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Abstract—For wireless caching networks, the scheme design for content delivery is non-trivial in the face of the following tradeoff. On
one hand, to optimize overall throughput, users can associate their nearby APs with great channel capacities; however, this may lead to
unstable queue backlogs on APs and prolong request delays. On the other hand, to ensure queue stability, some users may have to
associate APs with inferior channel states, which would incur throughput loss. Moreover, for such systems, how to conduct predictive
scheduling to reduce delays and the fundamental limits of its benefits remain unexplored. In this paper, we formulate the problem of
online user-AP association and resource allocation for content delivery with predictive scheduling under a fixed content placement as a
stochastic network optimization problem. By exploiting its unique structure, we transform the problem into a series of modular
maximization sub-problems with matroid constraints. Then we devise PUARA, a Predictive User-AP Association and Resource
Allocation scheme which achieves a provably near-optimal throughput with queue stability. Our theoretical analysis and simulation
results show that PUARA can not only perform a tunable control between throughput maximization and queue stability, but also incur a
notable delay reduction with predicted information.
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1 INTRODUCTION

R ECENT years have witnessed an explosive growth of
global mobile data traffic [1]. To accommodate the ever-

increasing traffic, a number of techniques such as network
densification have been proposed to be applied in 5G net-
works to increase network capacity [2]–[4]. However, such
techniques may also impose heavy burdens on backhaul
links for wireless access at the network edge, thereby lead-
ing to a significant degradation in quality-of-service (QoS).
To mitigate such issues, wireless caching has come as a
promising solution to promote QoS and ease the burden
of backhaul links [5]. The key idea is to pre-fetch or cache
frequently requested contents (e.g., news feed and video
streaming) onto edge devices, e.g., small-cell wireless access
points (APs) [6]–[9] and user terminals [10] [11].

Basically, there are two critical phases in wireless caching
networks [12]. The first phase, a.k.a. content placement phase,
focuses on how to distribute contents efficiently on APs
with limited caching resources. The second phase, a.k.a.
content delivery phase, considers how to determine user-AP
association in a dynamic fashion, within which requested
contents are delivered from APs to users. Considering the
costs of cache update and content migration, content place-
ment can only be conducted infrequently. Therefore, content
placement often proceeds at a larger time scale than user-AP
association and can be viewed as a static operation.

Regarding content delivery, so far, it is still an open
problem on how to design effective user-AP association
schemes so as to minimize delivery latencies and maximize
various network utilities such as throughput. The key chal-
lenge comes from that the statistics of user request traffic
and wireless dynamics are usually unattainable in practice.
All such uncertainties make it difficult to conduct effective
content delivery in an online fashion. Moreover, it is often
desirable to yield a design with performance guarantee, so
that system designers are well aware of how far the system
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proceeds away from the optimal performance and how to
further improve the system under various design tradeoffs.

Motivated by the rapid development of machine learn-
ing in recent years, there has been a growing trend among
various practical systems in exploiting the short-term pre-
dictability of network traffic or user behaviors to conduct
proactive pre-service to promote system performance. For
example, Netflix prefetches videos to users based on user
behavior prediction [13]. Inspired by the wide adoption of
prediction-based approaches [14]–[20], we pose an interest-
ing question: in wireless caching networks, if the users’ re-
quests for content delivery can be effectively predicted and
pre-served, even within a short time window ahead of its
actual arrival, then what are the fundamental benefits of such
predictive scheduling and the impacts of prediction errors?
To date, there is still a lack of systematic investigations on
the answer to such a question. Such investigations can serve
as the basis to understand the endeavor worthy to be put
on incorporating predictive scheduling into wireless caching
networks and the costs that we can afford in the worst case.

In this paper, we study the problem of joint user-AP
association and resource allocation in resource-limited wire-
less caching networks with fixed content placements. By
proposing a predictive and online scheme to solve such a
problem, we conduct a systematic study to investigate the
fundamental benefits of predictive scheduling in wireless
caching networks with both theoretical analysis and experi-
mental verification. We summarize our key results and main
contributions as follows.

� System Modeling and Problem Formulation: We
develop a novel system model by taking a careful
choice in the granularities of system state characteri-
zation and the decision-making procedure. By lever-
aging the idea of predictive window techniques in
[21], our model captures the dynamics of predictive
scheduling at the granularity of file units while de-
picting the decision-making procedure on a per-time-
slot basis to mitigate the online control overheads.
Then we formulate the problem of user-AP associa-
tion and resource allocation as a stochastic network
optimization problem, with the aim to maximize the
long-term time-average overall network throughput
and achieve the stability of all queues in the system.

� Algorithm Design: To solve the formulated problem
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in the face of time-varying wireless environment dy-
namics and unknown user traffic statistics, we take
a non-trivial transformation to convert the long-term
stochastic optimization problem into a series of sub-
problems over time slots. By exploiting the unique
structure of such sub-problems, we reformulate each
of them as a modular maximization problem over
two intersected matroid constraints. Then we pro-
pose PUARA, an effective Predictive User-AP Associ-
ation and Resource Allocation scheme, which achieves
a tunable control between throughput maximization
and queue stabilization, while taking advantage of
predicted information to reduce request sdelays.

� Performance Analysis: We conduct theoretical anal-
ysis to evaluate the performance of PUARA. Our
results show that PUARA can achieve a near-optimal
time-average network throughput with an approx-
imation ratio of 1/2 while guaranteeing the queue
stability in the system. Moreover, by leveraging pre-
dicted information, PUARA can achieve even better
performance with a notable delay reduction propor-
tional to the prediction window sizes.

� Experimental Verification: We conduct extensive
simulations to evaluate the performance of PUARA
and explore the fundamental limits of the benefit
of predictive scheduling in delay reduction for wire-
less caching networks. Besides, we also evaluate the
performance of PUARA under two kinds of mis-
prediction, i.e., the mis-prediction of the type and the
size of requested files. Our results demonstrate the
robustness of PUARA against mis-predictions.

� Predictive Scheduling: To our best knowledge, this
paper is the first systematic study to explore the fun-
damental limits of the benefit of predictive scheduling
on delay reduction in wireless caching networks
with both performance analysis and simulations. Our
results provide novel insights to improve the design
of wireless caching networks.

The rest of this paper is organized as follows. Section
2 discusses the related work. In Section 3, we present our
system model and problem formulation. Next, Section 4
shows the design of PUARA, followed by the corresponding
performance analysis. Then Section 5 presents our simula-
tion results and corresponding discussion, while Section 6
concludes this paper.

2 RELATED WORK
Content placement: For wireless caching networks, most
existing works focus on the content placement problem.
For example, Shanmugam et al. [6] developed two effective
cache placement strategies to minimize the expected file
download time for streaming services upon a fixed net-
work topology (user-AP connectivity). Peng et al. [8] further
considered the delay over backhaul links induced by file
request transmission due to cache miss into account. They
then proposed a centralized scheme which leverages base
station cooperation to optimize the cache placement. Later,
Song et al. [22] further took the impacts of wireless fading
into account. By revealing the tradeoff between file diversity
gain and channel diversity gain, they developed a greedy
content placement scheme to minimize the average bit error
rate (BER) in wireless networks under Rayleigh flat fading
channel model. Unlike such a line of works which generally
require centralized coordination with full knowledge of
system dynamics, another line of works have considered op-
timizing the placement in a distributed manner. For instance,
Liu et al. [7] considered the caching placement problem
in dense network settings. With the aim to minimize the
expected delay for serving user requests, they formulated
the problem as a constrained integer programming problem
and proposed a belief-propagation-based scheme to decide

the caching placement in a distributed manner. Zheng et al.
[23] studied the content placement problem in large-scale
mobile edge networks from a game-theoretic perspective.
By formulating the problem as a Stackelberg game, they
proposed a framework for scalable and convergent incentive
mechanism design for edge caching. Their solution allows
the content placement to be decided in a distributed fashion
through limited interactions between edge nodes and users.

In parallel, some other recent works further consider
conducting content placement based on learned statistics of
user mobility or user demands such as the distribution of
content popularity to optimize the quality of services, a.k.a.
proactive caching. For example, Vasilakos et al. [24] con-
sidered leveraging predicted user mobility to minimize the
expected costs incurred by the delivery of personalized and
dynamic content. Meanwhile, Müller et al. [25] developed
a proactive caching scheme which learns context-specific
content popularity and proactively updates the cached con-
tent in an online fashion. Likewise, Doan et al. [26] lever-
aged feature clustering techniques to foresee the content
popularity and optimized the content placement based on
such predictions. Later, Chen et al. [27] developed another
effective scheme which jointly learns the distribution of user
request demand and user mobility pattern to optimize the
cache placement with the best QoS.

Our work is orthogonal to the above works since our
focus is on optimizing the online content delivery between
users and APs upon a fixed content placement. In fact,
our solution can also be integrated effectively with them
to optimize the performance of wireless caching networks.

