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Attention-based SIC Ordering and Power
Allocation for Non-orthogonal Multiple Access
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Abstract—Non-orthogonal multiple access (NOMA) emerges as a superior technology for enhancing spectral efficiency, reducing
latency, and improving connectivity compared to orthogonal multiple access. In NOMA networks, successive interference cancellation
(SIC) plays a crucial role in decoding user signals sequentially. The challenge lies in the joint optimization of SIC ordering and power
allocation, a task made complex by the factorial nature of ordering combinations. This study introduces an innovative solution, the
Attention-based SIC Ordering and Power Allocation (ASOPA) framework, targeting an uplink NOMA network with dynamic SIC
ordering. ASOPA aims to maximize weighted proportional fairness by employing deep reinforcement learning, strategically
decomposing the problem into two manageable subproblems: SIC ordering optimization and optimal power allocation. Our approach
utilizes an attention-based neural network, which processes instantaneous channel gains and user weights to determine the SIC
decoding sequence for each user. A baseline network, serving as a mimic model, aids in the reinforcement learning process. Once the
SIC ordering is established, the power allocation subproblem transforms into a convex optimization problem, enabling efficient
calculation of optimal transmit power for all users. Extensive simulations validate ASOPA’s efficacy, demonstrating a performance
closely paralleling the exhaustive method, with over 97% confidence in normalized network utility. Compared to the current
state-of-the-art implementation, i.e., Tabu search, ASOPA achieves over 97.5% network utility of Tabu search. Furthermore, ASOPA is
two orders magnitude less execution latency than Tabu search when N = 10 and even three orders magnitude less execution latency
less than Tabu search when N = 20. Notably, ASOPA maintains a low execution latency of approximately 50 milliseconds in a ten-user
NOMA network, aligning with static SIC ordering algorithms. Furthermore, ASOPA demonstrates superior performance over baseline
algorithms besides Tabu search in various NOMA network configurations, including scenarios with imperfect channel state information,
multiple base stations, and multiple-antenna setups. Such results underscore ASOPA’s robustness and effectiveness, highlighting its
ability to excel across various NOMA network environments. The complete source code for ASOPA is accessible at
https://github.com/Jil-Menzerna/ASOPA.

Index Terms—non-orthogonal multiple access (NOMA), successive interference cancellation (SIC), deep reinforcement learning
(DRL), resource allocation.

✦

1 INTRODUCTION

W ITH the rapid development of online gaming, aug-
mented and virtual reality, 3-dimensional media, and

Internet of Things, wireless network traffic has increased
significantly, which is a challenge for orthogonal multiple
access (OMA) schemes. To meet the growing demand,
the next generation of wireless networks exploits advanced
multiple access technologies [1]–[3], including the non-
orthogonal multiple access (NOMA) [4], [5] and the rate-
splitting multiple access (RSMA) [6]. Combining NOMA
with other technologies, such as cognitive radios, unmanned
aerial vehicles, mobile edge computing, simultaneous wire-
less information and power transfer, etc., can bring consider-
able advantages [7], [8]. Specifically, NOMA gives improved
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spectral efficiency, energy efficiency, higher data rates, mas-
sive connectivity, and diversity of wireless service [9], [10].

For the uplink power-domain NOMA network, users
simultaneously transmit their data over the same frequency
resource, so there is inter-user interference due to the broad-
cast and superposition nature of the wireless medium [11],
[12]. At the base station (BS) of uplink NOMA-based net-
works, the successive interference cancellation (SIC) tech-
nique decodes different users’ messages from the received
signal. Using SIC, the BS sequentially decodes users’ mes-
sages according to a particular order. When decoding a
user’s message, the remaining undecoded signal is treated
as interference. After decoding, a user’s message will be
subtracted from the received signal. The procedure contin-
ues until all users’ messages are decoded according to a
specific SIC order. Although different SIC orderings gen-
erate the same sum throughput of the NOMA network
with a single BS [13], they affect the throughput of each
user [14]–[17]. The earlier a user’s signal is decoded, the
more substantial interference it suffers. When the quality
of service of an individual user matters, it is necessary
to optimize the SIC order for better performance metrics,
e.g., outage probability [18]–[20], latency [21], and energy
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consumption [22], [23].
For a NOMA network, the joint optimization of SIC or-

dering and resource allocation is a Non-deterministic Poly-
nomial (NP) hard problem [21]. Many researchers decom-
posed the joint optimization into SIC ordering optimization
and resource allocation. For SIC ordering, the total number
of decoding orderings is the factorial of the number of users.
The exhaustive method obtains the optimal SIC ordering
by enumerating all possible SIC orderings and is limited to
small-scale scenarios, i.e., with five users [24]. To tradeoff
performance and computational complexity, there are two
types of heuristic methods for SIC ordering in many works,
i.e., static heuristic methods and dynamic heuristic methods.
Some researchers [17]–[20], [25]–[32] adopted a static SIC
ordering order with respect to a single metric and optimized
the resource allocation when considering specific NOMA-
based wireless networks. The execution latency of static SIC
ordering methods is very low, which is close to the conven-
tional SIC ordering algorithms, i.e., the descending order
and ascending order of channel quality. However, these
static SIC ordering methods can not cope with complex
NOMA wireless scenarios, as finding the corresponding
single metric is problematic. Some other works [3], [14], [21],
[33], [34] tried to iteratively search for the SIC ordering, e.g.,
greedy insertion and linear relaxation. While the dynamic
heuristic methods apply to most NOMA wireless scenarios
and achieve better performance compared to static SIC
ordering algorithms, they still have high complexity in the
joint optimization problems due to repeatedly optimizing
the resource optimization.

Recently, deep learning has emerged as a promising
approach for making near-optimal decisions. With a large
labelled dataset, it can achieve substantial performance
through supervised learning. However, in the joint opti-
mization of SIC ordering and resource allocation, obtaining
the optimal solution labels is challenging, particularly in
large-scale NOMA wireless networks. In this regard, deep
reinforcement learning (DRL) is a suitable technique that
can train a model using a dataset without labels. Some
recent studies have utilized DRL techniques to efficiently
solve computation-intensive resource allocation problems
in wireless networks, such as Deep Q-Network [35], [36],
actor-critic algorithm [37], [38], deep deterministic policy
gradient [39], [40], and proximal policy optimization [41],
[42]. Recently, a pioneering deep reinforcement learning-
based framework named DROO is introduced to address
the hybrid integer-continuous challenge in mobile edge
computing [43]. DROO ingeniously splits the primary opti-
mization issue into two subproblems: a zero–one binary of-
floading decision and a continuous resource allocation task.
These subproblems are then individually managed through
a model-free learning module and a model-based optimiza-
tion module, respectively [44]. Nevertheless, DROO and
its subsequent iterations [45], [46], are constrained by their
reliance on quantization modules that exclusively produce
binary decisions. This limitation becomes particularly evi-
dent in their inability to permute SIC ordering for NOMA
networks. The permutation complexity for SIC orderings is
factorial, presenting a significantly more challenging sce-
nario than binary decisions. This complexity forms the basis
of our motivation to develop a solution that adeptly handles

the joint SIC ordering and power allocation problem, aiming
to achieve near-optimal performance. This is particularly
crucial in meeting the real-time requirements of NOMA net-
works, where efficiently managing the factorial complexity
is essential for optimal system operation.

In this paper, we consider the uplink NOMA with dif-
ferent weighted users. Since transmit power of the NOMA
wireless network is typically shared in a best-effort fashion,
we aim to ensure fairness across multiple users. We optimize
the SIC ordering and users’ transmit power to maximize the
weighted proportional fairness function. To tackle this chal-
lenging problem, a novel Attention-based SIC ordering and
power allocation (ASOPA) framework is proposed, which
leverages both DRL and optimization theory. To assess the
effectiveness of ASOPA, we conduct comparative analyses
against a range of baseline algorithms. These comparisons
focus on two key metrics: the network utility achieved
and the execution duration of ASOPA. Furthermore, to
demonstrate the wide-ranging applicability and versatility
of ASOPA, the ASOPA is applied with various NOMA net-
work configurations. This extension effectively highlights
ASOPA’s adaptability across diverse network structures
within the NOMA framework, underlining its robustness
and practical utility in diverse network conditions.

Our main contributions can be summarized as follows:

• We formulate a joint optimization problem of SIC
ordering and power allocation to maximize the
weighted proportional fairness on an uplink NOMA
wireless network. To solve this problem efficiently, it
is decomposed into two subproblems: a SIC order-
ing subproblem and a power allocation subproblem
under the given SIC ordering. This decomposition
approach enables us to leverage DRL and convex
optimization for optimal performance.

• We propose the ASOPA framework to solve the joint
optimization problem. This framework comprises
three components: an attention-based actor network,
a convex optimization module, and a baseline net-
work. The actor network generates the SIC order-
ing, while the optimization module allocates users’
transmit power. The baseline network is used to
train and reinforce the actor network. The ASOPA
framework is designed to generate feasible solutions
that meet all physical constraints, ensuring optimal
performance.

• We conduct comprehensive numerical experiments
to validate the effectiveness of the ASOPA frame-
work. The findings reveal that ASOPA attains near-
optimal performance, fulfilling the real-time de-
mands of NOMA networks. Notably, the normalized
network utility achieved by ASOPA has a confidence
interval exceeding 99%, closely mirroring the perfor-
mance of exhaustive methods. In terms of execution
latency, ASOPA is on par with static SIC ordering
algorithms, with an approximate duration of 50 ms
in a ten-user NOMA network. To highlight ASOPA’s
broad applicability and versatility, we extend its ap-
plication to include scenarios with imperfect channel
state information (CSI), networks comprising multi-
ple BSs, and systems with multiple-antenna setups.
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In each of these diverse environments, ASOPA con-
sistently outperforms the baseline algorithms, show-
casing its robustness and effectiveness across differ-
ent NOMA network configurations.

