length and Whittle’s index value. The . . g . . .
proposed queue-based index policy has provably low compliy design scheduling algorithm that is throughput optima,, i.

Numerical results show that significant throughput gains ca be N0 scheduling policy can ensure system stability for afriva
realized by exploiting the channel memory using the propose rates that are not supportable by the proposed schedules. Co

low-complexity policy. sidering queue lengths along with imperfect CSI and time cor
I, INTRODUCTION relation is highly challenging because to develop throudhp

. . . optimal scheduler requires a complex characterizatiorhef t
In wireless networks with randomly fluctuating channels . .
. . . . - 2 ihterplay between user scheduling, channel memory ewwiuti
intelligently scheduling users is critical for achievinggin

- ) nd queue evolution. Traditional techniques, which assume
network efficiency. Under the assumption that the scheduler . -
. hlown service rate (e.@.[19][20]), or assume i.i.d. channe
possesses accurate instantaneous Channel State Infoimay S
. . . State process and are based on minimizing instantaneous
(CSI), many sophisticated scheduling algorithms have beEn

proposed and extensively studied (e.gl, [2115) nstantaneoLs product of queds longih And ransmissien ra
In practice, accurate instantaneous CSl is difficult to iobt b d g

at the scheduler. Hence, in this work we consider the import [5)). doe_s not apply in this context . .
! ; : . : Under this model, because of the aforementioned complica-
scenario where the instantaneous CSlI is not directly aitdess

to the scheduler, but is instead revealed through ARQ-tyt@BlgnS’ traditional Dynamic Programming based approachas c

2 € used for designing scheduling schemes, but are inttactab
feedback onlyafter each scheduled data transmission. Man Ue to the well-known ‘curse of dimensionality’. IR |2T][R2
works have focused on scheduling algorithms design with im- Y-

. . ; imple round-robin based scheduling policies are shown to
perfect CSI, where the channel state is considered mdemnf RN )
and identically distributed (i.i.d.) processes acrossti@.g., possess the throughput-optimality property. The optiyaif

[10]-[23]). On the other hand, although the i.i.d. channetiel greedy scheduling algorithm are prov_en[@[24]._Howeve
facilitates more tractable analysis, it does not captue thhese schemeB [P1[[P4] are only optimal in the regime where

time-correlation of the fading channels. ARQO-based praigc users havedentical ON/OFF Markovian chann_el_ statistics.
. : In [25][26], throughput-optimal frame-based policies are-
over time-correlated channels are studied_in [6]-[9] urttier > . ) o
. T . posed. These policies rely on solving a Linear Programnming i
scenarios where user scheduling is not required.

The time-correlation or channel memory inherent in th%aCh frame, which is hindered by the curse of dimensionality

fading channels can be exploited by the scheduler for mere \l/ﬁhere the computatmnal complexity grows exponentiallihwi
formed decisions, and hence to obtain large throughplityuti € netvyork siz€. : .

' In this work, we study throughput-optimal downlink
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Do Il. SYSTEM MODEL

; ; A. Downlink Scheduling Problem
S eOIOsY

We consider a time-slotted wireless downlink network with
1-pi one base station an®/ users, where each useéroccupies
1 a dedicated wireless channel. The channel state of yser
Fig. 1: Two state Markov Chain model. denoted byC;]t] at slott, evolves according to an ON/OFF
Markov chain across time slots within the state spé&ce-
{0,1}, independently across channels. When the channel is in
transmit simultaneously, but thieng-term averagenumber state ‘1’, one packet can be successfully transmitted raike
of transmissions is limited. In this setup, we show that packet can be delivered. As shown in Hijy. 1, the channel
low complexity scheduling policy is throughput optimal.cBu state evolution is represented by the transition proktagsli
a constraint on long-term average number of transmissions -
can be used to Iimi? the Iong-tergm energy consumption. An pil i=Pr (Gil1]=1|Ci[t-1]=1),
example to limit the energy consumption is tieen cellular oy = Pr (Ci[t]=1|C;[t—1]=0).
networks (e.g., [27]-129]). It is estimated that the cellular
base stations consumé&5 GW of power globally, which
corresponds to more tha#0 million metric tons of CQ

We assume that the Markovian channels are positively
correlated, i.e.pi; > pj, fori=1,2,---  N. This assumption
o - C is commonly made in this field (e.g., [1 2]), vt
emission and ove$10 billion electricity bill annually [27][28]. means thatéuto—correlation of tge%%n%%%o]g s

W'th energy_expenqnure rising by5-20% each year, an negative[[17]. This means, roughly speaking, that the Marko
important objective in green cellular networks design is f ; ; e .

- .~ channel is more likely to stay in its state than changing to
reduce the long-run average number of data transmissions_to . . :

: L another state, which captures the typical slow fading or fas
decrease energy consumptidnl1[28]. Therefore, it is of great C . . >
. : .  transmission scenarios. For ease of presentation, wedgher
interest to understand the relationship between the aazbliev . . . i i ;

: ; trivial case wherp; =1orpy, =0,i€{1,--- ,N}.
throughput region and the constraint on the long-term @eera At the beginni f h i lot. th hedul h
number of transmissions. The results proposed in this waink c € beginning of €ach time slot, In€ scheduler chooses

be applied to green cellular networks for throughput-optim“S€"S for data transmission. The scheduling decisions are

scheduling under imperfect CSI and the long-term averagléade W|thtou|t tth? etxa((:jt l:r:\owledgetofotr’lsoclzhsnrr\]el sgtetlr;
energy constraint, e current slot. Instead, the accurate channed sta

o of a scheduled user is revealed via ACK/NACK feedback
Our contributions are as follows: from the receiver, only at the end of each slot following data
e Under the constraint on the long-term average numbg&nsmission.
of transmissions, we propose a low-complexityoughput-  \we consider the classb of (possibly non-stationary)
optimal policy. The policy operates over separate time framegneduling policies that make scheduling decisions based o

and, in each time frame, tries to maximize a queue-weightgh history of observed channel states, arrival processes,
average sum-throughput. We are able to condfietrae-based gcheduling decisions. Under the aforementioned resristi

Lyapunov analysigo this policy and prove its optimality by on average energy consumption, the scheduling schemes are

showing that it minimizes the average Lyapunov drift ovefpject to the constraint that the long-term average number
each frame. Compared to the traditional approaches fdr i.ischeduled transmissions is under,

channels based on minimizirigstantaneoud.yapunov drift

each slot, the frame-based approach is useful for analysis i o1 é
scenarios with time-correlated channels. The per-franm-co h;n:;p TE{ ; Z;ai [t]} <M,
putational complexity is at mosd((27 + 1) N log(27 + 1) N) -

with the number of useré/, wherer is a control parameter Whereaf[t] € {0,1} indicates whether useris scheduled at
independent ofV. Therefore, the policy does not suffer fromslot ¢ under policyy € ®, andM < N.

the curse of dimensionality. Data packets destined for different users are stored in

¢ The proposed policy builds on Whittle’s index analysis o¥eparate queues before transmission. The queue lengtbefor u
Restless Multi-armed Bandit Problem (RMBP)[31], wheréis denoted by;[¢] at slott. We assume that the packet arrivals
Whittle's index value is used to measure the importance i thei-th user form ari.i.d. process4,[t] with mean); and
scheduling a user under the time-correlated charinel [18]pounded second moment. Hence,titie data queue evolves
Whittle’s index policies are known to have optimality prope asg:[t-+1]=max{0, ¢;[t|—a;[t]-C;[t] } + A;[t].

ties in various RMBP processes and have been shown to have

low-complexity (e.g.,[[I5[[IB][[20]). We find that, intertisgly, _ Belief Value Evolution

under the coupled queue length and channel memory evolu-

tion, the importance of scheduling a user is measured by arhe scheduler maintains a belief valugt] for each channel
simple multiplication of the queue length and Whittle’s index:, defined as the probability of channebeing in statel at
value that is given in closed-form. This property is ess#ntithe beginning of-th slot conditioned on the past channel state
for the low-complexity nature of our policy. observations. The belief values are hence updated acgdiain

T—-1 N

1)



1 ‘ ‘ b convex since randomization can be performed among differen
m . "n - 1h policies. The achievable rate regi@hcontains the set of the
% K28 Y --m-- b'O h expected service rate vectors that can be achieved witheall t
E 05 - :: ::: Rt ---0 policies in®, in the system withnfinitely backlogged queues
D ,n"u [1l. OPTIMAL PoLiCY FORWEIGHTED SUM-THROUGHPUT
o ’ MAXIMIZATION
0 i i i i In this section, we postpone discussion on queue evolu-
0 2 ?f 6 o ﬁ 10 tion and consider a simplified problem with infinitely back-
Time of staying idle: logged queues, and derive the corresponding optimal policy

Fig. 2: Belief value evolutionp?, = 0.8, pi; = 0.2, b’ = 0.5. for weighted sum-throughput maximization. The policy atr
duced here, which is based on scaling the Whittle’s index

the scheduling decisions and accurate channel state fugajba\/alues, is useful to characterize the boundary point of the

piy if a;[t] =1 andC;[t] =1, achievable rate regioR, and is also an important part in the
milt+ 1= { pi, if a;ft] =1andCi[] =0, (2) thrpughput-opt.imlal policy in the next. _section that staieiti qll
) i al] =0 arrival rates within the system stability regigh — the main
Qi(milt]) if ait] =0, result of the paper.

whereQ; (x)=zp}, +(1—z)pj, is the belief evolution operator 5 - \yeighted Sum-throughput Maximization Problem

when useri is not scheduled in the current slot. In our Consider the followi iahted h hout .
setup, the belief values are known to be sufficient stasistic onsigerthe following weighted sum-throughput maximiza-

i _ AN
to represent the past scheduling decisions and channel s% probletrrzj\IJ(r,M) fortafglven vr?ctpr_r - (le)é:é’ where
feedback([3B]. In the meanwhile, the belief valugt] is the € e?pe}: et SErvice rate for each uses scaled by a non-
expected throughput for useiif it is scheduled in slot. negative factor,

. . T—-1 N
For thei-th user, we usé’ , to denote the state of its o1 é
. < max liminf —E Zri-m— [t]-a; [t] 4)
belief value when the most recent channel state was observed $pePd  T—ro0 por et
h time slots ago and was in state= {0, 1}. The closed form 1N
expression ob’ , can be calculated froni](2) and is given as s.t. limsup i]E{ Zaf[t]} < M. (5)
T—=o0 t=0 i=1

i p
bo,n=

b1 — (P11 —ph1)" Py bi P +(1=p4y) (ph —ph)" ] ) )
- : The above problen¥ (r, M) is hence a constrained Partially

1+p61_p1i1 b 1+p61_p1i1
Observable Markov Decision Process (CPOM 35].
As depicted in Fig.[12, if the scheduler is never ( CP) [34](35]

informed of the i-th user's channel state, the belieB. Whittle’s Index for Restless Multi-armed Bandit Problem
value monotonically converges to the stationary probgbili The problem [4)K5) appears difficult because of the com-
bi:=ph, /(1 + ph — piy) of the channel being in state We plex ‘exploitation - exploration’ tradeoff. To tackle thigob-
assume that the belief values of all channels are initia#ly Sem, we study it in the framework of the Restless Multiarmed
to their stationary values. It is then clear that, based[dn (Bandit Problem (RMBP)[31] and make use of the associated
each belief valuer;[t| evolves over a countable state spaceyhittle’s indexability analysis. We next give a brief rewief
denoted byB;={b.,b. , : c€{0,1},hcZ*}. the Whittle’s indices for RMBP.