Content delivery: To date, there has also been a num-
ber of works proposed with respect to content delivery
in wireless caching networks [5]. Particularly, we focus on
the works which exploit predictive scheduling to optimize
content delivery.

Most of such works leveraged predictive scheduling
(a.k.a. anticipatory scheduling [28]–[33]) to improve the quality
of video streaming services in wireless caching networks.
For example, Sadr et al. [29] studied the single-user buffer
control problem for video streaming services. By assuming
the future channel states can be perfectly predicted in a finite
lookahead time window, they proposed a time-slot-based
scheduling scheme which pre-allocates wireless channel
resources and buffers to minimize the fraction of required
bandwidth to meet the user’s QoS. Meanwhile, Dräxler et al.
[28] considered the joint buffer control and quality selection
problem under a multi-user setting. By assuming that data
rates are perfectly predicted, they developed two heuristic
schemes to plan the quality and download time of video
segments to eliminate playback interruptions. Later, Bui et
al. [30] explored the benefits of perfect system state predic-
tion for media streaming in mobile networks. Based on their
mixed-integer linear programming problem formulation,
they developed a heuristic scheme to perform predictive ad-
mission control and resource allocation to maximize avail-
ability of streaming services to users. In parallel, Dräxler
et al. [31] took a further step by considering more general
settings with imperfect data rate prediction. They proposed
another heuristic scheme to optimize both the quality and
download time of video services. These works, with their
justified effectiveness in exploiting predicted information to
improve resource (e.g., buffers and bandwidth) utilization,
are explicitly designed for streaming services and generally
provide no theoretical performance guarantee.

Different from existing works, our work focuses on the
content delivery for general multi-user multi-AP wireless
caching networks. Moreover, our proposed schemes can
jointly optimize the throughput and queue stability for such
systems in a tunable fashion with theoretical performance
guarantee. Besides, we also investigate the fundamental lim-
its of the benefit of predictive scheduling in delay reduction
based on the prediction of user request traffic, as well as the
impacts of the mis-predictions of requested files’ type and
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Fig. 1. An example of cache-enabled content-centric wireless networks.

size. To our best knowledge, our work is the first systematic
study with extensive theoretical and experimental results to
characterize such limits.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we demonstrate our system model and
problem formulation in detail. For ease of understanding,
we show an instance of our system model in Figure 1 and
summarize the key notations in TABLE 1.

3.1 Basic System Settings
We consider a cache-enabled content-centric wireless net-
work (CCWN) which serves a number of users (denoted by
set U with |U| = U ) through a set of APs (denoted by set
H with |H| = H). The system proceeds over time slots that
are indexed by t ∈ {0, 1, 2, . . .} and each of them has a fixed
length of τ . Particularly, there is an operation center that
connects to all APs via backhaul links. The operation center
maintains all files that could be requested by users, which
are grouped into F types by their corresponding services.
We denote the set of all file types by F . Due to resource
limitations, each AP only caches N types of files (N < F ).
The placement of cached files across APs is assumed to be
fixed and pre-determined by existing schemes such as [22],
[25]–[27], [34]–[38].1 In the meanwhile, users are distributed
around APs and send requests for retrieving files from
such APs via wireless links. Particularly, for each type f
of files, each user u maintains a local queue to buffer their
corresponding unserved requests. We use Quf (t) to denote
the total size of unserved files which are of type f and
requested by user u within time slot t. For ease of notation,
we define Q(t) , (Quf (t), u ∈ U , f ∈ F) and assume that
all queue backlogs are initially empty, i.e., Quf (0) = 0, for
each user u ∈ U and each file type f ∈ F .

During each time slot t, the system proceeds as follows.
At the beginning of the time slot, the operation center
collects instant system dynamics such as different users’
queue backlog sizes and wireless channel dynamics, then
decides the user-AP association and service rate allocation.
Based on such decisions, each AP associates with a subset
of users and decides the service rate allocation among the
users. Then each user retrieves its requested files based on
such allocations.2 At the end of the time slot, each user
appends its new file requests to its local queues by their
types, then updates its local queue sizes accordingly.

1. Our model can serve as a basis to consider more general scenarios
in which the number of cached file types is different across APs.

2. Note that file download is viable only when the requested type of
files have been cached on their associated AP.

TABLE 1
Key notations in the system model

Notation Description
U Index set of the users
H Index set of the APs
F Index set of the files
E user-AP potential link set
Ẽ AP-file association set
M Maximum number of associated users for each AP

in one time slot

Xuh(t)
Association indicator for user u and AP h
in time slot t

Yhf Association indicator AP h and file type f
X(t) User-AP association matrix
Y AP-file association matrix
Au(t) Requested files amount by user u in time slot t
A(t) Request arrival vector

Iuf (t) Indicator for whether user u requests file type f
in time slot t

I(t) Indicator matrix for user requests

Cuh(t)
Maximum achievable rate over link (u, h)
in time slot t

νuh(t)
Allocated bandwidth proportion for user u from
AP h in time slot t

µuh(t)
Allocated service rate for user u from
AP h in time slot t

µuf (t) Service rate for downloading file f in time slot t

µ̃duf (t) Allocated service rate for arriving request for file
type f in time slot (t+ d)

Q̃d
uf (t) Queue backlog of untreated requests on user u with

respect to file type f in d slots ahead of time t

3.2 User-AP Association and Cache Placement
We model the user-AP association in the caching network
as a bipartite graph G = (U ,H, E). Each edge (u, h) in the
edge set E of the graph indicates that there exists a potential
transmission link between AP h ∈ H and user u ∈ U .

For each time slot t, we define X(t) ∈ {0, 1}U×H as the
matrix that describes the actual user-AP association with
respect to G. For each user-AP pair (u, h) ∈ E , Xuh(t) = 1
implies that user u and AP h are associated within time slot t
and zero otherwise. If there is no potential link between user
u and AP h (i.e., (u, h) /∈ E), we always have Xuh(t) = 0.

For each AP h ∈ H, we use N (h, t) ⊆ U to denote the
set of its associated users during time slot t. To avoid the
high overheads of re-association, we assume that each user
is associated with at most one AP in each time slot t, i.e.,∑

h∈H
Xuh(t) ≤ 1, ∀u ∈ U . (1)

On the other hand, due to resource limit, each AP can
associate with at most M users in each time slot t, i.e.,∑

u∈U
Xuh(t) ≤M, ∀h ∈ H. (2)

Regarding the cache placement (AP-file association), we
model it as a bipartite graph G̃ , (H,F , Ẽ) such that each
edge (h, f) ∈ Ẽ indicates that AP h has files of type f in its
cache. Given that the cache placement is fixed, we use Y to
denote the cache placement matrix with respect to G̃ such
that Yhf = 1 if (h, f) ∈ Ẽ and zero otherwise.

3.3 The Transmission Model
We assume that the wireless channels between users and
APs are flat fading channels [39]. For each AP h, we assume
its transmit power to be constant across time slots, denoted
by Ph. Besides, we use Bh(t) to denote the total bandwidth
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of AP h and Buh(t) to denote the bandwidth allocated to
user u by AP h within time slot t, such that3∑

u∈N (h,t)

Buh(t) = Bh(t). (3)

Next, we define the maximum achievable rate of link (u, h)
during time slot t as

Cuh(t) ,

τBh(t) · E
[

log

(
1 +

Phguh(t)|suh(t)|2
1 +

∑
h′∈H\h Ph′ guh′ (t)|suh′ (t)|2

)]
,

(4)
where guh(t) is the large-scale fading gain due to path loss
and shadowing,4 and suh(t) is the small-scale fading gain
that follows Rayleigh distribution. Accordingly, we define
the service rate over link (u, h) within time slot t as [32]

µuh(t) ,

τBuh(t) · E
[

log

(
1 +

Phguh(t)|suh(t)|2
1 +

∑
h′∈H\h Ph′ guh′ (t)|suh′ (t)|2

)]
.

