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Abstract
Magnetic resonance elastography (MRE) is an imaging modality capable of visualizing the elastic
properties of an object using MRI measurements of transverse acoustic strain waves induced in the
object by a harmonically oscillating mechanical vibration. Various algorithms have been designed
to determine the mechanical properties of the object under the assumptions of linear elasticity,
isotropic and local homogeneity. One of the challenging problems in MRE is to reduce the noise
effects and to maintain contrast in the reconstructed shear modulus images. In this paper, we
propose a new algorithm designed to reduce the degree of noise amplification in the reconstructed
shear modulus images without the assumption of local homogeneity. Investigating the relation
between the measured displacement data and the stress wave vector, the proposed algorithm uses
an iterative reconstruction formula based on a decomposition of the stress wave vector. Numerical
simulation experiments and real experiments with agarose gel phantoms and human liver data
demonstrate that the proposed algorithm is more robust to noise compared to standard inversion
algorithms and stably determines the shear modulus.

Index Terms
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I. Introduction
Using magnetic resonance imaging (MRI) techniques, magnetic resonance elastography
(MRE) measures the propagation of transverse acoustic strain waves in an object of interest
(Muthupillai et al. [11]). By measuring the propagating strain waves, the aim of MRE is to
extract useful information about the elastic mechanical properties of the object. Various
algorithms have been developed to reconstruct the shear modulus distributions inside the
imaged object ([10], [14], [20], [23], [24], [26], [27]).

The propagation speed of harmonic mechanical waves can be derived from the wave
equation, which in turn depends on the underlying stress-strain relationship of the support
medium. In general, soft tissues are mechanically anisotropic, viscoelastic and have
nonlinear displacement characteristics. However, we assume that the materials behave as
linearly elastic and isotropic materials to image the shear modulus distribution. The linear
elasticity assumption is used in MRE because the mechanical wave motion studied is very
small (typically tens of microns), and the assumption of an isotropic medium simplifies the
equations of motion. Denoting the elastic displacement field by u = (u1, u2, u3), this leads to
the partial differential equation governing time-harmonic, isotropic, linearly elastic motion
([4], [5], [24]):

(1)
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where ρ is the tissue density, λ the Lamé parameter, which is related with the elastic
resistance to the volume change, ζ the shear viscosity, and μ the shear modulus describing
the tissue’s elastic resistance to shape change.

Most of conventional approaches for the shear modulus parameter identification problem
make some assumptions to reduce the equations of elasto-dynamics down to the Helmholtz
equation in order to take advantage of requiring a single measurement of displacement field
for the reconstruction ([8], [14], [15], [20], [22], [26], [27]). These assumptions may cause
some inaccuracy in the reconstruction of μ due to the presence of a substantial fraction of
compressional wave in the total displacement [19]. Assuming that the tissue is nearly
incompressible, one may approximate ∇ · ((μ + iωζ)∇u) = −ρω2u − ∇((λ + μ)∇ · u) ≈
−ρω2u−μuL where uL is a curl-free part of u ([24]). If we further assume that ρω2 is much
higher than μ, then the equation (1) simplifies to the Helmholtz equation([8], [14], [15]):

(2)

Therefore, one component measurement of the displacement field can be used to determine
the mechanical property μ, which can be solved locally by direct algebraic inversion
methods under the assumption of local homogeneity ([7], [8], [9], [10], [12], [13], [14]):

(3)

Here, the density ρ is assumed to be a constant value (1000 kg/m3), which is typical of a soft
tissue ([2]). The conventional direct algebraic inversion method can immediately depict the
interior elasticity distribution in the object (called an elastogram), even from only one
component of the full vector displacement data.

One drawback of the direct algebraic inversion method (3) is that double differentiation of
the measured displacement data ui can cause undesirable noise effects owing to the tendency
of the operations to amplify noise. To alleviate the noise amplification from measured data,
this method typically needs some filtering to reduce the high-frequency noise ([10]).
Another drawback of this method is that the modeling error from the assumption of local
homogeneity produces artifacts around regions of differing elastic properties even with
noiseless data.