C. Network Stability Region and Achievable Rate Region RME_’PS refer to a collection of sequt_ential dynamic resource
allocation problems where several independently evolving

we ’e}dopt thg foIIowing defin.itic?r) of queue Sta_bi“@ [,3]:projects compete for service. In each slot, a subset of these
gueuei is stable if there exists a limiting stationary distributio competing projects is served. The state of each projediatac
Fy such thatlim—oc P(qit] < q) = Fi(q). The network yieaiv evolves over time, based on the current state of the
stability regionA is defined as the closure of the set of amvaéroject and on whether the project is served in the slot
rate vectors supported by all policies in claBshat does not gerying a project brings a reward whose value depends on
lead t.o SYStem instability while qb|d|ng by the constraﬁ);( its state. Hence, in RMBPs, the controller needs to consider
A policy IS calledth_roughp_ut OF’“ma“’ fqr any arrival rate e fyndamental tradeoff between decisions that bring high
vector A within arbitrary ¢ interior of A, i.e., A + €l € A, jhgantaneous rewards, versus those decisions that bettey b
all queues are stable under the policy and constréint (1)iyre rewards but sacrifices the instantaneous rewarde- So

satisfied. _ _ _ _ ing RMBPs are known to be PSPACE-hatrd][30] in general.
In the meanwhile, we define thechievable rate regio”  \ypittle's index analysis[[31] for RMBPs considers the
as the closure of the set of service rate vectpithat can be ¢qjowing virtual system in each slot, the controller makes
achieved by all policies, i.e., _ one of the two decisions for each projeet (1) Serve project
, | P and accrue an immediate reward as a function of its state
T'=Cl{~ :3¢ € ® withv;=lim inf —E 1] - allt]], 4 \ -
{7 ¢ € 2withy Thee T [Z milt] - o/ H which is the same as in the original RMBP. (2) Do not serve

t=0

i=1,--- N, subjectto constrair‘(ﬂ])}, 3) project P and obtain an immediate rewaxdfor passivity. The

state evolution of the projed? is the same as in the original
whereCl{-} denotes the closure of the set. The rate region RMBP, depending on its current state and current action. In



this virtual system, the design goal is to maximize the longi) User i is scheduled itV (;[t]) > w*, or if W} (m;[t]) =w*

term expected reward by balancing the ‘reward for servingiith i>i*. User ¢ stays idle if WF(mt])<w*, or if

and the ‘subsidy for passivity’ in each slot. WFE(mi[t]) =w* with i<i*. If W} (m;[t]) =w* with i = i*, user
Letting Z(w) denote the set of states of projeetin which i is scheduled with probability*.

the optimal action is to stay passive, the Whittle's indélkigb (iii) The parameters*, w* and p* are such that the long-term

condit.ion is .defin(-ad a.s follows. ) ) average number of transmissions equals
Project P is Whittle indexable if the sét(w) monotonically

increases from to the state space of project P, asw Remarks: Interestingly, by multiplying the Whittle's index
increases from—co to co. The RMBP is Whittle indexablevaluesiVi (;[t]) with r;, the optimal policy)* (1, M) extends
if every project is Whittle indexable. to more general problentr(r, M). This property is important

for designing the th hput-optimal policy in Sect[on IV.
If Indexability holds, for each state of a project, the or designing the throughput-optimal policy In Sec

Whittle’s indexiV (s) is defined as the infimum @f in which D. Approximatei*, w* and p* using State Space Truncation

it is optimal to stay idle in thev-subsidized system, i.e., Note that the parametets, w* andp* need to be carefully

W(s) =inf{w: s € Z(w)}. chosen to satisfy the complementary slackness conditien, i

Under an average constraint on the number of projedtemma 1(iii). While directly finding these parameters may be
scheduled per slot, it is known that, upon the satisfactibn @ifficult, we next introduce an algorithm to derive approzi
the Indexability condition, an optimal algorithm existssbd Vvalues ofi*, w* and p* based on a fictitious model over
on the ‘Whittle’s indices’: activate the projects with larg truncated belief state spac@his fictitious model facilitates
Whittle’s index value[[31]. more tractable design and analysis. More importantly, we

The RMBP theories and the associated Whittle’s indic&§all show that, when implementing these approximate galue
can be used in our downlink scheduling problem. Here, ea@¥er the original untruncated system, the performancegeil
downlink user corresponds to a project in the RMBP, witArbitrary close to the optimality.
the associated state being the belief value of its channelRecall that the belief value;[t] evolves over a countable
Correspondingly, the project is considered served if the iss  State space; for useri and approaches the stationary value if
scheduled for data transmission at a slot. Hence the Whittiéhe channel is not active for a long time. This motivates us to
index policy is very attractive to provide optimal solutioto  consider the following fictitious belief evolution model ev
our problem, as we shall elaborate in the rest of the paperthe truncated state space: the belief value of a user is #st to

steady state (i.e., its channel state history is entiralgdtien)

C. Optimal Policy for Weighted Sum-throughput Maximizatioif the corresponding channel has not been scheduled forga lon

. . . time, sayr slots. We user] [¢] to denote this ‘heuristic belief
It was shown in that our downlink scheduling prObIerQ/alue’ The evolution ofr[¢] is hence
. Z )

is Whittle indexable[[I8], and, under uniform weight vector
r=1, an optimal policy for problem¥(1, M) exists based i t+1] =
on Whittle’s indexability analysis of Restless Multi-arche i -
if ilt :1andCit =1,

Bandit Problem[[16]. Specifically, for channila closed form pjl " ailf] B dc i -
Whittle’s index valugV!(x) is assigned to each belief state ) o1 ! aift] =1 aanli[t] =0
7 € B;. These indices intelligently capture the exploitation- | Qi(milt]) if a;[t] =0, [T;Z, (1—as[t—k]) =0,
exploration value to be gained from scheduling the useret th bt if H;;é (1—a;[t—k]) = 1.
fﬁér\eiﬁi%?glsn%ggge\f;haﬁl(q)' Thee glpsisd if\(/)(;n :S)(F;;ﬁzsvfg We let B] denote the truncated state space for ik

(M), m eSS g user, i.e.,BT={bi, b’ , : c€{0,1},1=1,2,---,7} and let

s17¢e,l
[IE][IEL BT — [BI’

.-+, BY]. Over the fictitious truncated state space,
(r=QiE)(M+D+Qi(m) i i oo i _pi we consider the following policy’" "<
WA (m)=d TP Q@ P sm=bo<hl i

J,w,p "
(1_p§1)(1+1;%11 e by < < pi, Policy ¢!"4"c over the truncated state space:User i
(6) is scheduled ifW7(n7[t])>w, or if Wi(n][t])=w" with
i>j. Useri stays idle ifiW} (77 [t]) <w, or if WF(n] [t])=w*
It was shown that¥!}(7) monotonically increases with  jith i<j. If Wr(zT[t])=w with i=j, it is scheduled with
and satisfiesV;! (r) € [0, 1] [L6][L8]. In the following lemma, probability p.
we give the optimal algorithm to the problewn(r, M) with
arbitrary non-negative weight vecterThe proof of the lemma  Under this setup, we let the parametelr(j,w,p) denote
follows the line of [31] and is re-proven in Appendid A. the long-term expected fraction of time transmitting toruse

()

Lemma 1. There exists an optimal stationary poligy (r, M)

for problem ¥(r, M) (cf. (@)-(8)), parameterized by a user . Iy 1 [ plrune
index:i*, a thresholdw* and a randomization factop*, such a7 (G, p) = h?l_folip TE[ “ @i [t]}’ ®
that -

() The scheduler maintains am-weighted index value Whereafﬁzc[t]e{O,l}indicateswhether uséiis scheduled

WE(milt]) = r; - W(m;[t]) for users. at timet under policy$"“"¢. The closed-form expression of



ol (j,w, p) is given by the following lemma. The proof of theAlgorithm G (r, M): Calculation ofi,, w, andp.

lemma is given in AppendikIB. 1: TxTimefi] =1 forall i € {1,---,N}
Lemma 2. Let the valuer, be 2: TotalTime= N
1 1 3: struct Index
=(4 SR ~ =1, NY|. 9 .
mo=[dmax { e log” (phy—hr) o © 4 (fioat value
5. int user
Over the truncated state space and under poliéy.”s, if 6: } I[(27 + DN, w[(27 + 1)N]
T > 19, the following hold fora] (j,w, p), 7.5=0
(i) The closed-form expression of (j,w, p) is given by 8 for i=1to N do
o ' 9: for eachr; € B do
Q; (]awa p) 10: Wir(ﬂ'i) =7 Wl-l(ﬂ'i)
P(bh 1 —bb s ) H1=PT1 400 sy  vor 11 I[j].value= W (m;)
pbp g+ (1~ P)bo pa +(1=p1,) (h+1-p) =7 by vh)’ h<r 12: I[j].user= i
by —by) 1, ] i W (b7 13: jej+1
= Pb%,ﬁr(lfP)bi{r(l*pil)(T+1*p) It w=W7(b,r) 14: end for
p(1—pi, +b1) H r )
(1+7p)(1i1p{1)+pbg if w= W (bj) 15: end for
0 if w>Wr(b). 16: w =sor{I) > Sort the elements i in increasing order

of the index value and outputs to vecter

The closed-form expression of (j w, p), i # j is given by For index values that are equal, they are or-

al (j,w, p) dered in increasing order of the associated
1—pi, +b) Lht1 ; o i .. user index.
B FO—PL) (D) it h<r, w=WF (b ), i< 17: for k = 1 to sizew) do
1 +b] 3 . r/1i . .. .
e T hfa I if h<r, w=W7(bg ), i > J; 18 NewTimgw(k].uset = af, co(w[k]value 1)
or if h<r,Wr(bi, ) <w<Wr(bi,) 19 TimeDiff = TxTime[w|[k].usef—NewTimgw [k].usef
= 1—pi +b! if =TV (b ) . < i S0 TotalTime= TotalTime— TimeDiff
bi+(1—-piy)(7+1) °f_ ¢A0r s 21: if TotalTime< M then
or if w=Wy(b;),i>j 22: ir = wlk — 1].user
0 if w=WFr(bl), i< j; 23: w, = wlk—1].value
or if w>W?(bi). 24: TxTimelw[k—1].usef = M; [kzu TxTime[i]
1#w | k—1].user
(i) For fixed m;e{b) 1,bd 4.+ b}, bi}, af(j, WE(m)),p) 25 pr = Buwlk—1].uselwr, TXTimelw[k—1].uset)
strictly increases witfp. For fixedp, (g,W’"(m) ) stnctly 26: B_reak
decreases withr; for m; € {b 1,b) 5, , by, bi} and alli. 27 end if