(5)

For each AP h, given a set of rate allocations {µuh(t) : u ∈
N (h, t)}, they are said to be feasible if and only if∑

u∈N (h,t)

µuh(t)

Cuh(t)
= 1. (6)

For simplicity, we introduce variable νuh(t) for each user-
AP pair (u, h) such that νuh(t) = µuh(t)

Cuh(t)
if Xuh(t) = 1 (i.e.,

user u is associated with AP h within time slot t) and zero
otherwise. We further define ν(t) , {νuh(t)|u ∈ U , h ∈ H}
as the service rate allocation decisions made in time slot
t. Each entry νuh(t) can be viewed as the proportion of
service rates allocated by AP h to user u. Accordingly, we
can rewrite (6) as the following equivalent constraint∑

u∈U
νuh(t)Xuh(t) = 1, ∀h ∈ H. (7)

Recall that each user can associate with at most one AP in
one time slot. Therefore, within time slot t, the total service
rate allocated to user u is given by

µu(t) =
∑
h∈H

Cuh(t)νuh(t)Xuh(t). (8)

3.4 User Traffic Model
During each time slot t, we assume that each user u gener-
ates new requests for only one type of files. Particularly, the
probability of requesting each type f of files is assumed
subject to the Zipf distribution [43]. Next, we define bi-
nary variable Iuf (t) to indicate whether user u requests
files of type f during time slot t. Accordingly, we have∑
f∈F Iuf (t) = 1 and for notational simplicity, we define

I(t) ∈ {0, 1}U×F as the set of all such binary variables.
Meanwhile, we use Au(t) to denote the total size (in the
units of Mbits) of files that are newly requested by user u
during time slot t, which is assumed upper bounded by
some constant Amax and i.i.d. across time slots with a finite
expectation of E{Au(t)} = λu. For notational simplicity, we
define A(t) , {Au(t)Iuf (t), u ∈ U , f ∈ F} as the vector of
requested file sizes during time slot t.

3. In practice, Buh(t) is usually lower bounded by some minimum
bandwidth guarantee, e.g., 180kHZ in the LTE standard [40].

4. With commonly adopted rate adaption schemes [41] [42], we
assume that each AP h is aware of the slowly varying path-loss
coefficient guh(t) for each user u.

3.5 Predictive Scheduling Model

We consider the case in which users’ future request de-
mands can be perfectly predicted in a finite lookahead time
window.5 With such predicted information, the upcoming
requests can be pre-generated and appended to their corre-
sponding file queues. Moreover, once given adequate ser-
vice rates, users can pre-retrieve the files of such predicted
requests before their actual arrivals, so that shorter delays
and better quality of experience (QoE) can be achieved.
Such a mild assumption is reasonable, considering the wide
adoption of effective prediction techniques in various sce-
narios (e.g., Netflix’s preloading of videos to users based on
its preference prediction [13]).

To formalize such a predictive scheduling mechanism,
we adopt the lookahead time window model in [21]. Particu-
larly, for each user u, we assume that its future request de-
mands {Au(t), . . . , Au(t+Du−1)} and {Iuf (t), . . . , Iuf (t+
Du − 1)} are accessible by the user in a lookahead window of
size Du (Du ≥ 1). We use D , (D1, D2, · · · , DU ) to denote
the vector of prediction window sizes for all users.

Note that file requests in the prediction windows can
be pre-served before their actual arrivals. Therefore, the
total size of unserved files for each time slot in prediction
windows may decrease across time slots. To record such a
change, for each user u and each time slot t, we use Q̃duf (t)
to denote the total size of unserved files (of type f ) that will
be requested in time slot (t+ d), for d ∈ {0, 1, . . . , Du− 1}.6
Meanwhile, we use Q̃−1uf (t) (with d = −1) to denote the total
size of actually requested but unserved files (of type f ) at
the beginning of time slot t. Then the total size of unserved
files (including those requested or predicted but unserved)
is given by Quf (t) =

∑Du−1
d=−1 Q̃

d
uf (t) for each user u.

Accordingly, for each time slot t, we use µ̃−1uf (t) and
{µ̃duf (t)}Du−1d=0 to denote the service rates assigned to the
requested but unserved files and the unserved files (both of
type f ) in the prediction window, respectively. In practice,
such service rates {µ̃duf (t)}Du−1d=−1 can be assigned according
to a certain discipline such as FIFO and LIFO. In this paper,
we assume the adoption of the predictive scheduling policy
that serves requests in each Quf (t) in a FIFO and fully
efficient manner [21], such that∑

f∈F
µuf (t) = µu(t), (9)

in which we define µuf (t) ,
∑Du−1
d=−1 µ̃

d
uf (t) such that

µ̃duf (t) = 0 if Yhf = 0, and µ̃duf (t) > 0 only if µ̃d−1uf (t) ≥
Q̃d−1uf (t). Intuitively, under such a policy, each user u is
ensured to utilize all of its allocated service rates to serve
requests within its file queues {Quf (t)}f∈F in the chrono-
logical order by their arrival times.

By defining [x]+ , max{x, 0}, we can write the backlog
update equations between consecutive time slots for each
user u and each file type f as follows.7

1) If d = Du − 1, then

Q̃duf (t+ 1) = Au(t+Du) · Iuf (t+Du). (10)

5. Note that our model is not dependent on any particular request
prediction techniques. In practice, such predictions can be achieved by
exploiting various machine learning techniques [13] [44].

6. In our model, we assume that new requests are appended to
queues at the end of each time slot. Therefore, for the case with d = 0,
new requests are yet to be generated at the beginning of each time slot.

7. We set Q̃−1
uf (0) = 0 and Q̃d

uf (0) = Au(d) · Iuf (d) for 0 ≤ d ≤
Du − 1.
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For example, there are three user-AP associations in the
figure, including (user 1,AP-III), (useru,AP-I), and

(userU,AP-III). Besides, we also show how prediction
queue backlogs {Q̃duf (t)}Du−1d=−1 of user u and type f are

updated.

2) If 0 ≤ d ≤ Du − 2, then

Q̃duf (t+ 1) =

[
Q̃d+1
uf (t)− µ̃d+1

uf (t)

]+
. (11)

3) If d = −1, then

Q̃−1uf (t+ 1) =

[
Q̃−1uf (t)− µ̃−1uf (t)

]+
+

[
Q̃0
uf (t)− µ̃0

uf (t)

]+
.

(12)

We illustrate the above queueing dynamics in Figure 2.

3.6 System Objectives and Problem Formulation
Given the settings of our model, we switch to specifying the
system objectives for our problem formulation. First, we in-
troduce some definitions as follows. Particularly, we assume
that each channel path-loss coefficient guh(t) (∀(u, h) ∈ E)
changes slowly during each time slot t. Then we define the
random event occurred at the beginning of time slot t and
the scheduling policy as follows, respectively.

Definition 1: The random event ω(t) occurred in time
slot t contains the slowly-varying channel path-loss coeffi-
cients, the amount of new request arrivals and correspond-
ing requested file types. Therefore, we have

ω(t) = {guh(t), Au(t), Iuf (t), ∀u ∈ U , h ∈ H, f ∈ F} (13)

Definition 2: The scheduling policy {α(t)}∞t=0 is a se-
quence of control actions α(t) which comprises the user-AP
association X(t) and bandwidth allocation ν(t); i.e.,

α(t) = {X(t),ν(t)}. (14)

Definition 3: The feasible set of control actions Aω(t) in
time slot t includes all feasible control actions that satisfy
constraints (2),(1), and (7) simultaneously; i.e.,

Aω(t) , {α(t) | (1), (2), (7)}. (15)

In our work, we aim to find a scheduling policy to
jointly maximize the long-term time-average of total net-
work throughput and achieve the stability of all queue back-
logs in the system. They are defined as follows, respectively.

Network Throughput: We consider the following metric to
characterize the throughput of each user u in the system.

µu , lim
t→∞

1

t

t−1∑
τ=0

∑
f∈F

E[µuf (α(τ), τ)], (16)

which is the time-average expectation of the total size of
files retrieved by user u in the long run. For ease of notation,
we define µ , (µ1, . . . , µU ). Accordingly, the total network
throughput is given by φ(µ) ,

∑
u∈U µu. Since φ(·) is a

linear function, then we have φ(µ) = φ(µ).
Queue Stability: We define the long-term time-averaged

expectation of the total queue backlog size in the system as

Quf , lim
t→∞

1

t

t−1∑
τ=0

E[Quf (τ)] (17)

and adopt the notion of strong stability in [45], i.e.,

Quf <∞. (18)

Intuitively, constraint (18) ensures that each user’s local
queues will not be overloaded and their backlog sizes will
not grow unboundedly.

With the above definitions, our problem formulation is
given as follows.

P1 : max φ(µ) (19)
Subject to Quf <∞ ∀u ∈ U , f ∈ F (20)

α(t) ∈ Aω(t) ∀t. (21)

Besides, we define φopt as the optimal throughput associated
with the above problem P1 and augmented with the rect-
angle constraint µ ∈ R, where R is chosen large enough to
contain a time-averaged throughput vector µ that is optimal
to problem P1.

4 USER-AP ASSOCIATION AND RESOURCE AL-
LOCATION WITH PREDICTION
By leveraging Lyapunov optimization techniques [45], in
this section, we show how we solve the problem P1.
Particularly, we demonstrate our devised algorithm called
PUARA (Predictive User-AP Association and Resource Al-
location) in Subsection 4.1. Then we conduct theoretical
analysis to analyze its performances in Subsections 4.2.