The aim of this paper is to present a new method for reconstructing shear modulus images
without the assumption of local homogeneity and requiring single differentiation of data
only. The new algorithm, called a shear modulus decomposition algorithm, that is designed
to avoid noise amplification caused by the double derivatives of the measured data and to
maintain contrast information in the reconstructed shear modulus images. Investigating the
relation between the measured displacement data and the stress wave vector, we decomposes
the stress wave vector into a curl-free, a divergence-free, and a harmonic part so that the
curl-free part is computable directly from the measured displacement data and extracts the
principle information about the shear modulus.

In the proposed algorithm, we first reconstruct a principal component μ* of the shear
modulus μ using the recovered curl-free part of the stress wave vector. This decomposed μ*

itself is a reasonable approximation of μ. Next, we recover small missing information in μ −
μ* using the divergence-free part of the stress wave vector by the way of an iterative
procedure.
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Numerical experiments and phantom experiments show that the shear modulus
decomposition algorithm considerably improves the quality of the reconstructed shear
modulus image from noisy measured displacement data compared to the algebraic inversion
algorithm in (3). We analyze the dependence of the displacement SNR via the addition of
zero-mean Gaussian random noise and its effect on the reconstructed shear modulus image.
The proposed algorithm is also tested with real experimental data including human liver
data. The proposed algorithm based on the simplified equation (2) neglects the hydrostatic
stress term. To observe the effect of the hydrostatic stress term, we recovered and compared
the shear modulus images by using the shear modulus decomposition algorithm with
displacement field which were generated by solving the elasticity system (1) in a two
dimensional domain. In this paper, we focused on recovering the shear modulus μ, but we
can also recover the viscoelastic value ζ simultaneously. The recovered viscoelastic image
using phantom experiments are displayed and discussed.

II. Methods
A. Shear modulus decomposition algorithm

The equation (2) can be written as

(4)

Hence, the reconstruction formula (3) neglects the term ∇(μ+iωζ)·∇ui representing a local
change of μ+iωζ in the direction ∇ui. In order to probe any local contrast of μ, it would be
desirable to include the effect of ∇(μ + iωζ) · ∇ui.

According to the Helmholtz-Hodge decomposition, the vector field (μ + iωζ)∇ui in the
equation (2) can be decomposed into a curl-free component, a divergence-free component,
and a harmonic term. In particular, it can be written as

(5)

where  is a region to be imaged, fi and Wi are respectively solutions of the the following
problems

(6)

and

(7)

and hi is a harmonic function satisfying

(8)
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where ν is the outer normal unit vector on the boundary and α is a constant such that

. Here, ∂  denotes
the boundary of . The constant α is needed for the existence of solutions of (6) and (8).

The direct inversion method in (3) which ignores the effect of ∇(μ + iωζ) · ∇ui is equivalent
to the identity

(9)

since it makes the approximation ∇2fi = (μ+iωζ)∇2ui + ∇(μ+iωζ)·∇ui ≈ (μ+iωζ)∇2ui. Here,
e{·} and m{·} denote the real and imaginary part. Under noise conditions with the

measured data ui, any reconstruction algorithm using the formula (9) has a problem in
providing high spatial resolution images of μ due to noise amplification by the double
differentiation of ui. Hence, in order to obtain better resolution image of μ, it would be
desirable to reduce the noise amplification effect of the double differentiation of ui and to
include the influence of ∇(μ + iωζ) · ∇ui in a reconstruction algorithm.

To reduce the noise amplification effect in the computation of ∇2ui in (9), we use the
formula (5) which requires single differentiation only. Taking the inner product of ∇ui on
both sides of the identity (5) leads to the following formula

(10)

where ūi is the complex conjugate of ui. The quantity ∇fi can be computed using a standard
numerical method because the boundary value problem (6) is a Poisson equation with the
known source term ρω2ui and the known Neumann data. However, ∇ × Wi and ∇hi are
related to the unknown quantity μ + iωζ since ∇ × Wi is determined by the quantity ∇(μ +

iωζ) × ∇ui according to (7) and ∇hi is determined by the difference  on the
boundary ∂ . Fortunately, it is notable that ∇hi ≈ 0 inside  (except near the boundary ∂ )

since the function hi is harmonic inside  and the boundary data of  is oscillating at high
frequency with zero mean on the boundary ∂ . See Appendix for a detailed analysis and a
numerical simulation. Therefore, we may ignore the term ∇hi · ∇ūi in the identity (10).