) ) . 28: TxTime[w[k].uset=NewTimgw k].uset

We approximate the optimal valugs, w* and p* (defined 4. and for
in Lemmal[1) using the fictitious truncated state space modg},. ety W,
The approximate value,, w, and p, are such that, under
policy ¢{"¢ over the truncated state space, the long-term

br,Wr,p

average number of transmissions equelsi.e.,

pr

o to that index. For each element af, it first calculates
Zo‘i (ir,wr, pr) = M. (10)  the long-term expected fraction of time NewTiweék].usef

i . transmitting to the corresponding userk].user in line 18,
Note that, equatiorl{10) is the truncated-state-space “Shd hence the decreased amount, denoted by TimeDiff, as

respondence of Lemmnid 1(iii). We next design an algor|thmbmpared with previous value TxTifivelk].usef in line 19,

denotec_j byG™ (r, M), .to calculateir, w- and pr, described Note that, in each iteration, only the user corresponding to
to the right and explained next. . . .
wlk] will have an updated expected fraction of transmission

e The algorithm first calculates theweighted index values time. The total expected number of transmission, denoted by
W[ (m;) by scalingW;' (m;) by r;, and stores the value andTotalTime, is then updated by decreasing the same amount
the corresponding user in vectbi(line 7-15). (line 20). The thresholds keeps increasing until the total

e The algorithm then sorts all theweighted indices of each expected number of transmission is beldiv(line 21). Noting
belief state of all users to @7+1)N-dimensional vectow thata] (w, 1) decreases withy, we then set, = w[k—1].user
in increasing order (line 16). and w, = wlk — 1].value (line 21-22). Then we calculate

e The algorithm then calculates, and p, based on the the expected transmission time to the user that corresponds
monotonicity property in Lemm&] 2(ii). Hence, fixing theto w[k — 1] (line 23) and select the randomization facfgr
randomization factorp=1, it increases the threshold by so that the constrainf(1L0) is satisfied (line 24), where the
going through the indices inv and calculates the long-termfunction 3; : (w,«) — p calculates the randomization factor
average number of transmission when thresholdequals p required to achieve the long-term expected fraction of time



« transmitting to uset at thresholdw, and is derived from (i) The weighted sum-throughput performance difference be

lemmal2(i) as, tween the policie®* (r, M) and ¢, (r, M) is bounded by
Bi(wa Oé) N
) ) ) * — < .

(1—Ot)(l_Pil+b6,h‘+l)_ah(1fpil) if w=Wr (bz ) h<Tt |V (I‘, M) Ve (r’ M)| - f(T) Z " (13)

(1=a)(bg 1 —bp n)—(1—p1y) i YORD ’ N =1
(A=e)(1—pj; +b))—ar(1—pi;) TR i\ . ) i isfi

| et et w=WI ) where f(r)= S, (7). which satisfes](r)0 a5 7-5oc
e e =7 (@,): p(bh., = Vhrsn) + 1= Dl + b

0 If W>Wir (b;) fz (T) 0,7 0,741 11 0,741 (14)

bl A+ (1=p)bf -y +(1—ply) (T+1-p)

(ii) The long-term average number of transmissions undér po
E. Performance of policy over untruncated state space wifgy ¢, (r, M) satisfies the constrainfl(1), i.eZ, (r, M) < M.
approximate parameters.., p,
Remark: Note that the truncation size needs to be suffi-
ciently large (i.e.;7 > 1) to prove the Lemma. This is because
sufficiently large truncation size can provide enough level
of approximation that facilitates analytical charactatfian.
Specifically, in the proofr, is used in Lemmél4.

We next examine, over theriginal untruncated modekhe
policy that uses the approximated parametersv, and p..
We denote such policy as.(r, M) and present it next.

Algorithm ¢, (r, M): r-weighted Index Policy

1: Initialization phase: The parameters,, w, and p, are
calculated by algorithnd™ (r, M).

2: At slot ¢: useri is scheduled if the-weighted index value
WE(mi[t]) > wr, or if WF(m[t])=w, with i>i.. Useri
stays passive ifW}(m[t]) < wy, or if W} (m;[t])=w, V. QUEUE-BASED INDEX POLICY OVER TIME
with i<i.. If W (m;[t])=w, with i=i,, useri is scheduled FRAMES
with probability p...

Note that the Index Policy in the last section, as well as

Remark: The computational complexity of the initialization h iated Whittle’s ind | is for th ith
phase of algorithng ., (r, M) is dominated by sorting the index '€ associate lttle's index value, is for the system wit

values in AlgorithmG™ (r, M) (line 16), which has complexity infinitely backlogged queues and the corresponding v_vetiighte
O((2r + 1)N - log (2 + 1)N)). After initialization, ther- sum-throughput maximization probleril (£-(5). In this sec-

weighted Index Policy ., (r, M) takes a very simple threshold—go?’ we I((:otn3|de(; tshcheduler_ o:eglgn under r?r;_dom_ a{;'vil. of
type form with per-slot computational complexi€y(NV). ata packets and e associated queue evoiution In he time-

We letV*(r, M) be the weighted sum-throughput under thgorrelated downlink. The objective here is to not only oftai

optimal policys* (r, M) defined in lemmalL, and I8¢, (r, M) maximum weighted sum-throughput, but also maintain queue

) . : stability. In the presence of queue evolution, the problen g
be that under the afore-mentioned poligy(r, M), i.e., much more complicated. Note that, in the weighted sum-

T-1 N S '
. | (oM throughput maximization problem, the reward of scheduling
V" (x, M)=lim inf TE[Z > rimilt]-al ( )[t]}- (11) a user is captured by the Whittle's index value. Under the
;:0 i;1 additional consideration of queue stability, the queugtles
-1

a1 need to be jointly taken into account for scheduling, i.e., a
Vf(r’M)zlﬂlo%f TE[ Z Zri'ﬂi[t]'a?(nw [t]}' (12)  yser is scheduled for transmission not only because it has a
=0i=1 high index value, but may also because it has a large queue
Since we also require the long-term average number lghgth.
transmissions of the policy),(r, M) to satisfy the con-
straint [1), we denote, (r, M) as the time-average expecte%
number of transmissions under this policy, i.e.,

Next, we propose a throughput-optimal scheduling policy
ased on scaling the Whittle’s index by the queue length. The
policy is implemented over separate time-frames and has low

. 1 Lty or (.0) complexity.
Zr (v, M) = h?l_f;ip TE[;_; ;ai [t]}' We divide the time slots{0,1,2,---} into separatdime

. . ) framesof length T, i.e., thek-th frame,k € {0,1,2,---},
Recall thatr, is defined in Lemmdl2. The next lemmanc|ydes time slots T, - - -, (k + 1)T—1. The scheduling deci-
shows that the policy-(r, M) asymptotically achieves thesions in thek-th frame are made based on the queue length
maximum weighted sum-throughput b (4)(5) as the truncationformation q[k77] at the beginning of that frame. During the
size increases, while abiding the long-term average numiber._th frame, the policye, (q[kT], M), developed in the last
transmissions constraifl (1). The proof is given in Appef@ix section, is implemented. Formally, tié-frame queue-based
Lemma 3. For 7 > 79, we have index policy, denoted by Q-Inde{T,M), is introduced next.



Algorithm Q-Index/(T,M): T-Frame Queue-based Index Polic\frame, if the frame length is small, we lose from exploitihg t

1: The time slots are divided into frames of length Slot¢  channel correlation because the Index policy is optima} anl
is in thek! frame if kT < ¢t < (k+1)T, k € {0,1,---}. the infinite horizon. As the frame length scales, the (pet)sl

2: At the beginning of the k** frame: At the beginning loss of exploiting the channel correlation diminishes.
of slot k7', implement the algorithn@&™ (q[kT], M) that (5) Note that a dummy packet is transmitted to a scheduled
outputsw, andp. user with empty queue. The dummy packet is known to

3: In each slott of the k" frame: the users and contains no new information and hence does
eUser scheduling: user i is scheduled if theq[kT]- not bring throughput gains if it is transmitted. However th
weighted index value Wiq[kT](m[t])>wT, or if scheduler will still receive channel state update from the
WZ_Q[’“T] (mi[t])=w, with i>i,. User i stays passive corresponding scheduled users. This mechanism is useful to
it WA (zt))<w,, or if W) (7,[1])=w, with i<i,. establish our results.
If qu[kT] (mi[t]) = w, with i=i,, useri is scheduled with ~ The next proposition and corollary establish throughput-
probability p,. If a user with empty queue is scheduledoptimality of the queue-based index policy over time frames
then a dummy packet is transmitted to the user. where, recall that,f(7) is given in Lemmg1. The proof is
*ARQ feedback: At the end of each slot, the schedule@iven in Appendix{D.
users send ARQ feedback to the BS. The belief values o
updated according to the feedback at the scheduler. '%‘Foposmon L

If 7>719, then there existly; and function
g(7)=3f(7) such that the following holds whenev&r-Tj:

If the arrival rate A satisfiesA + g(7)1€I’ and the T-
Remarks: We next describe the intuition behind designing thBame queue-based index policy Q-Indek, M —g(7)/2) is
above algorithm. implemented, then all queues are stable and constranog

(1) Note that, for queue stability, instead of using queuge the average number of transmissions is satisfied. The famcti
information in every slot, it is sufficient only to considdret 9(7) satisfieslim_, g(7) = 0.

sampled queue length information at the periodic slots, i.e

qkT],k = 0,1,---. The queue is stable if and only if thecorollary 1. The achievable rate regioR, expressed inf{3),
periodically sampled queue length evolution process Blsta js equal to the stability regio.