4.1 Algorithm Design
We solve problem P1 in an incremental way. First, we con-
sider a special case in which the system proceeds without
prediction, i.e., Du = 0 for each user u ∈ U . In such a case,
we adopt Lyapunov optimization techniques [45] to solve
problem P1. By applying such techniques, we decouple
problem P1 into a series of sub-problems over time slots.
Specifically, in each time slot t, we aim to solve the following
optimization problem.

P2 : min − V
∑
u∈U

∑
f∈F

µuf (t)−
∑
u∈U

∑
f∈F

Quf (t)µuf (t)

(22)
Subject to (1), (2), (7),

where parameter V is a positive constant. After rearranging
the objective function of problem P2, we can rewrite it as

−
∑
u∈U

∑
f∈F

[
V +Quf (t)

]
µuf (t). (23)

Next, we defineMuh(t) , Cuh(t)·
[∑

f∈F (V+Quf (t))Yhf
]
.

Note thatMuh(t) is a constant within the current time slot
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t since all queue backlog sizes Quf (t),∀u ∈ U , f ∈ F are
given at the beginning of time slot t. Then problem P2 is
equivalent to the following problem.

Pin : max
ν(t),X(t)

∑
h∈H

∑
u∈U
Muh(t)νuh(t)Xuh(t)

(24)
Subject to (1), (2), (7).

Problem Pin is an integer programming problem with two
types of decision variables coupled in product form: user-
AP association X(t) and bandwidth allocation ν(t). Such
problems are in general NP-hard to solve. However, by
observation, we find that given a fixed value for each entry
in set X(t), problem Pin is actually a linear programming
problem with respect to variables ν(t), which aims to find
a set of weights Muh(t) with a maximum sum. For such a
problem, its solutions can be always found at the boundary
of its domain. Moreover, recall that each variable νuh(t)

is defined as µuh(t)
Cuh(t)

if Xuh(t) = 1 and zero otherwise.
Therefore, we can rewrite problem Pin as follows.

P ′in : max
X(t)

∑
h∈H

∑
u∈U
Muh(t)Xuh(t) (25)

Subject to X(t) ∈ {0, 1}U×H ,
(1), (2).

The equivalence relationship between problemsPin andP ′in
is formalized by the following lemma, for which the proof
is relegated to Appendix A.
Lemma 1. Problems Pin and P ′in are equivalent.

We find that problemP ′in is actually equivalent to a mod-
ular maximization problem over two matroid constraints.8
Such a problem structure allows us to design computation-
ally efficient algorithms with provable performance guaran-
tee. Note that for general modular maximization problems
subject to pmatroid constraints [47], greedy algorithms have
been proven as effective approaches with a tight approxima-
tion ratio of 1/p [46], [48], [49].

Algorithm 1 Greedy User-AP Association algorithm
1: At beginning of time slot t, APs collect instant maximum

achievable rates Cuh(t) and queue backlog sizes Quf (t),
∀u, h, f , and upload them to the operation center.

2: The operation center sets X ← ∅,W ← {X hu }u,h, then:
3: while |W| > 0 do
4: X h∗u∗ ∈ argmax

Xhu ∈ V,
{X ∪ Xhu } ⊆ C

Muh(t).

5: UpdateW ←W\{X h∗u∗ }.
6: Update X ← X ∪ {X h∗u∗ }.
7: end while
8: The operation center spreads the decision X to APs,

where Xuh = 1 if X hu ∈ X and zero otherwise.

Accordingly, we devise an efficient user-AP association
algorithm to solve problem P ′in in a greedy manner. Its
pseudocode is shown in Algorithm 1, in which we define
C as the intersection of the feasibility regions for constraints
(1) and (2), X as the set of activated user-AP associations,
andW as the set of inactivated association pairs.

In Algorithm 1 (line 2), initially, we set X = ∅ and
W = {X hu |u ∈ U , h ∈ H}. During each iteration (lines 4
– 6), by Algorithm 1, the inactivated association X hu ∈ W

8. We relegate the proof of the matroid structure of problem P ′in to
Appendix B. For more details about matroids and modular functions,
please refer to [46].

with the highest marginal value Muh(t) is selected subject
to constraints (1) and (2), then added to the set X . The
association pair X h∗u∗ is then removed from W . In addition,
all X hu∗ for h ∈ H\{h∗} are also removed since each user are
assumed to associate with at most one AP. Such a procedure
terminates when the setW becomes empty.

Next, we consider more general cases with prediction.
By integrating predictive scheduling with Algorithm 1, we
propose PUARA, a predictive user-AP association scheme
which exploits predicted information to solve the following
problem during each time slot t.

P3 : min −V
∑
u∈U

∑
f∈F

Du−1∑
d=−1

µ̃duf (t)

−
∑
u∈U

∑
f∈F

Quf (t)
Du−1∑
d=−1

µ̃duf (t) (26)

Subject to (1), (2), (7).

We show the pseudocode of PUARA in Algorithm 2.

Algorithm 2 Predictive User-AP Association and Resource
Allocation (PUARA) algorithm

1: Initialize t← 0, Q(0)← 0.
2: Repeat do
3: APs collect instant queue lengths {Quf (t)}f∈F from

each user u, and upload such information with instant
rates {Cuh(t)}u,h to the operation center.

4: The operation center runs Algorithm 1 to obtain X(t).
and spreads the decision X(t) to all APs.

5: For each user-AP pair (u, h) such that Xuh(t) = 1, AP
h allocates service rate µu(t) = Cuh(t) to user u.

6: Given the service rate µu(t), each user u downloads its
requested files of type f with Quf (t) = max

f ′∈F
Quf ′(t)

from its associated AP h in a FIFO and fully efficient
manner.

7: Each user u updates {Quf (t+ 1)}f∈F by (10)-(12);
8: t← t + 1.
9: end

Remark 1: Recall that we define Muh(t) , Cuh(t) ·[∑
f∈F (V + Quf (t))Yhf

]
. In Algorithm 1, the parameter

V actually plays a central role in controlling the balance
between network throughput maximization and queue sta-
bility. To demonstrate such an insight, we first note that the
value of Muh(t) for each user-AP pair (u, h) is a constant
within each time slot t. Then we can see that when the
value of parameter V is sufficiently large (V � Quf (t)),
for each AP h, the difference of maximum achievable rates
among its candidate users would be more significant than
the difference among their queue backlogs. As a result, AP
h will be more willing to associate those users with greater
maximum achievable rates, which conduces to a higher
throughput. In contrast, when the value of parameter V
is small, then for each AP h, the difference among users’
queue backlog sizes (the total size of each user’s unserved
files) would be more significant. Therefore, AP h will be
more willing to associate those users with more unserved
files, which conduces to stabilizing queue backlogs in the
system. In practice, the value of parameter V can be chosen
based on the design objective of real systems.

Remark 2: Under PUARA, during each time slot t,
each user u will utilize all of its instant service rate µu(t)
(allocated by its associated AP) to download its requested
files of type f such that Quf(t) = arg maxf ′∈F Quf ′(t)
(if there are more than one file queues with the maximum
size, then spread the service rate µu(t) evenly among them).
Specifically, for each file queue Quf (t), its allocated service



7

rates will be first utilized to download the files that are
actually requested by time slot t. If all such files have been
downloaded and there are surplus service rates, then the
user will utilize them to serve predicted requests in Quf (t)
in a chronological order by their predicted arrival times until
all service rates are depleted. Such pre-service is applicable
in practice. For example, Netflix preloads videos to users
based on their predicted preferences, in which user requests
can be pre-generated and pre-served [13].

4.2 Performance Analysis of PUARA
Computational Complexity: During each time slot, the com-
putational complexity of PUARA mainly lies in the greedy
AP-user association procedure in Algorithm 1. Accordingly,
the computational complexity of the greedy algorithm is
O(UTm), where Tm denotes the computation complexity for
searching for the element X h?u? . Specifically, by Algorithm
1, the procedure begins with an empty set. During each
iteration, it adds one element with the highest marginal
value to the set while maintaining the feasibility of the so-
lution. Since the objective function is modular, the marginal
value of the elements decreases as we add more elements
to set X . When the largest marginal value is zero by some
iteration, the procedure should stop. Since each user is
assumed to associate with at most one AP, then at most U
iterations will be taken. Each iteration involves evaluating
the marginal value of at most U ×H elements. Accordingly,
the computation complexity for searching for element X h?u?
is O(Tm) = O(UH). As a result, the overall computation
complexity of PUARA is O(U2H).

Optimality: To characterize the throughput incurred by
PUARA compared to the optimal value of P1, we refer to
its scheduling as imperfect scheduling [50] [51]. Then during
each time slot t, the resulting service rates µ(t) ∈ R satisfy∑

u∈U

∑
f∈F

[
V +Quf (t)

]
µuf (t)

≥ β max
µ(t)∈R

{∑
u∈U

∑
f∈F

[
V +Quf (t)

]
µuf (t)

}
,

(27)

where we can view constant β ∈ (0, 1] as the approximation
ratio of PUARA. Note that when β = 1, it reduces to the
optimal scheduling for problems P2 and Pin. With such a
notion, we have β = 1/2 for PUARA, which means that it
solves problem P ′in with an approximation of 1/2. The proof
is relegated to Appendix E.