Now, we have a new approximation for the shear modulus:

(11)

The first quantity in (11) can be viewed as the prime component of the shear modulus μ. We
denote it as μ*:

(12)

As will be shown Fig. 4 and Fig. 7 in Section III, the leading component μ* itself is a good
approximation of the true μ. To achieve an even more accurate reconstruction, we need to
use the second term involving ∇ × W in (11) which takes account of the curl effect ∇(μ +
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iωζ) × ∇u. Taking advantage of the known μ* and ζ*, we can update the shear modulus

value by using a natural iterative procedure. Let  be the solution of (7) with ∇(μ + iωζ)
replaced by ∇(μ* + iωζ*). We compute μ1:

(13)

For each n = 2, ···, we denote Wn by the solution of (7) with ∇(μ + iωζ) replaced by ∇(μn−1

+ iωζn−1) and update the shear modulus value iteratively:

(14)

If we have the three components of displacement (u1, u2, u3), the the shear modulus μ* in
(12) can be determined by

(15)

and the following iterative procedure can be applied:

(16)

The proposed gradient component of stress based inversion algorithm proceeds as follows:

I. a. Compute the gradient part ∇fi of (μ + iωζ)∇ui by solving (6).

b. Reconstruct the component μ* of the shear modulus μ by (15) using ∇fi
and the data ui.

II. a. Set μ0 = μ*. For each n = 1, 2, ···, compute μn in the following way:

i. Compute  by solving (7) with ∇(μ + iωζ) replaced by
∇(μn−1 + iωζn−1).

ii. Update μn using (16) with the updated curl part 

b.

Stop the process if  where ε > 0 is a given tolerance and ||·|| is a
standard L2-norm. Otherwise, repeat the process with n = n + 1.

B. Noise tolerance of μ*

To verify the proposed method and to investigate its tolerance to noise, numerical
simulations and real experiments involving gel phantoms and in vivo liver tissue were
performed.

With noisy measured data ui, the decomposed shear modulus μ* in (15) can be written as
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(17)

where ε∇ui and ε∇fiare the noises in the derivative estimates involving ui and fi, respectively.

The noise standard deviations sd (ε∇ui) and sd (ε∇fi) are proportional to  and ,
respectively, where Δ is the pixel size of the image. We note that sd(fi) is less than sd(ui)
because two derivatives of fi returns us to the noise level of the original measured

displacement data. Using the terminology g(ε) = (ε), which means that the ratio  stays
bounded as ε → 0, the shear modulus μ is influenced by

(18)

Hence, the proposed algorithm evaluating μ* has an error term of order , while the

direct inversion method has an error term of order . This means that the relation
(18) implies that the proposed algorithm substantially reduces the noise effect on the
reconstructed shear modulus image compared to the noise level of the conventional direct
inversion method.

C. Numerical simulation
To test the gradient component of stress based inversion algorithm, we performed a
numerical simulation for a two-dimensional model in the region  = 20 × 20 cm2 with the
origin at its bottom-left. We used a finite element method and discretized the rectangular
model with 128 × 128 four-node rectangle elements with bilinear interpolation functions.
Fig. 2(a) shows the image of the simulated target shear modulus. The target shear modulus
included eight disks of different diameters with shear moduli μ = 2 kPa and the background
shear modulus is μ0 = 1 kPa. We added viscosity material property in the simulated model;
eight disks and the background include 15 Pa and 3 Pa, respectively. We generated the
simulated displacement data u by solving the simplified wave equation (2) with 
and the boundary condition given by

The figure 2(b) and (c) are the real and imaginary parts of the simulated displacement field,
respectively.