The rest of this paper is organized as follows. The related
work is introduced in Section 2. Section 3 gives the sys-
tem model and problem formulation. Section 4 introduces
ASOPA. The numerical results are given in Section 6. Finally,
Section 7 concludes the paper.

2 RELATED WORK

Most of the existing works on NOMA use fixed SIC ordering
according to channel conditions. Specifically, the descending
order of channel quality is usually used in uplink NOMA
[25], [26], and the ascending order of channel quality is
generally used in downlink NOMA [27], [28]. However,
in many scenarios, using the above fixed ascending or
descending order for SIC might not be optimal. To achieve
optimal performance, [24] used the exhaustive search to find
the optimal decoding order. However, the computational
complexity of the exhaustive search is at least O(N !), and
its usage is limited to small-scale NOMA wireless scenarios,
i.e., less than five users. To balance performance and compu-
tational complexity, the following works further optimized
the SIC ordering in a NOMA network, which affects differ-
ent performance metrics, e.g., outage probability [18]–[20],
throughput [14]–[17], [32], latency [21], energy consumption
[22], [23] and the data rate of a particular user [24]. After
elaborately designing the SIC ordering algorithm, Qian et
al. [21] showed that by optimizing the SIC ordering, the
min-max execution latency could be reduced by ten times
compared to the best comparison method. Also, [14] showed
that optimizing the SIC ordering can get a 48% improvement
in the sum rate over the fixed SIC ordering. The above
work of SIC ordering optimization can be classified into two
types: static SIC ordering and dynamic SIC ordering.

2.1 Static SIC Ordering

In addition to wireless channel quality, some works have
proposed using a static decoding order based on other
performance metrics specific to certain problems and sce-
narios. For example, the descending order of received user
signal power [17], [19], [20], the descending order of pre-
dicted user throughput [29], the decreasing order of channel
gain normalized by noise and interference power [30], [31],
the ascending order of average channel gain from user to
the base station [32], and the ascending order of a user’s
maximum secrecy throughput [18]. For the uplink NOMA
scenario, [18] adopted the ascending order of user’s max-
imum secrecy throughput as the SIC ordering to achieve
secrecy transmission in eavesdropper scenarios. [19] used
the descending order of received user signal power as the
SIC ordering and derived the closed-form expression of the
outage probability for a single base station and three-user
system. Building on this work, [20] considered the single
base station and multiple active user scenario in the case of
imperfect channel state information, using the descending
order of estimated instantaneous received signal power as

base station user 1

user 2user N
.  .  .  .  .  .

Fig. 1: An uplink NOMA network with one BS and N users.

the SIC ordering. Although these static SIC ordering meth-
ods can achieve excellent performance with small execution
latency, they may suffer considerable performance degrada-
tion on complex NOMA networks due to the difficulty of
finding a suitable metric for ordering.

2.2 Dynamic SIC Ordering

In addition to works that use a static SIC ordering based
on specific problems and scenarios, a few studies have
proposed iteratively searching heuristic algorithms to opti-
mize the SIC ordering. For instance, [3] and [14] introduced
binary variables to represent the SIC ordering, solving the
problem via variable relaxation with compensation for per-
formance degradation and as an integer linear program-
ming problem, respectively. [33] adapt a permutation-based
genetic algorithm to optimize the SIC ordering. [21] used
the greedy meta-scheduling technique to develop a low-
complexity and easy-to-implement SIC ordering algorithm.
This algorithm sequentially inserts users into the existing or-
dering, tries every possible insertion position for each user,
and chooses the position that provides the most significant
benefit. [34] utilized a heuristic tabu search to optimize the
SIC ordering in an iterative process. At each iteration, tabu
search swapped the SIC ordering of any two users and
selected the best one. To the best of our knowledge, [34]
is the state-of-the-art algorithm for dynamic SIC ordering,
it achieves the near-optimal performance, but suffers from
high computational complexity due to the large number
of iterations. While these dynamic SIC ordering methods
apply to most NOMA wireless scenarios and achieve bet-
ter performance than static SIC ordering, they all involve
iterative updates and repeatedly solve resource allocation
subproblems, resulting in high computational complexity.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Model

As shown in Fig. 1, we consider an uplink NOMA network
with a central-located BS and N active users, denoted as
a set N = {1, 2, . . . , N}, where each user has a single
antenna. Users have a stable power supply, and all N
users simultaneously transmit their information to the BS
by NOMA.

The system time is divided into consecutive slots of
equal length, smaller than the channel coherence time. We
assume that the wireless channel gain is constant in each
time slot and may vary across different slots. Without loss
of generality, the slot length is normalized for brevity.
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The BS employs SIC in a successive order to decode
users’ signals. In our framework, we define a function
ξ(n) = i and its inverse π(i) = n, which establish a
mapping between a user’s index n and its corresponding
decoding order i. For instance, ξ(3) = 2 indicates that
the user 3 is decoded second in the sequence. Conversely,
π(2) = 3 indicates that the second user to be decoded in the
order is user 3. This bi-directional mapping functions serve
to clearly delineate the relationship between the decoding
sequence and the specific users in the network. Hence, the
signal-to-interference-plus-noise ratio of the user n can be
expressed as

ϕn =
pngn∑

ξ(n′)>ξ(n),∀n′∈N
pn′gn′ +N0

, (1)

where N0 is the power of the additive Gaussian noise at
the BS, gn denotes the wireless channel gain between user n
and the BS at a tagged time slot, and pn denotes the transmit
power of user n sending its information. So the data rate of
user n can be expressed as

Rn = B log2(1 + ϕn), (2)

where B denotes the communication bandwidth.
We summarize essential notations used throughout this

paper in Table 1.

3.2 Problem Formulation
This paper aims to achieve weighted proportional fairness
across multiple users. Proportional fairness can be achieved
by maximizing individual rates with a logarithmic utility
function [48]. In addition, considering users’ different prior-
ities, individual weights are assigned to each user to achieve
weighted proportional fairness [49]–[51]. Thus, the aim is to
maximize the weighted sum of the logarithmic throughput
of different users by jointly optimizing the SIC ordering
π and the power allocation p, denoted as the network
utility R(π,p). This optimization problem can be expressed
mathematically as:

P0 : R(π,p) = max
π,p

N∑
n=1

wn lnRn (3a)

s.t. 0 < pn ≤ Pmax
n ,∀n ∈ N , (3b)

π ∈ Π, (3c)

where wn is the weight of user n. π = [π1, π2, · · · , πN ] indi-
cates the SIC order, where we denote πi = π(i) for brevity.
Π is the permutation set of all possible SIC orderings with
size factorial N , represented as N !. p = [p1, p2, . . . , pN ] is
the power allocation. (3b) is the power constraint for each
user n, where Pmax

n is the maximum power that user n can
achieve. (3c) is the constraint for π.

The problem P0 involves combinatorial optimization
and continuous numerical optimization, which is NP-hard.
To effectively solve the problem P0, we decompose it into
the SIC ordering optimization and the optimization of
power allocation under the given SIC ordering, as shown
in Fig. 2:

• SIC Ordering: It is computationally expensive to it-
eratively search for the optimal SIC ordering from

TABLE 1: Notations
Notation Definition

N The number of users
N The set of users

gn
The wireless channel gain between the user n and
the BS

pn The transmit power of user n
p The vector representation of the power allocation

Pmax
n The maximum power that user n can achieve
π The SIC ordering of all users

πBL The SIC ordering generated by the baseline network
Π The set of all possible SIC orderings

ξ (n) The order of user n to be decoded
N0 The power of the additive Gaussian noise at the BS

ϕn
The signal-to-interference-plus-noise ratio of the
user n

B The communication bandwidth
Rn The data rate of user n
wn The weight of user n
X The representation of all users’ information
θ The parameters of the actor network
θ′ The parameters of the baseline network

E
The embedding of all users generated by the en-
coder

e
The global information embedding which is the
mean of en, ∀n ∈ N

ℓt The probability of users being selected at iteration t

q,K,V The query, key, and value
dk The dimension of q and k

de The dimension of each user’s embedding en

S (θ|X)
The expected objective value for input X under the
network parameters θ

zθ (π|X)
The probability of π generated by the actor network
θ for the input X

R(π|X)
The network utility under the given SIC ordering π
for X

|τ | The batch size
τ The index of sample in a training batch
τ The set of training batch

Weighted Logarithmic Throughput 

Maximization
Solving Problem P0  π,p 

SIC ordering
The actor network 

(Sec. 4.2)
π

Power allocation
Convex Optimization 

(Sec. 4.3)
p

Fig. 2: The two-level optimization structure of solving prob-
lem P0.
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Π at the N ! scale. We tell that one SIC ordering
outperforms another one by solving the power al-
location problems P1 and comparing their utilities
R(π). However, classical comparison-based sorting
algorithms cannot perform better than O(n log n) on
average [52], which requires repeatedly solving P1,
resulting in long execution latency. In this paper, the
deep reinforcement learning method is adopt to gen-
erate the SIC ordering before the power allocation.

• Power Allocation: When the SIC ordering π is deter-
mined, we only need to solve the power allocation p,
as follows:

P1 : R(π) = max
p

N∑
n=1

wn lnRn (4a)

s.t. 0 < pn ≤ Pmax
n ,∀n ∈ N . (4b)

We can solve this power allocation sub-problem P1
by converting it to a convex problem and using the
inter-point method.

In the next Section, these two subproblems are solved by
taking advantage of DRL and convex optimization.