Impacts on Throughput and Delay: We define φPUARA
av and

QPUARA
av as the long-term time-averages of the expected net-

work throughput and the expected total queue backlog size
incurred by PUARA, respectively. Then the performance
of PUARA without prediction can be characterized by the
following theorem.
Theorem 1. Without prediction, i.e., givenDu = 0 for u ∈ U , we

have the following upper bound on the long-term time-average
of overall network throughput under PUARA.

φPUARA
av , lim inf

t→∞
φ(

1

t

t−1∑
τ=0

E{µ(τ)})

≥ βφopt − K
V
.

(28)

Besides, the upper bound on the corresponding long-term time-
average of the total queue backlog size is given by

QPUARA
av , lim sup

t→∞

1

t

t−1∑
τ=0

∑
u

∑
f

E{Qsum
uf (t)}

≤ K + V (φmax − φθ)
βθ

,

(29)

TABLE 2
Simulation settings

Parameter Description Setting
H Number of APs 9
U Number of users 100

M
Maximum number of users asso-

12ciated with each AP during each
time slot

ξ Minimum bandwidth ratio for APs 0.05
P Transmitting power for each AP 108

F Total number of file types 4

N Number of types of files that 3can be cached by each AP
nr

Parameter of Zipf distribution for 0.56the types of requested files

D Size of the prediction lookahead {0, 1, . . . , 60}window for each user
etype File type prediction error rate [0.0, 0.4]
esize File size prediction error rate [0.0, 0.4]
V Value of control parameter [1, 104]
f0 Carrier frequency 2.4GHz

where K = U
2 (µ2

max +A2
max).

The proof is relegated to Appendix G.
Remark: Theorem 1 also implies that, without predic-

tion, PUARA achieves a tunable [O(1/V ), O(V )] tradeoff
with respect to parameter V between the time-average net-
work throughput and the time-average total queue backlog
size. In general, a large value of V encourages PUARA to
distribute more user requests to those APs with greater
service capacities so as to maximize the overall network
throughput. However, this may also result in the overload-
ing of such APs and hence a increased total queue backlog
size. In contrast, a small value of V will incur a more even
distribution of user requests among APs. The price is that
some requests may be delivered over wireless channels with
poor conditions, thereby leading to a degraded throughput.
In practice, the choice of the value of parameter V depends
on the particular objectives of system performance metrics.

Moreover, with prediction, PUARA can further break the
[O(1/V ), O(V )] performance barrier with a notable reduc-
tion in the average queue backlog size of the system. To
characterize such benefits, we adopt the proof techniques in
[52] to show that the queue vector in the system is within
O(log(V )) distance away from a fixed point. Particularly,
we have the following theorem.
Theorem 2. Given predicted information, if FIFO queueing disci-

pline is adopted and Du = O
(

1
Amax

[q∗u −G−K(log(V ))2 −
µmax]

+
)

for each user u ∈ U , then compared to the non-
prediction case, PUARA can achieve an average queue backlog
size reduction by at most

∑
u∈U Du

[
λu −O( 1

V log(V ) )
]+

.

The proof is relegated to Appendix J. Theorem 2 shows that
with predictive scheduling, the time-average total queue
backlog size reduction is roughly proportional to the value
of
∑
u∈U λuDu. Such a result implies that more predicted

information (increasing prediction window sizes) conduces
to shortening the total queue backlog size in the system,
which implies a shorter average delay by Little’s law [53].

5 SIMULATION RESULTS

In this section, we conduct simulations to evaluate the
performance of PUARA under various settings. In the fol-
lowing subsections, we first demonstrate our simulation
settings in Section 5.1 (the key parameter settings are sum-
marized in Table 2). Then we present and discuss our
simulation results under perfect and imperfect prediction
in Sections 5.2 and 5.3, respectively.
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5.1 Basic Settings
We consider a wireless caching network within an area of
50 × 50m2, in which there are 9 APs and 100 randomly
uniformly distributed users. Each AP is associated with at
most 12 users, given the minimum bandwidth ratio ξ as 0.05
and 18-MHz bandwidth for operation. The transmit power
of each AP is fixed as P = 108. Based on the WINNER
II channel model under small-cell scenario [54], we set the
path-loss coefficients for user-AP pair (u, h) as

guh(t) = 10−
PL(duh(t))

10 , (30)

where duh denotes the distance from user u to AP h during
time slot t, and function PL(·) is defined as

PL(d) , C1 log(d) + C2 + C3 log(f0/5) + XdB , (31)

in which the carrier frequency f0 = 2.4GHz, the shadowing
log-normal variable XdB has a variance of σ2

dB , and coeffi-
cients C1, C2, C3 denote specific constants under different
communication conditions. In our simulations, the commu-
nication over each link is under either line-of-sight (LOS)
and non-line-of-sight (NLOS) condition independently with
probability pl(d) and 1− pl(d), respectively, such that

pl(d) ,

{
1, if d ≤ 3m,

1− 0.9
[
1− (1.24− 0.6log(d))3

]1/3
, otherwise.

(32)
Under line-of-sight (LOS) condition, we set C1 = 18.7, C2 =
46.8, C3 = 20, and σ2

dB = 9; under non-line-of-sight (NLOS)
condition, C1 = 36.8, C2 = 43.8, C3 = 20, and σ2

dB =
16. The total number of file types requested by users is 4,
while each AP is only able to cache 3 of them. For each user,
we generate its requests for files of type f ∈ F according
to Zipf distribution [11], [43], [55], with probability pf =

f−ηr∑
i∈F i

−ηr , where ηr = 0.56. We assume that all requests are
served in a first-in-first-out (FIFO) and fully efficient manner.
In addition, we vary the lookahead window size D from 0
to 60 for all users, and the value of parameter V from 1 to
104. We run the simulation for each combination of settings
over 5× 105 time slots. Each time slot has a length of 10ms.

5.2 Performances under perfect prediction
In this subsection, we evaluate the performance of PUARA
under perfect prediction.

Performance with different prediction window sizes:
In Figure 3, we show the performance of PUARA under
different prediction window sizes (also the non-prediction
case with D = 0) with the maximum network traffic rate
Amax = 100 Mbits. Particularly, from Figure 3(a), we see that
in general, the time-averaged network throughput ascends
and gradually flattens as the value of parameter V increases
from 1 to 100. Moreover, we find that increasing the value
of prediction window size D has a negligible impact on the
time-averaged network throughput. This is because given
that the total size of requested over a fixed period of time is a
constant, predictive scheduling merely advances the service
of part of files and generally makes no improvement in the
throughput. Nonetheless, the pre-service of files conduces to
the reduction in the average delay of the system.9 We show
the results in Figure 3 (b), in which the average delay of
the system is reduced by at least 38.2% (when V = 104) as
the window size D increases to 60. Such results also verify
our theoretical analysis in Theorems 1 and 2, with respect to

9. In our simulations, the average delay of the system is defined
as

∑
u∈U

∑
f∈F Q̄uf/(

∑
u∈U Āu). Note that Q̄uf denotes the time-

averaged backlog size of user u’s queue with respect to file type f and
Āu denotes the time-averaged size of files requested by each user u. By
Little’s theorem [53], this is equal to the average delay for transmitting
each Mbits of data in the system.
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Fig. 3. Performance of PUARA under different prediction window sizes
given the maximum arrival rate Amax = 100Mbits. As the value of
parameter V increases, the average network throughput approaches
the optimum at the cost of an increased average delay for the system.
With more future information (as window size D increases from 0 to 60),
the average delay reduction is at least 38.2% (when V = 104).

the [O(1/V ), O(V )] throughput-delay tradeoff (withD = 0)
and the backlog reduction (with D > 0), respectively.

Performance under different system parameters: In Fig-
ures 4 (a) and 4 (b), we investigate the performance metrics
(throughput and delay) incurred by PUARA under different
settings of maximum arrival rate Amax and number of users
U , respectively. Each data point in figures corresponds to
the performance of PUARA under one particular value of V .
The value of V is set as 1, 200, 500, 1000, 2000, 5000, 10000
from left to right, respectively.