In order to test the noise tolerance of the algorithm, we added 2% and 4% Gaussian random
noise with respect to the maximum intensity to the simulated displacement data u. For the
study of the reconstruction characteristics of the proposed algorithm, we defined the relative
L2-error of the reconstructed shear modulus images in  as
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(19)

where μ and μr denote the specified and the reconstructed shear modulus images in ,
respectively.

D. Real data experiments
Phantom experiments were performed to compare the shear modulus decomposition
algorithm to the conventional direct inversion. An agarose gel phantom containing four
cylindrical inclusions of stiffer gel was studied in a 1.5T MR scanner (General Electric,
Milwaukee, WI). The outside gel was 1.5% agar and the cylinders were composed of 10%
B-gel (bovine) to create a contrast in the shear modulus. The diameters of the four
cylindrical objects were approximately 5, 10, 16, and 25 mm. Three-dimensional data
acquisitions were performed. The z-direction phase difference image was acquired using a
tetrahedral 3D GRE MRE scan and eight offsets through time were acquired. The
reconstructed image matrix was 256 × 256 × 16 with a FOV of 20 × 20 cm2 and 3 mm slice
thickness. From separate reference phantoms, the shear modulus of the background was
estimated to be 2.9 kPa and the stiff inclusions were 6.4 kPa. Vibrations at 100 Hz were
introduced into the phantom via an electromechanical actuator placed on top of the phantom
that oscillated in the z-direction. The z-direction is parallel to the cylindrical inclusions and
the 8-th imaging slice was located at the center of the phantom along the z-axis.

To further demonstrate the capabilities of the shear modulus decomposition algorithm, the
technique was also studied in the case of a patient undergoing a liver MRE exam. The
patient data were acquired using a previously documented liver MRE protocol approved by
the Mayo Clinic IRB([28]) which will be briefly summarized. After obtaining informed
consent, the patient was imaged in the supine position. Motion was introduced into the
abdomen using an active pressure system coupled to a passive drum placed on the chest wall
of the patient. The motion was applied at 60 Hz and axial images of the mechanical
vibrations in the liver were obtained using a 36 cm FOV, 256 ×64 acquisition matrix
reconstructed to 256 × 256, and 4 phase offsets with motion-encoding gradients applied in
the through-plane direction. Fig. 3(a) shows an MR magnitude image of the imaging slice
and Fig. 3(b–c) show the corresponding real and imaginary displacement images. The FOV
is 36 × 36 cm2 with matrix size 256 × 256. We set the excitation frequency at 60 Hz. In
these phantom and in vivo human liver experiments, the imaging objects are compactly
supported in FOV.

III. RESULTS
A. Simulation results

Fig. 4 shows the results from the simulation study. The upper row in Fig. 4 shows the
reconstructed shear modulus images using the conventional direct inversion algorithm for
noiseless case, and for the data with 2%, and 4% added random noise, respectively. The
second row in Fig. 4 shows μ* that is computed by the direct formula (12). The third row in
Fig. 4 shows the reconstructed shear modulus μ4 after four iterations using the proposed
gradient component of stress based algorithm.

In the shear modulus reconstruction process in the inversion algorithms, the single and
double derivatives were approximated by the differential templates:
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(20)

and

(21)

To compare the performance of the two algorithms using noisy data, no denoising
techniques or smoothing of the data was used. Fig. 4(a–c) show the recovered shear modulus
images using the direct inversion method (3) with the displacement data containing 0%, 2%,
and 4% random noise, respectively. There are some artifacts near the edges of the inclusions
even for noise-free data. The images are distorted in the region where the vector ∇μ is
parallel to the vector ∇u.

Fig. 4(d–f) show the reconstructed μ* of the shear modulus whose values are slightly lower
than the specified value. These results compared to Fig. 4(a–c) indicate that the shear
modulus decomposition algorithm (12) is more robust to noise than the direct inversion
method (3).

Fig. 4(g–i) show the the reconstructed shear modulus μ4 in (14) with four iterations. This
iteration compensates the information of ∇ × W, where the computation of W requires to
solve the elliptic partial equation (7). Table 1 shows the relative errors Eμr via (19) for each
reconstructed shear modulus image.