4 ALGORITHM DESIGN

4.1 Algorithm Overview
Fig. 3 shows the schematics of the proposed ASOPA frame-
work. It uses an encoder-decoder-based actor network θ
to generate the SIC ordering sequentially and uses opti-
mization techniques to optimize all users’ transmit power.
The design of the actor network follows from the pointer
network [53], [54] for routing problems. In Fig. 3, the black
solid lines depict the inference process of ASOPA, which
necessitates real-time network parameters. These parame-
ters include each user’s weight wn, maximum power Pmax

n ,
and channel gain gn. The complete set of users’ information,
denoted by X = {(wi, P

max
i , gi)}i∈N , is fed into the actor

network to generate the SIC ordering π. Following the
determination of the SIC ordering π, we solve the sub-
problem P1 for the optimal power allocation p through
convex optimization. Then, ASOPA outputs the network
decision, represented as (π,p), based on the instantaneous
user information X.

The red dotted lines in Fig. 3 illustrate the policy up-
date process in ASOPA. We employ a replica of the actor
network, referred to as the baseline network θ′, and train
the actor network using the REINFORCE algorithm. Each
users’ information X is fed into both the actor and baseline
networks. This process yields the output SIC orderings π
and the baseline SIC orderings πBL. Subsequently, R (π|X)
and R

(
πBL|X

)
are obtained by solving problem P1, which

are used to compute the loss function. The backpropagation
method is employed to update the parameters θ of the
actor network. The procedures of ASOPA are detailed in
the following subsections.

4.2 SIC Ordering
As shown in Fig. 3, the SIC ordering π is generated by the
actor network composed of an encoder and a decoder as
follows:

1) The encoder takes users’ information X =
[x1,x2, . . . ,xN ] as input and outputs users’ embed-
ding E = [e1, e2, ..., eN ] using self-attention layers.
The global embedding e is then calculated as the
average of E.

2) The decoder generates the SIC ordering in an it-
erative process. At each iteration t, by utilizing
the cross-attention layers, the decoder generates the
probability of all users according to [e, eπt−1

] and
E. By masking the previously selected users, the
probability of the remaining users being selected is
calculated using the softmax function, allowing the
decoder to determine the current user’s index πt. At
the end of each iteration, the decoder updates users
selected for masking and takes eπt

as input to next
iteration. It iterates N times to obtain the complete
SIC ordering π = [π1, π2, ..., πN ].

The integration of an attention scheme in the encoder
and an iterative decoding scheme in the decoder empowers
ASOPA to effectively manage a varying number of users
in NOMA networks. This approach ensures adaptability
and responsiveness to user dynamics, maintaining optimal
performance across diverse network scenarios.

4.2.1 Encoder
In this section, we describe how the encoder maps user
information X through the neural network into users’
embedding E suitable for subsequent processing. Users’
information X = [x1, . . . ,xN ] is first be expanded into
de dimensions by a fully connected feed forward (FF1)
layer, and then it passes a multi-head attention (MHA)
layer and a feed forward (FF2) layer. Both MHA and FF2

layer have a residual connection and are followed by batch
normalization in [53]. Hence, we have:

Ê = BN
(

FF1

(
X
)
+ MHA

(
FF1

(
X
)))

E = BN
(
Ê+ FF2

(
Ê
))

.

(5)

The details of the multi-head attention mechanism are
shown in Appendix A. The length of users’ embedding
is adaptive to the variable number of users. Each term in
the obtained users’ embedding E = [e1, . . . , eN ] takes into
account all the users’ information.

4.2.2 Decoder
The decoder iteratively generates the users’ SIC ordering by
utilizing the user embeddings obtained from the encoder.
In the decoder, the user embedding E is initially passed
through a linear layer to derive K, V, and K′ as follows:

K = WKE, V = WV E, K′ = WK′
E, (6)

where WK , WV , and WK′
are matrices of learnable param-

eters. The global embedding e = 1
N

∑N
n=1 en is computed

to effectively capture the overall network state. The derived
values of K, V, and K′, along with e, are then utilized in
subsequent iterations of the decoder.

As shown in Fig. 3, the decoder performs in an it-
eration mode and generates an N users’ SIC ordering
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Fig. 3: The schematics of the proposed ASOPA framework.

π = [π1, π2, ..., πN ]. For each iteration t ∈ [1, 2, ..., N ],
the decoder takes the last decoded user’s index πt−1 and
decides the current decoded user’s index πt.

Firstly, the concatenation module concatenates an input
vector

[
e, eπt−1

]
that contains the global information and

the information of the previously decoded users. eπt−1

denotes the previous decoded user’s embedding. The em-
bedding eπt−1

of the input vector changes with iteration,
which captures the user preferences on the SIC ordering.
When decoding the first user with no previous decoded
user, e0 is set as the learnable parameter vector.

Secondly, the masked multi-head attention layer gener-
ates a feature vector ut that involves the query, keys, and
values initially introduced in [55]. The keys K and values V
are obtained in (6), while the single query is variable input
computed as follows:

qt = WQ
[
e, eπt−1

]
, (7)

where WQ are learnable parameters matrices. The multi-
head attention mechanism is described in Appendix A and
omitted for brevity. Then the output of the masked multi-
head attention layer can be calculated as

ut = softmax
(

mask
(
qt

TK√
dk

))
V, (8)

where dk is the dimension of q, the softmax function can
refer to equation (4) of Appendix A, and the mask function
can be expressed as:

mask
(
qt

Tki√
dk

)
=

{
−∞ if i ∈ {π1, π2, ..., πt−1},
qt

Tki√
dk

otherwise ,
(9)

where ki denotes the i-th element of the keys K. At each
iteration t, the users selected in previous iterations are
masked to guard that each user’s index appears precisely
once in π.

Thirdly, the single-head attention layer is used to gener-
ate the probability of users being selected at time t. ℓt can
also be considered the similarity between the single query
and the keys of the single-head attention layer. The keys K′

is obtained in (6), and the single query q′
t is computed as

follows:
q′
t = WQ′

ut, (10)

where WQ′
are learnable parameters matrices. Then, ℓt can

be derived as

ℓt = softmax
(

mask
(

clip
(
q′
t
TK′

√
dk

)))
, (11)

where the clip function can clip the result within [−10, 10]
by the tanh function to avoid the probability of each selected
user being too large or too small [53].

Finally, the selection module selects the user to be de-
coded based on ℓt. In the inference phase, the selection
module works in the greedy mode. Specifically, the selection
module greedily selects the one with the greatest probability
to be the t-th decoded user, as

πt = argmax
n

ℓt,n. (12)

Up to now, the decoder operation at iteration t is completed.
Upon repeating the aforementioned steps N times in the

decoder, we can compile all πt to form the SIC decoding
order π:

π = [π1, . . . , πN ]. (13)
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Fig. 4: The process of iteratively determining the SIC order-
ing in ASOPA.

4.2.3 Step-by-Step SIC Ordering Example
To illustrate the iterative generation of the SIC ordering, we
provide an example involving 5 users as shown in Fig. 4.

The encoder takes the five users’ information X =
[x1,x2, . . . ,x5] as input, and correspondingly calculate the
users’ embedding E = [e1, e2, . . . , e5] and the global em-
bedding ē = 1

5

∑5
n=1 en.

The decoder then iteratively generates the first three SIC
orderings of five users as follows:

1) In the first iteration (t = 1), the decoder inputs
[e, e0], computes the probabilities ℓt using Equa-
tion (11), and selects the user with the highest
probability for the first decoding. In this example,
user 2 has the highest probability (ℓ1,2 = 0.4187)
and is selected as π1 = 2.

2) In the second iteration (t = 2), the decoder takes the
global embedding ē and the embedding of the first
decoded user (e2) as inputs [e, e2], and recalculates
the probabilities ℓt. As user 2 has already been
selected, its probability is masked and set to zero
(ℓ2,2 = 0). The highest probability in this iteration is
ℓ2,1 = 0.4728, leading to the selection of user 1 as
π2 = 1.

3) In the third iteration (t = 3), the decoder inputs
[e, e1], and recalculates the probabilities ℓt. With the
probabilities of the previous selected users masked
(ℓ3,2, ℓ3,1 = 0), user 5 has the highest probability
(ℓ3,5 = 0.7953) in this iteration and thus user 5 is
selected as π3 = 5.

This procedure is repeated for two more iterations until
the SIC decoding order for all five users is determined.
The specific probabilities ℓt,n of all users over iterations are
shown in Table 2.

4.3 Power Allocation Under Given SIC Ordering
In this subsection, we design a convex transformation al-
gorithm for the power allocation problem under given SIC
ordering. Referring to Fig. 3, the actor network of ASOPA
only generates SIC ordering without considering transmit
power allocation and the corresponding constraints. To ob-
tain the corresponding power allocation and evaluate the
SIC ordering, we solve the power allocation subproblem and
obtain the achieved network utility as follows.

Upon determining the SIC ordering π, the sub-problem
P1 is addressed to identify the optimal power allocation

satisfying the constraints and subsequently calculate the
network utility R(π|X) for the specified SIC ordering.
Given that the data rate Rn for each user is non-convex,
P1 is inherently a non-convex problem. To tackle this, we
employ variable substitution to transform P1 into a convex
problem. The details of this transformation and the proof
of its convexity are provided in Appendix B. We solve the
transformed version of P1 using the interior-point method
[56] of the CVX solver. The solution of P1 yields the optimal
power allocation p under the given SIC ordering π satis-
fying the constraints. Following this, ASOPA outputs the
network decision (π,p) based on the instantaneous user
information X.

Consequently, the network utility R(π|X) can be cal-
culated. This calculated utility provides essential feedback
on the effectiveness of the SIC ordering under the current
policy. As such, the resource allocation module acts as a
critic in training the actor network, playing a crucial role in
evaluating these generated SIC orderings.