(2) Within each frame, we wish to maximize the weighted ) .

sum-throughput, where each user’s throughput is weighyed Broof: Recall that the achievable rate regincorresponds
its queue length sample value at the beginning of the tinffé the expected service rate vectors that can be achieved in
frame. Hence, in step 2-3, we implement the Index polid¢ system with infinitely backlogged queues, by any policy
¢" (q[kT), M) developed in the previous section. The rational® ®- Now consider all the arrival rates within the interior of
is because, first, we would like to schedule the users {3 Stability regionA. For each arrival vectoA € A, there
achieve the higher throughput promised by the Index poli@XiSts & certain policy inb that stabilizes it, i.e., provides a
that exploits the temporal correlated channels. Moredeer, Service rate not belok. Therefore, the achievable rate region
system stability, we would like to choose users with large Provides an upper bound on the stability regionSince the
queue-lengths. Hence, by considering the queue weighf§Vious proposition states that the queue-based indesypol
throughput and using the Index poliey (q[kT], M) in frame Stabilizes arrival rates arbitrarily close to the boundairyhe

T, an overloaded queue can get served with potentially higtéhievable rate regiolr, the achievable rate regioli and

rate. As a direct result, a usés index is scaled by its queuethe stability regionA share the same interior. Because both
length g[kT]. regionsT" and A are defined over closure of sets, we have

(3) An intuitive explanation of the multiplication of index’ = A u

and queue length is as follows. We schedule a user not onlyPropositio Il and Corollafy 1 together establish the thheug
because of its longer queues, but also when its underlyipgt optimality of the proposed policy. With sufficiently ¢gr
‘channel quality’ is favorable (in terms of both exploitati 7 and 7', the proposed policy Q-Indekl", M —g(7)/2) can
and exploration values). Consider the example where asusetipport arrival raté\ within arbitrarye interior of the stability
channel is strongly correlated and is observed ‘0’ statdén tregion, i.e.,\ + €1 € A and satisfy constrainE]1).

previous slot. Hence it is highly likely to stay in ‘O’ stateRemarks:

for a while. Hence scheduling it can result in wasted systefh) Note that, in Propositiofl 1, the paramelérin the queue-
resource since packets are unlikely to be successfully-delbased index policy is scaled down byr)/2. This mechanism
ered. Correspondingly, this ‘quality’ of a channel is refdet is needed to guarantee the constraint on the long-termgwera
in the close-to-zero Whittle’s index value. The multipiom number of transmission. The details are given in the proof.
of queue length and the Whittle’'s index value is able t2) In the queue-based index policy, a user is scheduledibase
capture both the queue length and the channel’s ‘quality’ fon its q[£7]-weighted Whittle’s index value. The Whittle’s
scheduling. Summation of the index and queue length, on tinelex value is necessary for the results because it meathgres
other hand, fails capture both of these properties. importance of a wireless channel for scheduling, congideri
(4) Dividing the time slots into different frames brings ugointly the instantaneous throughput and future throughpu
advantages in the realm of large frame length (i8.,Since (e.g., see[[18][31], LemmAl 1). It is interesting to note that
we implement the Index policy within each finite-horizora simple multiplication of queue length and Whittle’'s index



slot to the scheduler at the end of the slot. The redien ;.

0.7 .
is expressed as
0.6/~ ‘ 1 AGenic = bibI oo + (1 — b)bIXAo1 + bi(1 — b)A1o
0.5/ ] +(1 = by)(1 = b2)An
with Xi; € A;; where A;; = CH{(p;;,0),(0,p5,)}, 4,5 =
~ 0.41 | 0,1 with CH{-} denoting the convex hull of the set [25].
=~ 03l N . | Because the genie facilitates more informed decisionseat th
' scheduler, the resultant stability regidf;c,;. provides an
0.2 Sl \ | outer bound on region, as demonstrated in Fig] 3.
0.1r ‘ SN B. Delay Performance Analysis
0 ‘ ‘ ‘ In this section, we numerically evaluate the delay perfor-
0 0.1 9\.2 0.3 0.4 mances of the proposed policy. We consider a two users
1

system with the long-term average number of transmission
Fig. 3: Comparison of stability regions. Parameters usegRnstraintd/ = 1, i.e., one user can be scheduled on average.
pi = 0.7, pb; = 0.2; p?, = 0.8, p3; = 0.3 The channgl stgtes of ppth users evolve as the ‘ON/OFF’

Markov chain with transition statisticg?,, pj;)=(0.7,0.2),

N . . ! D
value captures the importance of scheduling a user under tW@l’pOI)_(O'&O'?’)’ I.e., which can be typical situations
sophisticated system features — the queue evolution and ere both users have moderate degree of correlation across
fundamental exploration-exploitation tradeoff. time . .

(3) Calculation ofq[kT]-weighted index value is very sim- Over this system, we |m_plement the propose

ple, which only requires scaling thare-calculatedWhittle’s frafme dqu_eue-baged index .r;]ollcy Q'Indéf’fM_g(T)/.Qg’

index value. Under the queue-based index policy, in eagﬁ ined i section[ IV with 7=20. .We Irst ~consi er
frame, implementation of™ (q[kT], M—g(r)) in step2 of |?<ed arrival rates/\lz)\gzo.2§ and implement the poli-
policy Q-Index (T, M—g(7)) has computational complexity €'€S Q-Indeg((T,_M—g(T)/Q) with frame lengthsT'=10 and
O((2 + 1)Nlog(27 + 1)N), while implementing ste of T:lOO,_respectNer. The sample paths pf the average queue
policy Q-Index (T, M —g(7)) over the frame has complexitylength' e.,(Qu[f] + Qlt]) /2, are plotted n F'd:M.' It can be
O(TN) (see the remark in SectidiTI-E). Accordingly theobserved that, while the queues in both scenarios are stable

per-framecomplexity isO((27 + 1)N log(27 + 1)N + TN). tEe fvariatio_n of rt]he quefue evolution E nptz;bly higher wrr:en
Therefore, as the frame lengthi scales up, theper-siot the frame size changes froid to 100. This is because, as the

complexity decreases towa(d(N). frame size increases, the frame-based algorithm obtagss le

(4) The scheduling decisions are made by comparing edipauent updates of the queue sizes. Therefore, withinraefra

user's own index value to a threshold, independently frome algorithm can continue to serve a user even if its current
other users. Hence our policy is also applicabledistributed du€ue length becomes small while neglecting the other user
implementatiorin uplink scenarios that has accumulated a large queue size, leading to a higher

degree of queue length variation as well as average quegle siz
Correspondingly, higher delay and delay variation are etque
) N ) as the frame size increases. For example, suppose thé initia
A. lllustration of Stability Region queue length of user is empty, while the initial queue length

In Fig.[3, we compute the stability regioh and compare it for user2 is nonempty. Then usdrin the first frame will not
with other regions of interest. We consider the scenarith wibe scheduled. Now after the first frame, the expected queue
two users and with the scheduling constraint on the lontgngth of userl will be significantly larger for the case when
term average number of scheduled transmissidhs= 1. 7 = 100 compared with the case wh&h= 10. Hence, at the
The Markov transition statistics are selected(gs;, pj;) = second frame, the scheduler dedicates most of the resources
(0.7,0.2), (p3,,p3,) = (0.8,0.3). For comparison, in the sameto userl. As a result, the expected queue length of the user
system, we consider another scenario where the scheddlexill go down after second frame, and the expected queue
throws away the ARQ feedback from the scheduled user. \Wmgth of user will grow. Both the expected change of queue
denote the corresponding stability regionAy;, s, expressed lengths of user and2 will be much more significant when
as Anory = {X : Ai/bl + Xo/b? < 1} [36]. As can be T = 100 compared with whefl® = 10. The process repeats in
observed in the figure, by exploiting the channel memory frotime and results in a higher degree of queue length variation
ARQ feedback, our policy achieves significant throughpirt gawhenT = 100 as compared td@’ = 10.
(as high as30%) over the policy that ignores the channel We next implement the aforementioned policy
memory. We also compare the stability regidnwith that Q-Index (T, M—g(7)/2) and evaluate the average queueing
of a ‘genie-aided’ system, denoted By..;.. In the ‘genie- delay experienced by users as the arrival rates scale toward
aided’ system, the same scheduling constréint (1) is inhosthe boundary of the stability region, with varying frame
while a genie reveals channel statesabifusersin the current length 7. For the two user system previously discussed,

V. NUMERICAL RESULTS
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Fig.[§ examines the average queueing delay when the arri

rate vector (A, \2) increases with\;=X2=\. As can be 005 01 015 02 025 03 035

observed in the figure, as the arrival rates grow toward ti.c

boundary.of gtability re_gion, the queue length quickly_ kdow Fig. 5: Delay performance comparison whan= 2.

up, resulting in steep increase of delay. The steep increase

is because, as the arrival rates grow toward the boundary of

stability region, the queue lengthes quickly blow up beeaug note that policyy™ W™ and¢™N@veInd performs better than
they are becoming unstable, resulting in steep increasetgé policy that ignores channel state feedback, as the value
average delay. Fid5 also show that, as the frame length) where steep increase of queueing delay occurs is much
grows, the average delay in the downlink network increasggrger as compared t¢™V°/*. This observation illustrates the
This is, again, a consequence of infrequent update of quaHgughput gains that can be achieved by using the channel

length information at the scheduler. state feedback.
Another interesting observation can be observed
from Fig. (3. When we implement the proposed policy VI. CONCLUSION