Figure 4 (a) shows that in general, as the value of V
increases, the curve of time-averaged total network through-
put ascends and eventually converges while the average
delay of the system keeps increasing. Such results show that
PUARA achieves a better throughput performance but at
the cost of a longer average delay of the system. In contrast,
to achieve a shorter average delay, we can decrease the
value of V from 104 to 2 × 103 so that only a mild amount
of throughput needs to be traded off (e.g., 1.73% decrease
in the throughput for a 73.45% reduction in the average
delay when Amax = 120Mbits). Therefore, PUARA actually
achieves a tunable throughput-delay tradeoff, which is con-
sistent with our results in Theorem 1. Besides, we also see
that the increase of the maximum arrival rateAmax leads to a
lower time-averaged network throughput. This is because as
users request more files, they would cause more contention
of service rates and hence a longer average delay of the
system and a lower time-averaged throughput. Likewise,
Figure 4 (b) shows an increased time-averaged throughput
for each user and a decreased average delay for the system
as the number of users increases.

Average delay of each user under different prediction
window sizes: Figure 5 shows the cumulative distribution
functions (CDFs) of the average delay for each user10 under

10. In our simulations, the average delay of each user u is defined
as

∑
f∈F Q̄uf/Āu. By Little’s theorem [53], this is equal to the average

delay for user u to transmit each Mbits of data in the system.
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(a) Throughput-delay curve under different values of
maximum arrival rate Amax with the user number
U = 100 and prediction window size D = 10.
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(b) Average delay of the system against average
throughput per user under different values of user
number U , with the maximum arrival rate Amax =
100Mbits and prediction window size D = 10.

Fig. 4. Performance of PUARA under different maximum arrival rates
and numbers of users. From the results, we see that: (a) a larger
maximum arrival rate Amax leads to a lower average throughput and a
longer average delay; (b) the larger the number of users, the lower the
average throughput and the longer the average delay of the system.

different values of prediction window size D (with V = 1).
Note that each curve is drawn from the same population
of 100 users. Particularly, we find a notable left shift of the
CDF curve as the prediction window size D increases (e.g.,
by an 31.65% delay reduction for 95% of users as the value
of D increases from 0 to 20). Such results imply that only
mild value of future information suffices to aid PUARA to
incur a notable reduction in the average delay of each user.

Queue stability under different values of V : Figure 6
shows the variations of the total queue length in the system
over time slots with D = 20. Our results show that larger
values of V generally lead to relatively longer convergence
times; moreover, PUARA can direct queueing dynamics in
the system towards the stable state within hundreds of
time slots (few seconds). Once entering the stable state, the
total queue length remains fluctuating around a fixed level
(e.g., ±17.9% around 2.57 × 105 when V = 5000). Instead
of unbounded delays, by Little’s law [53], such stability
guarantee can ensure the timely processing of user requests.

5.3 Performances under imperfect prediction
In practice, mis-prediction are often inevitable. In this part,
we investigate the performance of PUARA under two cases
of mis-prediction which are assumed independent of each
other. One is when a request’s file type is mis-predicted. The
other is when the total size of files requested by each user
during some time slot is mis-predicted. Regarding file type
mis-prediction, in our simulations, we assume that the file
type of each request may be mis-predicted with a probability
of etype. Moreover, each mis-predicted request is equally
likely to be wrongly categorized as one of the other (F − 1)
types. Regarding file size mis-prediction, for each requested

0.0 0.1 0.2 0.3 0.4 0.5 0.6
User's Average Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n 

Fu
nc

tio
n 

(C
DF

)

PUARA, D = 0
PUARA, D = 20
PUARA, D = 40

Fig. 5. CDFs of each user’s average delay under different values of
window size D. Increasing window size D incurs a notable left shift of
the CDF curve (e.g., with a 31.65% reduction for 95% of users as the
value of D increases to 20).
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Fig. 6. Total queue backlog sizes over time slots. All queue backlogs
eventually stabilize with a total size proportional to the value of V .

file with size s, we assume that its size is mis-predicted as a
value uniformly distributed over [s×(1−esize), s×(1+esize)]
with esize ∈ [0, 1]. In our simulations, we use etype and esize to
denote the prediction error rates for file type mis-prediction
and file size mis-prediction, respectively. Then for each mis-
predicted request, it is handled as follows.

a) When its requested file’s type is mis-predicted but not
pre-served before its actual arrival, then it will be eliminated
from its corresponding queue by the time slot it is predicted
to arrive in. However, when the request is pre-served, then
the downloaded files will be removed by its user if it is not
used by the time it is predicted to arrive at.

b) When its requested file’s size is mis-predicted but it
is not pre-served before its actual arrival, then the request
will be simply eliminated from its queue by the time slot
it is predicted to arrive in. However, when the request
is pre-served, then upon its actual arrival, the user will
first check whether the file has been fully downloaded. If
not, then extra service rates will be consumed to finish the
transmission of such files first before serving other requests.

Given the above description, we define the average
throughput and the average delay of the system under mis-
prediction scenarios as follows, respectively.

a) For average throughput, we define it as the time-
averaged throughput incurred by the transmission of not
only the actually requested files but also those predicted
(including the mis-predicted) files.

b) For average delay of the system, we adopt the fore-
going definition

∑
u∈U

∑
f∈F Q̄uf/(

∑
u∈U Āu). Note that

the amounts of mis-predicted files are also counted in the
calculation of time-averaged queue length Q̄uf and the
average arrival rate Āu.11

11. Some mis-predicted requests may be pre-served (their requested
files are pre-downloaded onto user devices). Such files may not be
finally used and will stay on user devices until being replaced by other
newly downloaded files. Accordingly, such files will consume extra
service rates and prolong the delays of subsequent requests.
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Fig. 7. Performance of PUARA under different types of mis-predictions
with Amax = 100Mbits and D = 20. In general, we find that higher
mis-prediction probabilities can lead to a lower throughput and a longer
average delay of the system. However, as the value of V increases,
the impact of mis-prediction becomes gradually weakened. Besides,
compared to file size prediction, file type prediction has a greater impact
on the time-averaged throughput and the average delay of the system.

Performance under fixed prediction error rates: We
present our simulation results (with window size D = 20)
in Figures 7. Note that each point in the figures corresponds
to the result under a given setting of V , whose values vary
from 1 to 104. In Figure 7 (a), we examine the impact of
file size mis-prediction by assuming the perfect prediction
of requested file types. Then in Figure 7 (b), we show how
file type mis-prediction affects the throughput and average
delay of the system when the file size of each request is
perfectly predicted. In Figure 7 (c), we investigate how both
types of mis-prediction jointly affect system performances.
We make the following observations.

First, higher prediction error rates generally lead to
longer average delays of the system but with only mild
change in the throughput. The reason is that in such cases,
the system may also have to serve those mis-predicted re-
quests, thereby lengthening the average delay. However, as
PUARA inclines to greedily allocate service rates to the most
loaded user queue in a dynamic fashion, thus mis-prediction
only leads to mild change in the average throughput. Second,

compared to file size mis-prediction, file type mis-prediction
has a greater impact on system performances. For example,
in Figure 7 (a), when V = 104, as the value of prediction
error rate etype increases from 0 to 0.4, the average delay of
the system increases by 5.89%, while in Figure 7 (b), the
average delay (with etype = 0 and esize = 0.4) is only
1.78% longer than the perfect prediction case. Intuitively, the
reason is that if a request’s file type is mis-predicted and pre-
served, then its user needs to re-download its requested file
upon its actual arrival. Compared to file size mis-prediction,
such re-acquisition requires more service rates and thus
causes longer delays to its subsequent requests. Third, as
the value of V increases from 1 to 104, the impacts of mis-
prediction on the average throughput and the average delay
of the system become gradually weakened. Specifically,
� under file type mis-prediction (with etype = 0.4), the

reduction percentages of the average throughput and
the average delay decrease from 1.38% to zero and
from 70.76% to 5.89%, respectively;

� under file size mis-prediction (with esize = 0.4), the
reduction percentages of the average throughput and
the average delay decrease from 0.44% to zero and
from 21.66% to 1.78%, respectively.

The reason is that given a larger value of V , PUARA is
more prone to connecting users to their nearby APs with
the greatest service rates (so as to improve the average
throughput), which conduces to maximizing the utilization
of available service capacities and mitigating the impact
of mis-prediction. In contrast, with a smaller value of V ,
PUARA puts more focus to balance the workloads among
users. To this end, PUARA is more prone to first serving
those most loaded users but probably with less effective
utilization of system resources. Fourth, in Figure 7 (c), when
both types of mis-prediction are considered with V = 104,
as the values of etype and esize increase from 0 to 0.4, PUARA
achieves an increase in the average delay of the system by
7.71% with insignificant variations in the average through-
put. Such results demonstrate the robustness of PUARA in
the scenarios with mis-prediction.