Notice that ASOPA can be migrated to any other NOMA
optimization problem with the required resource allocation
problem. The extensibility of ASOPA is discussed in follow-
ing Sec. 5.

4.4 Policy Update
The red dotted lines in Fig. 3 represent the policy update
process. For an input instance X, our goal is to maximize the
expected sum of weighted users’ logarithmic throughput, as

Eπ∼zθ(·|X)R (π|X) . (14)

where zθ (π|X) =
∏N

t=1 ℓt,πt
is a measure of the likelihood

that the generated SIC decoding order π is the optimal
sequence given the current network state X.

To explore more SIC orderings in the training phase, at
the selection module of the decoder network, the user based
on the probability ℓt at the iteration t is sampled [53] as

πt ∼ ℓt. (15)

After iterating t ∈ [1, 2, ..., N ], we obtain the SIC ordering π.
Then, the gradient of the actor network θ can be formulated
by the REINFORCE algorithm [57] as

E
(
R (π|X)∇θ log zθ (π|X)

)
. (16)

However, the REINFORCE algorithm may be of high vari-
ance and thus produce slow learning [59]. To improve the
performance of DRL, the REINFORCE algorithm with base-
line [59] is adopted in this paper. As illustrated in Fig. 3, the
baseline network θ′, which uses the actor network parame-
ters from the previous epoch, serves as a baseline to generate
SIC orderings πBL and subsequently calculates the network
utility R(πBL|X). The difference between R(πBL|X) and
R(πBL|X) is utilized to train the current actor network θ.

Consequently, the gradient of the REINFORCE algo-
rithm with baseline can be expressed and then approxi-
mated by Monte Carlo sampling as

E
((
R (π|X)−R(πBL|X)

)
∇θ log zθ (π|X)

)
≈ 1

|τ |

|τ |∑
i=1

((
R (πi|Xi)−R

(
πBL
i |Xi

))
∇θ log zθ (πi|Xi)

)
.

(17)
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TABLE 2: Case study - Inference of the decoder

Input
Output

ℓt Decoded user πtuser 1 user 2 user 3 user 4 user 5
t = 1 [e, e0] 0.2727 0.4187 0.0223 0.0295 0.2568 π1 = 2
t = 2 [e, e2] 0.4728 0 (masked) 0.0399 0.0528 0.4345 π2 = 1
t = 3 [e, e1] 0 (masked) 0 (masked) 0.0893 0.1154 0.7953 π3 = 5
t = 4 [e, e5] 0 (masked) 0 (masked) 0.4520 0.5480 0 (masked) π4 = 4
t = 5 [e, e4] 0 (masked) 0 (masked) 1 0 (masked) 0 (masked) π5 = 3

where |τ | is the batch size, Xi is the i-th input, πi is the
SIC ordering produced by the actor network based on (15),
and πBL

i is the i-th SIC ordering produced by the baseline
network. In practice, the expectation in Equation (17) is ap-
proximated by averaging over a batch of uniformly sampled
input instances {Xτ}τ∈τ , where τ represents the index set
of these sampled instances. After obtaining the gradients
(17), Adam [58] is applied as the optimizer to update the
actor network’s parameters θ.

Our reinforcement learning algorithm for training the
actor network is outlined in Algorithm 1. To facilitate this
process, an empty memory with limited capacity is estab-
lished to store past samples. As new samples are received
in each time slot, policy updates are executed infrequently.
For every policy update, a random batch of samples is
selected from this memory to train the actor network. The
baseline network, on the other hand, undergoes updates
every epoch which consists of M times policy update. This
update process involves copying the parameters from the
actor network to the baseline network, as denoted by θ′ = θ.
This systematic approach ensures continuous adaptation
and optimization of the actor network’s performance based
on the latest data.

4.5 Computation Complexity
ASOPA operates through two distinct processes: the infer-
ence process and the policy update process. During each
time slot, ASOPA’s inference process is activated to generate
Successive Interference Cancellation (SIC) orderings and
power allocations. Contrarily, the policy update process can
be carried out less frequently, and can also be executed
in parallel on different servers in practical applications.
Given the crucial role of inference delay in determining the
feasibility of field deployment, the inference complexity of
ASOPA is a key area of interest.

The inference process is detailed in lines 4-5 of Algo-
rithm 1. Line 4 involves generating the SIC ordering from
the actor network, where the computational complexity is
primarily driven by matrix multiplications in the attention
mechanism. The complexity of interactions between the
query, key, and value is O(HDN2), with H representing
the number of heads in multiple attention mechanisms, D
the dimension of these components, and N the number of
users. Line 5 addresses the generation of power allocation
by solving subproblem P1, which is reformulated into a
convex problem P2 and solved using the cvxopt solver with
the Interior Point Method. The computational complexity of
this method is O(N3.5) [60]. Therefore, the overall inference
complexity of ASOPA is O(N3.5). In Section 6.3, we will
numerically demonstrate that ASOPA meets the real-time
requirements of NOMA networks.

Algorithm 1: Training ASOPA
input : Users’ weights, maximum transmit power,

and channel gains at each time slot s
Xs = {(wi, P

max
i , gi)}i∈N , the training

interval δT of the actor network, the update
epoch δE of the baseline network;

output: SIC order π and power allocation p;
1 Initialize the actor network’s parameters θ;
2 Initialize the baseline network’s parameters θ′ ← θ;
3 for epoch = 1, · · · , E do
4 Generate the SIC ordering π for X of the epoch

from the actor network based on (15);
//Inference of ASOPA for each sample

5 Obtain p and R (π|X) for X of the epoch by
solving problem P1;

6 for batch = 1, · · · ,M do
7 Uniformly sample a batch of samples

{Xτ}τ∈τ from prvious samples of the
epoch; //Infrequently policy update of
ASOPA can be executed in parallel on
different servers in practical applications

8 Generate the SIC ordering {πτ}τ∈τ from the
actor network based on (15);

9 Generate the baseline SIC ordering {πBL
τ }τ∈τ

from the baseline network based on (12);
10 Obtain {

(
R (πτ |Xτ ) , R

(
πBL
τ |Xτ

))
}τ∈τ by

solving problem P1;
11 Calculate the gradient ∇θS(θ) from (17)

based on {
(
R (πτ |Xτ ) , R

(
πBL
τ |Xτ

))
}τ∈τ ;

12 Update the actor network’s parameters θ
using the Adam optimization algorithm
based on the calculated gradients ∇θ ;

13 end
14 Update the baseline network’s parameters

θ′ ← θ;
15 end

5 EXTENSION SCENARIOS

ASOPA can be easily extended to various NOMA scenarios.
To migrate to a new scenario, only the inputs of the actor
network and baseline network need to be modified, while
the structure of the actor network used to determine the SIC
ordering remains unchanged. Correspondingly, the resource
allocation subproblems are adjusted and re-solved for spe-
cific NOMA scenarios, ensuring optimal performance and
efficiency under different network conditions.

In this section, we evaluate the extension scenarios
of ASOPA, including NOMA networks with imperfect
CSI, NOMA networks with multiple-antenna setups, and
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User 1

User 2

User N

Mr antennas

Fig. 5: A NOMA network with multiple-antenna setup at
the BS.

NOMA networks with multiple-BS setups.

5.1 Multiple Antenna

In this subsection, we evaluate ASOPA in NOMA networks
with multiple-antenna setups, since multiple-antenna tech-
nology has advantages in improving spectrum and energy
efficiency [61], [62]. The uplink multiple-antenna system
consists of a Mr antennas BS and N single-antenna users
as shown in Fig. 5. The received signal Y ∈ CMr×1 of BS is

Y = HS+ n, (18)

where H ∈ CMr×N denotes the channel state from users
to the receive antennas of BS, S = [s1, s2, ..., sN ]

T denotes
the transmit signal matrix, and n ∼ CN

(
0, σ2I

)
represents

the additive white Gaussian noise at the BS side. CN (0, σ2)
denotes the complex Gaussian distribution with mean zero
and the variance σ2. The linear equalization, such as zero-
forcing (ZF) or minimum-mean-square-error (MMSE), is
used in multiple-antenna scenarios to symbol-by-symbol
detection. According to the states of multiple-antenna sce-
nario, ASOPA correspondingly generates the SIC ordering
and power allocation. The specific steps are as follows.

The equalization matrix V ∈ CN×Mr for ZF [61] or
MMSE [62] can be expressed as [63]

V =

{
PHH(HPHH + σI)

−1
when MMSE,

HH(HHH)
−1

when ZF,
(19)

where P denotes the diagonal matrix diag(p1, p2, . . . , pN ).
Then the received estimated signal is

Ŝ = VY = VHS+Vn, (20)

and the estimated value of user n is

ŝn =
√
pnvnhnsn +

∑
n′ ̸=n

√
pn′vnhn′sn′ + vnn, (21)

where hn ∈ CMr×1 denotes the channel states from user n
to the receive antenna of the BS, and vn ∈ C1×Mr denotes
the n-th row of V, which can be given by

vn=

pnh
H
n

( ∑
ξ(n′)≥ξ(n),∀n′∈N

pnhn′hH
n′+σI

)−1

when MMSE,

hH
n (hnh

H
n )

−1
when ZF,

(22)

According to the estimated value of user n, its achieved
transmit rate can be calculated by

Rn = log2

1+
|vnhn|2pn∑

ξ(n′)>ξ(n),∀n′∈N
|vnhn′ |2pn′+|vn|2σ2

 . (23)

When using ZF method, the equalization matrix V in
(22) is independent of p, so that the power allocation prob-
lem can be transformed into a convex as appendix E and
solved by the CVX solver.