Q-Index (T, M—g(r)/2) with the frame lengthg growing In this work, we have studied downlink scheduling problem
from 9 to 100, t_he syst_em_ _delay curves for different Valueﬁver Markovian evolving ON/OFF fading channels and imper-
of 7" start to build up significantly aaround the same value o jhgantaneous channel state information. The schrgul
(|.e:, around0.29 which is on the boundary o_f the Stab'“tydecisions are made based on the single-bit ARQ-type fe&dbac
region). Note that we needed the frame size to be larggy ihe channel memory inherent in the Markovian chan-
enough _to prove Propositiol] 1. However, in practice, tn?els. We propose a throughput-optimal policy that operates
frame S|ze_1_“ may not ne(_ed to be as Iarge_ to guarantegqr time frames. In the proposed policy, the importance of
queue stability. This numerical result, along with manyeoth ¢ .peqjing a user is measured by a simple multiplication of
numerical evaluations we have conducted, indicates tf&a_tt tljﬂe queue length and Whittle's index value. Because of this
gueues are stable under on!y moder{;\te value of frame S'Zeprperty, the proposed policy has low-complexity per frame
the _proposed queue-based index policy. . vopy N the network size and the truncation level of the belief
Fig.[5 also plots the delay performance of a poligy*™  gia1e space. Most notably, our policy does not suffer from
that ignores the channel memory, i.e., not using the changgl ¢\ rse of dimensionality that is observed in earlier work
state feedback. In each slot of this policy, a usevith the j, this context. Numerical evaluations show that signiftcan
largest multiplication of steady state transmission rage, (%) throughput performance gains can be achieved by exploiting
and queue length;[t] is scheduled. The delay performance e channel memory, via the frame-based low-complexity
of maximum weight matching policy™"*" is also plotted, queue-based index policy with moderate frame size. Future
Wherez in each slot, a useri with the Iargest_multlpllcatlon directions include considering larger state space mode, a
of belief value 7'[t] and queue length;[t] is scheduled. cqngjdering feedback mechanisms that collects CSI from
F']g('“li;:;ther plots the delay performance of a naive poliGygcheduled users, as well as more stringent instantaneous
¢ whelre a user with the largest multiplication of gopequiing constraints. Another open direction is to atersi
index valueW; (w*[t]) and queue lengthy;[t] is scheduled. 4qaptive power allocation with hybrid ARQ protocols (e.g.,
For all of these policies, the values of arrival ratevhere the [9]), where the index value not only implies the attractiees
queueing delay increases steeply are at a smaller valuetitan¢ scheduling a user, but also guides the power allocation
proposed policy, implying the sub-optimality of these p@s. ,.10ss time.
This is partly because these policies only schedule striefl
users per slot, but our work is in the domain of a relaxed APPENDIXA
constraint of average number of scheduled users. The sub- PROOF OFLEMMA[I]
optimality of policy "™ is also because it only exploits The proof of the lemma is an extension of the proof of
the channel condition in the instantaneous slot, &gt], butit Proposition 1 in [[16]. Consider the probled(r, M) with
does not consider exploring outdated channels. It is ister®@ weight vectorr. The constraint[{1) can be written in an
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equivalent form that requires at least — M channels to be at slott if W (m;[t]) > w/r;, and stay idle ifW} (7)) < w/r,

passiveon average, i.e., with tie breaking arbitrarily ifW}(r) = w/r;.
o1 N We define ther- weighted index value a$lf(r) = r; -
limint EE{Z Z (1—a? )} >N — M. (15) Wlk(n),n € B;,i € {1,- -, N}. The optimal policy for the
T—oo T o i reward maximization problem in_(1L8) is then to activate the

useri if Wr(mr) > w, and to stay idle ifWWf(7) < w,
with tie breaking arbitrarily if W*(r) = w. Because of
this threshold-based policy and arbitrary tie-breakingheat

Associating a Lagrange multiplier to the constrain{(15),
we have the following Lagrangian functidi¢, w) for prob-

lem ®(r, M), threshold, the dual function valu®(w) can be achieved
T-1 N by the following threshold-based policy implemented over
L(¢,w)=liminf — E{Z Zri-mlb‘l'afltl} the r-weighted index value$V? (r): Useri is scheduled if
=0 i=1 WFE(m)>w, or if WF(m)=w with i>j. Useri stays idle if
X WE(m;)<w, or if WF(m;)=w with i<j. If WF(r;)=w with
tw ll%llﬂoréf T [ Z } —w(N=M). (16) ;—; useriis scheduled with probability.

=0 i=1 Following the similar proof techniques of Lemma 11 in

The dual function D(w) is defined as D(w) = [16], by appropriately choosing the aforementioned patarse
maxgee L(¢p,w). Following the lines of proof in[16] we have (j,w, p) to be (i*,w*, p*) such that the constrainf](1) on
the average number of transmissions is strictly satisfigtd wi

Z U (w) + w(N — M). equality, the colresponding pelicy is optimal for the ple?hl
U(r, M). Denoting such a policy as*(r, M), the proposition
in which U/ (w) is aw-subsidy problem under weight, 's proven.
TR APPENDIXB
U (w) = max h?l_folip TE[ S [remilt]-al ] PROOF OFLEMMA 2]

=0 We next prove the Lemma far] (j,w, p).

—l—w-(l—af’[t])”, (17)  case (1). First considen (j, W (b} ,),p) with h < 7.

where®, denotes the set of scheduling policies that activaléénce usey is scheduled if its belief value is abotg,, or

and idle the usef according to the observed channel historys scheduled with probability at belief valueb, ,. According

|n the above problerﬂ]l?) for each Chanmat be“ef State to the be“ef Value eVOluUOn I‘U|E|(2) |n the next S|Ot IESlIbf

.. it will receive a rewardr;w; when it activates, otherwise value will either bep], or pj,, depending on the whether the

it will receive a subsidy for passivity. We letZ]" (w) C B; revealed channel state i3 or * 1’ at the end of the current slot.

be the set of belief states for which it is optimal to stay ididf the user's belief value is below, ,, it will not be scheduled
Under the unit weight; = 1, it was shown in[[1B8] that and its belief value will move one step towdrfglh+1 Hence,

the problem is Whittle indexable, i.eZ}(w) monotonically in this case, the belief value evolution for usefollows a

increases fronf) to B; asw increase fromD to co for each Markov Chain over37, as depicted in Fid.16.

useri. The Whittle’s index valueW!(r) is defined as the From Fig[®, one can observe that the belief Markov chainis

infimum subsidy value for which the belief stateis at the ergodic and the recurrent states 4bé , , bsl = h+

boundary ofZ} (w), i 1}. We denote the stationary probab|I|ty of bellef value being

m; as(;(m;), m; € Bf. The global balance equations are

J J J

It follows from [16] that, for thew-subsidy problem under P0G (00,14 (0, 42) (100 11) . .
unit weightr; = 1, the optimal policy is to activate the user +b1,1(1—Pj11) = Cj(b%,l)
at time slott if W7 (w) > w, and to stay idle ifiv¥ (r) < w, G =Gbho) = =G ,)
with tie breaking arbitrarily ifiV; (7) = w. 1= PG ) =G, )

We next extend the optimal algorithm for the-subsidy _ JA0h J170,h+1 _
problem under unit weight to the general case with arbitrary PG (00 1) + G (g pya) = (1= p11)G (01 1)
non-negative weight;. An equivalent form ofU;"(w) is as

Wil(w) =inf{w: eI} (w)}

From the balance equations, we can calculate the expression

follows, of the stationary probability as follows,
U/
) - ()
1 — w 1—pd . ;
¢ ¢ jd 7 .
TS 11;11§;P TE[ tz; il [t]+r_i(1_ai [t])”' (18) Pb?},ﬁ(l*p)bé,hﬂJizlfpi'l)(hﬂfp) it =boo b < i
= ‘ (A—p)(1—p1y) if 77.=b7 -
Therefore, the optimal solution for the-subsidy problem = Pbé,h+(1fﬂ>bé,h+1j+(1*§?‘h)(h+1fp) IO+
(I7) with weightr; takes the same form as the optimal solution Yo.n i1t (b, ’l’bﬂ;hﬂ) if m.=b7
; ; : : by +(1=p)b) 1 +(1—p1 ) (h+1—p) "7 LD
for thew/r;-subsidy problem with weight. Accordingly, the 0 0.k 0.kt " otherwise
wise.

optimal solution takes the following form: a uses scheduled
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a similar analysis as in case (1) to obtain

e p(bh, — b)) +1—pl, +]
aj (4: Wi (by,), p) = — j J )
pbo -+ (1=p)bs+(1-p1,) (T+1-p)
[aF (5, W} (bg,-), )]
L - pis = L= Py + b+ 76, = b))
Y Y j —
Fig. 6: Belief value transition in steady state when bs=bo,r Pl =b2) +bs + (1 = p1y)
w:W;F(bg L) When 7 > 7, it can be derived that the numerator
T 1 —pi, + bl + 7(by . — b)) inside [20) is positive. Therefore
of (j, Wr(b) ), p) strictly increases withp. Similar to Case

(20)

(1), we have

aF (j, WS (0h,1), p) < af (. W (b ), 1) = o (j, W (0 1), 0)
_ Hence, the expected fraction of time transmitting to user < aj (4, Wi (bp,,—1) p)-
'S _ _ _ _ Case (3). Conside (j, W7 (bl),p). Similar to Case (1),
g (4 er(b%,h)v p) = ¢ (bé,h) + Cj(bg),hH) +¢(b11) we obtain,

. p(bé,h - bé,h—ﬁ-l) +1- pil + bé,h+1 p(1 _p'{l + bl) N
P+ (1=p)bh sy +(1=p1y) (h+1=p) (1 +7p)(1 = piy) + pb3

as given in Lemm&l2(i). To prove part (ii), we consider its 1aking the reciprocal we have

o (4, Wy (b)), p) =

reciprocal, i.e., PR B 1 , 1 _
_ [ (7, W (bd), p)] ™" = jibj((l_plil)(’r—"__)—i—b;)a
[O‘;’- (jv Wf(bé,h)vp)]*l I —p1y + s P
(1—pl)(h—p) which strictly decreases witlp. Hence a7 (4, Wr(bl), p)

strictly increases witlp. We also have

1 _p.{l |:1 1 _p{I +b6,h+1 +h(b(7),h _bé,h+1)} Oé;(j, W;(bi),p) < Oé;(j, W;(bi),l) = OL;(j, W;(bg).ﬁ')vo)

| p(bg,h_bé,h-ﬁ-l) + b%,h-ﬁ-l +(1 —P{1) . <aj (, er(bé,r)a p)-

(19)  From Case (1)«(3), the lemma is established for
af (5, Wr(bj ), p). Noting that for useri # j, there is

randomization associated with scheduling. Hence, the
ove derivation for] (4, W (¥} ,), p) naturally extends to
_ _ _ _ of (j,WF(b),),p). The only change is there is no longer
L—piy + 61 + 200 — b5 i) randomization involved. Details are hence neglected here.