Fig. 5 shows profiles from the shear modulus images in Fig. 4 along the horizontal line y =
12. The profile image in Fig. 5(a) using the direct inversion method on the noiseless data
shows that inside the larger constant shear modulus regions provided nearly the correct
values, but there were some artifacts around the edges of the inclusions. The images in Fig.
5(c),(f), and (i) show that the shear modulus decomposition algorithm suppresses the noise
amplification in the reconstructed shear modulus images while maintaining high resolution.

B. Phantom experimental results
Fig. 6(a) shows the measured z-sensitized displacement image of the phantom data for the
middle (8-th) slice. Since the measured displacement shows some interference patterns
caused by the cylinders and the boundaries of the phantom, a spatio-temporal filter was
designed in frequency space to select portions of the wave field propagating in specific
directions. Even though the recovered waves using these frequency domain filters are not
physically realistic, they still satisfy the original wave equation. The filter was designed to
cut off very low and very high frequencies to select only waves propagating down through
the phantom ([10]). Fig. 6(b) shows the wave field after the application of directional filter.
We used the z-sensitized displacement data in Fig. 6 and calculated the reconstructed shear
modulus images in the three dimension by solving a three dimensional finite element
method.

Fig. 7(a–c) and (d–f) show the reconstructed shear modulus using the measured
displacement data with and without directional filtering, respectively. The direct inversion
results are shown in Fig. 7(a) and (d). The results in the second and third columns in Fig. 7
using the proposed algorithm correspond to μ* and μ4, respectively. The reconstructed
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images show that the proposed algorithm has the potential to improve the image quality and
contrast of nondirectional filtered data compared to the direct inversion algorithm. The
direct inversion results in Fig. 7 included smoothing with a spatial window of 11 × 11 to
suppress the noise amplification.

In this phantom experimental setup, the waves mainly propagate downward. However, the
reconstructed images using the filtered data, which suppresses the low-frequency
compressional waves, the high-frequency noise, and waves interfering with the primary
wavefront, have fewer artifacts than those using the nondirectional filtered data.

Fig. 8 shows profiles through the four inclusions from the results in Fig. 7. Fig. 8(a–c) are
the results without directional filtering using the direct inversion method and the gradient
component of stress based method, respectively. Fig. 8(d–f) are the corresponding profiles
with the directionally filtered data. The profiles in figure 8 show that the reconstructed
stiffnesses of the four inclusions using the direct inversion are missing resolution of the
small inclusions by using the surround window to take double derivatives. However, those
using the gradient component of stress based algorithm show that the proposed algorithm
can produce higher resolution shear modulus images and more uniform contrast compared to
the direct inversion algorithm. The inclusion stiffnesses in the reconstructed shear modulus
image μ* in Fig. 8(b) and (e) were slightly lower than that of the true value of 6.4 kPa. The
reason may come from the assumption of local homogeneity which neglects ∇ × W in (5).

For the in vivo human liver experiment, Fig. 9(a) shows a subset of the MR magnitude
image indicating the patient anatomy with the two tumors highlighted with two circles and
identified as R1 and R2. Fig. 9(b) and (c) show the magnitude image again with two
rectangular overlays indicating the domains defined for the shear modulus decomposition of
the two tumors. The overlays in Fig. 9(b) and (c) are the real and imaginary part images of
the potential function f in the two local regions obtained by solving the elliptic equation (6)
with the measured displacement data as source terms and Neumann boundary conditions on
the boundary of the two local regions. Fig. 10(a) shows the full MR magnitude image with
the results from the shear modulus decomposition algorithm overlayed in the two
rectangular insets, and Fig. 10(b) is the corresponding shear modulus image for the whole
field of view using the direct inversion algorithm. The two reconstructed images show
common characteristics, but as expected, the reconstructed image using the proposed
algorithm shows the tumors with better contrast, uniformity, and resolution than the direct
inversion method. The average values of the shear modulus inside the two circled regions
are 3.47 kPa in R1 and 3.26 kPa in R2 when we used the usual direct inversion algorithm.
We obtained 3.19 kPa in R1 and 3.40 kPa in R2 using the proposed algorithm.