However, when using the MMSE method, the equal-
ization matrix V depends on the variable p, making the
power allocation problem of MMSE intractable and non-
convex. To address this difficulty, alternative optimization is
employed to decompose the non-convex problem into two
subproblems: one for V and one for p. When V is fixed,
the power allocation problem can be transformed into a
convex problem, as shown in Appendix E. Therefore, the al-
ternative optimization starts with an initial power allocation
to calculate the corresponding equalization matrix. Using
this equalization matrix, it then applies the convex method
to determine a new power allocation. With this updated
power allocation, the equalization matrix is recalculated.
This process repeats until the difference between successive
power allocations is smaller than the set threshold.

Different from the single antenna scenario, the chan-
nel gain between the BS and a user n is a complex
value, whose real and imaginal parts are denoted as
hr
n = {hr

1,n, ..., h
r
Mr,n
} and hc

n = {hc
1,n, ..., h

c
Mr,n
}, re-

spectively. To tackle multiple-antenna scenarios, ASOPA
modifies its input from X = {(wn, P

max
i , gn)}n∈N to

X = {(wn, P
max
n ,hr

n,h
c
n)}n∈N . The rest of the ASOPA

structure remains the same as one illustrated in Fig. 3.

5.2 Imperfect Channel
In this subsection, we assess the impact of estimation er-
rors on the performance of ASOPA. For the perfect CSI
scenario, the channel gain is expressed as gn = gn|αn|2,

where gn = Ad

(
3·108
4πfcbn

)be
and αn ∼ CN (0, 1) account

for path loss power gain and the Rayleigh fading channel
coefficient between BS and n-th user, respectively. Since the
path loss coefficient are large-scale fading factors and are
slowly varying, we assume that the path loss coefficient
gn between BS and each user can be estimated perfectly.
However, in dynamic and complex wireless environments,
accurately acquiring time-varying Rayleigh fading channel
gains is challenging. Following the approaches in [64], [65],
the Rayleigh fading channel gain is modeled as

αn = α̂n + ϵn (24)

where αn is the realistic Rayleigh fading channel coefficient
between BS and n-th user, ĥn ∼ CN

(
0, 1− σ2

ϵ

)
denotes the

estimated channel coefficient, and ϵn ∼ CN
(
0, σ2

ϵ

)
is the

estimated error. Note that the parameter σ2
ϵ indicates the

quality of channel estimation, and keeps constant as [66],
[67]. We assume that α̂n and ϵn are uncorrelated.

If the perfect CSI is known, the maximum achievable
data rate between BS and n-th can be written as

cn = W log2(1 + ϕn) (25)
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where

ϕn =
pn|αn|2gn∑

ξ(n′)>ξ(n),∀n′∈N
pn′ |αn|2gn′ +N0

. (26)

In (26), ϕn denotes the signal-to-interference-plus-noise ratio
(SINR) of the user n. In practice, the BS can only obtain the
estimated fading channel coefficient α̂n. The scheduled data
rate with imperfect CSI can be expressed as

rn = W log2(1 + ϕ̂n) (27)

where

ϕ̂n =
pn|α̂n|2gn∑

ξ(n′)>ξ(n),∀n′∈N
pn′ |α̂n|2gn′ +N0

. (28)

However, the scheduled data rate with imperfect CSI may
easily exceed the maximum achievable data rate, i.e., rn >
cn. To measure the performance of this case, we intro-
duce outage probability as a metric [68], [69]. Therefore,
the weighted proportional fairness function with outage

probability can be expressed as
N∑

n=1
wn ln rn Pr[rn ≤ cn|α̂n].

Pr[rn ≤ cn|α̂n] denotes the probability of a case when the
scheduled data rate rn is less than or equal to the maximum
data rate cn under the estimated channel coefficient α̂n. The
optimization problem can be reformulated as

max
π,p

N∑
n=1

wn ln rn Pr[rn ≤ cn|α̂n] (29a)

s.t. Pr[cn < rn|α̂n] ≤ ϵout,∀n ∈ N , (29b)
0 < pn ≤ Pmax

n ,∀n ∈ N , (29c)
π ∈ Π, (29d)

where (29b) is introduced to satisfy the channel outage
probability requirement ϵout for all users in the imperfect
CSI scenario. Due to the probability constraints (29b), this
problem (29) turns into a non-convex problem and cannot
easily be optimally solved in polynomial time [68]. To
tackle this problem efficiently, we transform the probabilistic
mixed problem into a non-probability problem as

max
π,p

N∑
n=1

wn ln(1− ϵout)r̃n (30a)

s.t. 0 < pn ≤ Pmax
n ,∀n ∈ N , (30b)

π ∈ Π, (30c)

where r̃n = W log2(1 + ϕ̃n), and the transformed SINR ϕ̃n

can be expressed as

ϕ̃n =
ϵoutF

−1
|gn|2(ϵout/2)pn

ϵoutσ2
ϵ +

∑
ξ(n′)>ξ(n),∀n′∈N

2(|ĝn′ |2 + σ2
ϵ )pn′

, (31)

where F−1
|gn|2(ϵout/2) denotes the inverse cumulative distri-

bution function of a noncentral chi-square random variable
with 2 degrees of freedom and non-centrality parameter
2|ĝn|2/σ2

ϵ . The details of the probabilistic mixed problem
transformation are shown in Appendix D.

Notice that once the SIC ordering is determined, the
power allocation problem of (61) can be transformed into
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Fig. 6: The system model of the dual-BS NOMA networks.

a convex problem as well as Appendix B and solved by
the CVX solver. Thus, ASOPA can be applied to solve it by
simply modifying its input from X = {(wn, P

max
i , gn)}n∈N

to X = {(wn, P
max
n , |α̂n|2gn)}n∈N

5.3 Multiple BS

In this subsection, we assess the performance of ASOPA
in NOMA networks with multiple BSs, represented by the
set B, each containing Nb users where b ∈ B. In scenarios
involving multiple BSs, each user experiences inter-cell in-
terference from users linked to other BSs. To quantify this
interference, the channel gain from a user n in BS b to
another BS b′ is defined as h(b)

n,b′ . Specifically, the superscript
(b) indicates that user n is associated with BS b.

To accommodate the multiple-BS scenario, it is
straightforward to adjust the input of ASOPA to
X = {(w(b)

n , P
(b)
n,max, g

(b)
n ,h

(b)
n )}n∈Nb,b∈B, where h

(b)
n =

{h(b)
n,b′}b′∈B\{b}. The resource allocation problem is still con-

vex and can be solved using the CVX solver. The detailed
setup of the multiple-BS scenario is in Appendix E.

The addition of inter-cell interference, however, adds
complexity to the SIC ordering problem. In ASOPA, the
next decoding user is iteratively chosen based on the highest
probability from Equation (12), under the assumption that
all users are within the same BS. However, in scenarios
involving multiple BSs, the SIC decoding order is specific to
each BS. Comparing the probabilities of users from different
BSs lacks physical insight, as such comparisons are not
meaningful in this context. To overcome this issue, we intro-
duce enhance the decoding process by introducing an addi-
tional masking mechanism in the decoder. This mechanism
allows for the generation of appropriate SIC orderings for
users across all BSs. Specifically, the decoder generates the
SIC ordering for users associated with the current BS while
effectively masking the users of other BSs. This approach
ensures efficient decoding order determination in multi-BS
NOMA networks without needing to modify Equation (12).

To demonstrate the effectiveness of the enhanced mask
mechanism in ASOPA, let’s consider a case study outlined in
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TABLE 3: Case study - The mask mechanism in ASOPA in a dual-BS NOMA network

Input
Output

ℓ
(1)
t ℓ

(2)
t Decoded user π(b)

tuser 1 user 2 user 3 user 1 user 2 user 3

t = 1 [e, e0] 0.3997 0.2890 0.3114 0(masked) 0 (masked) 0 (masked) π
(1)
1 = 1

t = 2 [e, e
(1)
1 ] 0 (masked) 0.4839 0.5161 0 (masked) 0 (masked) 0 (masked) π

(1)
2 = 3

t = 3 [e, e
(1)
3 ] 0 (masked) 1 0 (masked) 0 (masked) 0 (masked) 0 (masked) π

(1)
3 = 2

t = 4 [e, e
(1)
2 ] 0 (masked) 0 (masked) 0 (masked) 0.0731 0.4698 0.4571 π

(2)
1 = 2

t = 5 [e, e
(2)
2 ] 0 (masked) 0 (masked) 0 (masked) 0.0407 0 (masked) 0.9593 π

(2)
2 = 3

t = 6 [e, e
(2)
3 ] 0 (masked) 0 (masked) 0 (masked) 1 0 (masked) 0 (masked) π

(2)
3 = 1

Table 3. As depicted in Fig. 6, we consider a dual-BS NOMA
network, where each BS contains three users, as Nb = 3 for
all b ∈ B = {1, 2}. Consequently, it takes six iterations for
ASOPA to establish the SIC ordering for all users. Utilizing
the mask mechanism, ASOPA initially decodes the users in
BS 1 during iterations t = 1, 2, and 3, and then shifts to de-
coding users in BS 2 for iterations t = 4, 5, and 6. In the first
iteration (t = 1), the algorithm calculates the probabilities
ℓ
(1)
1 for users in BS 1 from Equation (12) and simultaneously

masks the probabilities of users in BS 2 by setting ℓ
(2)
1 = 0.