>1 —pj1.1 + bé,h+1 + (h + 1)(b6,h - bé,h+1) =0,

POy = Yo i) T 1 =11+ 0051

=1+ J j
b’o,h+1—bo,h

Considering the numerator inside the parenthesid_of (15)8
we have a

) o ] APPENDIXC
where the last inequality is froni_(51). Noting that the de- PROOF OFLEMMA 3

nominator inside the parenthesis ¢f1(19) strictly decrea
with p, hencela] (j, WF (by ,,),p)] " strictly decreases with
p. Thereforea} (j, W3 (m;), p) strictly decreases withp for

SE. Proof outline

We establish the proof by first proving lemida 4 that bounds
the difference of weighted sum-throughput between pdicie

s for ;o € {b) bl o, -, b . ) . ;
mj for m; € {601, b6, 0.1} with different threshold parameters, with respective te th
_ e e difference between expected fraction of transmission time
Since  for  htl<r,  af(j, Wi(b; ), 0) = each user. We then prove the lemma under two cases, i.e.,
aZ (4, WF (g ,41), 1), we have, whetherw* < WF(bj ) for all useri. The first case is
) : ) - uncomplicated to prove. For the second case, we first prove a
T ri1j T r/ 1]
a; (J, W5 (6o ny1)s p) < 055, W (bq,h+1)’ 1) useful fact that only one of the three cases halds> w*, or
= (4, W;(bé_’h),O) w; = w* with p; < p* andi,; = i*, orw, = w* vyith iy > 1F.
<a7(j, Wj(bé_’h),p). Based on these cases, we can bound the difference between

expected fraction of time transmitting to different usenée
then use Lemm@l4 to finish the proof.

Therefore, for fixedp, o7 (j, W7 (7;), p) strictly decreases
with 7; for 7; € {bf 1,009, ).+ _1} B. Notations
Recall that, in the untruncated state space, the optimadypol
Case (2). Next consider] (j, W;(b{;),p). We can perform ¢*(r, M) corresponds to the parametefs,w*, p*). Also
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recall that, in the truncated state space, the paoficyr, M)
corresponds to the parameter, w,, p;). .
vi(j,w, p) =

] Pbé,}y""(l_f’)bé,h,ﬂ
pby p+(1=p)b] ;1 +(1=p];) (h+1-p)

Over the actualintruncatedmodel, consider the following
policy denoted ag7/"""* with the parameter§j, w, p): User | 7

if hr, w=TWF (b ,);

i is scheduled ifW} (m;[t])>w, or if WF(mt ])—w with pb)+(1—p)bl i o)
i>j. Useri stays idle if W (a7 [t])<w, or if WF(aT[t])=w* {7 06l +—p)bl+(—pi,)(r+1-p) if w=W7(bp,);

with i<j. If WF(n7[t])=w with i=j, it is scheduled with Ty pb - if w=WZ(b);
probability p. In this model, similar to[(8), we let; (j, w, p) (+7p)(1=piy)+0bs oy

denote the long-term expected fraction of time transngttm 0 if w>WF(b)).

useri under policygt7/rene, ie., (26)

1 untrunc The expression of; (j,w, p), is expressed as follows.
a;(j,w, p) = limsup —IE{ E af]’“”’ [t]} . (21) P )i # g P
t=0

T— 00 T
The closed-form expression of (j,w, p) can be calculated ' vi . p) b:
from the same technique we used to prove Lenitha 2 gez 5 +(‘i'j+} ST if h<r, w=WF (b ,), i<j
follows. Ot TP ’
ai(j,w, p) "y =Pl )k it h<r, w=W(by), @ > 73
Riheg or if h<7,WF (b} T (b
‘p(b?),h7b?),h+l)+17pil+bé,7l+l if (bi ),i=j; bi . _: Vi/l ( th_l,)_<w<WZ ( 07h)
Pb%,};*i}f_ﬁi@é,hﬂ+(14P111)(h+1*p) ?»h = T AT (—piy ) 5L if ‘*.’:Wz' ( 0,7’)—! <]
%M;(; ORI if w=WF (b ,), i<j or if w=W7 (b)), i > j
o S ..o if w=WF(b),i<j
bl,;ﬁa p[il)h it w=Wi(by). 2 > or if wo T (b1).
or if W (b j,_1)<w<WF (b)), i #J e 27)
0 if w>WF(bL).
(22)
We also letv; (j,w, p) denote the long-term expected trans-
mission rate to usef, i.e., C. Proof of Lemmal3
T—1

d)untrunc

We first prove the following lemma that provides properties

e, p) = i 72 [ e mi ] @) o o7 i) ander (. )

T
Over the truncated model, correspondingly, we let Lemma 4. For a useri, if 7 = TO’ we have

vI(j,w, p) denote the long-term expected transmission rat@ For fixed 500,15 0,2+ b L}, 0] (5, W (i), p)
to useri under policy¢?"*" defined in sectiofi LD, i.e., strictly increases withp. For flxedp, (y,W”(m) ) strictly
b decreases withr; for m; € {b} 1, b5, , b} ., b} and all 4;
T-1 . . .
oo p) = hm 1nf E[ Z — a¢m° [t]} (24) (ii) for any two sets of parametdj;, w1, p1 } and{ja, wa, p2},
=0 ‘Ug—(jlawhpl)_Ug—(j27w21p2)}

Using techniques similar to the proof of Lemina 2, we can

. . . ST"‘OLTI,W, _O[T'vwv ’
derive the analytical expressions @f(j, w, p) andv? (j,w, p) i | o (41, w1, p1) — af (J2, w2, p2)

as follows, Proof: See AppendiXE. [
Note that we need- > 7y for the proof to hold. Since
vi(jyw, p) = the untruncated state space is in the asymptotic regimeeof th
; i truncated scenario when— oo, a straightforward extension
roe— Pbo,h_"‘(l P)bo,h,{rl if w= (b ) . Tl _y .
OB A A=) F (AP ) (A1) 0,n)» of properties ofa] (j,w, p) and vy (j,w,p) in Lemmal2 and
_ 2 it W= (b ), i< Lemmal? to«;(j,w,p) and v;(j,w, p) in the untruncated
‘b h%j(l*i’h)(h“) he scenario leads to the next Lemma.
O BT et if w=Wr bi Y, > )
e by, +(1—pip)h ¥ ( ’h) 1> Lemma 5. For a users, if 7 > 7-0, we have
7 r 7 .
or if Wb 1) <w<Wi(bh,): 177 (i) For fixed m,€{b 1.0, -0 b}, 033, WE(m2), 0)
0 if w>WF(b). and «a;(j, WF(m;), p) strictly increase withp. For fixed p,
(25)  wv;(j, Wr(m;),p) and al(j,W”(m) p) strictly decrease with
m; for m; € {b01,b02, 500, %

The expression ob7 (j,w, p) is given as follows, (i) for any two sets of parameters{j;,wi,p1} and
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{j2,wa, p2}, is not belowbd? with probability 1. The second and the third
equality are from lemm@l 2(i) an@(R2), respectively. Thet firs

‘Uz‘(jlawhpl)—Ui(j27w27p2)‘ inequality holds sincé’ > b .. The last inequality holds

becauseW; (b, ) <w* <W”(b1), hence from [(22) and the

<y .
=i monotonicity property in Lemmil 5(i),

a;(J1,wi,p1) — Ofi(jzawzapz)’-

We proceed to prove Lemnia 3 under two cases. a; (i, Wi (bp ), 0)=cr ‘('* Wi (b,741),1)

_ =, (1%, w", p*) it WS <w*<WF (bl
Case (1). If the threshold* satisfiesw* < W (b ) for all ) “.r) Brsa).

(
useri, then the approximation parametérs= i*, w, = w* O‘Z(Z ' (bO 7); 0)=ai(i*, W} (bo,r+1),_ ) _
and p, = p*. This is because, ifo* < Wr(bj,) for all Zai(i",w", 1) 2 au(i*,w", p*) i WF(bg ;1) <w"<WF(bY).
useri, no user will stay idle for more tham slots under ; - ,
- . o . 3) If w* =WF(bg ), similarly, fori € ©,
the optimal policy ¢*(r, M). To see this in more detalil, )T w (b.7) y !

the expected amount of transmissions equaIsMo ie., aj (i",w*, p*) > a;(i",w", p).
vala(],wp) M, whenj = i*, w = w*,p = p*, _

which meets the constrainE{10). Therefore, thanks to theHence from 1)-3) we have] (i*,w", p*) = Oéz( ,w*, p*)
strict monotonicity property in Lemm@ 2(ii), the aIgonthmfor i € ©. Also noting that, fori ¢ ©, o;(i*,w”,p") =
G™(r,M) outputsi, = i*, w, = w* and p, = p*, and 7(i",w", p*), we hence have

hence policyo, (r, M) is equwalent to the pollcyb (r, M).
We hence havéV*(r, M)—V(r, M)|=0 and Z, (r, M)=M. Z af (i*,w*, p*) = Y af (i*,w*, p*) + Y _ o] (i*,w

. . . i=1 €O €O
Case (2). If there exists a usemwith w* > Wf(b ), we .
let © denote the corresponding set of users, i@.= {i : —Z% (@5, W™, p7) + Zo‘l W)
WE (b)) < w*}. Therefore, ’g:a g’
* > O‘Z(Z ) 7p + al , W 7p
‘V r, M) M) ie@ i¢©

N
:‘Zvi(i*7 Zvl LryWr, Pr ‘ _Zal ,w* p*)=M.
i =1
<Z

€O

vi(i, ", p7) =il wr, pr) Hence if we implement the policy with threshold parameters
_ (i*,w*, p*) over the fictitious truncated belief space, the
+Z 0i(i",W", p7) = viir, wrs pr) | (28) expected number of transmissions will equal to or exceed
i¢® the constraint. Therefore, from the monotonicity properny
Before bounding[{28), we first show that, for this case, weemma[2, to ensure the constraifif](10) on the long-term
have only one of the three cases: > w*, or w, = w* with expected number of transmissions over the truncated state
pr < p* andi, =i*, or w, = w* with i, > i*. space, it must be one of the following three cases> w*, or
We prove the above statement by first showing that = w™ with p. < p* andi; =i, orw, = w* with i, > 7*.
Zf’la (i*, w*, p*)> ZZ 1041( ,w*, p*) = M: For any From this property as well as Lemrha 5(i), we have,
useri ¢ O, we havea] (i*,w*, p*) = a;(i*,w*, p*) since
(i*,w*, p*) does not exceed the truncation level. For user
i € 0, 1) if w* > Wr(bl), we havea](i*,w*,p*) > and, becausée O,

a; (i, w*, p*) sinceq; (i*,w*, p*)=0. 2) If WF(b} ) < w* < ) e x x . i .
WE(b) for i € ©, we have 0, V(i , W,y pr) < (17, w7, p" ) <w; (4, W (bg ), 1), for i€0.