Performance under time-varying prediction error rates:
In Figure 8, we investigate system performances under
different time-varying mis-prediction settings. We assume
that prediction error rates etype(d) and esize(d) increase with
the number of slots away from current time slot. Specifically,
in our simulations, for the d-th time slot in the predic-
tion window, we set etype(d) = d

d+C and esize(d) = d
d+C

(both with C = 60), respectively. Intuitively, under such
settings, the prediction error rates for upcoming slots are
lower than that of those farther slots. Note that for Qduf (t)
(0 ≤ d ≤ D − 1), if the predicted file type in time slot
t is updated from type f to type f ′ by time (t + 1), then
Qduf (t+ 1) and Qduf ′(t+ 1) will be updated as zero and the
predicted size, respectively. Besides, for each time slot (t+d)
(0 ≤ d ≤ D − 1) in the time window, when the predicted
total size of requested files is updated in time slot t, the size
of files that are already downloaded in previous time slots
will be deducted from the predicted size.

We first see that compared to the perfect prediction
case, the increase in the average delay of the system due
to mis-prediction ascends from 0.09s to (at most) 0.35s as
the window size D increases from 10 to 60. The reason
is that the system has to allocate extra service rates to
mis-predicted requests, which prolongs the delays of actual
requests. Second, under mis-prediction, the increase in the
average delay of the system is about 14.5% as the prediction
window size D increases from 10 to 60. By comparing such
results with Figure 7 (c) in which error rates are fixed across
time slots with D = 20 and V = 1000, we see that the
average delay of the system is longer when prediction error
rates etype and esize vary across time slots. The reason is that
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Fig. 8. Average delay of the system under time-varying prediction error
rates with V = 1000 and different values of window size D.

when error rates vary over time slots, within the prediction
window of each user, there will more mis-predicted requests
in the remote time slots than the upcoming slots. As a result,
compared to the case with fixed error rates, the system
may wrongly allocate service rates to more mis-predicted
requests. Even though the number of mis-predicted requests
in each time slot generally keeps decreasing as the pre-
diction window advances, the consequence of such mis-
allocation (in terms of long delays for subsequent requests)
cannot be restored. Such results demonstrate the limits of
the benefits of predictive scheduling. In practice, to exploit
such benefits, system designers should choose a proper
window size D such that prediction error rates do not vary
significantly across time slots in the time window.

6 CONCLUSIONS

In this paper, we studied the problem of joint user-AP
association and resource allocation for content delivery
with predictive scheduling over a fixed content placement.
We devised an effective predictive scheme which achieves
a provably near-optimal throughput with queue stability.
Then we investigated the fundamental limits of benefits
from predictive scheduling through theoretical analysis and
simulations. Our results show that our scheme not only per-
formed a tunable control between throughput maximization
and queue stabilization but also incurred a notable delay
reduction when given predicted information. In addition,
some interesting directions can be left for future work, e.g.,
how to take into account the fairness of resource allocation
among users and how to leverage user mobility dynamics
to further improve system performance.
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APPENDIX A
According to constraint (7), we know that only when user
u associates with the AP h (Xuh = 1), the user will be
allocated bandwidth by the AP h i.e., νuh ≥ 0 and 0
otherwise. Accordingly, problem Pin can be reduced to

max
ν(t)

∑
h∈H

∑
u∈U
Muh(t)νuh(t) (33)

s.t. (1), (2),

X(t) ∈ {0, 1}U×H , (34)∑
u∈U

νuh = 1 ∀h ∈ H, (35)

νuh ≥ 0, if Xuh = 1 ∀u ∈ U , h ∈ H, (36)
νuh = 0, if Xuh = 0 ∀u ∈ U , h ∈ H. (37)

Next, through proof by contradiction, we prove that each
AP h ∈ H associates with only one user in time slot t for the
optimal user-AP association X?(t).

We first assume that under the optimal user-AP associa-
tionX?(t), the AP h associates with more than one user, i.e.,
X?
u1h

= 1, X?
u2h

= 1, X?
uh = 0 where u ∈ U\{u1, u2}. Thus

we have ν?u1h
(t) ≥ 0, ν?u2h

(t) ≥ 0, ν?u1h
(t) + ν?u2h

(t) = 1 and
ν?uh(t) = 0 where u ∈ U\{u1, u2}.

We also assume thatMu1h(t) ≥Mu2h(t). Let x′u1h
(t) =

1, x′u2h
(t) = 0 and ν′u1h

(t) = ν?u1h
(t) + ν?u2h

(t) = 1,
ν′u2h

(t) = 0, then we have that:

Mu1h(t) =Mu1h(t)ν′u1h(t)

≥ Mu1h(t)ν?u1h(t) +Mu2h(t)ν?u2h(t),

Therefore, x′u1h
(t) = 1, x′u2h

(t) = 0 and ν′u1h
(t) =

1, ν′u2h
(t) = 0 are the optimal solution of (33), where the AP

h associates with the user uwith the maximumMuh(t), and
allocates the whole bandwidth to it, which is contradictory
with the assumption before. Extending this to all APs, then
the optimal user-AP association can be obtained by solving
the following problem:

max
X(t)

∑
h∈H

∑
u∈U
Muh(t)Xuh(t) (38)

s.t.
∑
u∈U

Xuh(t) ≤M ∀h ∈ H,∑
h∈H

Xuh(t) ≤ 1 ∀u ∈ U , (39)

X(t) ∈ {0, 1}U×H , (40)

and the corresponding optimal solution ν(t) = X(t).
Hence, problem P ′in is equivalent to problem Pin.

APPENDIX B
To conduct the problem transformation, we introduce a
ground set, denoted by X , which consists of all possible
pairs of user-AP association, i.e.,

X , {X 1
1 ,X 1

2 , . . . ,X 1
U , . . . ,XH1 ,XH2 , . . . ,XHU },

where X hu denotes the association between user u and AP
h. For each set X ⊆ X , we use |X | to denote its cardinality.

Regarding the constraints in problem P ′in, the following
lemma reveals its unique structure in terms of matroids.

Lemma 2. The constraints of problem P ′in can be written as
the intersection of two partition matroids A1 = (X , I1) and
A2 = (X , I2) over ground set X .

The proof is relegated to Appendix C.
Meanwhile, We can rewrite the objective function of

problem P ′in as

g(X ) =
∑
u∈U

∑
h∈H:Xhu∈X

Muh(t)X hu . (41)

The following lemma shows that g(·) is a modular function.

Lemma 3. Let X1 ⊂ X2 ⊂ X and X hu ∈ X −X2, then g(·) is a
modular function, i.e.,

g(X1 ∪ X hu )− g(X1) = g(X2 ∪ X hu )− g(X2). (42)

The proof is relegated to Appendix D.
Therefore, problem P ′in is equivalent to a modular maxi-

mization problem over two intersected matroid constraints.
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APPENDIX C
The ground set X can be partitioned into H disjoint subsets:
S1, . . . , SH , where Sh = {X h1 , . . . ,X hU} is the set of all users
that might associate with AP h. Remind that the user-AP
association is expressed by the matrix X(t). We define the
user-AP association set X ⊆ X such that X hu ∈ X if and
only if Xuh(t) = 1. Notice that the nonzero elements of
the hth column of matrix X(t) equals to the elements in
X ⊆ Sh. Thus the constraint of the column of matrix X(t)
can be expressed as X ⊆ I1, where

I1 = {X ⊆ X : |X ∩ Sh| ≤M,∀h = 1, . . . ,H}. (43)

Comparing I1 with the definition of partition matroid [46],
we see that constraints in (1) form a partition matroid with
l = H and ki = 1 for i = 1, . . . ,H . We denote this partition
matroid by A1 = (X , I1).

Similarly, the ground set X can also be partitioned into
U disjoint subsets: S′1, . . . , S

′
U , where S′u = {X 1

u , . . . ,XHu }
is the set of all AP that might associate with user u. The
constraint of the row of matrix X(t) can be expressed as
X ⊆ I2, where

I2 = {X ⊆ X : |X ∩ S′u| ≤ 1,∀u = 1, . . . , U}. (44)

Hence, constraints in (2) form a partition matroid with
l = U and ki = 1 for i = 1, . . . , U . This partition matroid is
denoted by A2 = (X , I2).

To sum up, the constraint of problem P ′in can be ex-
pressed as two partition matroids on a ground set X .

APPENDIX D
It’s easily to be verified that the function h(x) = x is strictly
increasing and linear for all x > 0. This means that we have

h(x+ 1)− h(x) = h(y + 1)− h(y), ∀0 < x < y (45)

Combining (45) with the facts that h(0) = 0 and f(E) =
h(|E|) (so that f(ø) = 0, where ø is empty set), we have

f(E ∪ (u, h))− f(E) = f(E ′ ∪ (u, b))− f(E ′),
∀E ⊆ E ′ ⊆ E&(u, b) ∈ E\E ′ (46)

which yields the desired result. Hence, the objective func-
tion in Problem Pin is a modular function.