Given that user 1 in BS 1 has the highest probability of
0.3997, it is selected as the first decoded user, π(1)

1 = 1. In the
next two iterations, users in BS 2 remain masked, indicated
by ℓ

(2)
2 = 0 and ℓ

(2)
3 = 0. Conversely, when decoding the

SIC ordering for users in BS 2 during iterations t = 4, 5,
and 6, the users in BS 1 are masked with ℓ

(1)
t = 0. This

mechanism enhances the efficiency and accuracy of ASOPA
in multi-BS NOMA networks by systematically focusing on
one BS at a time, thereby streamlining the decoding process.

6 NUMERICAL RESULTS

In this section, we evaluate the proposed ASOPA algorithm
through simulations in uplink NOMA networks. In these
simulations, users are uniformly deployed within a 100-
meter radius circle, with a BS at the center. The average
channel gain, gn, adheres to the free-space path loss model,

following gn = Ad

(
3·108
4πfcbn

)be
[43], where Ad = 4.11

represents the antenna gain, fc = 915 MHz is the carrier
frequency, bn is the distance between each user and the
BS, and be = 2.8 is the path loss exponent. Each user n’s
wireless channel gain, gn, is modeled as a Rayleigh fading
channel, expressed as gn = gn|αn|2, with |αn|2 being an
independent random channel fading factor following an
exponential distribution with unit mean. The system param-
eters include a bandwidth B of 1 MHz and a noise power
spectral density of −174 dBm/Hz. Each user’s maximum
power is capped at Pmax

n = 1 Watt, and the user weight wn

is chosen from the set {1, 2, 4, 8, 16, 32}.
For the neural network training, the samples X arrive

in each time slots and are stored in a replay memory of
size 1280. The number of users N in each sample varies
uniformly between 5 and 10. The batch size for once policy
update is set to |τ | = 64, and each training epoch consists
of M = 20 times policy updates. After each training epoch,
the baseline network updates its parameters θ′. The learning
rate for the Adam optimizer is set at 1e-4, and the embed-
ding dimension for users in the actor network is de = 128.

The simulations are carried out on a desktop with an Intel
Core i7-10700 2.9 GHz CPU, 32 GB memory, and an NVIDIA
GeForce RTX 3060 Ti GPU, ensuring robust computational
performance. The source code for ASOPA is accessible at
https://github.com/Jil-Menzerna/ASOPA.

6.1 Convergence Performance

In Fig. 7, we evaluate the effect of different parameters on
the convergence performance of ASOPA, including different
learning rates, batch sizes, and embedding dimensions.

Fig. 7(a) shows the effect of different learning rates. We
can see that a significant learning rate (1e-2 or 1e-3) causes
the algorithm to converge to a local optimum, but a small
learning rate (1e-5) results in slow convergence. Hence, the
learning rate is set as 1e-4.

Fig. 7(b) shows the effect of different batch sizes. A small
batch size (8 or 16) leads to high variance in the network
utility. The larger the batch size, the more memory space
the algorithm consumes. Also, a large batch size may reduce
the randomness of gradient descent and lead to the local
minimum value. Hence, the batch size is set to 64.

Fig. 7(c) shows the effect of different embedding di-
mensions de. A small embedding dimension (16) cannot
adequately characterize features and thus degrades the
performance and convergence speed. A large embedding
dimension (256) may overfit the training set, resulting in
unstable performance. Hence, the embedding dimension is
set as de = 128.

Overall, the simulation results in Fig. 7 show that the
proposed ASOPA can converge under the set parameters.

6.2 Network Utility Performance

To evaluate the SIC ordering generated by ASOPA, we
compare it with five baseline algorithms:

1) Exhaustive search [24]: This scheme calculates the
network utility for all N ! SIC orderings and obtains
the optimal network utility.

2) Tabu search [34]: This scheme initiates a SIC order-
ing and swaps any two users’ ordering to search.
For each search iteration, it tries all possible swap-
ping of two users for a SIC ordering and selects
the best one for the next search iteration. To the
best of our knowledge, the Tabu search algorithm
presented in [34] is the state-of-the-art algorithm
for dynamic SIC ordering, albeit at the cost of high
computational complexity.
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Fig. 7: Convergence performance of ASOPA under different algorithm parameters when N = 10.
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Fig. 8: The network utility under different numbers of users.

3) Meta-scheduling [21]: This scheme sequentially
adds and inserts each user into an order. It tries
every possible insertion position for each insertion
and greedily chooses the one with the greatest util-
ity gain.

4) Weight descending [23]: The static SIC ordering
follows the descending order of users’ weights.

5) Channel descending [25]: The static SIC ordering
follows the descending order of users’ channel
gains.

After those baseline algorithms determine the SIC order-
ing, the optimal transmit power is determined by the power
allocation method proposed in Section 4.3.

Fig. 8 presents the network utility achieved by different
algorithms for varying numbers of users N . Exhaustive
search achieves optimal performance with N = 5 and
N = 8 but not N = 10 due to the unacceptable running time
for enumerating 10! possible SIC ordering. When N = 5
and N = 8, through sufficient search iteration, Tabu search
achieves 99.61% and 99.19% of the optimal performance
obtained by exhaustive search. ASOPA achieves 97.54% and
97.60% of the optimal performance, which is close to the
performance of Tabu search. When N = 5, N = 8, and
N = 10, ASOPA is over 10% higher in network utility
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Fig. 9: The performance of ASOPA in large-scale scenarios
when N is between 10 and 20.

than the other three baseline algorithms besides Tabu search,
respectively.

Fig. 9 provides further evaluation of ASOPA in large-
scale scenarios, specifically where the number of users N
varies from 10 to 20. In Fig. 9(a), ASOPA demonstrates a
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consistent convergence rate of around 50 epochs, regardless
of the specific values of N . Meanwhile, Fig. 9(b) illustrates
that ASOPA consistently achieves average 95% performance
of Tabu search, and outperforms the other three baseline
algorithms in these large-scale scenarios, aligning with the
observations from Fig. 8. An interesting observation is
that for N > 16, the channel descending algorithm sur-
passes Meta-scheduling in terms of network utility. This
comparison further underscores that network utility tends
to decline when the number of users in a NOMA system
exceeds a certain threshold, particularly when N > 16. The
decline of network utility can be attributed to the concave
logarithm throughput function lnRn in network utility in
(3). Intuitively, as the number of users increases, the sum
rate

∑N
n=1 Rn tends to saturate, leading to a decrease in the

sum of logarithms
∑N

n=1 lnRn due to Jensen’s inequality.
Overall, the results depicted in Fig. 9 confirm ASOPA’s effec-
tiveness in handling large-scale scenarios and its superiority
over all baseline algorithms.

In Fig. 10, we further compare the performance of
ASOPA and baseline algorithms over 1000 independent
samples when N = 5. Fig. 10(a) displays the mean, median,
confidence interval, and outliers of the normalized network
utility for different algorithms. The normalized network
utility is the ratio of the network utility achieved by an
algorithm to the optimal network utility obtained by ex-
haustive search. We observe that the medians of Tabu search
and ASOPA are close to 1, and the confidence intervals of
Tabu search and ASOPA are over 99% and 97%, respectively.
Although some outliers affect the mean of ASOPA, it still
outperforms the baseline algorithms besides Tabu search. In
Fig. 10(b), we present the hit rate of the top 10 maximum
network utilities for ASOPA and baseline algorithms. The
hit rate is defined as the percentage of times that an algo-
rithm generates an SIC ordering that appears in the top 10
maximum network utilities obtained by exhaustive search.
We observe that ASOPA achieves hit rates of over 55% and
70% for the top 5 and top 10 maximum network utilities, re-
spectively. The results in Fig. 10 further confirm that ASOPA
can achieve near-optimal network utility performance.

Fig. 11 shows the network utility under different max-
imum distances of users to the BS. The network util-
ity achieved by all algorithms decreases slightly as the
maximum distance increases. Within the distance range
[100, 300] m, ASOPA achieves performance close to that
of Tabu search algorithm and outperforms the other three
baseline algorithms by an average of 10%.

Fig. 12 demonstrates how the network utility varies with
different levels of noise power spectral densities. As the
noise power spectral density increases, the network utility of
all algorithms decreases, and the difference between ASOPA
and baseline algorithms diminishes. At a noise power spec-
tral density of -144 dBm/Hz, ASOPA and the channel de-
scending algorithm exhibit the slightest difference of 4.27%.
This result indicates that when the users’ channel quality
is inferior, the users’ channel state significantly impacts the
SIC ordering.

6.3 Execution Latency
In order to meet the real-time requirement of NOMA net-
works, the execution time of the SIC ordering and power
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Fig. 10: The distribution of the network utility achieved by
different algorithms.
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of users.

allocation algorithm need be much smaller than the slot
duration, i.e., two seconds [43]. To evaluate the efficiency
of ASOPA and baseline algorithms, we test the average
execution time under different numbers of users, and the
results are shown in Fig. 13 and Table. 4.

The execution time of ASOPA is close to that of the
weight descending algorithm and the channel descending
algorithm, i.e., 24 ms, 25 ms, and 23 ms for a ten-user NOMA
network. The execution delay is scalable with the network
size N and is acceptable for field deployment. ASOPA

TABLE 4: The average execution latency of different algo-
rithms (ms)

Algorithms N=5 N=8 N=10 N=14 N=20

Exhaustive search 823 741 933 / / /

Tabu search 252 1 717 5 643 45 122 492 677

Meta-scheduling 84 349 771 3 025 14 737

Weight des. 7 15 25 60 165

Channel des. 7 14 23 52 132

ASOPA 8 16 24 53 152
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Fig. 14: The network utility under different numbers of users
for multiple-antenna NOMA networks.

only takes 152 ms even for a twenty-user NOMA network.
However, the execution latency of Meta-scheduling and
Tabu saerch significantly increases with the network size
N , consuming 771 ms and 5643 ms for a ten-user NOMA
network, respectively. The execution time of exhaustive
search is exponentially increasing with N . It takes 823 ms
and 6630 ms even for NOMA networks with five-user and
six-user, respectively. According to Fig. 13 and Table. 4,
Tabu search fails to cope with real-time execution when
N > 7, while Meta-scheduling fails at N > 10. In contrast,
ASOPA maintains the same latency as the static algorithm
for all the number of users. In particular, is three orders
of magnitude lower than Tabu search and two orders of
magnitude lower than Meta-scheduling when N = 20.