;i wry pr) < (3%, w*, p*) for all 4, (29)

, . (30)
T (1% * * T (1% 7 1—p] +b15
o (1%, w, p*) =a (i, Wi (b), 1) = a +T)(1p1_1 EREET Hence, fori € ©,
11 s
1—ply +b) 4y i (i*,w*, p*)=vi(ir, wr, pr) | <vi (3, WF (B ), 1)
T - pi) + b7 11 <ri-a;(i, W} (by,,), 1), (31)
=a; (i*, W (b,,),0) > (i, 0%, p"), where the first inequality is fron_(80) and the last equality

where the first equality holds because, wWhff (b ) < holds because instantaneous reward is upper bounded by
w* < WX (b'), the user is scheduled when its belief value Similar to [30), from the monotonicity properties of
is not below ' and stays idle otherwise. Because of the] (j,w,p) anda;(j,w,p) and because€ ©,

truncation, the next belief value abobg . is b. Since user /. Tk %k T T (i :

H ' : ’ . . i \bry Wr, <Oé-l, 9 Sa‘ ZaW’ ) ,ZEC"‘),
it" index value will not be exactlyw*, the randomization i (b wr, pr) < 0 ( p7) < ol (B, Wilbo,r): 1) (32)
factor p* at the threshold does not play a role. Hence the " I e _
expected fraction of transmission time (i*,w*, p*) equals a; (i, W7, p%) < oq(i, W 1) < aii, Wi (Do 1), 1), i € ©.
ol (i*, WE(bL), 1), i.e., transmit to user when its belief value (33)
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Fori ¢ ©, we havea] (i*,w*, p*) = a;(i*,w*, p*). Hence,  Substituting [(37) and_(40) in (84),

Uz y W 7p Ui(ivaTva) r(ni
ZQZO ‘ ‘ Z}’UZ 5 I p _UZ (ZT7 wT7 pT <Z Tz az W (bo T) )
. i¢© ige i=1
<> i ea (i, w, pf) =i iz, wr, pr)| (1)
€O
_ZT py %) = ilir, wr, pr)] From [31) and[{41), the difference in_{28) can be bounded
P o lelEm e R as follows,
<Zn Z o (i*,w*, p*) — i (ir, wr, pr)] |V*(x, M) = V(r,M)|
40 i¢O N
<ZT1 o (i, W (b)), Z Z (i, Wr(bf+), 1)
<ZT’L [Z ’L , W 7p ) (iT;wTap‘rﬂ‘i‘ lf\]@ N @ =1
€O [°4C) ) )
- . <S> (L W), 1),
Z [O‘Z(ZvaﬂpT) - ai(lnwﬂpT)”, (34) ; ;
€O
; Tt . N
where the first inequality is from Lemnid 5(ii) and the first We et fi(r)=cu (i, W (b)), 1) and f(r)=32.2, fi(7).
equality holds from[{29). Slnceal( wr (b}J ) ) — 0 asT — oo, part (i) of the lemma

is established. Froni(9), we have
Consider the first summand inside the parenthesis of

E9). Slncez o (1wt pt) = valoz (irywr,pr) = Zaz ir,Wr, Pr) <Zaz ,w*pt) =M,
M, subtrac'ung both sides byZZ§ZO T(ir,wr,pr) +
Y ico ai(i*,w*, p*) we have which proves part (ii). |
> [ai(i*,w*, p*) =] (ir, wr, pr)]
i¢0
—Z ZruwTup‘r z( , W 7p )]
ico APPENDIXD
<Z’O‘ (iry wr, pr)—cii(i*, 0%, p )} (35) PROOF OFPROPOSITIONT]
1€0
. Define Lyapunov functiorl(q) = 5 ZZ 1 ¢7. We consider
Note that, fori € ©, from (32)-[33), the T-frame average Lyapunov drifi L(q[kT']) over thek-th
|07 (i, 07, pr) = (i”, 0", p")| < ai, WE (b)), 1). (36) frame expressed as,
AL(q[kT])/T
Substituting [(3b) back td_(35), we have :%E{L( [(k+1)T)) — L(q[kT])‘ q[kT],W[kT]}
Z[az( 5 5p ) ZTawTap‘r Zazl Wr b67 ) N N
iz6 ico <SBT+Y kTN =Y qilkT]-
(37) i=1 i=1
- (a[kT], (1)/2)
[KT+4)-a27 QFTIM =92 t‘ kT
Now consider the second summand insidel (34), we have, [t—O i +i] i }
fori ¢ ©, (42)
o (irywry pr) =i (i, wry pr) =0, if wy < Wir(bg_j), whereB is a constant whose value is determined by the second
(38) moment of the arrival process [37]. Because- g(7)1 € T,
ol (ir,wry pr)—i(in, wr, pr) for any non-negative vectaf, we have

<ai (i, W} (b, ), 1), if w =W (b5,), (39)
where [39) holds because both] (ir,w:, pr) <

ai(i’Wir(b%J,T)al) and o‘i(iTawTapT) < ai(iawir(bé,r)al)'

N
Zqi (X +g(7) £ V*(q, M),

whereV*(q, M) is defined in[(IlL). The Lyapunov drift (42)

Therefore, now becomes,
Z [a;(i‘rvw‘rvpr)_ai(irawnpr)] N
%o AL(q[kT))/T < BT—g(7) > _ ailkT]+
< (i, Wb ). 1). (40) =1

i7o V*(alkT), M)-V (a[kT), M—g(7)/2)
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N
= BT—g(r) Y a:lFT)+V* (alkT], M)V, (a[kT], M) Qi= {7 (@, M) = Ve(a, M)| < k3L, ), then

i=1 E T ,M o VT ,M
+ V; (q[kT], M )=V, (a[kT], M —g(7)/2) UMT (q, M) (a )H

+ Vi (q[kT), M—g(7)/2)—VI (q[kT], M—g(7)/2). (43) SE[IMT(q,M)—VT(qu)HQ} - Pr(Q)

whereV, (q[kT], M) is defined in[(IR), and” (q[kT], M) is +E[|uf q, M) -V, (q, M \’ } -Pr(Q)
the T-horizon expected transmission rate achieved under the
policy ¢, (aqlkT], M), i.e., </€ZQZ+Z% Pr( ‘uT q, M (q,M)‘>ani). (44)

Vv alkT], M) =

N - Note that

b (a[kT), M)
; {;ﬁ [KT-+1]-a (KT +4] ‘r kT} ‘MT @ M) — Vi 1)
_‘Z% [lT lm KT + 1] - a? T [RT + 1)

Note that, in [(4B), the differenceV*(q[kT], M) — T =
V- (qlkT], M) is bounded in Lemmdl3. We proceed to =
bound the rest of the terms in_(43). Specifically, the — lim = Y mkT+t-a ¢7(a.M) kT + t]”
differenceV, (q[kT], M—g(7)/2)-V. X (q[kT], M—g(7)/2) is T—oo T 4=
bounded in Lemm&]6, and the differente(q[kT], M) — N N T-1
V. (q[kT], M—g(r)/2) is bounded in Lemmi@ 7. These bounds <> ¢; - {Z [ kT +1] - a? @M kT 4 4]
help us to bound the Lyapunov drifk L(q[kT])/T and later i=1 i=1 t=0
to establish the proof using Lyapunov stability theory. T-1 1

— lim %Zm[l@T—i—t] (q’M)[k:T—i-t]} }
— 00

We denoteZ'(q, M) as the finite T-horizon expected =0

number of transmissions, under the polity(q[kT], M), i.e., N . .
T 1 o @My =
Z7 (@, M) = E tz; ; } where the inequality follows from Cauchy-Schwarz inecgyali

andn(q, M) andnZ(q, M) are vectors with

The next lemma states that, as the length of the time horizon !

_ ¢ (q,M)
tends to infinity, the expected achieved rate in finite harizo 7 (4, M) = lim = > milkT+] - af S [RT+], (45)

asymptotically converges to infinite horizon achievableera I t=0
and the expected number of transmissions converges to th 1 «— M
alLe T i@, M) = >l af @MRT + 1), (46)
Therefore,
Lemma 6. For any M andx > 0, we have, uniformly oved, N
M, and the initial stater [kT], Pr (| (q, M) = Vo(q, M)| > £ q)
=1
(a) there exist positive constants and ¢, such that <Pr(||[n"(a, M) —n7(q, M)| > k)
N SP = l{ynTz qu)_nZ(qu)’>’%/N}
Vr(a, M) -V (q, M)‘ <(k+a GXP(—C2T))Z%- N( )
=1 -
Z (|n7.4(a, M) = n] (q, M)| > K/N). (47)

(b) there exist positive constands and d» such that , ,
Recall that, under the poth(q, M), the belief states

- (q, M) —M} < (k + dy exp(—dsT)). of different users, i.e.{B],i = 1,---,N}, are sorted, in
the initialization phase given by aIgorith@IT(q, M), in the
vectorw according to theig-weighted index values. Consider
r%nother vectok where each element corresponds to the
unique belief state the! elementw; represents. So each
weighing vectorq corresponds to a vectox and hences.
Note that, the activation/passive scheduling decision teex
o (a, M) = Zqif Z KT+ - afm MO RT 1) depends on the the location of the threshold for transmissio
' i.e., above which belief value the user is scheduled and
with how much randomization. From the implementation of
Therefore,V'(q, M) = E[uf(q, M)]. We denote event algorithmG™(q, M), as long as different policies correspond

Proof: We first prove part (a). We define the random variab
k' (aq, M) as
N T-1
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to the sames, for each user, the transmission/idle action (atan be further bounded as follows,
each belief state) is the same function of belief state, @mdd
the belief state of each user evolves as the same finite-sta L(q[sT]/T
space ergodic Markov chain. Therefore, for a policy, deshote=BT'+

by ¢¢, that corresponds to a vectoy there exist constant§ g(7) N
andc; such that, for each uséuniform over the initial belief [—g(r)+f(¢)+7 +(k+a eXp(—CzT))} Y kT
state andy [39] , i=1
N
T-1 - 9(1)
1 _ 1 ¢ =BT+ |—==+f(7)+ (r+c1 exp(—c2T)) Z [k
Pr(‘TZm[t]-a —TILH;OTZ a; ‘>/€/N) [ 2 }i_l
t=0 t=0 N
< exp(—e5 T). (48) =BT+ |~ f(7)/2+ [+ crexp(—e:T)]| 3 alkT]
Note that the number of users, as well as the number of = (49)

vectorsg, are finite. From[(45)E(48), there exist constants

and ¢, such that, regardless af and the initial belief state, where the last equality holds because wedet) = 3f(r).