APPENDIX E
We define the following problem as a good reference point
for the solution under imperfect scheduling.
β-reduced problem:

max φ(µ) (47)
s.t. µ(t) ∈ βR, (48)

Quf <∞, ∀u ∈ U , f ∈ F , (49)
α(t) ∈ Aω(t), ∀ t, (50)

in which we recall that φ is a linear function.
Next, we define µ∗,β(t) as the optimal solution to β-

reduced problem and µ∗,0(t) as the optimal solution to
problems P2 and Pin. The following lemma establishes the
relationship between problem P1 and β-reduced problem
in terms of their optimal solutions.
Lemma 4. Let µ∗,0(t) be the optimal solution of the P1. Then

the solution to the β-reduced problem is

µ∗,β(t) = βµ∗,0(t). (51)

The proof is relegated to Appendix F.

APPENDIX F
In β-reduced problem (47), by a change of variables µ′(t) =
µ(t)/β and the fact that φ(µ(t)) =

∑
u∈U µu, we have

φ(µu(t)) = 1/βµ′u(t). (52)

Then it follows that β-reduced problem becomes equivalent
to the problem P1. Hence, µ∗,β(t) = βµ∗,0(t).

APPENDIX G
To characterize the performance of PUARA, we assume
that all the random events in the system are i.i.d. and the
following slater-type conditions hold.

λu −
∑
ωj

πωj
∑
m

ϕωjm µu(αωjm ) ≤ −θ, ∀u ∈ U (53)

φ(µ(αωjm )) = φθ, (54)

where θ ∈ (0, ε] and φθ is a finite constant. Note that θ → 0
as Du →∞. Then we have the following result

lim
θ→0

φθ = φopt. (55)

The above assumptions ensure strong stability of the queue
backlogs in the system and the existence of at least one
stationary and randomized policy.

To proceed, we introduce the following lemma which
can be easily proved by applying (26) under the slater-type
condition (53) and (54).
Lemma 5. For any alternative policy αωj ∈ Aω , we have

∆p
V (Q(t)) ≤ K − V φθ − βθ

∑
u∈U

∑
f∈F

Du−1∑
d=−1

Q̃duf (t). (56)

Next, we define a quadratic Lyapunov function as

L(Q(t+ 1))− L(Q(t))

=
1

2

{(
[Q(t)− µ(t)]+ +A(t)

)T(
[Q(t)− µ(t)]+

+A(t)
)
−QT(t)Q(t)

}
. (57)

Next, we define the one-time-slot conditional Lyapunov
drift-plus-penalty function as

∆V (Q(t)) , ∆(Q(t))− V E{φ(µ(t))|Q(t)}, (58)

where V is a positive parameter and ∆(Q(t)) is defined as

∆(Q(t)) , E{L(Q(t+ 1))− L(Q(t))|Q(t)}. (59)

Then we have the following lemma (see proof in Appendix
H).
Lemma 6. For any feasible decision α(t) for P1, ∆V (Q(t))

is upper bounded (with K = U
2 [µ2

max +A2
max]) by

∆V (Q(t)) ≤ K − V E{φ(µ(t))|Q(t)}
+ E{

(
A(t)− µ(t)

)T
Q(t)|Q(t)}.

Lemma 6 provides an upper bound for the conditional
Lyapunov drift-plus-penalty function ∆V (Q), which plays
a significant role in analyzing PUARA. Our control policy
aims to make decision α(t) ∈ Aω(t) to minimize the upper
bound of ∆V (Q(t)), as shown in (22).

To proceed, we apply the following lemma whose proof
is relegated to Appendix I.
Lemma 7. For any alternative policy αωj ∈ Aω , we have:

∆V (Q(t)) ≤ K − V φε − βε
∑
u∈U

∑
f∈F

Quf (t). (60)
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Next, by taking expectation of (60), summing over τ ∈
{0, 1, · · · , t−1} for some slot t > 0, then dividing the result
by tε, and taking the limsup of both sides, we obtain

lim sup
t→∞

1

t

t−1∑
τ=0

∑
u

∑
f

E{Quf (t)} ≤ K + V (φmax − φε)
βε

. (61)

Next, we consider policy αωj (t) which achieves the optimal
value φopt

β of the β−reduced problem P1. We have

E{L(Q(τ + 1))− L(Q(τ))} − V E{φ(µ(τ))} ≤ K − V βφopt.

where β = 1/2, φopt is the optimal throughput. Next, by
summing the above over τ ∈ {0, 1, · · · , t− 1}, and dividing
by tV and rearranging terms, we have

1

t

t−1∑
τ=0

E{φ(µ(τ))} ≥ βφopt − K
V
, (62)

where the second inequality is due to the non-negativeness
of E{L(Q(t))} and E{L(Q(0))}. Finally, by taking the lim-
inf as t→∞, we have

lim inf
t→∞

1

t

t−1∑
τ=0

E{φ(µ(τ))} ≥ βφopt − K
V
. (63)

APPENDIX H
Note that for any Q ≥ 0, µ ≥ 0, A ≥ 0, we have(

[Q− µ]+ +A
)2 ≤ Q2 +A2 + µ2 + 2Q(A− µ). (64)

By applying (64) to the Lyapunov drift function (57), we
have

L(Q(t+ 1))− L(Q(t))

≤ 1
2A(t)TA(t) +

(
A(t)− µ(t)

)T
Q(t) + 1

2µ(t)Tµ(t)

≤ K +
(
A(t)− µ(t)

)T
Q(t),

(65)
where K = U

2 [µ2
max + A2

max] and A(t) refers to the queue
backlog vector with future arrivals.

By taking conditional expectation of (65) and adding
the penalty term −V E{φ(µ(t))|Q(t)} to both sides, we
complete the proof of Lemma 6.

APPENDIX I
Recall the key idea of Lyapunov optimization of minimizing
the right-hand-side of (60). Thus for any alternative (possi-
bly randomized) imperfect policy αωj ∈ Aω , we have

∆V (Q(t)) ≤ K − V φ(µ∗,β)

+
∑
u∈U

∑
f∈F

Quf (t)E{Au(t)Iuf (t)− µ∗,βu (t)|Q(t)} (66)

where µ∗,β = (µ∗,β1 , · · · , µ∗,βU ) are given by the imperfect
scheduling policy αωj ∈ Aω .

By applying (51) into last term of right-hand-side of
(66) with slater-type conditions [45], and applying µ∗,β(t) =
βE{µ∗,0(αωj )} to the right-hand-side of (66), we have

∆(Q(t))− V E{φ(µ(t))|Q(t)}
≤ K − V φε − βε

∑
u∈U

∑
f∈F Quf (t) (67)

thus we prove Lemma 7.

APPENDIX J
First, we define the following optimization problem

max g(`), s.t. ` � 0, (68)

where g(`) is called the dual function with the objective of
original problem scaled by V . ` = [q1, . . . , qU , g1, . . . , gU ] is
the Lagrange multiplier. g(`) is defined as below,

g(`) =
∑
ωj

πωj inf
µ(α

ωj
m )

{
V φ
(∑
m

ϕωjm µ(αωjm )
)

+
∑
u∈U

qu[λu −
∑
m

ϕωjm µu(αωjm )],

where we define the state space of ω(t) by Ω =
{ω1, ω2, · · · , ωJ}, πωj as the probability that ω(t) = ωj , j =
1, · · · , J , and the control action under the ωj ∈ Ω as αωjm
with probability ϕωjm , where

∑
m ϕ

ωj
m = 1 and ϕωjm ≥ 0.

Let `∗ denote the optimal solution of (68) and `∗ is either
Γ(V ) or zero. Then by [52], we have the following lemma.
Lemma 8. Suppose that

1) The dual function g(`) satisfies:

g(`∗) ≥ g(`) + L ‖ `∗ − ` ‖, ∀` � 0, (69)

for some constant L > 0 independent of V.
2) The θ − slack condition (53) is satisfied with θ > 0.

Then there exist constants G, K, c such that for any m ∈ R+,

Pr(G,Km) ≤ ce−m. (70)

We define Qu(t) ,
∑
f

∑Du−1
d=−1 Q̃

d
uf (t) for all u ∈ U , and

Pr(G,Km) , lim sup
t→∞

1

t

t−1∑
τ=0

Pr{∃u, |Qu(τ)−q∗u|>G+Km}.
(71)

Based on Lemma 8, we further suppose that the dual func-
tion g(`) satisfies

g(`∗) ≥ g(`) + L ‖ `∗ − ` ‖, ∀` � 0, (72)

for some positive constant L0 independent of V, and the
θ-slack condition (53) is satisfied with θ > 0. Given such
conditions, if FIFO queueing discipline is adopted and
Du = O

(
1

Amax
[q∗u −G−K(log(V ))2 − µmax]+

)
for each user

u ∈ U , then by applying the proof techniques in [21], it
follows that PUARA can achieve an average queue backlog
size reduction by at most

∑
u∈U Du

[
λu −O( 1

V log(V ) )
]+

.
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