ASOPA uses the actor network to generate the SIC or-
dering, whose time consumption is negligible. The primary
time overhead of various algorithms comes from solving
the power allocation problem by the interior-point method.
Exhaustive search solves the power allocation problem
N ! times. Meta-scheduling solves the power allocation
N(N + 1)/2 times. Tabu search solves the power allocation
IN(N + 1)/2 times, where I denotes the number of search
iterations. ASOPA, the weight descending algorithm, and
the channel descending algorithm solve the power alloca-
tion problem once. Therefore, the proposed ASOPA executes
efficiently like the static SIC ordering algorithms, while
performing as well as the exhaustive search algorithm.

Regarding the training latency, ASOPA’s policy update
is conducted infrequently and in parallel with the inference
process, as detailed in Algorithm 1. Extensive evaluations
have shown that the duration of a single policy update is
approximately one second when the number of users N is
10 and training batch size is 64. On average, the duration of
the policy update process is less than 20 ms for each sample.
Therefore, the policy update process of ASOPA can feasibly
be executed online for NOMA networks, ensuring that
the system remains up-to-date and responsive to changing
network conditions.
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6.4 Extension Scenario

Fig. 14 presents the network utility achieved by different
algorithms for varying numbers of users N in multiple-
antenna scenario. Specifically, we consider a NOMA net-
work with two antennas at the BS. All algorithms use the
minimum-mean-square-error (MMSE) [62] linear equaliza-
tion to detect symbols. For N = 5, the optimal network
utility was calculated using exhaustive search. Remarkably,
ASOPA achieves 90.94% of the optimal network utility,
with only a 5% performance degradation compared to the
Tabu search algorithm. Furthermore, ASOPA consistently
outperforms the other three baseline algorithms across all
settings, which agrees the observation in Fig. 8. Due to the
complexity of user state in multiple antenna scenarios, the
performance of ASOPA can be further optimized in future
work.

Fig. 15 shows how network utility varies with different
variances of estimated error under imperfect CSI condi-
tions with five users. ASOPA consistently achieves over
98% of the optimal performance obtained through exhaus-
tive search and achieves 99% performance of Tabu search.
Specifically, when σ2

ϵn = 0.025, ASOPA’s network utility is
6.75%, 12.49%, 13.44% higher than that of Meta-scheduling,
channel descending and weight descending, respectively.
These results demonstrate ASOPA’s robustness and effec-
tiveness in scenarios with imperfect CSI, highlighting its
ability to adapt to varying degrees of channel estimation
errors.

Fig. 16 presents the network utility achieved by various
algorithms for different pairs of users N1-N2 in dual-BS
NOMA networks. From the figure, it’s evident that ASOPA
performs comparably to the exhaustive search method
and surpasses other benchmark algorithms. Notably, Tabu
search in [34] and Meta-scheduling proposed in [21] is not
applicable in this scenario and thus is not included in the
comparison. Particularly, when each BS has three or four
users, ASOPA achieves 99.45% and 99.80% of the optimal
performance determined by exhaustive search, respectively.
The network utility reaches its peak when each BS is serving
six users. This optimal network utilization can be attributed
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Fig. 16: The network utility under different numbers of users
in a dual-BS NOMA network.

to the increasing inter-cell interference with the number of
users and the logarithmic throughput function in network
utility. As the number of users increases, although the sum
throughput saturates, some users’ weighted logarithmic
throughput even becomes a small negative value (say −10),
which leads to a decline in network utility. As the number of
users per BS rises to ten, ASOPA’s performance advantage
becomes more pronounced, showing a 27.69% higher net-
work utility compared to the channel descending algorithm.
These results highlight ASOPA’s effectiveness in adapting to
varying user densities in multi-BS NOMA networks.

7 CONCLUSION

This paper focuses on optimizing the sum-weighted log-
arithmic throughput in uplink NOMA-based wireless net-
works by jointly optimizing the SIC ordering and users’
transmit powers. To tackle this problem, we propose the
ASOPA framework, which innovatively combines DRL with
optimization theory. Key to ASOPA’s success is an attention-
based actor network, trained via reinforcement learning,
which effectively derives a near-optimal SIC ordering. Sub-
sequently, this is complemented by the application of opti-
mization techniques to allocate the optimal transmit power
for users. Simulation results show that ASOPA can achieve
near-optimal performance in a low execution latency. A
particularly noteworthy aspect of ASOPA is its extensibility;
the framework is adept at solving a range of optimization
challenges, particularly those that involve dynamic SIC or-
derings within the NOMA context.

Looking ahead, our aim is to evolve ASOPA for more
complex scenarios, including developing a distributed
framework for NOMA networks with multiple base sta-
tions, tackling the challenges of imperfect SIC decoding and
integrating the QoS constraints in our framework.

APPENDIX A
DETAILS OF THE MULTI-HEAD ATTENTION MECHA-
NISM

The input to the encoder is denoted as X. It is first trans-
formed into a de-dimensional space by a fully connected
feed-forward (FF1) layer. The output of the FF1 layer is then
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fed into a multi-head attention (MHA) layer and a feed-
forward (FF2) layer in sequence. Therefore, the encoding
process can be expressed as

ên = BN
(

FF1

(
xn

)
+ MHA

(
FF1

(
X1

)
, ..., FF1

(
Xn

)))
en = BN

(
ên + FF2

(
ên
))

.

(32)

For the MHA layer and the FF2 layer, they have the
residual connection (RC) and are followed by batch normal-
ization (BN). The details of each layer are shown as follows.

A.1 Attention Mechanism
We utilize the attention mechanism proposed in [55]. The
attention mechanism computes a weighted sum of values,
where the weight is determined by a compatibility function
based on a query and a set of keys. The query, keys, and
values are all embeddings. Specifically, we compute the
query qn, the key kn, and the value vn for each user n by
multiplying their respective embedding en with parameter
matrices WQ, WK , and WV . These parameter matrices
have sizes dk × de, dk × de, and dv × de, respectively, as

qn = WQen,kn = WKen,vn = WV en. (33)

Then we compute the compatibility un,j of user n’s query
qn with user j’s key kj :

un,j =
qn

Tkj√
dk

. (34)

From un,j , we can compute the attention weight an,j by a
softmax function:

an,j =
exp (un,j)∑N
j=1 exp (un,j)

. (35)

Finally, we compute the sum of weighted keys to get the
final message e′n:

e′n =
N∑
j=1

an,jvj . (36)

A.2 Multi-head Attention
Multi-head attention uses M groups of different parameters
WQ

m, WK
m and WV

m. We set M = 8 and dk = dv = de

M =
16, to get the messages, which are denoted as e′n,m,∀m ∈
{1, . . . ,M}, and use de × dv matrices WA

m to change their
size and then sum them up as the final message:

MHAn (e1, . . . , eN ) =
M∑

m=1

WA
me′n,m. (37)

A.3 Feed Forward Layer
There are two feed-forward layers in the encoder. The first
FF1 is just a fully connected layer with learnable parameters
W1 and b1:

FF1 (xn) = W1xn + b1. (38)

And the second feed-forward layer FF2 consists of two fully
connected layer and use a Relu activation after the first
connected layer:

FF2(ên) = W2,2Relu (W2,1ên + b2,1) + b2,2, (39)

where ên is the input for FF2, W2,1 and b2,1 are the
parameter matrix and bias of the first fully connected layer,
respectively, and W2,2 and b2,2 are the one of the second
layer, respectively.

A.4 Batch Normalization
We use batch normalization shown in [53]:

BN (en) = wbn ⊙ BN (en) + bbn, (40)

where wbn and bbn are learnable de-dimensional affine
parameters, ⊙ denotes the element-wise product, and BN
refers to batch normalization without affine transformation.

APPENDIX B
CONVEX TRANSFORMATION AND PROOF OF P1
For user’s transmit power pn > 0,∀n ∈ N , let pn =
eyn ,∀n ∈ N . We introduce an auxiliary variable νn for
user n and add a constraint to guarantee that the weighted
logarithmic throughput of user n is not less than νn. Then
the power allocation sub-problem P1 can be transformed
into the following convex problem

P2 : max
ν,y

N∑
n=1

νn (41a)

s.t. eyn ≤ Pmax
n , (41b)

wn ln log2

1 +
eyngn∑

ξ(n′)>ξ(n),∀n′∈N
eyn′ gn′ +N0

 ≥ νn,

(41c)
∀n ∈ N ,

where ν = [ν1, ν2, ..., νN ] and y = [y1, y2, ..., yN ]. It’s easy
to know that (41a) and (41b) are convex. Next, we will show
that (41c) is convex. First we convert (41c) as

eyngn∑
ξ(n′)>ξ(n),∀n′∈N

eyn′ gn′ +N0
≥ 2e

νn
wn − 1. (42)

Then we take the reciprocal of both sides and take the
natural logarithm of both sides, so we can get

ln


∑

ξ(n′)>ξ(n),∀n′∈N
eyn′ gn′ +N0

eyngn

+ ln

(
2e

νn
wn − 1

)
≤ 0.