For fixedr, by choosings sufficiently small and” sufficiently
large, sayl" > T1, the Lyapunov drift is negative whenever the
T
Pr (|p7 (a, M) = Vz(q, M)| > “Z @) <crep(=al). gum of the queue lengths gets sufficiently large. Therefbee,
=1 gueues are stable according to the Foster-Lyapunov oniteri
Substituting the above inequality in_(44), part(a) thusdsol ~ Note that, under the policy Q-Inde&r’, M —g(7)/2),

The proof of part (b) followsa3|mllar approach as part (a§he expected number of transmissions in theh frame,
Here, the |mmed|ate reward i€’ (kT + ¢] instead of 47 (alkT], M —g(r)/2), is bounded by Lemm@ 6 as,

mlkT + 1] - af S RT +4). L T(q[sz],M—g(T)/2)—(M—g(T)/2)‘<(/~€+d1exp(—dgT)),

N

for some constant; andd,. Therefore, there existg, such
that 27 (q[kT], M — g(7)/2) < M for T > T,. Hence, the
'oxg term constraint on the average number of transmis$sons
satisfied. From Lemmid 3, we halien, _, ., g(7) = 0. Letting

T’ = max{T1,T>}, the proposition is then established.

Lemma 7. When 7>7y, for any >0, the difference be-
tween the expected transmission rate achieved under pol
-(q, M) and ¢, (q, M — ¢) satisfies the following bound,

‘VT(an) _VT(qu_E)’ S GZQZ

Proof: Suppose, under the weiglt the policiese, (g, M) APPENDIXE
and ¢ (g, M — €) correspond to parameter sgt,, wl,, p7,} PROOF OFLEMMA ]
and (i3, _.,wi;_.. Phs_.), respectively. For user we lety;(e)
denote be the difference between activation time undecyoli(i) We first prove part (i) of the lemma with= ;.
é-(q, M —€) and p,(q, M), i.e.,yi(e) = o, (i%, Wiy, pPhy) — Case (1). Ifr; = by, andh < 7, we consider the reciprocal
i (i Why_er Phr—c), Where, recall that;(j,w, p) is de-  of vT(WF(by ), p),
fined in [22). From LemmE&l5(i), we haug(e) > 0, Vi. Since (1 pl )1 p)
s ; _ —p —p
the difference of the total expected number of transm|55|onr TG WED) ) )] T =1+ 11

between the two policies is we havez _, Yi(e) = e. From ' " (bé h bé hit) T bé,hﬂ
Lemm ii), we have, j j
L. —1+ _1 —pju_ [1 b%,h+_1 (}H'l)(bo h+1 bO,h) (50)
|Vi(q, M) = V;(q, M—e)| Vs —bn (B et — bo ) — b07h+1
N N
:‘ Z (87, whps Phy) — Zvi(i& Wl o) Consider the numerator in the parenthesig of (50)
= =t bé,h+1_(h+1)(b€) htl bf) n) = (h+ 1)1% h hbf) Al

=1+ 1 -py, +P01)h]b(7),h — hpy
:p61[1 - (pil _P'él)h]
1- (pjn _pg)l)

'tmﬂz

@
Il
=

vi(i3r Wity Phr) = Vilihg— e Whi—es Phr—e)

- hpél (p'{l - p61)h

.&2

qi - ai(iywaWITmP?u) - ai(ikfevaMfevp}—L[fe) i j i j i \he1 i i i \h
i=1 =po1 [1+(p11—p01)+ -+ (P11 —p01)" " | =hpp (11— Po1)
N N N N j j j j j j
B B >hphy (011 —pi1)" — hpd (P1—p61)" = 0. (51)
=D Gy 0> w9 =€} a
i=1 =1  j=1 i=1 Since the denominator in the parenthesis [ofl (50) strictly

increases with, [v7 (4, W”(bg L), p)] ! strictly decreases with

p and hence;T(W”(j, b{J h)s ) strictly increases with in this
From LemmdB and Lemn{d[8-7, the Lyapunov difift](43}ase.

We hence have proved the lemma.
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Case (2). Ifr; = bOT, we have Case (4). lfw > WF(b), sincevy (j,w, p) = of (j,w, p) =
; 0, the statement holds trivially.
(1—py)(T+1-0p)

rj - [v] (4, W;-“(bé,f),p)]*l =1 b o)+ b Note that, in the above Case (1)-(3), the second summand

Pl = bs) + b in (53)-(85) decreases with the randomization paramgter
Since, from Lemmdl2(ii) and part (i), both’ (j,w, p) and
v7(j,w, p) increase withp, we have for any; > po,

- b — (7 +1)(b) — b
=1+ 1 P11 |:1 s (T )( s 0,T):|' (52)

bj _ bj (b7 _ bj ) _ bj
When 7 > 1, it can be derived that the numeratof<uv; (],w,pl)—’l}}(j,w,pg)g’f‘j[Oé}—(j,w,pl)—a;(j,w,pg)].
bo— (1t + 1)(b3 - b{) ) inside [G2) is positive. Therefore,

We also have (j =vI(j anda? (j =
T (4, WE (b)), p) strictly increases with in this case. ( (rw,p1) = v (j,w, p1) andag (5w, p1)

al (j,w,p1) for i # j since there is no randomization

Case (3). Ifr; = b, associated with user Therefore, for all usef,
; 1 1- (i —uT(j T ar(i —aT(i
T [U;(j,Wr(bi),p)]_l = J( (1_p11)+ pll +b]) OSUl (.77w7p1) U (]aWaP2)§Tz[0‘z (],W,pl) Q; (]7w7p2)]'
bl p (56)
It is then clear from the above expression that Next consider wher < j,
v7 (4, W (bl), p) strictly increases withp in this case. o o
Now consider fixed p. For o7 (Wr(b),),p) and 0 =v{ (j,w, p)=vi (i,w,0)
VT (G WE (B )s p) With B+ 1 < 7, we have =r; - [ af (i,w,1)—a] (i,w,0)]
=T - [ O‘Z(ivwap)_az (Z W, 0)] . (57)

U;(jv W;(bé,h)ap) > UT(ja Wr(b% h) 0)7 T(.jv W;(bé,h+1)al) Wh . . f @) h
en: =, rom we nave
V7 (G W (B ) ), ’

where the first and last inequality is from case (1) we vf (4w, p) =] (i,w,0)<ri [ of (4, w, p)—a (3,0, 0)]. (58)
have just proven. The first equahty is from expression (27). Wheni > j,from (58) we have

Since v (j, WF (b0 wip) = vi(i, Wr(by,),0) only if o o

p = 0, and v (G WE (K1) 1) = oG WE (B 1), 0) vl p) o)

only if p = 1. We hence haveu}(],Wr(bah) p) > =vj (i, w, 1) =i (4,0, 0)

VT (j,WE (b} 441), p) Strictly. Following a similar derivation, <ri[ af (i,w,1)—a] (i,w,0)]

we havev?(j, Wr(b),),p) > vl(j,WI(bl),p). Therefore <ri[ o (4,w, p)—af (i,w,0)]. (59)

the monotonicity property in part ® holds for usgrwith
randomized transmission. The monotonicity result easily e Therefore, from[F7)E(39), we have

tends to usef # j where there is no longer randomization in v7 (j,w, p1)—v] (i,w,0) < r;[ ] (i,w, 1)—a] (i,w,0)] (60)
scheduling uset.

. , . . Similarly, we have
(i) We proceed to prove part (ii) by first establishing the

statement when; = j» = j, w1 = ws = w. o] (i,w, 1) =] (j,w, p) < 7| of (i,w,1)—a] (j,w, p)]. (61)
Case (1). Ifw = WF(b},) andh < 7, from Lemma2())  Now consider the case when, # w.. Supposew; =
and [27) we have that W (b)) andws = WE (b} ,,.) with hy < hy < 7.
ng'(jvva) =T |:O[77-(.]7 bé,h’ p)+ Uz—(jl, Wir(b%)yhl)apl)_vz—(j% Wz’r(bé,h2)7p2)‘
_(1_]9{1) T r(ni r
+— - » . (53) <|vi (31, Wy (bo 5, ) p1) =07 (8, W (bg 1, ), 0)
pbf).,h +(1- p)bg),h+1 + (1 =pi)(h+1- P)} ' _ ' ]
. + v (5, WE(bg ), 1) — o] (5, Wr(bg 1), 0
Case (2). lfw = W7 (b ), we have hl;}mm [ ( (Bo.): 1) ( (Bo.0) )}
o o+ (L= )] o7 (5, W (b 1) 1) —v;uz,Wﬂba,hQ),pz)\
Fe ) =1 T G TR anlarwrn :
0,7 B <ri|a; (j1, W] (bo,hl)upl) aq (i, W (b 0, hl) 0)
=r; |05 (@, )+ — 51 _p“3 |69 S [ Wk 1)~ aT (W Ch).0)]
oty AL pb (1) (1) L = =
= r(pi r(11 T r(11
Case (3) lfw = Wj (b2), we have ol (i, WZ( : hz) 1) — ol (juW? (bo,hz)ap2)’
X bjp T r(11 T(; r(pi
vi(J,w,p) =1; - s - - =ri|oq (j1, Wi (bo,h ), p1)—c (j2, Wi (bo,h )7P2)‘
Senp) =1 Tp(l—pil)+(1—p{1)+f7b§} T(j ) 1 HY ) 2
o —p(1—p! =Ti|Q; (J1, W1, p1) =0, (J2, W2, p2)],
=rj |0 (j,w,p) + Pl oyy) (55)

mp(1 = piy) + (1= ply) + pbld where the first inequality is becausé(z‘,W{(bah),O) =



and OZZT(Z}WZ-F( 6.h>vo)

o (i, Wi ( 6,h+1)a 1)

of (i, WF(bh 1, 11), 1), which can be observed fronl {27)
and Lemmd[R(i). The second equality is from](60)}}(61). For

other combinations ofu; and w-, the proof holds similarly.
Part (ii) thus holds.
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