IV. DISCUSSION
The numerical results presented in this work show that the shear modulus decomposition
algorithm successfully reconstructs shear modulus images from scalar displacement data
with added Gaussian random noise. The novelty of the proposed algorithm is that it requires
a single differentiation of the measured displacement to reconstruct the chief component μ*

of the shear modulus, which is a good approximation (or good initial guess) of the true μ.
The small missing information in μ − μ* is related to the curl part ∇ × Wi in (5) which
satisfies

(22)
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The component μ* in Fig. 8(b) and (e) slightly underestimated the measured shear modulus
value of 6.4 kPa for the inclusions. This lower value of μ* may be caused by ignoring the
curl part ∇ × Wi.

To compensate for the missing divergence-free part ∇ × Wi of (μ + iωζ)∇ui, the shear
modulus is iteratively updated by solving (7) with the updated source term ∇(μn + iωζn) ×
∇ui. The reconstructed simulation results in Fig. 4 show different characteristics between the
direct inversion algorithm and the proposed algorithm even with the noiseless simulated
displacement data. In the direct inversion algorithm based on (3), the local homogeneity
assumption produces artifacts in the regions where the modulus gradient ∇μ is parallel to the
direction ∇ui since its algorithm neglects the term ∇(μ+iωζ)·∇ui, which can be viewed as
the ∇ui-directional change of μ + iωζ, by the rough approximation:

(23)

The proposed algorithm takes account of the term ∇(μ + iωζ) · ∇ui and produces a more
uniform depiction.

Since a human body is characterized by possessing both viscous and elastic behaviors,
viscoelastic property of tissue has possibility to provide useful information for clinical
imaging applications. The large attenuation effects in MRE can have a significant impact in
some areas ([1]), and visualizing viscosity information has been tried for MRE ([21], [24],
[25]). Fig. 12 shows the recovered viscoelastic modulus images using the direct inversion,
the recovered μ* using the gradient component of the stress wave and the fourth-updated
one using the proposed algorithm, respectively. Comparing the reconstructed viscoelastic
images, the proposed algorithm provided clear edge information of the inclusions and
viscosity values in the inclusion seemed to be slightly larger than background viscosity
value. Imaging the viscoelastic properties of tissue is, however, more easily affected by the
measured noise, thus more rigorous investigation and real experiments will be necessary in
future studies.

In this paper, we neglected the effect of ∇((λ + μ)∇ · u) in the proposed reconstruction
algorithm for the shear modulus. To observe the effect, we simulated the displacement field
in the two dimensional domain Ω = (0, 10) × (0, 10) cm2 with frequency 60 Hz and didn’t
add random noise to the simulated displacement data. The governing elasticity system (1)
can be expressed in mixed form([19]):

(24)

We took four anomalies with different shear modulus values μ = 3 kPa and ζ = 15 Pa with
the background μ = 1 kPa and ζ = 5 Pa. The second Lamé parameter λ = 1 GPa in Ω. Fig.
13(a), (b) and (c) display the displacement u1, u2 and the pressure p respectively with the
boundary condition u1 = 1 on the upper boundary, u1 = 0 on the bottom boundary and
Neumann values are zero on the other boundary. Fig. 14(a) shows the reconstructed shear
modulus image using the direct inversion algorithm (3), (b) and (c) are reconstructed images
μ* and μ4 using (15) and (16), respectively. In this numerical example, we found no severe
damages in the reconstructed shear modulus images by neglecting the hydrostatic stress term
in (24). However, to understand precisely the relation between the shear modulus and the
hydrostatic stress term, more rigorous analysis will be needed including the hydrostatic
stress, the shear modulus distribution, Lamé parameter λ, boundary condition, etc.
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V. CONCLUSION
We propose a new inversion algorithm to reconstruct shear modulus images for MRE. The
proposed shear modulus reconstruction algorithm greatly reduces the noise sensitivity
related to calculating two derivatives of the measured displacement data with the usual
direct inversion algorithm. Differentiating measured displacement data ui only once and
eliminating the local homogeneity assumption in the shear modulus decomposition
algorithm yield more uniform estimates of the shear modulus, better noise tolerance and
higher resolution in the shear modulus image.
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Appendix
In this appendix, we investigate the behavior of ∇hi inside  when hi is a solution of (8)

with a oscillating boundary data  having zero mean on the boundary ∂ . From the basic
theory of elliptic partial differential equations (Gilbarg and Trudinger 1983), the potential
functions hi, i = 1, 2, 3 can be expressed as