(43)
The first term in the left-hand-side (LHS) is a log-sum-exp
function which is convex [52]. The second-order derivative
of the second term in the LHS is

ln 2

wn
2
e

νn
wn 2e

νn
wn

(
2e

νn
wn − ln 2e

νn
wn − 1

)
, (44)

whose value is non-negative. Since the first order derivative

of the term inside brackets in (44) is ln 2
wn

e
νn
wn

(
2e

νn
wn − 1

)
,

which is positive due to νn > 0, wn > 0. Thus, the minimum
of (44) is ln e

2 larger than zero, and the second term in
the LHS is also convex. Therefore, (41c) is convex. For
(41a)∼(41c) are convex, the problem P2 is convex. The proof
is completed.
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APPENDIX C
PROBABILISTIC PROBLEM TRANSFORMATION

In the imperfect CSI scenario, the outage probability require-
ment turns the problem into an intractable non-convex prob-
ability mixed problem. Following [69], [70], we transform
this problem into a non-probability problem by approxima-
tions.

Firstly, we transform the outage probabilistic require-
ment into another form of probabilistic constraint as follows.
The maximum achievable data rate is rewritten as

cn = W log2(1 + ϕn)

= W log2

(
1 +

cSn
cIn

)
, (45)

where cSn = pn|αn|2gn and cIn =
∑

ξ(n′)>ξ(n),∀n′∈N
pn′ |αn|2gn′ +N0.

The scheduled data rate can be rewritten as

rn = W log2(1 + ϕ̂n)

= W log2

(
1 +

bSn
bIn

)
, (46)

and we have

ϕ̂n =
bSn
bIn

= 2
rn
W − 1. (47)

According to the above transformation and the total
probability theorem, the outage probability constraints can
be transformed as

Pr[cn < rn|α̂n] =Pr
[
ϕn < ϕ̂n|α̂n

]
=Pr

[
cSn
cIn

< 2
rn
W − 1|α̂n

]
=Pr[E1] · Pr

[
cSn ≤ bSn |α̂n

]
+ Pr[E2] · Pr

[
cSn > bSn |α̂n

]
≤ ϵout, (48)

where Pr[E1] = Pr
[
cSn
cIn

< 2
rn
W − 1|cSn ≤ bSn , α̂n

]
and

Pr[E2] = Pr
[
cSn
cIn

< 2
rn
W − 1|cSn > bSn , α̂n

]
. Then, we have

the following theorem.
Theorem 1. Following [69], the outage probability constraint

(48) can be approximated as

Pr
[
cIn ≥ bIn|α̂n

]
≤ ϵout/2, (49)

and

Pr
[
cSn ≤ bSn |α̂n

]
= ϵout/2. (50)

Proof 1. According to (23), we have

Pr
[
cIn ≥ bIn|α̂n

]
= Pr

[
cIn ≥ bSn/(2

rn
W − 1)|α̂n

]
= Pr

[
bSn
cIn
≤ 2

rn
W − 1|α̂n

]
≤ ϵout/2, (51)

and when cSn > bSn , we can always have

Pr [E2] = Pr

[
cSn
cIn

< 2
rn
W − 1|α̂n

]
≤ ϵout/2. (52)

According to (24), we have

Pr
[
cSn > bSn |α̂n

]
= 1− ϵout/2. (53)

Based on (52) and (53), the probabilistic constraint (48)
satisfies the following approximations

Pr[cn < rn|α̂n]

=Pr[E1] · Pr
[
cSn ≤ bSn |α̂n

]
+ Pr[E2] · Pr

[
cSn > bSn |α̂n

]
≤ϵout/2 + (ϵout/2)(1− ϵout/2) = ϵout − ϵ2out/4. (54)

For ϵout ≪ 1, we have ϵout − ϵ2out/4 ≈ ϵout. Therefore,
the probabilistic constraint (48) can be approximated as
(49) and (50). This completes the proof.

Secondly, based on the transformed probabilistic con-
straints (49) and (50) of Theorem 1, the probabilistic mixed
problem can be further transformed to a non-probabilistic
problem as follows.

According to the Markov inequality, the LHS of (49) can
derive as follows [70]

Pr
[
cIn ≥ bIn|α̂n

]
= Pr

 ∑
ξ(n′)>ξ(n),∀n′∈N

pn′ |αn|2gn′ +N0 ≥ bIn|α̂n



≤
E

[ ∑
ξ(n′)>ξ(n),∀n′∈N

pn′ |αn|2gn′

]
bIn −N0

=

∑
ξ(n′)>ξ(n),∀n′∈N

pn′ |αn|2gn′

bIn −N0
= ϵout/2, (55)

where the right side of the Markov inequality is set to ϵout/2
according to (49).

Since
∣∣α2

n

∣∣ is a non-central chi-squared distributed ran-
dom variable with two degrees of freedom, the LHS of (50)
can be rewritten as

Pr
[
cSn ≤ bSn |α̂n

]
= Pr

[
pn|αn|2gn ≤ bSn |α̂n

]
= Pr

[
|αn|2 ≤

bSn
pngn

|α̂n

]
= F|αn|2

(
bSn

pngn

)

= 1−Q1

√2 |α̂n|2

σ2
ϵ

,

√
2

σϵ

bSn
pngn

 (56)

where F (·) denotes a cumulative distribution function (cdf)
of a non-central chi-square random variable with non-
centrality parameter 2 |α̂n|2/σ2

ϵ , and Q1(·) is the first-order
Marcum Q-function. Based on (50), (56) is equal to ϵout/2,
and bSn can be expressed as

bSn = F−1
|αn|2

(ϵ/2) · pngn, (57)
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where F−1(·) is the inverse non-central chi-square cdf of
F (·). Based on (47), (57) and |αn|2 = |α̂n|2+σ2

ϵ , (55) can be
further transformed into∑

ξ(n′)>ξ(n),∀n′∈N
pn′ |αn|2gn′

bSn/(2
rn
W − 1)−N0

=

∑
ξ(n′)>ξ(n),∀n′∈N

pn′
(
|α̂n|2 + σ2

ϵ

)
gn′

F−1

|αn|2
(ϵout/2)·pngn

2
rn
W −1

−N0

=
ϵout
2

. (58)

Therefore, considering the outage probability constraint, the
approximated signal-to-interference-plus-noise ratio (SINR)
ϕ̃n for the n-th user can be derived as

ϕ̃n =
ϵoutF

−1
|αn|2

(ϵout/2) · pngn
ϵoutN0 + 2

∑
ξ(n′)>ξ(n),∀n′∈N

pn′ (|α̂n|2 + σ2
ϵ ) gn′

, (59)

and the corresponding data rate can be written as

r̃n = W log 2(1 + ϕ̃n). (60)

Finally, the weighted proportional fairness function with
outage probability is transformed into the following non-
probability optimization problem

max
π,p

N∑
n=1

wn ln(1− ϵout)r̃n

s.t. 0 < pn ≤ Pmax
n ,∀n ∈ N ,

π ∈ Π.

APPENDIX D
ALTERNATIVE ALGORITHM FOR MULTIPLE-
ANTENNA WITH MMSE EQUALIZATION MATRICES

Under MMSE methods, the equalization matrices involving
transmit power variable p turn the power allocation sub-
problem into an intractable non-convex problem. To tackle
this non-convex problem, we utilize the alternative algo-
rithm to further transform it into the following subproblem:
the calculation of V under given p and the optimization
of p under given V. The specific process of the alternative
algorithm is as follows.

Firstly, we initiate the transmit power p.
Secondly, according to the definition, the equalization

matrices V under the MMSE method can be easily calcu-
lated by the given p as

V = PHH(HPHH + σI)
−1

(62)

Thirdly, obtained V, the power allocation subproblem
can be formulated as

P1 : R(π) = max
p

N∑
n=1

wn lnRn (63a)

s.t. 0 < pn ≤ Pmax
n ,∀n ∈ N . (63b)

where Rn is

Rn=log2

1+ |vnhn|2pn∑
ξ(n′)>ξ(n),∀n′∈N

|vnhn′ |2pn′+|vn|2σ2

. (64)

vn denotes the n-row of the obtained V. Since vn is a
constant under a given V, (63) can be transformed into a
convex problem as Appendix. B and then solved by CVX
solver.

The alternative algorithm repeat the second and third
steps above until the gap between the previous iteration’s p
and the current iteration’s p is less than the threshold value.

APPENDIX E
MULTIPLE-BS SCENARIO

We consider a uplink NOMA network consisting of a set
of BSs B and each BS b is associated with Nb users. A
BS simultaneously receives signal from its associated users
and the other users, and iteratively decodes signal via a
SIC ordering. In the SIC process, the remaining undecoded
signal and the other users’ signal are treated as interference.
Therefore, the SINR between user n and BS b can be ex-
pressed as

ϕ(b)
n =

p
(b)
n g

(b)
n∑

ξ(n′)>ξ(n),∀n′∈Nb

p
(b)
n′ g

(b)
n′ +

∑
b′∈B\b,∀m∈Nb

p
(b′)
m h

(b′)
m,b +N0

.

Then, we have the data rate between user n associated with
BS b,

R(b)
n = log2(1 + ϕ(b)

n ). (65)

Therefore, the joint SIC ordering and power allocation opti-
mization problem for multiple-BS NOMA can be expressed
as:

max
π,p

∑
b∈B

Nb∑
n=1

w(b)
n lnR(b)

n

s.t. 0 < p(b)n ≤ P (b)
n,max,∀n ∈ Nb,∀b ∈ B (66a)

π ∈ ΠB (66b)

where w
(b)
n is the weight of user n associated with BS b

and π =
[
{π(b)

n }n∈Nb
|b ∈ B

]
indicates the SIC order. Here

π
(b)
i = n means that the i-th decoded user in BS b is user n

and ΠB is the permutation set of all possible SIC orderings.
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