(25)

where  in three dimensional case and  in two
dimensional case. Due to the harmonic force inside  which means that the harmonic
function hi has average property inside , the highly oscillating values on the boundary
rapidly vanishes inside the region. Fig. 11 shows this effect where we take a highly
oscillating Neumann boundary condition ranging from −0.4 to 0.4 as shown in Fig. 11(a).
The image of the resulting harmonic solution shown in Fig. 11(b) indicates that the random
noise effects rapidly decaying inside the region and |hi| < 0.004 inside the region.
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Fig. 1.
Gradient echo MRE pulse sequence. The motion-sensitizing gradients are applied along any
direction. By changing the sign of the motion-sensitizing gradients, a phase difference image
can be produced.
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Fig. 2. Simulation setup
(a) is the target shear modulus image.
(b) and (c) are the real and imaginary part of the simulated displacement images,
respectively.
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Fig. 3. Liver MRE data for a patient with multiple hepatic lesions
(a) is a GRE MRE axial magnitude image of a slice including two lesions: a large lesion in
the anterior portion of the liver and a smaller lesion in the posterior portion.
(b) and (c) show the real and imaginary parts of the through-plane component of the
measured harmonic wave field indicating the wave propagation in this patient.
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Fig. 4.
Simulation results. The first row shows the reconstructed shear modulus images using the
direct inversion algorithm. The second and third rows show μ* and μ4 images using the
gradient component of stress based inversion algorithm. The first, second and third columns
are recovered with displacement data containing noiseless, 2%, and 4% random noise,
respectively.
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Fig. 5.
Profile lines of the reconstructed shear modulus images in Fig. 4.
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Fig. 6. Phantom displacement images
(a) is the measured displacement image.
(b) is the corresponding directional filtered image.

Kwon et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7. Results from the phantom study
(a), (b) and (c) are reconstructed shear modulus images using the original measured
displacement data.
(d), (e) and (f) are the corresponding images using the directionally filtered displacement
data.
Column 1 shows results from the direct inversion algorithm, while columns 2 and 3 show μ*

and μ4 from the proposed algorithm.
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Fig. 8. Profiles through the four inclusions from the results shown in Fig. 7
(a–c) are the profiles without filtering data using the direct inversion method and the
gradient component of stress based method(μ* and μ4), respectively.
(d–f) are the corresponding profiles with the directionally filtered data.
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Fig. 9. In vivo human liver experiment results
Two circles in the magnitude image (a) denote the tumor region.
(b) and (c) are the real and imaginary part images of the potential function in two local
regions by solving the elliptic equation (6) with the measured displacement data as a source
term.
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Fig. 10. In vivo human liver experiment results
(a) and (b) are the reconstructed shear modulus images using the gradient component of
stress based inversion algorithm and the direct inversion algorithm, respectively.
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Fig. 11.
(a) is highly oscillating Neumann boundary data following the boundary of the region (0,
1)2.
(b) is the corresponding harmonic solution.
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Fig. 12.
(a), (b) and (c) are reconstructed visco-elastic images with the original measured
displacement data using the direct inversion method, the reconstructed one using the
gradient component of stress and the fourth-updated one using the shear modulus
decomposition algorithm, respectively.
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Fig. 13.
(a) and (b) are real part of the displacement data u1 and u2. (c) is real part of the pressure.
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Fig. 14.
(a), (b) and (c) are reconstructed shear modulus images with the displacement data by
solving the elasticity system (24).
(a) shows the shear modulus image from the direct inversion algorithm, while (b) and (c)
show μ* and μ4.
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